
1

A Fair Message Exchange Framework for
Distributed Multi-Player Games

Katherine Guo Sarit Mukherjee Sampath Rangarajan Sanjoy Paul
Center for Networking Research

Bell Laboratories, Holmdel, NJ 07733.
Email: �kguo, sarit, sampath, sanjoy�@bell-labs.com

Abstract—This paper presents a framework for message
delivery in real-time multi-player distributed interactive
games that use the client-server model. Based on this frame-
work, we propose message delivery algorithms that remove
the unfair advantage that players with smaller message de-
lays from the game server receive over players with large
message delays from the server. The framework is very gen-
eral in the sense that it does not require assumptions of syn-
chronized clocks at the players and servers; neither does it
require a mechanism to compute the one-way delay from
the players to the server accurately. It also avoids the need
for bucket synchronization that leads to messages being de-
layed by a fixed amount of time at the server. The frame-
work is based on a proxy architecture that is independent
of game applications.

Keywords: distributed multi-player games, fairness, re-
action time, message delivery.

I. INTRODUCTION

Real-time, multi-user distributed applications, such as
online multi-player games or distributed interactive sim-
ulations (DIS), are becoming increasingly popular due to
advances in game design and the availability of broadband
Internet access to the end-user. Online multi-player games
can be implemented either using the peer-to-peer model
or the client-server model. In the peer-to-peer model [1],
[2], [3] players send their actions to each other and re-
act on the received action, whereas in the client-server
model [4], [5], [6] all messages from players that carry
their actions are ordered at a single server. In the peer-
to-peer model, event consistency has been well studied
using the concepts of logical clocks, causal ordering and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage, and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
NetGames’03 May 22-23, Redwood City, California, USA c�2003
ACM 1-58113-734-6/03/0005...$5.00

total ordering in distributed systems [7], [8], [9]. In the
client-server model, consistency is automatically guaran-
teed because messages from all the players are only deliv-
ered at the central game server, and therefore all messages
follow both causal and total ordering. However, fairness
in neither model has been addressed. Today most online
multi-player games are implemented based on a client-
server model. This is due to the complexity of a peer-
to-peer model based implementation as well as security
restrictions that prevent peer-to-peer communication. Our
focus in this paper is on games based on the client-server
model. The design and implementation of such games
must include an underlying fairness property for the play-
ers. This is challenging, however, in cases where play-
ers, distributed over wide geographic areas, participate in
a game together.

In the client-server model, an authoritative game server
is set up and all players or clients contact this game server
to play the game against one another. The game server
keeps track of the global state of the game. Players send
their actions to the game server in messages we call action
messages. The game server then processes the actions in
sequence, changes the global state, and notifies players
of the effects of their actions in messages we call state
update messages or simply update messages. The state
change that is communicated to the players may lead to
more action messages being sent to the game server. The
only communication in the system is between the game
server and players. Players themselves do not send mes-
sages to one another, neither do they play any active role
in deciding the ordering of actions in the game. Because
of the real-time nature of online multi-player games, the
majority of action and state update messages are sent over
UDP; only a few messages are sent over TCP and only
at game start-up [3]. Because of this, applications have
built-in mechanisms to handle message loss. For exam-
ple, messages contain absolute location of objects instead
of relative ones, therefore, there is no dependency on pre-

2

vious messages in case they are lost [5], [6], [3].

Much of the focus on improving real-time, online
multi-player games is on how to reduce player experi-
enced response time. For timely state updates at player
consoles, dead reckoning is commonly used to compen-
sate for packet delay and loss [2], [1], [10]. For client-
server based first person shooter games, [4] discusses a
number of latency compensating methods at the appli-
cation level which are proprietary to each game. These
methods are aimed at making large delays and message
loss tolerable for players but do not consider the problems
introduced by varying delays from the server to different
players.

Using the current best-effort Internet, players can expe-
rience erratic game progress which often prevents a player
from responding effectively or appropriately. This can
lead to player frustration, especially if the gaming envi-
ronment is competitive. In addition, because the game
server is in charge of updating global states, and the net-
work delay from the game server to different players is
different, players may receive the same state update at dif-
ferent times. Furthermore, players’ action messages can
also take different times to reach the game server, there-
fore unfairness in processing player action messages can
be created at the game server. A player further away from
the game server or connected to the server through con-
gested or slower links will suffer from longer message de-
lay. Because of this, even fast reacting players may not be
given credit for their actions, leading to an unfair advan-
tage for players with small message delays.

The above mentioned unfairness problem is the focus
of this paper. Assuming that update messages are de-
livered to players at the same physical time, a fair order
of message delivery would be one where action messages
in response to these update messages are delivered to the
server in the order in which they are produced by the play-
ers in physical time. This ensures that a player who re-
acted first to an update message by sending an action mes-
sage will influence the state of the game before a player
who reacted later. One earlier work on fair-ordering of
action messages, the Sync-MS service [11], is based on
a fairness definition for both state update messages and
action messages. The Sync-MS service consists of two
parts, Sync-out and Sync-in, where Sync-out delivers each
state update message from the server to all players at the
same physical time, and Sync-in at the server processes
action messages in the order of the physical time they are
sent. But in order to deliver messages to all the players at
the same physical time, two main assumptions are made:
(i) the clocks at all the players are synchronized and all
these clocks are synchronized with the server clock as

well, and (ii) the one-way delay from the server to each
of the players can be accurately estimated. The above
assumptions are required because an attempt is made to
order action messages according to the physical time in
which these messages are produced by the players. Fur-
ther, this work does not consider the interleaving that may
happen between action messages corresponding to multi-
ple update messages and the effect of such interleaving on
the state of the game that is maintained at the server.

Without making the above assumptions, the same fair-
order delivery effect can be achieved by delivering the ac-
tion messages to the server in the order of increasing re-
action time which is the time between the reception of an
update message at a client and the sending of an action
message in response to the update message. This removes
the need to deliver update messages to all the players at
the same physical time. Based on this idea, we propose
a network service called Fair-Ordering Service, designed
for client-server based, distributed, multi-user real-time
applications such as online multi-player games. It ad-
dresses the issue of player action message fairness based
on player reaction time. Note that the Fair-Ordering Ser-
vice does not attempt to shorten network delays between
the server and players but provides a framework that en-
sures fairness to players even when network delays are
large and variable. Delay reductions could come from ad-
vances in CPU, link speed or game specific features, and
therefore is orthogonal to a service that provides fair order
delivery.

