Paper under submission. Please do not distribute without permission. 1

The Design of an Acquisitional Query Processor For Sensor Networks

Samuel Madden, Michael J. Franklin, and Joseph M. Hellerstein Wei Hong
{madden,franklin,jmh@cs.berkeley.edu wei.hong@intel-research.net
UC Berkeley Intel Research, Berkeley

Abstract and costs of acquiring data, we are able to significantly reduce power

. . . Fonsumptlon compared to traditional passive systems that assume the
We discuss the design of an acquisitional query processor for datacol- . .~ e . .
. . . . BI‘IOI‘I existence of data. Acquisitional issues arise at all levels of query
lection in sensor networks. Acquisitional issues are those that pertain t

rocessing: in query optimization, due to the significant costs of sam-
where, when, and how often data is physically acquisadnpled and P g- Inquery op g

. . . . gllng sensors; in query dissemination, due to the physical co-location
delivered to query processing operators. By focusing on the location .))))
. o of sampling and processing; and, most importantly, in query execution,
and costs of acquiring data, we are able to significantly reduce power

. . . o where choices of when to sample and which samples to process are
consumption over traditional passive systems that assume piieri . .
. made. Of course, techniques proposed in other research on sensor and
existence of data. We discuss simple extensions to SQL for controllin

- L . . ower-constrained query processing, such as pushing down predicates
data acquisition, and show how acquisitional issues influence query op- query p g P g P

oo . S . . and minimizing communication are also important alongside ACQP and
timization, dissemination, and execution. We evaluate these issues |{1 L

) L it comfortably within its model.
the context of TinyDB, a distributed query processor for smart sensor

devices, and show how acquisitional techniques can provide significarVe have designed and implemented an ACQP engine, called TinyDB,

reductions in power consumption on our sensor devices. that is a distributed query processor which runs on each of the nodes in
a sensor network. TinyDB runs on the Berkeley Minateplatform,
1 Introduction on top of the TinyOS [21] operating system. We chose this platform

In the past few years, smart-sensor devices have matured to the poiHFcause the hardware is readily available from commercial sources [12]

that it is now feasible to deploy large, distributed networks of such sen-and the operating system is relatively mature. TinyDB has many of

sors [37, 21, 32, 8]. Sensor networks are differentiated from other wire-f[h_e featgres of a traditional query processor (e.g.. th? ab|I|t¥ to gelect,
less, battery powered environments in that they consist of tens or hurd®'™ project, and aggregate data), but, as we will discuss in this pa-

dreds of autonomous nodes that operate without human interaction (e.B.er’ also incorporates a number of other features designed to minimize

configuration of network routes, recharging of batteries, or tuning of pa-pOWer consumption via acqisitional techniques. These techniques,

rameters) for weeks or months at a time. Furthermore, sensor networlzglken in aggregate, can lead to orders of magnitude improvement in

are often embedded into some (possibly remote) physical environmerﬂowe_r _c.onSlljmptlonand |hncrzased acgur?cy of quler{lresultz O\;er nc;n-
from which they must monitor and collect data. The long term, low acquisitional systems that do not actively controf when and where data

power nature of sensor networks, coupled with their proximity to phys-IS collected.
ical phenomena lead to a significantly altered view of software system§Ve address a number of ACQP-related questions, including:

than that of more traditional mobile or distributed environments. .
1. When should samples for a particular query be taken?

In this paper, we are concerned with query processing in sensor net- .
] . 2. What sensor nodes have data relevant to a particular query?
works. Researchers have noted the benefits of a query processor-like in-

terface to sensor networks and the need for sensitivity to limited power 3. In what order should samples for this query be taken, and how
and computational resources [25, 30, 36, 43, 31]. Prior systems, how- should sampling be interleaved with other operations?

ever, tend to view query processing in sensor networks simply as a 4. |s it worth expending computational power or bandwidth to pro-
power-constrained version of traditional query processing: given some cess and relay a particular sample?

set of data, they strive to process that data as energy-efficiently as possi-

ble. Typical strategies include minimizing expensive communication by©f these issues, question (1) is unique to ACQP. The remaining ques-

applying aggregation and filtering operations inside the sensor networFJ.Ons can be answered by adapting techniques that are similar to those

