
1

Cheat-Proof Playout for Centralized and Distributed
Online Games

Nathaniel E. Baughman Brian Neil Levine
baughman@cs.umass.edu brian@cs.umass.edu

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

Abstract— We explore exploits possible for cheating in real-time, mul-
tiplayer games for both client-server and distributed, serverless architec-
tures. We offer the first formalization of cheating in online games and
propose an initial set of strong solutions. We propose a protocol that has
provable anti-cheating guarantees, but suffers a performance penalty. We
then develop an extended version of this protocol, called asynchronous
synchronization, which avoids the penalty, is serverless, offers provable
anti-cheating guarantees, is robust in the face of packet loss, and provides
for significantly increased communication performance. This technique is
applicable to common game features as well as clustering and cell-based
techniques for massively multiplayer games. Our performance claims are
backed by analysis using a simulation based on real game traces.

I. INTRODUCTION

Cheating is as old a concept as game playing. For networked
games, cheating is closely tied to three major factors that affect
the quality of the game: timely playout of real-time interaction;
scalability of communication and game architectures to large
numbers of users; and the prevention or detection of cheating
players.

Online, real-time, strategy games [1], first-person shoot-
ers [2], [3], and massively-multiplayer virtual worlds [4], [5]
all rely on similar techniques for simulation. Ideally, all players
across a network are able to synchronize game events and ac-
tions such that player control and interaction is consistent across
all player viewpoints. However, games often trade precise con-
trol for communication performance gains to preserve the real-
time quality of the game playout.

Most popular today are centralized, client-server game archi-
tectures, which offer a single point of game coordination, but
create a bottleneck of processing and signaling as the size of
and number of players in online worlds increases. Moving to a
distributed, serverless architecture increases scalability and per-
formance, but complicates player interaction and increases the
already troubling potential for cheating extant in centralized ap-
proaches.

Cheating abounds in current game play on the Internet, yet
there is little or no real security to prevent cheating in online
games. Cheats are simple to download and use. In this paper, we
make cheat-proof interaction and fair playout of interactions a
necessary condition of game communication. We show that the
common synchronization techniques used to preserve the real-
time quality of online games are detrimental to game play and
even create irresolvable situations that destroy the coordination
of the game. We uncover the potential for cheating under com-
mon synchronization techniques and show that cheating players
are indistinguishable from non-cheating players. We then pro-
pose a protocol for multiplayer game communication that has

anti-cheating guarantees. The protocol is shown to be sufficient
to offer precise player interaction coordination, but it is not scal-
able to large virtual worlds. We then extend the protocol with
a new technique for online game synchronization in a way that
preserves coordination and security while bettering scalability
and performance. Our protocol is also the first to ensure fair
playout of events under distributed, serverless architectures, i.e.,
architectures without a trusted third party.

Section II presents background information on game archi-
tectures. Section III considers the potential for cheating during
game synchronization. Section IV presents new protocols for
cheat prevention. Section V presents an analysis of the perfor-
mance of the protocols. Section VI looks how our techniques
may be combined with clustering and cell-based techniques for
scaling to massively multiplayer scenarios. Section VII con-
cludes.

II. ASSUMPTIONS AND TERMINOLOGY

In this paper, we grant to cheaters the ability to read, insert,
modify, and block messages involved with the game protocols.
We develop techniques to guard against attacks on such vul-
nerable application-level signaling. Protecting against attacks
on existing transport-layer and network-layer protocols, such as
denial-of-service attacks, is beyond the scope of this paper.

We assume application software is readable by the user and
will perform its functions as originally intended. Moreover, any
information available to the client is available to the player, e.g.,
game state or cryptographic keys. This assumption precludes
any attempt to employ security by obscurity, which is the pre-
dominant model in games today [6]. Have a compromised client
is possible but requires access to and understanding of the orig-
inal source code or the ability to change the compiled version
of the application. Preventing all cheats available because of
client modifications are beyond the scope of this initial study
and are left for future work. However, the specific techniques in
this paper presented for cheat-proof playout are tolerant against
modifications to the client.

We refer to the set of information needed to describe the game
at any time as game state, which is composed of entity states.
An entity may consist of several in-game objects (e.g., military
troops) and is controlled by a player. We may refer to a player
as a person playing a game as well as the objects that person
controls in the game. The partitioning of game state is depicted
in Figure 1. Automated players are possible. Players make deci-
sions, that is they decide on events that change their own states.
When an interaction occurs, multiple players’ decisions must be

2

Player

Player

Player

Player

Game State

Entity
State

Entity
State

Entity
State

Entity
State

Fig. 1. Game state partitioning

change request

update
Game
View

Client

Player

change request

update
Game
View

Client

Player

change request

update
Game
View

Client

Player

World
Entity
State

Server

Game State

Entity
State

Entity
State

Entity
State

Fig. 2. Centralized-control client-server

resolved by computing the resulting state.
We consider simulators where the progression of in-game

time, called a frame, is distinct from wallclock time, and the sim-
ulator computes game state for each frame. Players take exactly
one turn during each frame. Such simulators offer precise game
control, but may appear slow to a player if the simulator cannot
compute each successive unit of in-game time quickly enough.
A player may also perceive slower game play, in terms of wall-
clock time, if it must wait for updates from a player across the
network.

Multiplayer games are coordinated through either centralized
client-server or decentralized distributed architectures. The ar-
chitectures differ by where game state is maintained, which in-
volves effecting changes and coordinating interactions. Under a
client-server architecture, all entity states are maintained by the
server, which computes game state based on input from clients
and informs clients of the current game state. In a centralized-
control client-server architecture, illustrated in Figure 2, a client
sends requests for the server to change the client’s entity state.
In a decentralized-control client-server architecture, illustrated
in Figure 3, a client informs the server of update decisions that
have affected the client’s entity state, and the server resolves
interactions between game objects and coordinates global game
state. Under a distributed architecture, where clients are referred
to as hosts, each host maintains its own entity state, informs
other hosts of decisions, and resolves any interactions without
the use of any centralized authority. A distributed architecture,
illustrated in Figure 4, is serverless and is also refereed to peer-
to-peer gaming.