Unlike existing techniques [2], [3] that use bucket
synchronization mechanisms that depend on imposing a
worst case delay on action messages, the Fair-Order Ser-
vice proposed in this paper delivers action messages to the
server as soon as it is feasible. Because action messages
from different players exhibit different reaction times with
respect to an update message, the Fair-Ordering Service
executed at the server dynamically enforces a sufficient
waiting period on each action message to guarantee the
fair processing of all action messages. In reality, the wait-
ing period at the server is bounded because of the real-
time nature of interactive games. The algorithms that offer
Fair Ordering Service take into consideration delayed and
out-of-order action messages. When action messages cor-
responding to multiple update messages are interleaved,
the Fair-Ordering Service matches the action message to
the appropriate update message. It accomplishes this by
maintaining a window of update messages and using the
reaction times for an action message for each of the up-
date messages in the window. This enables state changes
at the game server to be performed with fairness to all the
players.

3

The proposed Fair-Order Service is based on a frame-
work that uses a proxy architecture making it transpar-
ent to any specific game application. The service is well-
suited to client-server based, online multi-player games,
where a fair order of player actions is critical to the game
outcome. Examples of such games include first person
shooter games like Quake [12], [5] and real-time role
playing games such as Dark Age of Camelot [13]. The
game framework is clearly defined and its applicability in
practice is illustrated through examples.

The rest of the paper is organized as follows. Section II
presents the messaging framework for online multi-player
games based on the client-server model, and proposes the
definition of fair-ordering. Section III describes algo-
rithms that guarantee action message fairness based on
the assumption that update messages are delivered to all
the players reliably and in sequence. Section IV expands
the fair-ordering algorithms to take into consideration that
update messages may be lost. An example of algorithm
execution is presented in Section V. Section VI concludes
the paper.

II. MESSAGE EXCHANGE FRAMEWORK FOR

DISTRIBUTED GAMES

We propose a network-based service for distributed
multi-player games called Fair-Ordering Service that
guarantees fair-ordering for action messages that are re-
ceived at the server from all players in the game. The
client-server based system consists of a game server and
a number of game players distributed over a network as
shown in Figure 1(a). The server sends state update mes-
sages to the players to inform them of the latest state of
the game. Each player processes the update messages,
displays the current state of the game and produces action
messages based on the reaction of the human player on the
current state. Multiple action messages may be sent by a
player in response to one update message.

In order to perform the fair-ordering service, we intro-
duce proxies for the server and the players, referred to as
server proxy and player proxy respectively. The proxies
could be co-located with the applications themselves or
they could be one or more separate elements. For ex-
ample, the fair-ordering service could be implemented on
game mirrors in the mirrored game architecture [14] or
game proxies in the proxy system [15]. As shown in Fig-
ure 1(b), both update and action messages are intermedi-
ated through the proxies. We assume that the network de-
lay between proxies and their respective server or player
is negligible.

We consider the most general distributed environment
where (1) the underlying network transport may not guar-

Game
Server

Game
Player

Game
Player

Game
Player

Game
Player

Network

(a)without proxies

Game
Server

Game
Player

Game
Player

Game
Player

Game
Player

Network Player
Proxy

Player
Proxy

Server
Proxy

(b) with server and player proxies

Fig. 1. Distributed game environment.

antee any desired ordering of message delivery from mul-
tiple sources, (2) messages from the same source may
reach their common destination out of order, or may get
lost in transport, and (3) the individual players and the
game server do not have their clocks synchronized.

The server proxy receives update messages from the
game server, tags them with message numbers and sends
them to the player proxies. It receives action messages
from the player proxies, orders them to ensure fairness
based on the additional information with which the player
proxies augment the action message, and delivers them to
the game server. The player proxy receives update mes-
sages from the server proxy and delivers them to the play-
ers. In the other direction, it tags the action messages
sent by the players with the appropriate information as de-
scribed in Section III, and sends them to the server proxy.
Notice that the proxies are completely transparent to spe-
cific games; that is, they are not aware of the semantics of
a particular game.

A. State and State Transitions

We define the state of a game at the server to be a set
of objects and their positions. A state transition happens
when there is a change in the set of objects or the positions
of the objects. State update messages are sent by a server
periodically to the players either to inform the player of a
state transition or simply the current positions of the ob-

4

jects. The interval between two consecutive update mes-
sages sent by the server is typically 40 ms for real-time
video display at 25 frames per second [3]. For simplicity,
the examples in the paper only illustrate state transitions
where there is a change in the set of objects.

AC1

AC3

AC2
AC1

AC3 AC4

AC1

t = U1
UM2 UM3UM1

t = U2 t = U3

S1 S2 S3

Fig. 2. Example of a state and its transitions.

Figure 2 illustrates the definition of state transition. The
initial state of the game �� shows three aircrafts ���,
��� and ���. An update message ��� is sent to the
players with this state information at time ��. The next
state �� shows only aircrafts ��� and ���. ��� has
been removed because of an action message that the server
received from some player. An update message ��� is
sent at time �� to notify the players of the state transition.
State �� shows aircrafts ��� and ���. Aircraft ���

has been removed and aircraft ��� has been included.
A corresponding update message is also sent to the play-
ers. Thus, a state transition involving change of objects,
not positions, may be due to one of the following reasons:
(a) removal of objects, (b) inclusion of objects, and (c)
removal as well as inclusion of objects. A state change
always leads to an update message being sent.

Ri
jAi

jk=

Server

Player Pj

Ui

AMi
jk

Ri
j Ai

jk

�i
jk

UMi

Fig. 3. Message exchange between server and players.

B. Fair-Order

Let us now examine the message exchanges between
the server and the players and their effect on the state of
the game. Figure 3 shows a timing diagram of an instance
of message exchange between the server and the player
�� . Let �� denote the server’s local time at which the
server sends an update message ���. Player �� receives
��� at its local time ��

� . After receiving an update mes-
sage, the player acts on it, which in turn generates an ac-
tion message. We refer to the duration between reception

of an update message and transmission of an action mes-
sage by a player as reaction time. ���

�� denotes the ���

action message sent by player � at its local time ���� af-
ter acting on ��� from the server. Let Æ��� � ��

�� � ��
�

denote the corresponding reaction time. For each update
message, the Fair-Ordering Service delivers player action
messages (corresponding to that update message) to the
server in an increasing order of the reaction times.

Consider Figure 3 again and assume the message ex-
changes are between the proxies for both the server and
player �� . Let �� denote the delivered before relation-
ship between two messages. Then, fair-order delivery will
need to satisfy the following three conditions:

1) For update message ��� and player �� , �� �
�� ��

�� �
������ for all � and 	
 �. That is, all action

messages produced by a player in response to an
update message are delivered to the server in the
order in which they were produced, and

2) For update message ��� and players �� and ��,
�� �

�� �� �� �
��, for all �� �� 	 and � �� �, if

�Æ��� � ��
�� � ��

�� �Æ��� � ��
�� � ��

��. That is,
action messages from two different players corre-
sponding to the same update message are delivered
in increasing order of reaction times, and

3) For update messages ��� and �����, �
 �,
���

�� �� �����
��

for all �� �� � and 	. That is, all
action messages produced in response to an update
message from all players are delivered to the server
before delivering action messages that are produced
in response to an update message that was sent later.