— strategies that are similar to push-down techniques from distributeéo.und. in t.raditioT1aI query processi.ng. Notions of ind(?xing and opti-

query processing that emphasize moving queries to data. mization, in particular, can be applied to answer questions (2) and (3),
o) and question (4) bears some similarity to issues that arise in stream

In contrast, we presemkcquisitional query processinghCQF), where processing and approximate query answering. We will address each of

we focus on the significant new query processing opportunity that ariseﬁmse guestions, noting the unusual kinds of indices, optimizations, and

in sensor networks: the fact Fhat smgrt sensors_ have. control over Whergpproximations that are required in ACQP under the specific constraints
when, and how often data is physically acquired (isampled and posed by sensor networks.

delivered to query processing operators. By focusing on the locations
Figure 1 illustrates the basic architecture that we follow throughout

Paper under submission. Please do not distribute without permission. 2

this paper — queries are submitted at a powered PCb@hke statiop, lifetime goals.
parsed, optimized and sent into the sensor network, where they are dis- .)

. . . . 2.1 Properties of Sensor Devices
seminated and processed, with results flowing back up the routing tre€
that was formed as the queries propagated. After a brief introduction t@\ sensor node is a battery-powered, wireless computer. Typically, these
sensor networks in Section 2, the remainder of the paper discusses eagbdes are physically small (a few cubic centimeters) and extremely low
of these phases of ACQP: Section 3 covers our query language, Sectigiower (a few tens of milliwatts versus tens of watts for a typical laptop
4 highlights optimization issues in power-sensitive environments, Seceomputerj. Power is of utmost importance. If used naively, individual
tion 5 discusses query dissemination, and finally, Sections 6 discussegnsor nodes will deplete their energy supplies in only a few days. In

our adaptive, power-sensitive model for query execution and result coleontrast, if sensor nodes are very spartan about power consumption,

lection. months or years of lifetime are possible. Mica motes, for example,
SELECT nodeid, light when operating at 2% duty cycle (between active and sleep modes) can
FROM SENSORS achieve lifetimes in the 6 month range on a pair of AA batteries. This
duty cycle limits the active time to 1.2 seconds per minute.
Query PC
= Mote Mica motes have a 4Mhz, 8bit Atmel microprocessor. Their RFM
Result L s TR1000 radios run at 40 kbits/second over a single shared CSMA chan-

nel. Radio messages are variable size. Typically about 10 48-byte mes-
sages (the default size in TinyDB) can be delivered per second. Power
consumption tends to be dominated by radio communication. When
powered on, radios consume about as much power as the processor.
However, because communication is so slow, ebérgf data transmit-
ted by the radio costs as much energy as executing 1000 CPU instruc-
tions. As an additional feature, motes have an external 32kHz clock that
Figure 1: A query and results propagating through the network. the TinyOS operating system can synchronize with neighboring motes
+/- 1 ms to ensure that neighbors are be powered up and listening when
2 Sensor Networks and Data Collection they wish to send a message[14].

We begin with an overview of some recent sensor network deploymentd?0wer consumption in sensors occurs in four phases, which we illustrate
and then discuss properties of sensors and sensor networks in generifll Figure 2 via an annotated capture of an oscilloscope display showing

providing specific numbers from our experience with TinyOS motescurrent draw (which is proportional to power consumption) on a Mica
when possible. mote running TinyDB. In “Snoozing” mode, where the node spends

. _most of its time, the processor and radio are idle, waiting for a timer to
In the past several years, the sensor network research community has)) i
. . . expire or external event to wake the device. When the device wakes it
developed and engaged in real deployments of these devices, making B o .)
. . . o enters the “Processing” mode, which consumes an order of magnitude
it possible to understand the data collection needs specific to the sensor

more power than snooze mode, and where query results are generated

environment. As an example, consider recent environmental monitorin? v, Th e th itches to 2 “P . d Receiving” mod
ocally. The mote then switches to a “Processing and Receiving” mode,