Client-server architectures offer a single point of game coor-
dination at the server. In the decentralized-control client-server
architecture, the server maintains an entity model that represents
the last known entity state as updated by a client. In the face of

Entity
State

Entity
State

Entity
State

World
Entity
State

Server

Game State

Player

Client

update

state update

Player

Client

update

state update

Player

Client

update

state update

Model

Model
Entity

Model
Entity

Entity

Fig. 3. Decentralized-control client-server

Host

Game State

state update

state update

state update state update

Host

Game State

Host

Game State

World
Entity
State

Model
Entity

Model
Entity

Local
Entity
State

Model
Entity

Model
Entity

Local
Entity
State

World
Entity
State

World
Entity
State

Model
Entity

Local
Entity
State

Model
Entity

Fig. 4. Distributed

missing updates, the server uses the entity model to resolve any
interactions, which may result in conflicting views of game state
between the server and affected client. However, since the server
has authority over maintaining game state, the client must ac-
cept these discrepancies and conform to the server’s view of the
game world. These simplifications, among other benefits, have
made the client-server architecture popular. An entity model is
also used by distributed hosts for remote entities. However, in-
teraction decisions cannot be made in the face of missing entity
state without potentially corrupting the overall game state. We
explore this further in the next section.

Each architecture presented results in various potentials for
cheating. Cheating occurs when a player causes updates to game
state that defy the rules of the game or gains an unfair advan-
tage. For example, players may cheat by using some piece of
game state that a player is not permitted to have knowledge of
according to game rules.

A. Related Work

Dead reckoning is a technique that compensates for variable
communication latency and loss across a network by allowing a
host to guess the state of another player when updates are miss-
ing based on the last known vectors. Dead reckoning is a part of
the Distributed Interactive Simulation (DIS) and High-level Ar-
chitecture (HLA) standards [7], [8], and is commonly used by
researchers and developers [9], [10], [11], [12], [13], [14], [15].
In its simplest form, the predicted position of a player is equal
to the previous position plus the velocity times the elapsed time.
Singhal and Cheriton have refined this basic formulation [13].
Diot, Gautier, and Kurose have evaluated the performance of
bucket synchronization with dead reckoning in a simple, dis-
tributed game called MiMaze [11], [12]. Bucket synchroniza-
tion provisions a series of buckets at each host, one bucket per

3

discrete time unit in the game. Each bucket collects state up-
dates sent from each remote player. When it is time to process
a bucket (i.e., the game time has reached that bucket’s assigned
time unit), any missing updates are dead reckoned. That is, the
absent player’s entity model is guessed using the player’s state
from the previous bucket.

Previous work places dead reckoning as a necessary technol-
ogy for timely game play but largely leaves the resulting prob-
lem of entity interaction resolution as a future enhancement. In
this paper, we show that employing a dead reckoning scheme
and resolving entity interactions are mutually exclusive. Also
not addressed in previous work is the potential for cheating un-
der synchronization schemes. We show that cheating is possi-
ble in a dead reckoning system. We provide solutions to the
cheating problem in later sections of this paper. The next sec-
tion shows that any form of dead reckoning leads to irresolvable
player interactions, especially with a distributed architecture.

Our work is also related to interest management techniques
for massively multiplayer games and applications [16], [17],
[18], [19], [20], [21]. Typically, interest grouping is done on
the basis of (x,y) grid-coordinates, a natural interest clustering
for the application area of virtual environments. Section VI dis-
cusses how our work can leverage these techniques.

Lastly, our work is related to parallel simulation tech-
niques [22], [23], [8]. Parallel simulations operate with either
conservative or optimistic event processing. In conservative pro-
cessing, no entity may be out of synchronization with other enti-
ties and therefore no lookahead and processing of events is pos-
sible. Optimistic techniques allow for entities to execute events
asynchronously, but then must be tolerant of incorrect state or
computation during execution. Typically, once it is realized that
such incorrect state exists, the computation is undone, or rolled
back, to the last correct point. This method requires that states
are saved. Such techniques are not useful for real-time multi-
player games as it would not be practical to force human partic-
ipant to restart to previous points in the game. In this paper we
allow for optimistic processing without the need for rollback.

III. FAIR PLAYOUT

We define an online game as fair if state as perceived by ev-
ery player is consistent with every other player’s expectations,
including the server, as defined by game rules. Fair resolution
of game events can be complicated by the use of dead reckoning
in several ways.

A. Irresolvable Interactions

As stated, a player cheats by causing updates to game state
that defy rules of the game or gains an unfair advantage. Cor-
rect playout of real-time interaction means that the game state
is identically perceived by every player. A Fair game is one
where players see events occurs as would be expected by games
rules and taken action. The goal of this paper is to achieve cheat-
proof, correct, and fair gameplay. The solutions must be scalable
to many players in terms of signaling costs, and maintain play-
out such that delays in the advance of in-game time is minimally
perceivable to players.

Dead reckoning can be used in client-server or distributed en-
vironments [11], [12] and the operation is the same. In the cen-

tralized case, interactions are resolved by the server uniformly,
but unfairly. That is, the server is the sole authority over game
state that is used to resolve interactions, so all clients are up-
dated with the same resulting view of the world. However, if
the server uses dead-reckoned state to resolve an interaction, the
decision may differ from the expectation of the dead-reckoned
player. Thus, a dead-reckoned player may view the server’s de-
cision as unfair, since the player’s true actions were not used
by the server. The resulting discrepancy in playout may cause
jumpiness in game play or other artifacts. Due to the unreli-
ability and latency variability of the Internet, this client-server
unfairness is unfavorably tolerated by game players.