In an ideal distributed game environment where all
players have a synchronized clock and message delivery
over the network takes the same amount of time for every
player, fair-order can be achieved if the action messages
from the players are ordered based on the physical times
at which they are generated. It is easy to see that in this
ideal situation, such ordering would result in the action
messages being ordered in an increasing order of reaction
times. In practice, however, neither the players’ clocks
are synchronized nor the delay in message delivery is the
same or even known a priori. The fair-ordering require-
ments enumerated above provides fair processing of the
action messages without these assumptions. In essence,
for game applications it makes sense to award a player
with the fastest reaction time, and the Fair-Ordering Ser-
vice ensures that.

C. Illustration

This section illustrates the Fair-Ordering Service
through an example in Figure 4. The fair-order message

5

distribution and the state changes happen in the server
and players �� and ��. The server and player prox-
ies (not shown in the Figure) work transparently to the
server and the players to ensure fair-ordering of the mes-
sages. When the state of the game is ��, update mes-
sage ��� is sent by the server and received by both
players. Players may receive ��� at different instants
of local time (that is, ��

� �� ��
�) due to variability in

network conditions. As noted before, they run indepen-
dent clocks which may neither be synchronized with each
other nor with the game server. �� sends an action mes-

S1 S2 S3 S4

S3S2S1

Server

Player P1

Player P2

�1
11

�1
21

�2
11

�2
21

UM3 UM4

AM1
11

AM1
21

AM2
11

AM2
21

S1 S2 S3 S4

S4

UM1 UM2

State does not change

S1 ={AC1, AC2, AC3}

={AC1, AC3}S2

AM1
11

AM1
21

=(Remove AC2)

=(Remove AC2)

AM2
11

AM2
21

=(Remove AC3, Add AC4)

=(Remove AC1)

={AC1, AC4}S3

={AC4}S4

Message between
Server and Player P1

Message between
Server and Player P2

Fig. 4. Fair-order message delivery for state transitions shown in
Figure 2.

sage ���
�� � �Remove ���� which is received at the

server proxy with reaction time Æ���. �� also sends an ac-
tion message ���

�� � �Remove ���� with reaction time
Æ���
 Æ���. The server proxy receives both action mes-
sages, and inspection of the reaction times reveals that
player �� has acted on state �� of the game quicker than
player ��. Therefore, the action �Remove ���� is at-
tributed to ��, not to ��, regardless of the relative arrival
order of ���

�� and ���
��. With Fair-Ordering Service,

the server delivers ���
�� from �� to the server first. Note

that Figure 4 depicts the delivery instances of action mes-
sages according to fair order. The server acts on this mes-
sage and ��� is removed. This action message changes
the state to �� and update message ��� is sent at time
��. When the action message ���

�� from �� is delivered
and processed at the server, it will be done with respect to
state ��. As��� has already been removed and is not part
of state ��, this action message leads to no operation be-
ing performed by the server. �� collects credit for remov-
ing ���, but �� does not, therefore fairness is ensured.
Now assume that ��� reaches the players and they send
action messages ���

�� � �Remove ����Add ����

and ���
�� � �Remove ����, respectively with reac-

tion times Æ��� Æ���. Again with Fair-Ordering Ser-
vice, ���

�� is processed first, ��� is removed and ���

is added. The state is changed to �� and update mes-
sage ��� is sent at time ��. ���

�� is processed next
on state �� and ��� is removed and the state changes to
�� and update message ��� is sent. Notice the sequence
of state changes is reflected in Figure 2. In the following
section we describe a suite of algorithms that guarantees
fair-order delivery of action messages to the server.

III. FAIR-ORDERED MESSAGE DELIVERY

ALGORITHMS

When a server sends the ��� update message ��� to the
players, the server proxy records the sending time ��, and
tags it with the update message number �. Similarly, when
the proxy for player �� receives this message, it records in
��
� the reception time for this message. Further, when the

��� action message is sent at time ���� in response to the

��� update message, the player proxy uses ���� to calcu-
late Æ���. The player proxy sends the action message along
with the following information tagged to the message: (a)
the update message number � corresponding to this ac-
tion message, (b) the reaction time Æ���, and (c) the action
message number ��

��. The action messages are numbered
in an increasing order starting from 1 and the numbering
scheme spans different update messages. That is, if the
last action message from a player corresponding to up-
date message ��� is numbered �, the first action mes-
sage from the same player corresponding to update mes-
sage ����� will be numbered � � �. This numbering
system is used in delivering messages in order. Thus, up-
date message ��� from the server will be tagged with �
at the server proxy and action message ���

�� from player
�� will be tagged with the three tuple ��� Æ���� �

�
��� at the

player proxy. Because message number ��
�� is used to de-

liver action messages from the same player in sequence,
we do not need to consider it until Section III-B.2 where
we consider action messages that arrive out of order.

At the server proxy, the expected round-trip time (ex-
cluding any reaction time at the player, of course) to each
of the players or player proxies is computed using some
standard algorithm such as for TCP [16], [17]. We denote
by �� the wait timeout value for player �� .

When an action message is received at the server proxy,
it is queued to be delivered to the game server; before it
is queued, the following parameters are computed: (a) the
position in the queue where this message should be in-
serted and (b) the local time at which the message is to be
delivered to the game server. Every time an action mes-
sage arrives, this arrival can lead to the re-computation

6

of both the current position and the delivery time of mes-
sages in the queue. The relative position of the messages
already in the queue will not change, but their absolute
positions may change because the arriving action message
may be inserted anywhere in the queue. The delivery time
of the messages may change and this change will always
lead to the delivery time being shortened. These are prop-
erties of the fair-ordering message delivery algorithm de-
scribed below. Note that the definition of fair-order deliv-
ery is only valid for messages arriving within their wait
timeout values. Section III-B.3 discusses the approach to
deal with messages with network delay larger than their
wait timeouts.

A. Position of a Message in the Delivery Queue

When an action message ���
�� arrives at the server

proxy, it is inserted into the delivery queue and the lo-
cation where it is inserted is based on the values � and Æ���.
The delivery queue is kept sorted based on the two tuple
��� Æ� with the key � first and then the key Æ. Thus, an
action message with the tuple ��� �� will be positioned be-
fore another action message with the tuple ��� �� and the
action message with the tuple ��� �� will be positioned be-
fore another action message with the tuple ��� ��. This
means, the messages are sorted in the ascending order
of their corresponding update message ids and within the
set of action messages corresponding to an update mes-
sage, they are sorted in the ascending order of the reaction
times. Note that when an action message arrives, it can
be inserted anywhere in the queue and the relative posi-
tions of the existing messages in the queue do not change.
The message delivery algorithm has the following main
property.