deployments on Great Duck Island and James Reserve[32, 8]. In these . . ;)
. . - where results are collected from neighbors over the radio. Finally, in
scenarios, motes collect light, temperature, humidity, and other envi- . .
the “Transmitting” mode, results for the query are delivered by the lo-

ronmental properties. On Great Duck Island, off the coast of Maine, | mote — th) ional during thi iod reflect itchi h
] ., cal mote — the noisy signal during this period reflects switching as the
sensors have been placed in the burrows of Storm Petrels, a kind ofa) Y sl9 g P 9
. L . receiver goes off and the transmitter comes on and then cycles back to
endangered sea bird. Scientists plan to use them to monitor burrow))
% receiver-on, transmitter-off state.

occupancy and the conditions surrounding burrows that are correlate

with birds coming or going. Other notable deployments that are under- gy e Corrent Dravi in Diferent Phases of Query Processing
way include a network for earthquake monitoring [40] and sensors for * (T

- . . 1‘; }
building infrastructure monitoring and control [29]. v o

Processing

Each of these scenarios involves a large humber of devices that need
to last as long as possible with little or no human intervention. Placing

Current (mA)
o
5

|
10 }
\
!
|

8
new sensors, or replacing or recharging batteries of devices in bird nests, 6 g |
earthquake test sites, and heating and cooling ducts is time consuming : hoozing Tremne APt
. . . .] 0.5 1 15 2 25 3
and expensive. Aside from the obvious advantages that a simple, declar- Time (seconds)
ative language provides over hand-coded, embedded C, researchers are Figure 2: Phases of Power Consumption In TinyDB

particularly interested in TinyDB'’s ability to acquire and deliver desired
data while conserving as much power as possible and satisfying desired
2Recall that 1 Watt (a unit of power) corresponds to power consumption of 1 Joule (a unit
of energy) per second. We sometimes refer to the current load of a sensor, because current is
LEven in indoor infrastructure monitoring settings, there is great interest in battery pow-easy to measure directly; note that power (in Watts) = current (in Amps) * voltage (in Volts),
ered devices, as running power wire can many dollars per device. and that Mica motes run at 3V.

Paper under submission. Please do not distribute without permission. 3

2.2 Communication in Sensor Networks definedsample intervalshat are a parameter of the query. The period of
. time between each sample interval is known as@och As we discuss
Typical communication distances for low power wireless radios such as . i . i .

L . in Section 6, epochs provide a convenient mechanism for structuring
those used in Mica motes and Bluetooth devices range from a few feet

. o) computation to minimize power consumption. Consider the query:
to around 100 feet, depending on transmission power and environmen- .
o SELECT nodeid, light, temp

tal conditions. Such short ranges mean that almost all real deployments FROM sensors

. o . ; SAMPLE INTERVAL 1s FOR 10s
must make use of multi-hop communication, where intermediate nodes

relay information for their peers. On Mica motes, all communication This query specifies that each sensor should report its own id, light, and
is broadcast. The operating system provides a software filter so thabmperature readings (contained in the virtual taelesors) once per
messages can be addressed to a particular node, though if neighbors @g&ond for 10 seconds. Results of this query stream to the root of the
awake, they can stiknoopon such messages (at no additional energy network in an online fashion, via the multi-hop topology, where they
cost since they've already transferred the decoded the message from thfay be logged or output to the user. The output consists of an ever-
air.) Nodes receive per-message, link-level acknowledgments indicaigrowing sequence of tuples, clustered into 1s time intervals. Each tuple

ing whether a message was received by the intended neighbor node. Nigcludes a time stamp corresponding to the time it was produced.

end-to-end acknowledgments are provided. . .
g P Note that thesensors table is (conceptually) an unbounded, contin-