The annoyance of unfair decisions becomes damaging in a
distributed architecture, as interactions based on dead-reckoned
state may corrupt the global game state as seen by each host.
Since dead-reckoned state may not be consistent between hosts,
using dead-reckoned state to resolve interactions results in an
unfair decision, according to other players. In the distributed
context, fairness includes correctness. The result of resolving
an interaction based on dead-reckoned state in a distributed ar-
chitecture is the potential for incorrectness of overall game state.
For example, say players

�
and � dead reckon player � to take

no actions, when in reality � destroyed
�

(reality is defined
as the game state when interactions are resolved fairly and cor-
rectly). If player

�
then destroys player � before � ’s actions

are resolved, then game play is corrupted. Game time could be
restored to a state before the interaction, but this is clearly not
a fair or practical solution, although it is exactly the approach
taken by the High Level Architecture’s optimistic time manage-
ment service [8]. An irresolvable interaction problem results
when dead reckoning is used and interactions are either deter-
mined unfairly by a server or potentially incorrectly by a dis-
tributed host.

B. Cheating Under Dead Reckoning

The possibility of cheating is widely disregarded in multi-
player games. Many games are designed around the client-
server architecture, which provides some implicit security along
with centralized control of game state. Distributed games are
much more prone to cheating, but cheats are possible within a
client-server game.

One security flaw under bucket synchronization is what we
term the suppress-correct cheat, which allows a host to gain an
advantage by purposefully dropping update messages. Suppose
that under some dead reckoning policy, � buckets are allowed
to be dead reckoned before the player is considered to have lost
connection and is removed from the game (coordinating the re-
moval of a player in a distributed game is beyond the scope of
this paper). With such a policy, a cheating player can purpose-
fully drop ����� update packets while playing. The player then
uses knowledge of the current game state to construct an up-
date packet for the � th bucket that provides some advantage. A
simple example allows a sluggish player, � , to chase a more
agile player, � . � begins pursuit, then drops �	�
� updates;
meanwhile, � dead reckons � ’s missing state but cannot con-
firm where � really is. For the � th bucket, � sends a fabricated
update that places � on the heels of � . As long as � sends
plausible updates every � th bucket, � cannot confirm that � is

4

cheating or not cheating; � simply claims to be on a congested,
lossy link. This cheat applies both to client-server as well as
distributed games. We can conclude that fair play is indistin-
guishable from cheating when dead reckoning is used. In the
following sections of this paper, we provide strong guarantees
of cheat prevention and detection.

IV. CHEAT-PROOF GAME INTERACTION

Most real-time strategy games require interaction resolution
at each discrete unit of time, or turn, in the game. A stop-
and-wait-type protocol similar to those used for reliable trans-
port [24] can fulfill this requirement for client-server or dis-
tributed architectures: before time advances in the game, the
state change decisions made by each player must be available.
In other words, for a game at frame � , all players stop and wait
for all other players to decide and announce their turn for frame
��� � , and receive the announcements of all other players, be-
fore continuing on to frame ����� . Because no dead reckoning
is allowed, the suppress-correct cheat is eliminated. Moreover,
since all state decisions are known at each turn, all interactions
can be resolved by each host.

Such a scheme expects that each player will make a next-turn
decision based on the current turn state, then send that decision
to each other player. However, this represents another oppor-
tunity for cheating: a cheating player can simply wait until all
other players have sent their decisions, which we call the looka-
head cheat. For example,

�
may take a lethal shot towards �

that could not be defended against in normal human reaction
times. However, using the lookahead cheat, player � may have
a cheating agent that sends the decision to raise shields in time.
When a stop-and-wait-type protocol is employed, players that
appear to be slower may actually be implementing a lookahead
cheat, which can be serious depending on such game features.

In this section, first we present a protocol where lookahead
cheats and suppress-correct cheats are not possible. This pro-
tocol has performance drawbacks as all players’ rates are re-
stricted to that of the slowest player. In the second part of this
section, we provide enhancements to allow fair play while al-
lowing players to not wait for all players before advancing in
game time.

A. Lockstep Protocol

To counter the lookahead cheat, we propose a stop-and-wait-
type protocol with a decision commitment step. We call this
secured version the lockstep protocol, which is sufficient for im-
plementing lockstep synchronization as described below.

Suppose turn � is complete. Each player decides but does not
announce its turn ��� � . Each player instead announces a cryp-
tographically secure one-way hash of its decision as a commit-
ment, including randomized padding if necessary to avoid rec-
ognizable hashed decisions and avoid collisions [25]. Once all
players have announced their commitments, players then reveal
their decisions in plaintext. Hosts can easily verify revealed de-
cisions by comparing hashes of plaintext to the previously sent
committed value. Because each host has only the current turn
information to make its next-turn decision, the lookahead cheat
is prevented. Waiting is no longer beneficial. As an optimiza-
tion, the last host is not required to commit its decision if all

other hosts have already committed theirs; the last player may
reveal its decision immediately.

The two-phase commitment and required waiting period for
all players in the lockstep protocol introduces a performance
penalty. Although correct playout is preserved with lookahead
cheat prevention, the game and all players will run at the speed
of slowest player. The reception of other player’s packets is
likely to be delayed by current network conditions. The next
section presents a synchronization mechanism and protocol that
retains the desirable properties of the lockstep protocol and al-
lows the game to run at a speed independent of all players when-
ever possible.

A.1 Proof of Correctness

A safety and liveness proof of the lockstep protocol shows
that it fulfills its requirements by not producing an error con-
dition and always progressing [24]. We make a number of as-
sumptions: there exists a reliable channel between all players;
all players know of all other players; players are able to au-
thenticate messages from each other player; and all players wait
only a finite time before making decisions and revealing com-
mitments.1

Theorem: The lockstep protocol is safe: no host ever receives
the state of another host before the game rules permit; an error
occurs if � knows

�
’s state for frame � before � has committed

to events at � , where � and
�

are any two players. The lockstep
protocol is live: the frames each player resolves monotonically
advance with wallclock time.

Proof: The safety of the lockstep property follows directly
from the protocol specification. Let ��� be equal to the cur-
rent frame being resolved by an arbitrary player � . Initially,
���
	�� . As per the protocol description, � announces a hashed
version of the decision it has made for ��� once it has received
commitments from all other players for the same frame. � will
not announce its committed decision for time ���� � until de-
cisions for time ��� from every other player are revealed, re-
ceived, and verified against commitments. No player, includ-
ing � , may alter announced events because of the hash com-
mitments. Because � may not advance, there is no possibility
that another participant will learn � ’s decision for a later frame
earlier than the one currently being resolved.