Property III.1: If the delivery queue is sorted based on
the tuple ��� Æ� with the key � first and then the key Æ, then
fair-order delivery is ensured if the messages are delivered
in the order they are found in the delivery queue.

The above property holds because sorting and deliver-
ing messages based on ��� Æ� satisfies all three conditions
of fair-ordering. Sorting the messages in the order of the
update message ids (that is , �) ensures that fair-order de-
livery Condition 3 is satisfied. In addition, further sorting
the messages corresponding to an update message, using
reaction times ensures fair-order Condition 2 and Condi-
tion 1. Note that the action message number (�) car-
ried by the action message could have been used to en-
sure Condition 1, but it is not necessary since sorting ac-
tion messages according to reaction times trivially ensures
Condition 1.

B. Computation of Delivery Time of a Message

When an action message corresponding to an update
message arrives at the server proxy, the algorithm shown
in Figure 5 is executed to insert the message into the de-
livery queue. The first step is to compute the delivery
time ����� of the action message. Delivery time is com-
puted such that any action message that may arrive out
of (fair-)order at the server proxy is delivered to the game
server in fair-order. In order to achieve this, messages may
be queued in the server proxy and delivered according to
the delivery time. We will show later (in Properties III.2
and III.3) that execution of step 2 of the algorithm does not
modify the relative order of the messages that are already
in the fair-ordered delivery queue. The delivery time of
the existing messages are recomputed in step 4 only to de-
liver them earlier than their previously computed delivery
time (refer to Property III.3).

Algorithm Fair-order Message Queueing(action message 	�):
1: Compute
�	�� = Delivery time of 	�;
2: Insert 	� into Delivery Queue sorted according to
�	��;
3: If (Delivery Queue Size � 1)
4: Recompute delivery time of existing messages;

Fig. 5. Algorithm for fair-order message queueing.

We detail the procedure to compute the delivery time of
a message in the following three sections. In Section III-
B.1 we assume that messages arrive at the server proxy in
the order in which they are sent by the player and within
their wait timeouts. Section III-B.2 augments the previ-
ous section with messages arriving out of order and lastly,
Section III-B.3 presents the most general case when mes-
sages do not arrive within their wait timeouts.

1) Messages arrive in order and within their wait time-
out: Consider a set of action messages that have been re-
ceived at the server proxy in response to update message
��� and have been fair-ordered and put in the delivery
queue according to their reaction times. Let these action
messages in the fair-ordered queue be ������ � � � ���.
Let ����� denote the delivery time of action message
�� and � ������� � � � ���� denote the set which rep-
resents the union of all the players who sent messages
������ � � � ���. Let Æ� denote the reaction time for
message ��. 1 Since ��’s are fair-ordered, Æ� � Æ� �
� � � � Æ�. Let � denote the set of all players. Then, the
earliest possible delivery time for a message in the queue,
based on messages arrived so far, will be as follows.

�To be precise, the reaction time corresponding to �� is Æ�� �����
,

where �� is the ��� action message from player � ����. Since there
is no confusion and for the ease of readability we will use Æ� to denote
the reaction time for message �� .

7

Definition III.1: Computation of delivery time with in
order message arrival: Delivery time of message��� � �
� � �, in the fair-ordered queue is ����� � �� �
	
����� �� �	�	������ 	���	��
� Æ��

Note that ordering the messages and delivering them
according to their reaction times will ensure fair-ordering
delivery of messages only if it is guaranteed that when
an action message corresponding to an update message is
delivered, no other action message corresponding to the
same update message with a smaller reaction time may
be in transit. Consider message ��. The update mes-
sage ��� corresponding to this action message was sent
at time ��. The reaction time for this message is Æ�. Since
we assumed messages arrive within wait timeout, if a mes-
sage from another player �� corresponding to update mes-
sage ��� with a reaction time smaller than Æ� is to arrive
at the server proxy, it needs to arrive by time ������Æ�.
Considering all players, for a message with a reaction
time smaller than Æ� to arrive from any player (including
� ����), it needs to arrive by time ���	
����� �	��
�
Æ�. But in order arrival ensures that action messages arrive
at the server proxy in the order in which they are sent. This
means no action messages from � ������� � � � ���� can
be received with a reaction time smaller than Æ� given
that action messages from all these players have been re-
ceived with reaction times larger than or equal to Æ�. That
means, only players from whom no action message has
been received need to be considered. Thus, ����� �
�� � 	
����� �� �	�	���� 	���	��
 � Æ�. In general,
for ��, no action messages from � ��������� � � � ����
can be received with a reaction time smaller than Æ� given
that action messages from all these players have been re-
ceived with reaction times larger than or equal to Æ�. Note
that in this case, it is possible that another action mes-
sage is received from � ������� � � � ������ with a re-
action time smaller than Æ�. Then, there are only two sets
of players need to be considered. One set is the play-
ers from whom no action messages have been received
which are � � � ������� � � � ����, and the other is
� ������� � � � ������. This justifies the above defini-
tion.

It is necessary to ensure that the delivery times of mes-
sages computed using the above definition are consistent
with the order in which the action messages are ordered
in the delivery queue. If the delivery times satisfy this we
call it a feasible delivery order. The delivery time compu-
tation defined above does lead to a feasible delivery order
as argued below.

Property III.2: Property of delivery time with in or-
der message arrival: Message delivery time sequence
������ ������ � � � ������, is a feasible delivery order.

The above property holds because of the fol-
lowing reasoning. Since ������ � � � ��� are
fair-ordered, Æ� � Æ� � � � � � Æ� holds. Also
notice that 	
����� �� �	�	���� 	���	��
 �
	
����� �� �	�	���� 	���	��
 � � � � �
	
����� �� �	���	��
� Therefore, ����� � ����� �
� � � � �����. Thus the property follows.

The above property illustrates that given � action mes-
sages, it is feasible to achieve fair-ordered delivery at the
server by queuing them in fair-order at the server proxy
and delivering them to the server according to their re-
spective delivery times.

Definition III.2: Recomputation of delivery time with
in order message arrival: Suppose an action message
��� �
 �� Æ� � Æ� � Æ���, is inserted into the de-
livery queue ������ � � � ��� conforming the fair-order.
Then the delivery times of ������ � � � ��� are recom-
puted as, �������� � ����� � ��� � � �

�� where �� � 	
����� �� �	�	������ 	���	��
 �
	
����� �� �	�	������ 	�			������ 	���	��
�

Note that the computation of the delivery time of
�� with reaction time Æ�, and recalculation of delivery
times of������ � � � ��� are straight forward from Prop-
erty III.1 and Definition III.1. Since Æ� � Æ� � Æ���, ac-
cording to Property III.1, �� is inserted between �� and
���� in the delivery queue, and the new message order
becomes ������ � � � ������������ � � � ���. Since
the message order has changed, following Definition III.1,
we compute the new delivery times �������� for mes-
sage ��� � � 	 � �� �, as follows:

�
�
����� � �� � ���

���� �� ������� ������������ �����
����� Æ�

�
�
����� � �� � ���

���� �� ���� ������������ �����
����� Æ�

...