The requirement that sensor networks be low maintenance and eagiysdata streanof values: as is the case in other streaming and on-
to deploy means that communication topologies must be automaticallfine systems, certain blocking operations (such as sort and symmetric
discovered (i.ead-hoq by the devices rather than fixed at the time of jgin) are not allowed over such streams unless a bounded subset of the
network deployment. Typically, devices keep a short list of neighborsstream, omwindow is specified. Windows in TinyDB are defined as
who they have heard transmit recently, as well as some routing informafixed-size materialization points over the sensor streams. Such materi-

tion about the connectivity of those neighbors to the rest of the networkg|ization points accumulate a small buffer of data that may be used in
To assist in making intelligent routing decisions, nodes associate a linlther queries. Consider, as an example:

quality with each of their neighbors. CREATE]
STORAGE POINT recentlight SIZE 8
We describe the process of disseminating queries and collecting results AS (SELECT nodeid, light' FROM sensors

SAMPLE INTERVAL 10s)

in Section 5 below. As a basic primitive in these protocols, we use
. p P) aThIS statement provides a shared, local (i.e. single-node) location to
routing treethat allows abasestatiorat the root of the network to dis- . . - o .
store a streaming view of recent data similar to materialization points

seminate a query and collect query results. This routing tree is formed

by i i " in TinvDB) f q in other streaming systems like Aurora or STREAM [7, 34], or materi-
. y forwarding a routing request (a query in TinyDB) from every n_o € alized views in conventional databases. Joins are allowed between two
in the network: the root sends a request,child nodes that hear this

)) e ~ storage points on the same node, or between a storage point and the
request process it and forward it on to their children, and so on, until the L . .
Sensors relation, in which cassensors is used as the outer rela-

entire network has heard the request. Each request contains a hop-coupt,
o) ion in a nested-loops join. That is, whesensors tuple arrives, itis
or levelindicating the distance from the broadcaster to the root. To de-

termine thei level. nod) tnode that is (by definiti joined with tuples in the storage point at its time of arrival. This is effec-
ermine their own level, nodes pickparentnode that s (by definition) tively alandmark quenj18] common in streaming systems. Consider,

one level closer to the root than they are. This parent will be responsible .
as an example:

for forwarding the node’s (and its children’s) query results to the bases- SELECT COUNT

(*
i iti i i i FROM sensors »&S s, recentLight AS rl
tation. We note th-at itis pOSSIb|e tF) have several routing trees if node; WHERE rl.nodeid < nodeid g

keep track of n uItlpIe parents. This can be used to support several si- AND s.light < rl.light

. . . . L SAMPLE INTERVAL 10s
multaneous queries with different roots. This type of communication

topology is common within the sensor network community [42]. This query outputs a stream of counts indicating the number of recent

light readings (from 0 to 8 samples in the past) that were brighter than
3 An Acquisitional Query Language the current reading. In the event that a storage point and an outer query
]))] deliver data at different rates, a simple rate matching construct is pro-
Inthis section, we introduce our query language for ACQP focusing Nided that allows interpolation between successive samples (if the outer
issues related to when and how often samples are acduired. query is faster), or specification of aggregation function to combine
3.1 Basic Language Features multiple rows (if the inner query is faster.) Space prevents a detailed

description of this mechanism here.
Queries in TinyDB, as in SQL, consist of SELECT-FROM-WHERE

clause supporting selection, join, projection, and aggregation. We alsg'nyDB also includes support for grouped aggregation queries. Aggre-

include explicit support for sampling, windowing, and sub-queries Viagation has the attractive property that it reduces the quantity of data that

materialization points. As is the case in the Cougar and TAG SyS,[emgnust be transmitted through the network; other sensor network research
[36, 31], we view sensor data as a single table with one column pepas noted that aggregation is perhaps the most common operation in the

sensor type. Tuples are appended to this table periodically, at We”gomaln (131, 25, 43]) - TinyDB includes a mechanism for user-defined

aggregates and a metadata management system that supports optimiza-

30ur query language includes a number of other unusual features tailored to the $enseions over them. which we discuss in Section 4.1
network domain, such as the ability to log data for later offline delivery and the ability to ’ -
actuate physical hardware in response to a query, which we will not discuss here.

Paper under submission. Please do not distribute without permission. 4

Time v. Current Draw

In addition to aggregates over values produced during the same sam- S
ple interval (for an example, as in tIOUNTquery above), users want

to be able to perform temporal operations. For example, in a building
monitoring system for conference rooms, users may detect occupancy 5
by measuring maximum sound volume over time and reporting that vol-

ume periodically; for example, the query:

SELECT WINAVG(volume, 30s, 5s)
FROM sensors
SAMPLE INTERVAL 1s

will report the average volume over the last 30 seconds once every 5
seconds, sampling once per second. This is an exampleslidiag-
windowquery common in many streaming systems [34, 18].