For liveness, let ��� be the wallclock time at which arbitrary
player � starts to resolve frame ��� of the game. Let ��� be the
wallclock time at which all players learn the revealed decisions
of all other players for frame ��� ; let ����	�� if this never
occurs. Let ��� be the wallclock time at which player � advances
to time frame ����� � ; let ����	�� if this never occurs. We will
show that � ��� � ��� � � and that � � is finite.

Assume player � is not the last player to commit. Let ��������
equal the value of variable ��� at player � at wallclock time
� . Let ���!�"� � #	%$. By definition of the protocol, we know
���!�"���& '	($. Because all players wait only a finite time before
committing to decisions, and because all communication takes
place over a reliable channel, we know the commitment of the
last player will be received within a finite time, and therefore,
)
All assumptions can be implemented in practice. For example, players not

revealing or committing decisions within a bounded time would be released from
game play.

5

��� is finite. Because the protocol is safe, we know that the value
of ��� is incremented to $�� � only at time � � . It is clear from
the statement of the algorithm that �������� is a non-decreasing
value over time. Because �����"�� is non-decreasing, ��� � ��� .
Because all players reveal commitments within a finite time over
a reliable channel, � � is also finite.

A similar proof can be constructed if player � is the last
player to commit. In that case, it is � ’s communication that
ensures ��� and ��� are finite. �

B. Asynchronous Synchronization

In this section, we present a new synchronization technique
with guaranteed fair playout called asynchronous synchroniza-
tion (AS) that relaxes the requirements of lockstep synchro-
nization by decentralizing the game clock. Each host advances
in time asynchronously from the other hosts, but enters into a
lockstep-style mode when interaction is required. Correct play-
out and fairness are guaranteed. Asynchronous operation of the
lockstep mechanism provides a performance advantage because
at times players can advance in game time even without contact
from all other players. This relaxed contact requirement may
overcome intermittently slow network signaling, packet loss, or
slow host processing. We do not expect AS to be used to allow
players with completely different network and host resources to
play together. Instead, for this initial design, AS is meant as a
technique to isolate the effects of temporarily poor connections
between players who play at the same rate for a large majority
of time and to reduce the time it takes to resolve interactions.

B.1 Spheres of Influence

Using AS, each player’s host keeps track of each other
player’s advance in game time and space during game play. The
area of the game that can possibly be affected by a player in the
next turn — and therefore potentially require resolution with
other player decisions — is called the player’s sphere of in-
fluence (SOI). We define influence as any in-game information
that affects a player’s decisions, and therefore the outcome of
a player’s decisions; where in-game refers to parts of the game
world, as opposed to external knowledge that the player may
have, e.g., that a certain opponent typically follows some strat-
egy. Accordingly, a sphere of influence is the in-game area that
encompasses all sources of potential influences on a player’s up-
coming decisions. It follows that anything outside of a player’s
current SOI is immaterial to the player’s gameplay decisions and
resulting events. For example, if a player is not within earshot
of a forest, then the player cares not if a falling tree made any
sound, nor if it fell.

In AS, each player considers the intersection of two types of
SOI. First, a player’s own SOI, which indicates a geometric area
wherein decisions made contribute to and must be resolved with
the player’s decisions for the next turn. Second, SOI of remote
players, which indicate the areas that can be affected by the other
players on their next turn. Accordingly, if two players’ SOI do
not intersect for a certain turn, their decided events will not af-
fect each other when resolving game state for that turn.

In AS-based games, each host may be making decisions for a
different time frame and advancing its time frame independent
of other hosts; details are described subsequently. Therefore, a

Remote

delta basebase

Local

Fig. 5. Base and delta spheres of influence

�
Local host�
The set of all remote hosts� A remote host in

�
�

The current frame at the local host���� State of host 	 at frame
�

�� ����� Hash of state
���� for host 	 for frame

�
� �� Potential influence of host 	 at frame

�

Fig. 6. Table of variables.

1. Compute
����

2. Send

�� �����

3. Process accepted

�� ���� messages that

have arrived
4. foreach ��� �

Take next
� �� if any have arrived where ��� �

Let frame of latest state taken be �
compute � � � , and � �� dilated from �
if (� � ��� � ���� �)

then record
�

is not waiting for �
else if

�� ����! accepted
then
�

is not waiting for �
else
�

is waiting for �
5. if not waiting for any �

then send
� ��

resolve any interactions
finalize and render turn

�
advance to turn

� �#"%$

Fig. 7. AS at the local player for each game turn.

SOI is composed of two parts. The base SOI is the maximum
area that may influence or be influenced on any one turn. The
delta SOI is the change in influence area that may occur in sub-
sequent turns. Base and delta are represented as radii, as illus-
trated in Fig. 5, and delta is added to base to compute subsequent
turns.2

B.2 Asynchronous Synchronization Protocol

Our description of the AS protocol is from the point of view
of one host in a distributed, serverless architecture. The protocol
can be easily adapted to a centralized architecture.

A formal description of the protocol is given in Figures 6 and
7 as it would take place for an arbitrary turn � at a player & . If a
player has reached turn � , then we assume it has already revealed
state for turn � � � .

For simplicity, we assume in-order, fully reliable delivery of
packets. We extend the protocol to out-of-order, unreliable de-
livery of messages later in this section. Not shown is an initial-
'
The figures illustrate 2D play only, but clearly, AS mechanisms exist for 3D

coordinate systems.

6

p t3

rp t2

rp t1

rt0

p t3

l

tl
2

r
t3

rp t2

rp t1

rt0tl
3

rp t4

p t4

r

l

p

Fig. 8. (Left) Dilation to
���

. (Right) Dilation to and intersection at
���

.

ization phase that occurs before the game begins: every player
learns the full set of remote other players,

�
, and starts each

remote player, ���
�

, in lockstep with every other player un-
til the initial positions of the other players are received over the
network.