�
�
����� � �� � ���

���� �� ������������ �����
����� Æ�

�
�
���	� � �� � ���

���� �� ��������� �����
����� Æ	

�
�
������� � �� � ���

���� �� ������ �����
����� Æ���

...

�
�
����� � �� � ���

���� �� �����
���� � Æ�

Observe that when a newly arrived message is inserted
into the delivery queue, the delivery times for messages
behind it are not changed. The delivery times for mes-
sages ahead of it either shorten or do not change. This is
because the set of players whose wait timeout values are
considered in the formula decreases by one, i.e., � ����.

8

The algorithm, as it is specified, requires that the delivery
time of all messages ahead of the newly arriving message
be recalculated every time a message arrives. Arrival of
every message could potentially shorten the delivery time
of every message ahead of it and hence make the game
progress faster. But this computation is not required to
maintain feasible delivery order. If it is observed that the
overhead of recomputing the delivery time is high, the re-
calculation could be performed after the arrival of a num-
ber of messages (rather than every message). This would
require information to be kept about all the messages that
arrive within two such recalculations and apply this in-
formation when recalculation is performed. The tradeoff
between processing overhead and delayed message deliv-
ery can be adjusted by properly choosing the number of
message arrivals to wait before recalculation.

The delivery times of the action messages ahead of
it can be incrementally updated as defined in Defini-
tion III.2.

Property III.3: Property of recomputed delivery time
with in order message arrival: If the message delivery
time sequence ������������ � � � ������ is a fea-
sible delivery order and a newly arrived message ��

is fair-orderly inserted between �� and ����, then
the sequence of recomputed message delivery times,
����������

�������� � � � � �
�������� �

���������,
remains a feasible delivery order.

The above property holds because of the following rea-
soning. Since message delivery time ������ � � � � �,
is in a feasible delivery order, we know that ����� �
����� � � � � � ����� � ������� � � � � � �����.
We also know that ��������� � � � �, are the only
deliver times that may have changed and be different
from ������ � � � � due to the fair-ordered
insertion. Since ��������� � � � � � are computed
using Definition III.1, we know from Property III.1
that �������� � �������� � � � � � �������� �
��������. Since ��������� � � � � � � � are the
same as ������ � � � � � � �, we also know that
���������� � ���������� � � � � � ��������.
Since 	
����� �� �			������ 	���	��
 �
	
����� �� �	������ 	���	��
, we note that
�������� � �������. Thus we conclude that
�������� � �������� � � � � � �������� �
������ � ������� � � � � � �����. This means
that the feasible delivery order is still maintained for the
recomputed message delivery times.

The above property establishes the fact that if the server
proxy keeps the message delivery queue always sorted
according to the fair order, and recomputes the delivery
times of the affected messages due to the insertion of a

newly arrived message, the fair-order delivery of mes-
sages to the game server can be ensured.

2) Messages arrive out of order: Let us now consider
the situation where action messages from a player can ar-
rive at the server proxy out of order. The action message
numbers �� �

��� carried in the action messages are now
used to (1) order the messages from a specific player and
(2) when a message arrives determine whether all earlier
messages that were sent by the same player have already
arrived. When messages arrive, they are fair-ordered in
the delivery queue based on their reaction times as before,
but now, delivery times are computed accounting for the
fact that messages may arrive out of order.

Assuming that the delivery queue contains messages
������ � � � ��� in that order, let �������� � � � ����
denote the subset of messages within ������ � � � ���

which are sequenced in the sense that all messages from
the players � ��������� � � � ����� that were sent be-
fore �������� � � � ���� have already been received and
have either (a) been delivered to the server or (b) been
placed in the delivery queue. Then the delivery times will
be computed as follows.

Definition III.3: Computation of delivery time with out
of order message arrival: Delivery time of message
��� � � � � �, in the fair-ordered queue is ����� �
�� �	
����� �� ���	�	������ 	����	��
� Æ��

This definition follows similar reasoning as Defini-
tion III.1. The only difference here is that the delivery
time of message �� must consider the possible arrival of
out of order messages with smaller reaction times than Æ�
for all messages that are not sequenced.

The following property ensures that delivery times, as
computed above, leads to a feasible delivery order.

Property III.4: Property of delivery time with out of
order message arrival: Message delivery time sequence
������������ � � � ������, is a feasible delivery order.

This property can be shown to hold following reasoning
similar to those for Property III.2.

The delivery times of the messages after the insertion of
the new message can be computed using procedure sim-
ilar to the previous case. Further, it can be shown that
the newly computed delivery times will satisfy a feasi-
ble delivery order using reasoning similar to that used for
Property III.3.

3) Messages do not arrive within their wait timeout:
Let us now consider the situation when messages may ar-
rive after their wait timeout. Consider the example shown
in Figure 6 with two players �� and ��. The sequence
numbers of messages are shown below the messages. In
Figure 6(a), the delivery queue is shown with messages

9

��, �� and �� from �� and �� from ��. Assume that
the message from �� with the sequence number ��� has
not arrived yet. Consider message �� from ��. With
respect to this message, �� and �� are not sequenced
according to the definition of � in Section III-B.2.

M1 (P1) M2 (P2) M3 (P1) M4 (P1)
102 112 103 104

Message from P1
with seq. no 101
has not arrived.

not sequenced
(a)

M2 (P2) M3 (P1)
112 103

M4 (P1)
104

sequenced

(b)

Message from P1
with seq. no 101
has not arrived but
delivery time of M1

is reached and M1 is
delivered.

Fig. 6. Example where messages arrive after their wait timeout.

Assume that the delivery time for �� is reached before
the message with sequence number ��� from �� arrives.
This means, the wait timeout value for this message has
been exceeded. Message �� will be delivered and the
message with sequence number ��� will be marked late
and delivered to the game server immediately2. When
�� is delivered, messages �� and �� will become se-
quenced with respect to �� as shown in Figure 6(b). This
means, the delivery time of �� needs to be recomputed.
That is, when messages can arrive after their wait time-
outs, delivery times of messages in the queue need to be
updated even when messages are delivered in addition to
being updated when messages arrive (for the cases when
messages arrive within their wait timeout, as described in
Sections III-B.1 and III-B.2, delivery times have to be up-
dated only when messages arrive). In this case, the com-
putation of delivery times is exactly as indicated in Defi-
nition III.3 when messages get delivered as well as when
messages arrive. Property III.4 holds for this case as well,
except when the message at the head of the queue is de-
livered, re-computation of delivery time is needed for all
messages in the queue. We add the dequeuing algorithm
presented in Figure 7 when messages do not arrive within
their wait timeout. When message with sequence num-
ber ��� arrives, it will be tagged as a late message and
delivered immediately to the game server. As it had al-
ready been marked as late and delivery times of the mes-

�The server proxy could also drop the late messages. As the server
proxy is not aware of the game semantics, it may be more appropriate
for the server proxy to deliver the message to the game server and let
the game server decide what to do with it.