For an arbitrary turn � , a player first determines its decision
for that turn (Step 1), and second announces the commitment
of the decision to all players (Step 2). Third, commitments that
are one frame past the last revealed frame of a remote player are
accepted (Step 3). Before revealing its commitment, the local
player must determine which remote players it is waiting for
(Step 4). A remote player is not in the wait state only if there is
no intersection with the SOI dilated from the last revealed frame
of the remote player, or if a commitment from the remote player
has been accepted by the local player.

Each other remote player’s SOI is computed using the base
radius of the last known position plus a delta radius for each
time frame that the local player is ahead of the remote player’s
last known time frame. If the local host is in the future relative
to another player, then the other player’s potential to influence
the local player’s next decision is dilated to the local player’s
next time frame (Fig. 8a). If the local host is not in the future
of a remote host, then no dilation is performed. Intersection of
the SOI as the local player moves to the next time frame without
receiving revealed state from the remote player since frame ��� is
illustrated in Fig. 8b.

Finally, if no remote hosts are in the wait state, the local host
reveals its state for turn � , updates its local entity model of each
other player with their last known state, including the remote
host’s last known time frame (no dead reckoning is performed),
and advances to the next turn (Step 5). The protocol then repeats
for the next turn.

AS allows a host to advance in time at a rate independent
of other hosts, until there is potential influence from a slower
player which might result in interactions that must be resolved.

As an illustrative example, consider the case depicted in
Figs 9 and 10, drawn from simulation results. Fig. 9 shows a
pair of players crossing each other in the 	�
 -plane of the game.
The � -axis represents the frame of each player for a correspond-
ing 	
 -coordinate. Both players’ paths start at frame zero and
end at frame 111. Consider another set of players, C and D, that
take the same paths in the game, but must proceed in lockstep
synchronization. Players C and D have the same frame-versus-

0 50 100 150 200 250
x coordinates

0
50

100
150

200
250

300

y coordinates

0

20

40

60

80

100

120

frame number

Fig. 9. Player position versus game frames. Top lines:players A, B, C, and D.
Bottom lines: paths in the �!� -plane.

0 50 100 150 200 250
x coordinates

0
50

100
150

200
250

300

y coordinates

0

500

1000

1500

2000

2500

3000

3500

wallclock time

Fig. 10. Player position versus wallclock time. Top lines:players C and D.
Middle lines: players A, and B. Bottom lines: paths in the �!� -plane.

	�
 -coordinate graph as players A and B. Fig. 10 shows the same
paths in the 	
 -plane, but the � -axis represents the wallclock
time of the players for each coordinate. Players C and D are
represented by the two lines advancing slowly in wallclock time
(higher in the � -plane).

In contrast, players A and B proceed according to the AS al-
gorithm: they may advance in time as quickly as possible, only
proceeding in lockstep when their SOI intersect. Fig. 10 shows
players A and B only having a sharp increase in slope as the
two approach each other in the 	
 -plane. Players A and B need
not wait to hear from the other player to continue with the game
otherwise, and therefore are not affected by network delays. In
contrast, players C and D must constantly wait for each other,
and so network delays affect every moment of the game.

With AS, lookahead cheats are prevented similarly to the
lockstep protocol: by committing to a hash of the next-turn de-
cision until all hosts have committed at the same time frame

7

or have revealed past decisions that remove the potential for
cheating (i.e., the potential for interaction). AS eliminates the
suppress-correct cheat also in the same way as in the lockstep
protocol. The host cannot advance in time until all potential in-
fluences for one turn have been resolved. The lookahead cheat
might appear to be more serious than in lockstep synchroniza-
tion: a host may purposely lag behind other hosts in order to
preview future information. However, a host cannot advance in
time past the point where a potential influence is detected, hence
cheating is useless as no player would be affect by the cheat.
(Note simple jumps in position are easily detectable as being
located outside a dilated SOI from a known position). By defi-
nition of SOI, the future information released by the advancing
host is immaterial to any other player’s game decisions.

Note that AS signaling may give a player advance location
information about another player, which will not allow cheating
of game playout but may possibly alter a player’s strategy. How-
ever, we present a solution to this situation for centralized and
distributed architectures in Section VI.

The AS protocol also preserves lockstep synchronization’s
guaranteed correct and fair playout, since all interactions are
resolved with perfect information for each turn in the game.
The performance increase is the ability to advance in time inde-
pendent of remote hosts when no interactions are possible. We
demonstrate such performance gains by simulation in Section V.

A host in a distributed game using the AS protocol can ex-
ecute as fast as possible until a potential influence overlap is
detected. To preserve a set game play frame rate, designers may
impose a maximum game speed. (Simulation results in Sec-
tion V make use of a similar type of capped rate.) At best, once
a SOI intersection is detected, a host will have to wait for only
one update from another player, which will restrict its potential
SOI and allow the local host to continue. At worst, the poten-
tially interacting player must catch up in time to a faster host in
order to resolve an actual interaction. This worst case occurs, for
example, when the lagging player moves directly toward the fu-
ture position of another player at the maximum delta rate. Oth-
erwise, the past player’s dilated SOI will not intersect the future
player’s SOI, and the future player may continue.

B.3 AS with Packet Loss

Although our proof of AS assumed the existence of a reliable
channel between all players, this assumption can be relaxed.
Simply stated, players can skip missing packets and accept new,
out-of-order packets from other players when the missing pack-
ets represent state outside a SOI intersection. Missing packets
that represent intersection of SOI cannot be dropped or skipped.
We do not present a new proof here, however, one can be easily
constructed by examining if the dilated SOI resulting from miss-
ing packets result in an intersection; if they do not, the packet
may be skipped. It is clear the protocol has enough information
to determine if missing information would possibly result in SOI
intersection if eventually received.

We can conclude that AS represents a performance advantage
over lockstep. Rather than contact every player every turn, with
AS, players need only contact players that have SOI intersec-
tion. In other words, a player 20 SOI radii away need be only
heard from after 20 turns to be sure there is no SOI intersection.

Other performance benefits are explored in more detail in the
next section.

C. Secret Possessions

Many games include the notion of secret information, which
is valuable in-game state that may only be known to a subset of
the players. One type is secret possessions, which are objects
that a player chooses not to reveal immediately to other players,
with the condition that no actions are taken with the object until
it is revealed.

Players in a distributed game may wish to hide an object, such
as a weapon or key, for a later use. However, opponents may de-
sire proof that the object was in fact acquired earlier and within
game rules. For example, in a capture-the-flag game, player �
may capture an opponent’s flag to bring back to a home base to
win the game. Player � may hide which of its game soldiers has
the flag causing the opponent to have to neutralize all of player
� ’s soldiers running for home base when it is unclear which has
the flag. To solve this dilemma, we define a promise as a place
holder for secret possessions with the condition that the remote
player claims no potential interaction exists with the hidden pos-
session. Promises can be easily implemented in the form of a
hashed or encrypted commitment sent to the opponent and later
revealed. The opponent must sign the commitment to prevent
repudiation that the secret was not promised. The promising
player may choose to not continue on with the game until the
promise is signed by the opponent.

To provide local player � the confidence that secretive, re-
mote player � is acting honestly, we present a cheat detection
scheme, which does not prevent cheating but allows it to be dis-
covered. Along with the promise, � must commit to its current
(secret) state, for example, using a one-way hash function as
in the lockstep protocol. � records the committed state. The
state is revealed and verified at a designated time, either after
the game has been completed or based on some expiration af-
ter which old secret information is considered declassified, or
no longer important to be kept secret. We define the logger
service as a mechanism that resides in each host and records
promised information to be verified later. To provide a more
real-time cheat detection solution, we define the observer ser-
vice as a trusted, centralized entity that receives secret informa-
tion through secure channels and verifies it during gameplay.
If cheating is detected, a protocol can alert players and prompt
some action to be taken; e.g., removal from the current game
and banishment from a tournament.

If � never knows the position of � , then asynchronous op-
eration is not provided for � because � can only advance in
time at the rate of � ’s promises, assuming � can only issue one
promise per time frame. If � wishes to advance in time faster
than � , then � must be certain that � ’s dilated, potential SOI
does not intersect with its own, or potential interactions may be
irresolvable. To preserve the benefit of asynchronous time ad-
vance, we provide a centralized solution. A promise service is a
trusted, centralized entity that receives secret and non-secret in-
formation in the same way as the observer service. The promise
service dilates � ’s SOI to � ’s time frame and issues a promise
to � if no interaction exists. Assuming the promise service host
can execute at least as fast as � ’s host, promises can be issued

8

to � even in the case that � has not advanced in time. No se-
cret information is revealed to � , and interaction resolution is
guaranteed since the promise service in enacting the AS proto-
col. The promise service also solves the situation in which no
player may know the entity state of another. SOI are dilated and
promises issued on behalf of each player by the promise ser-
vice. Introducing such a centralized solution countermines the
potential for AS to be deployed for large, distributed simulated
environments, and a distributed solution is left as future work.

V. PERFORMANCE ANALYSIS

We analyzed the performance of the AS protocol compared to
the lockstep protocol by simulation. We did not compare against
dead reckoning techniques as it is clear dead reckoning will per-
form better but introduces unfair actions for centralized archi-
tectures and irresolvable events in distributed architectures.

We are unaware of any work that presents analytical models
of typical game play. Therefore, we took traces from a represen-
tative game, XPilot [26], a networked, multiplayer game where
players control ships in a two-dimensional space. Accordingly,
we cannot claim the results presented in this section are generic.
However, our hope is that they are representative.

We built a custom simulator that controlled each player in the
game based on traces from real XPilot sessions. We configured
XPilot to run for about 4000 frames of game play with various
numbers of automated players on a 300-by-300 size map3, and
modified the game to log 	�
 -coordinate information to a file.
Logging did not begin until all players had joined the game.
Our simulator took the logs as input for each player, and each
	�
 -coordinate in the log was considered a turn decision taken
by each player.

Each unit of simulator time represented 10 milliseconds of
wallclock time. Each unit of time in the simulator, players could
read from the logs for their next turn and send that turn to other
players. However, sending of a decision would be blocked ap-
propriately by the lockstep or AS protocol according to anti-
cheating constraints.

We assumed a star topology between players. Each player’s
network connection had a delay to the center point of the star
topology that was drawn each turn from an exponential distribu-
tion with a mean of 5 simulator time units. A simple exponential
distribution was suitable for this preliminary investigation; our
future work will include simulation on more varied distributions
and network topologies. The star topology has two interpreta-
tions. The first is that packets were multicast from each player
to each other player. The second is that packets were unicast
to a non-playing server located at the center of the star, which
then immediately and simultaneously unicast the packets to each
other player.

Players could not take turns more often than every 4 units of
the simulation so that we were consistent with constraints on hu-
man reaction times assumed by previous simulation work [11],
[12]; we termed this the lower cap. Additionally, players had
an upper cap: they could not advance in turns more than once
for every 10 units of simulator time that had passed. This was
�
This value is the XPilot map size, but the granularity of the player position

coordinate system is much finer, on the order of 50,000-by-50,000.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

pe
rc

en
ta

ge
 o

f t
ur

ns

ms between frames

10 player Xpilot Simulation

Lockstep
soi-4x
soi-2x

soi

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

pe
rc

en
ta

ge
 o

f t
ur

ns

ms between frames

18 player Xpilot Simulation

Lockstep
soi-4x
soi-2x

soi

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

pe
rc

en
ta

ge
 o

f t
ur

ns

ms between frames

30 player Xpilot Simulation

Lockstep
soi-4x
soi-2x

soi

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

pe
rc

en
ta

ge
 o

f t
ur

ns

ms between frames

37 player Xpilot Simulation

Lockstep
soi-4x
soi-2x

soi

Fig. 11. Distribution of milliseconds stalled between frames due to lockstep
interaction.