Algorithm Fair-order Message Dequeuing(action message 	�):
1: Delivery 	� at
�	��;
2: If (Delivery Queue Size � 1)
3: Recompute delivery time of existing messages;

Fig. 7. Additional algorithm for fair-order message dequeuing when
messages do not arrive within their wait timeout.

sages in the queue had been updated based on this, no
re-computation of delivery times is needed at this point.

4) Correlation of action message delivery time: So far
we have computed the delivery time of action messages
corresponding to an update message ��� in isolation,
that is, without considering the delivery times of the action
messages corresponding to update message �����. The
delivery queue is kept sorted based on the tuple ��� Æ�. Ac-
tion messages are delivered to the game server in this or-
der. That is, all action messages corresponding to update
message ����� are delivered before any action message
corresponding to update message ��� is delivered. This
correlated decision overrides the delivery times computed
for an action message considering the corresponding up-
date message in isolation.

The game application must define what all action
messages corresponding to an update message means.
Action messages corresponding to an update mes-
sage can arrive at any time and assuming that players
can send any number of action messages per update
message, a determination must be made when not to
accept any more action messages corresponding to an
update message. Let us assume that this decision is
made based on some technique determined by the game
application. When this determination is made for update
message �����, let us assume that the delivery time
computed for the last action message ���� corresponding
to ����� in the delivery queue be ����. Any action
message corresponding to ����� that arrives after
���� has been delivered will be dropped. Of course,
any action message corresponding to ����� that ar-
rives at the server proxy before ���� is delivered, and is
deemed to be delivered before ����, will be delivered. Let
��������

������ � � � ��
����� denote the delivery times

of messages ������ � � � ��� that are in the delivery
queue and correspond to update message ���. Then, the
delivery time of message ��� � � � � �, as computed
in the previous section must be modified as: ������ �
	
�

�
����� �� �	
����� �� ���	�	������ 	����	��
� Æ�

�
�

This ensures that all action messages corresponding to
update message ����� are delivered before any action
message corresponding to update message ��� is
delivered. Note that the delivery times computed above
can change due to both message arrivals and message

10

deliveries. The change could be (a) due to a change in
����, which could be due to the arrival or delivery of an
action message corresponding to update message �����

or earlier update messages, or, (b) due to an arrival of an
action message corresponding to update message ���

which will lead to a change in the second component on
which maximum is computed.

IV. FAIRNESS AMONG PLAYERS WITH INCONSISTENT

VIEWS

The fair-ordered message delivery algorithm described
in Section III assumes that when an action message is
sent by a player proxy, it carries the tuple ��� Æ� where �
is the update message id of the most recent update mes-
sage ��� received at the player. In our discussion of the
algorithm, we implicitly assumed that all players receive
���, update their states and then send the action mes-
sages corresponding to ���. In practice it may so hap-
pen that a new update message ����� sent by the server
does not reach a set of players or is delayed compared
to the rest of the players. Therefore, the players with the
most up-to-date information send all their action messages
tagged with update message id � � � by the player prox-
ies, whereas the remaining players send action messages
tagged with the previous update message id �. This situ-
ation, where action messages and update messages cross
each other, may lead to unfairness among the players. The
unfairness arises due to the inconsistency in the view of
the game that each player possesses. We first describe the
problem with the help of an example and then describe the
steps taken in the fair-ordered message delivery algorithm
to overcome this.

S1 S2 S3

S3S1

Server

Player P1

Player P2

�1
11

�1
21

�1
12

�2
21

AM1
11

AM1
21

AM1
12

AM2
21

S1 S2 S3

UM1 UM2

State does not change

UM3

�1
22

S1 ={AC1, AC2, AC3}

={AC1, AC3}S2

AM1
11

AM1
21

=(Remove AC2)

=(Remove AC2)

AM1
12

AM2
21

=(Remove AC3, Add AC4)

=(Remove AC3, Add AC4)

={AC1, AC4}S3

Message between
Server and Player P1

Message between
Server and Player P2

Fig. 8. Example of an inconsistent view of the game between two
players, where the sequence of state changes at the server is shown in
Figure 2.

Consider the same example shown in Figure 2, with
a slightly different update and action message sequence
than the one in Figure 4. The message sequence is
shown in Figure 8. Assume that when ��� is re-
ceived, players �� and �� send action messages ���

�� �
�Remove ���� and ���

�� � �Remove ����, respec-
tively, with Æ���
 Æ���. ���

�� gets delivered (when
its delivery time is reached) by the server proxy to the
game server. The server changes state to �� and sends
update message ���. Assume that ��� reaches ��
but does not reach ��. At this time, the state accord-
ing to �� is �� and the state according to �� is ��. As-
sume now that both �� and �� send action messages
���

�� � �Remove ����Add ����, and ���
�� �

�Remove ����Add ����. Note that ��� is part of both
�� and ��. The action message from �� will carry the tu-
ple ��� Æ���� and that from �� will carry the tuple ��� Æ����.
The reaction time Æ��� has been computed to be the interval
between the time ��� is received at �� to the time ���

��

was sent by ��. The reaction time Æ��� has been computed
to be the interval between the time ��� is received at
�� to the time ���

�� was sent by ��. Thus, these two
reaction times are not directly comparable although it is
possible that if the reaction times of both the players had
been compared from the time each received ���, �� had
a faster reaction time. The way the algorithm is described,
given that all action messages corresponding to ��� will
be processed before any action messages corresponding
to ���, ��’s action on ��� and ��� will be processed
before ��’s action on ��� and ���, thus being unfair to
��.

To remove this unfairness, when action messages are
sent by players, a set of tuples are tagged onto each of
these action messages by their proxies each represent-
ing the reaction time from the time a set of update mes-
sages are received. The set of update messages, which
we refer to as the window, for which this information
needs to be sent is indicated by the server proxy when
it sends an update message. In the above example, when
�� and �� send action messages ���

�� and ���
��, re-

spectively to remove ��� and add ���, �� sends the tu-
ple ��� Æ���� because it has seen only ��� when it sent
this action message, but �� sends both tuples ��� Æ���� and
��� Æ����. That is, �� indicates that it is sending this action
message with a reaction time of Æ��� from the time it re-
ceived ��� and a reaction time of Æ��� from the time it
received ���. At the server proxy, message splitting is
performed. The action message sent by �� is put in the
delivery queue with the messages corresponding to ���

and is fair-ordered based on Æ��� but the action message
from �� is split and inserted in two places, one with the

11

messages corresponding to ��� where it is fair-ordered
based on Æ��� and the other with messages corresponding
to ��� where it is fair-ordered based on Æ���. If Æ��� is
smaller than Æ���, the action �Remove ����Add ����
from �� is delivered to the game application before the
action �Remove ����Add ���� from ��.

A question may be raised as to why the action mes-
sage from �� was split and put together with the action
messages corresponding to update message ��� as well.
This is because, the server proxy can only relate the action
and update messages but has no idea about the semantics
of the action that is being performed as it is transparent to
the game application. Because of this, it has no choice,
but to put the action message from �� together with ac-
tion messages corresponding to ��� as well. When the
“split” messages are delivered by the server proxy to the
game server, it a) indicates that this is a “split” mes-
sage and b) provides the correspondence between this ac-
tion message and the update message to which this action
message was mapped; from this, the game server knows
the state to which the action message should be applied.
Given this, the redundant “split” message should lead to
a “no operation” when it is delivered and processed by
the application running on the game server, as the action
�Remove ����Add ���� has already been performed by
the game server. Note that the game server can filter out
redundant copies of “split” messages once it knows that
a message is a “split” message irrespective of the actions
specified in the message.

It should be noted that action messages forwarded by
the server proxy to the game server does require extra in-
formation to be tagged. Examples of such information in-
clude the update message number corresponding to the ac-
tion message as well as information about whether a mes-
sage is a late message or a “split” message. Because ap-
plication specific information does not need to be passed
in these messages, the fair-order algorithms are game ap-
plication transparent.

We mentioned that a window of update messages for
which reaction times are needed is indicated by the server
proxy to the player proxies. This window is based on the
determination by the server proxy about when to stop ac-
cepting action messages corresponding to a particular up-
date message. In the example, when ��� is sent by the
server proxy, if it is still accepting action messages cor-
responding to ���, which means it still has not deliv-
ered the last action message �� corresponding to ���,
it indicates the window to be ����� ���� ���. If it
has already delivered ��, it indicates this window to be
����� ���. Determining the size of the window is an
open issue. The game server’s application can help in this

regard as discussed in Section VI.

V. EXAMPLE

Let us consider an example which illustrates the fair-
order message delivery algorithms by showing the com-
putation of the delivery times. Let us take the example
shown in Figure 8 and add timing information to it. The
resulting figure is shown in Figure 9. The timing infor-
mation shown is in terms of a logical clock. The delivery
queue at the time of specific events is shown in the figure,
on top of those events. State changes trigger update mes-
sages to be sent and for the purpose of timing calculations,
it is assumed that these messages are sent instantaneously
after a state change.

S1 S2 S3

S3S1

Server

Player P1

Player P2

AM1
11

AM1
21

AM1
12

AM2
21

S1 S2 S3

UM1 UM2

UM3

100

4

3

AM1
11

119

9

30

37

AM1
12

145

AM1
12

130

AM2
21

147

AM2
21

Max(147, 138)

dropped

2 3 64 5 7
119 145

1

S1 ={AC1, AC2, AC3}

={AC1, AC3}S2

AM1
11

AM1
21

=(Remove AC2)

=(Remove AC2)

AM1
12

AM2
21

=(Remove AC3, Add AC4)

=(Remove AC3)

={AC1, AC4}S3

Message between
Server and Player P1

Message between
Server and Player P2

i Step i at Server

Fig. 9. Example showing the fair-order message delivery algorithm.

The game session consists of two players �� and ��
and a server. We use ����� �

��� to denote the delivery
time for action message ���

�� corresponding to update
message ���. Assume that the wait timeouts for the two
players are �� � �� and �� � ��.

1) At time 100, the state of the game is �� which con-
sists of objects ���, ��� and ���. Update mes-
sage ��� is sent by the server informing the play-
ers of this state. The window sent is [���].
��� is received at �� and ��. They send action
messages ���

�� and ���
��. The tuples sent with

these messages are ��� �� and ��� �� respectively.
2) ���

�� is received at the server proxy (and has ar-
rived in order which is verified by looking at the se-
quence number), and is put in the delivery queue.
According to Definition III.1, its delivery time is
calculated as ������

��� � ��� � �� � � � ���.

12

3) ���
�� is delivered to the server at ��� and credit for

removing ��� is given to ��. Any action message
corresponding to ��� with a reaction time equal
to or smaller than � that is received later will be
dropped (such a message will be received only if
it reaches after its wait timeout). The state of the
game is changed to �� which consists of the objects
��� and ���. The update message ��� is sent to
the players. The window sent is [���� ���].

4) ���
�� is received at the server proxy. This message

has a reaction time smaller than the reaction time
of an already delivered message corresponding to
��� and is dropped.
��� is received at �� but is lost on its way to ��.
Action messages ���

�� and ���
�� are sent by play-

ers �� and ��. ���
�� carries only the tuple ��� ���

as ��� was not received at ��. ���
�� carries the

tuples ��� ��� and ��� ��.
5) ���

�� is received at the server proxy. This message
has arrived in order and so the delivery time for this
message is calculated as ������

��� � ��� � �� �
�� � ��� according to Definition III.1.

6) ���
�� is received at the server proxy. This mes-

sage also has arrived in order. As this message car-
ries two tuples, it is split into two messages and is
put twice in the queue, once as an action message
corresponding to ��� and the other as an action
message corresponding to ��� (in this case, this is
the first action message received at the server corre-
sponding to ���). The delivery time for the first
copy is calculated as ������

��� � ��� � �� �
�� � ���. The delivery time for the second copy,
considered in isolation with respect to action mes-
sages corresponding to ���, will be ������

��� �
�������� � ���. But the action message delivery
times need to be correlated with other action mes-
sages such that all action messages corresponding
to update message ��� should be delivered before
any action message corresponding to ��� is de-
livered (see Section III-B.4). Thus ������

��� is
calculated as Max(147, 138) = 147. Also, the deliv-
ery time for ���

�� which is already in the queue is
updated to be ������

��� � ��� � �� � ��� (see
Section III-B.1). Assume that the current time is
���. ��� is smaller than the current time and hence
���

�� is delivered right away.
7) Once ���

�� is delivered to the server and is pro-
cessed, the credit for removing ��� and adding
��� is given to ��. The state of the game is
changed to �� which consists of objects ��� and
���. The update message ��� is sent to the play-

ers. Assume that the window sent is ����. This
means, the server proxy does not wish to receive
any more action messages corresponding to ���

and ���. As mentioned earlier, the decision about
the window has to be made in some fashion, may
be even with the help of communication between
the game server and the server proxy.
At time 147, two copies of ���

�� are delivered,
both of which becomes no-ops as ��� has already
been removed.