9

to simulate a game running at 10 frames per second, which is
consistent with a typical XPilot game.

For example, consider a player at simulator time 30 who just
read and sent its decision for game frame 3 to all other play-
ers. It must wait 4 steps before reading its next turn (the lower
cap), and may not send out the packet until simulator time 40 is
reached (the upper cap). However, consider if, due to lockstep
constraints, the player was forced to wait until simulator time
51 to send the packet for frame 4. Since four time units had
passed since it read frame 4 from the trace, and because time
50 had passed, it could immediately read frame 5 from the trace
log and would be able to try to send out the packet immediately
(subject to lockstep constraints).

We took traces of 10, 18, 30, and 37 players. Our future work
will include the study of larger number of players; XPilot is not
a game suitable for play with players numbering in the hundreds
or larger. It is also suitable to consider our simulation as that of
one cell in a cell-based or clustered game; this is discussed fur-
ther in Section VI. For each trace, our simulator used four differ-
ent SOI sizes. The smallest SOI usable was set as the maximum
distance any player could move in a single turn. We expect this
to be the size used in practice. The largest SOI simulated was of
infinite size, corresponding exactly to a lockstep protocol. For
comparison purposes, we also simulated twice the smallest SOI
size (denoted soi-2x in the graphs), and four times the smallest
SOI size (denoted soi-4x).

Fig. 11 shows the results for traces of 10, 18, 30, and 37 play-
ers. Each graph shows a histogram representing the distribution
of time stalled between frames for an average player due to lock-
step anti-cheating constraints; i.e., the milliseconds stalled by an
average player before each turn’s decision could be transmitted
over the network as measured from the last turn. Stall time due
to the upper and lower caps are not included in these results as
they are not involved in AS calculations.

The simulation results clearly show the performance advan-
tages of the AS protocol. With the lockstep protocol, players
always wait for the slowest player to send their decision. With
the AS protocol, even for larger numbers of players, at least 50%
of the turns can be taken without delay do to player coordina-
tion while still guaranteeing cheat-proof game play. Even when
a player must be stalled, the AS protocol enables players to stall
for less time. The simulations show that while AS performance
degrades slowly, so does the lockstep protocol, and that AS al-
ways maintains a large advantage. We expect these results to
hold for large numbers of players in large environments, and
our future work will be to test this theory. Additionally, in the
next section, we present a technique to support distributed cell-
based game play so that players need only contact other players
in their own cell while still following anti-cheating constraints.

VI. SUPPORTING CELL-BASED ARCHITECTURES

In order for massively multiplayer games to scale to thou-
sands of participants or more it must be the case that the amount
of communication and processing per client must remain low for
all entities involved. This is true for server-based and serverless
architectures. Rather than employ client- or server-based filter-
ing, one approach commonly used is to cluster participants into
separate multicast addresses or separate servers based on geo-

e f g h

a b c d

Fig. 12. A game arena divided into cells.

metric position. Accordingly, a virtual playing field may broken
into cells to increase scalability [16], [17], [18], [19], [20], [21].
Cells are transparent to the player’s view of the game.

The AS technique couples together nicely with cell-based
techniques. Cell sizes should be quite a bit larger than the SOI
size. A player must only perform AS for the players inside the
same cell.

Unfortunately, a cheating player may use information on cell
position available in signaling necessary for the correct opera-
tion of AS (or dead reckoning or lockstep) in order to learn of an
upcoming ambush. While knowledge of the position of a remote
ambush or hidden possession may not affect game resolution as
discussed in Section III, it might affect player strategy.

In a client-server architecture, secret information does not
present a problem, as the server may be trusted to resolve in-
teractions and advance players without revealing secret infor-
mation to players.

For distributed architectures, secret information presents a
difficult dilemma for AS, dead reckoning, and lockstep ap-
proaches. Players must exchange positional information in order
to execute the protocols, but the signaling represents an oppor-
tunity for cheating by providing advance knowledge of position
to players, possibly altering their strategy.

In this section, we present a solution to this problem in the
context of the AS protocol. The following technique allows
players to discover whether they occupy the same simulation
cell, without revealing to each other their current positions.4

A. Hidden Positions

Assume the game arena is divided into � cells, as in Fig. 12.
Let each cell of the game be assigned a number from one to � .
Assume player � is in cell ��� 	��
� and player

�
is in cell

���
�� � .
A player would engage in this protocol whenever it decided

to enter a new cell. Unfortunately, it must perform the exchange
with all players to determine who is in the same cell. Optionally,
once any player is found in the same cell, the in-cell player could
inform the new participant of all other cell members. However,
we do not discuss the details of such an optimization here.

Assume the cryptosystem used below is commutative (e.g.,
RSA [27] or Pohlig-Hellman [28]), so that for any message �
we have ��� �	��
� ��� � 	��
� �	��� ��� � , where ��� denotes en-
cryption of a message with key � . This scheme also requires
key exchanges between all players, which we do not specify
�
We are indebted to Mikhail Atallah of Purdue University for suggesting the

following technique for secure multiparty computation used in our solution.

10

here, but several methods exist already that may be employed
(Schneier lists several [25]).

Step 1. Player � generates a random number
���

and sends
player

�
a one-way hash of

���
;
�

generates a random number���
and sends � a one-way hash of

���
. They now have both

committed their choices to each other.

��� ���	� � � �
� � � �	� � �
�

Step 2. They both compute
�

as the bitwise XOR of
���

and���
. Step 3. � sends

�
the result of encrypting � 	 � � using a

random key � generated by � and not known to
�

.

� � � 	 ��� ��	 � �
��� ��� �� � ��	

Step 4.
�

sends � the result of encrypting �
#� � using a
random key �
 generated by

�
and not known to � .

����� 	 �
� ��
�� �
� � � ��� � ��

Step 5. � sends
�

the result of encrypting the
�

that she re-
ceived in Step 3 using the key � that she used in Step 2.

� ���
 	 ��� � � 	 ��� �	�
� �
 � �
��� �����

Step 6.
�

sends � the result of encrypting the � that he received
in Step 2 using the key �
 that he used in Step 3.

���
�
 	�
� � � 	 �
� ����� � 	 � �

� � � � �

Step 7. � and

�
both learn whether 	�	
 by comparing �

to
�
 : 	 	
 if and only if �
 	 �
 , which is true by the

commutativity of the cryptosystem.�
could try to cheat by asking � to encrypt several choices.

However, we require each player to later reveal their commit-
ments from steps 4 and 6. In the worst case, this may be done at
the end of a game.

VII. CONCLUSIONS

For the first time, we have made cheat-proof playout a neces-
sary condition for the design of network game communication
architectures. We have shown that previous methods of network
game communication are exploitable by cheating players. We
have proposed the first protocol for providing cheat-proof and
fair playout of centralized and distributed network games. To
improve upon the performance of this protocol, we have pro-
posed the asynchronous synchronization protocol, which allows
for optimistic execution of events without the possibility of con-
flicting states due to packet loss or the possibility of cheating.
Asynchronous synchronization does not require roll back tech-
niques or a centralized server. Our performance analysis shows
it significantly improves performance over the lockstep proto-
col. Asynchronous Synchronization provides implicit robust-
ness in the face of packet loss and allows reduced signaling
requirements to be used in combination with cell-based tech-
niques, while always maintaining cheat prevention and detec-
tion, allowing for massively multiplayer environments.

ACKNOWLEDGEMENTS

We are grateful to Andy Fagg of the University of Mas-
sachusetts, Amherst and Mikhail Atallah of Purdue University
for their helpful insight. The technology contained within this
document has been protected worldwide by a patent.

REFERENCES

[1] Blizzard Entertainment, “Starcraft,” http://www.blizzard.com.
[2] id Software, “Doom,” http://www.idsoftware.com.
[3] id Software, “Quake,” http://www.idsoftware.com.
[4] Heat.net, “10six,” http://www.10six.com.
[5] Turbine Entertainment Software Corporation, “Asheron’s call,”

http://www.asheronscall.com.
[6] M. Pritchard, “How to hurt the hackers,” in Game Developer Magazine,

pp. 28–30. June 2000.
[7] “Standard for information technology, protocols for distributed interactive

simulation,” Tech. Rep. ANSI/IEEE Std 1278-1993, Institute of Electrical
and Electronics Engineers, March 1993.

[8] F. Kuhl, R. Weatherly, and J. Dahmann, Creating Computer Simulation
Systems: An Introduction to the High Level Architecture, Prentice Hall
PTR, Upper Saddle River, 2000.

[9] B. Blau, C. Hughes, M. Michael, and L. Curtis, “Networked virtual envi-
ronments,” in ACM SIGGRAPH, Symposium on 3D Interactive Graphics,
March 1992, pp. 157–160.

[10] E. Berglund and D. Cheriton, “Amaze: a multiplayer computer games,”
1985.

[11] C. Diot and L. Gautier, “A distributed architecture for multiplayer inter-
active applications on the internet,” in IEEE Networks magazine, vol. 13,
pp. 6–15. Jul–Aug 1999.

[12] L. Gautier, C. Diot, and J. Kurose, “End-to-end transmission control
mechanisms for multiparty interactive applications on the internet,” in
Proc. IEEE INFOCOM, 1999.

[13] S.K. Singhal and D.R. Cheriton, “Exploiting position history for efficient
remote rendering in networked virtual reality,” Presence: Teleoperators
and Virtual Environments, vol. 4, no. 2, pp. 169–193, 1995, Also as ACM
SIGGRAPH ’94 Course 14.

[14] A. Watt and F. Policarpo, 3D Games: Real-time rendering and Software
Technology, Addison-Welsey, 2001, Ch. 20.

[15] J. Aronson, “Dead reckoning:latency hiding for networked games,” in
Gamasutra magazine, September 19 1997, http://www.gamasutra.com/
features/19970919/aronson 01.htm.

[16] D. Van Hook, S. Rak, and J. Calvin, “Approaches to relevance filtering,”
in Eleventh Workshop on Standards for the Interoperability of Distributed
Simulations, September 26-30 1994.

[17] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, and P. Barham, “Exploit-
ing reality with multicast groups,” IEEE Computer Graphics and Appli-
cations, vol. 15, no. 5, September 1995.

[18] S. Rak and D. Van Hook, “Evaluation of grid-based relevance filtering for
multicast group assignment,” in Proc. of 14th DIS workshop, March 1996.

[19] E. Léty and T. Turletti, “Issues in designing a communication architecture
for large-scale virtual environments,” in Proceedings of the 1st Interna-
tional Workshop on Networked Group Communication, November 1999.

[20] K. L. Morse, An Adaptive, Distributed Algorithm for Interest Manage-
ment, Ph.D. thesis, University of California, Irvine, 2000.

[21] B.N. Levine, J. Crowcroft, C. Diot, J.J. Garcia-Luna Aceves, and
J. Kurose, “Consideration of Receiver Interest for IP Multicast Delivery,”
in In Proc. IEEE Infocom 2000, March 2000.

[22] R.M. Fujimoto, Parallel and Distributed Simulation Systems, Wiley Inter-
science, January 2000.

[23] R.M. Fujimoto, “Time management in the high level architecture,” Simu-
lation, vol. 71, no. 6, pp. 388–400, December 1998.

[24] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood
Cliffs, 1987.

[25] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons, Inc., New York, second edition, 1996.

[26] B. Stabell and K.R. Schouten, “The Story of XPilot,” ACM Cross-
roads Student Magazine, Winter 1996, XPilot software available from
http://xxx.xpilot.org.

[27] L. Adleman, R. L. Rivest, and A. Shamir, “A method for obtaining digital
signature and public-key cryptosystems,” Communication of the ACM,
vol. 21, no. 2, 1978.

[28] S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing
logarithms over ��� � � and its cryptographic significance,” IEEE Trans.
Inform. Theory, vol. IT-24, pp. 106–110, Jan. 1978.