Let us now extend the above example to show the ef-
fect of our-of-order reception of action messages. Refer
to Figure 10.

S3 S4

S3

Server

Player P1

Player P2

AM3
21AM3

22

AM3
11

S3 S4

UM3

S4

UM4

3

5

4

9 10 118145

AM3
22

165

AM3
11

164 AM3
21

148

AM3
22

160

AM3
22

165 AM3
11

149

AM3
22

160

S3 ={AC1, AC4}

={AC4}S4

AM3
11
=(Remove AC1) AM3

21

AM3
22

=(Remove AC1, Add AC4)

=(Remove AC4)

Message between
Server and Player P1

Message between
Server and Player P2

i Step i at Server

Fig. 10. Example showing the fair-order message delivery algorithm
with out-of-order message reception.

8) ���
�� is received at the server proxy (and is out-

of-order) and is put in the delivery queue. The de-
livery time is computed as ������

��� � ��� �
������� ��� � � � ��� based on Definition III.3.
Note that as ���

�� has been received out of order, it
is possible to receive a message from �� with a reac-
tion time smaller than � and hence the wait timeout
of �� needs to be considered. Refer to the definition
of � in Section III-B.2.

9) ���
�� is received at the server proxy (and is in-

order) and is put in the delivery queue. The delivery
time is computed as ������

��� � ��� � �� � � �
���. Again, the wait timeout of �� needs to be con-
sidered as the message currently in the queue from
�� has arrived out of order.

10) ���
�� is received at the server proxy (and is in-

order) and is put in the delivery queue. Now, mes-

13

sage ���
�� in the queue also becomes in-order. Us-

ing Definition III.1, the delivery times of all the
messages in the queue are computed as
������

��� � ��� � � � ���
������

��� � ��� � � � ���
������

��� � ��� � �� � � � ���
The delivery times for ���

�� and ���
�� will be

smaller than the current time (note that the current
time is at least ��� as message ���

�� has been re-
ceived with a reaction time of � in response to ���

which was sent at time ���). These messages will
be delivered with �� getting the credit for removing
��� and adding ���. In this case ���

�� will be a
no-op.

11) The update message ��� is sent to the players.
At time ���, message ���

�� will be delivered to
the server and the credit for removing ��� will be
given to ��.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a framework called
Fair-Ordering Service to achieve fairness in a distributed,
client-server based, multi-player game environment. The
framework consists of having proxies for both the game
server and the game players, referred to as server proxy
and player proxy, respectively. The server proxy is re-
sponsible for delivering players’ actions in a fair order to
the game server. This is achieved by tagging messages
with extra information at the origin proxy, and process-
ing the extra information at the destination proxy, keeping
both the server and the players oblivious to the fair-order
delivery process. This transparency allows the proxies to
be used for a number of different game applications.

Although the framework is kept independent of game
applications, it is possible to use some application spe-
cific information to further optimize the fair delivery of
messages, that is, deliver the messages even sooner than
what has been proposed. The game application may also
help in deciding some of the parameters of the proxy, for
example, the maximum wait timeout after which to de-
clare an action message from a player too late to be de-
livered to the game server as referred in Section III-B.4,
or the size of the window of update messages opened up
by the server proxy as referred to in Section IV. They can
be treated as input parameters to a proxy’s configuration.
Our future work is to extend the framework to adapt to
such game specific information.

ACKNOWLEDGMENTS

The authors would like to thank Yow-Jian Lin for in-
sightful discussions during this work.

REFERENCES

[1] M. Mauve, “Consistency in Replicated Continuous Interactive
Media,” in Proc. of the ACM Conference on Computer Supported
Cooperative Work (CSCW’00), 2000, pp. 181–190.

[2] L. Gautier and C. Diot, “Design and Evaluation of MiMaze, a
Multiplayer Game on the Internet,” in Proc. of IEEE Multimedia
(ICMCS’98), 1998.

[3] L. Pantel and L.C. Wolf, “On the Impact of Delay on Real-Time
Multiplayer Games,” in Proc. of ACM NOSSDAV’02, May 2002.

[4] Y. W. Bernier, “Latency Compensation Methods in
Client/Server In-game Protocol Design and Optimiza-
tion,” in Proc. of Game Developers Conference’01,
2001, URL: http://www.gdconf.com/archives/
proceedings/2001/prog_papers.html.

[5] S. Bonham, D. Grossman, W. Portnoy, and K. Tam, “Quake:
An Example Multi-User Network Application – Problems and
Solutions in Distributed Interactive Simulations,” Tech. Rep.,
CSE 561 Term Project Report, University of Washington,
May 2000, URL: http://www.cs.washington.edu/
homes/grossman/projects/561projects/quake/.

[6] J. Färber, “Network Game Traffic Modelling,” in Proc. of
NetGames2002, Apr 2002.

[7] K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal
and Atomic Group Multicast,” ACM Transactions on Computer
Systems, vol. 9, no. 3, Aug 1991.

[8] C. A. Ellis and S. J. Gibbs, “Concurrency Control in Groupware
Systems,” in ACM SIGMOD’89, 1989.

[9] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed Systems,” Communications of the ACM, vol. 21, no.
7, Jul 1978.

[10] S.K. Singhal and D.R. Cheriton, “Exploiting Position History
for Efficient Remote Rendering in Networked Virtual Reality,”
Presence: Teleoperators and Virtual Environments, vol. 4, no. 2,
pp. 169–193, 1995.

[11] Y. Lin, K. Guo, and S. Paul, “Sync-MS: Synchronized Messag-
ing Service for Real-Time Multi-Player Distributed Games,” in
Proc. of 10th IEEE International Conference on Network Proto-
cols (ICNP), Nov 2002.

[12] R. Swamy, “idSoftware Releases Quake 1 Source Code Under
the GPL,” URL: http://linuxtoday.com/stories/
14111/html.

[13] Mythic Entertainment, “Dark Age of Camelot,” URL: http:
//www.darkageofcamelot.com.

[14] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An Efficient
Synchronization Mechanism for Mirrored Game Architectures,”
in Proc. of NetGames2002, Apr 2002.

[15] J. Widmer M. Mauve, S. Fischer, “A Generic Proxy System for
Networked Computer Games,” in Proc. of NetGames2002, Apr
2002.

[16] M. Allman and V. Paxson, “On Estimating End-to-End Network
Path Properties,” in Proc. of ACM SIGCOMM’99, Sept 1999.

[17] V. Jacobson, “Congestion Avoidance and Control,” in Proc. of
ACM SIGCOMM’88, Sept 1988.