Current (mA)

Current (mA)

20 25 30 35 40
Time (s)

. - o i i o Figure 3: External interrupt driven event-based query (top) vs. Polling
When a query is issued in TinyDB, it is assigned an identifier (id) that |
driven event-based query (bottom).

is returned to the issuer. This identifier can be used to explicitly stop a

query via a STOP QUERY ilcommand. Alternatively, queries can the local node —we do not provide a fully distributed event propagation
be limited to run for a specific time period viaRDRclause (shown system. Note, however, that queries started in response to a local event
above,) or can include a stopping condition as an event (see below.) may be disseminated to other nodes (as in the example above).

3.2 Event-Based Queries 3.3 Lifetime-Based Queries

As a variation on the continuous, polling based mechanisms for datan lieu of a explicitSAMPLE INTERVALclause, users may request a
acquisition, TinyDB supporteventsas a mechanism for initiating data specific query lifetime via ®UERY LIFETIME <x> clause, where
collection. Events in TinyDB are generated explicitly, either by another< x > is a duration in days, weeks, or months. Specifying lifetime is a
query or the operating system (in which case the code that generates theuch more intuitive way for users to reason about power consumption.
event must have been compiled into the sensor node.) For example, tfE&specially in environmental monitoring scenarios, scientific users are

query: not particularly concerned with small adjustments to the sample rate,
ON EVENT bird-detect(loc): i i -
SELECT AVG(Iighé), AVG(temp), eventloc nor dq they understand how such adjustments |nf|uenf:e powgr c.:on
FROM sensors AS s sumption. Such users, however, are very concerned with the lifetime
WHERE dist(s.loc, event.loc) < 10m . . .
SAMPLE INTERVAL 2 s FOR 30 s of the network executing the queries. Consider the query:

; SELECT nodeid, accel
could be used to report the average light and temperature level at sen- FROM sensors

sors near a bird nest where a bird has just been detected. Every time LIFETIME 30 days

a bird-detect event occurs, the query is issued from the detecting This query specifies that the network should run for at least 30 days,
node and the average light and temperature are collected from neartsampling light and acceleration sensors at a rate that is as quick as pos-
nodes once every 2 seconds for 30 seconds. sible and still satisfies this goal.

Such events are central in ACQP, as they allow the system to be dormaiip satisfy a lifetime clause, TinyDB performs lifetime estimation. The
until some external conditions occurs, instead of continually polling orgoal of lifetime estimation is to compute a sampling and transmission
blocking on an iterator waiting for some data to arrive. Since most mi-rate given a number of Joules of energy remaining. We begin by consid-
croprocessors include external interrupt lines than can wake a sleepirgring how a single node at the root of the sensor network can compute
device to begin processing, events can provide significant reductions ithese rates, and then discuss how other nodes coordinate with the root
power consumption, shown in Figure 3. to compute their delivery rates. For now, we also assume that sam-
pling and delivery rates are the same. On a single node, these rates can

This figure shows an oscilloscope plot of current draw from a device .) o
running an event-based query triggered by toggling a switch connecteHe computed V'fi a simple COSt_ba.S?q formula, taking into account the
costs of accessing sensors, selectivities of operators, expected commu-

to an external interrupt line that causes the device to wake from sleep.”~ o
Compare this to plot at the bottom of Figure 3, which shows an event!ication r.ates anq current pattery voltage. We show below a lifetime
based query triggered by a second query that polls for some conditioﬁomloutatlon for simple queries of the form:
to be true. Obviously, the situation in the top plot is vastly preferable, SIIZZIT?E(S:I\-I/E Sensors’ mumsensors

. . . WHE
as much less energy is spent polling. TinyDB supports such externally LIFETIME [hours

triggered queries via events, and such support is integral to its ability tery simplify the equations in this example, we present a query with a sin-
provide low power processing. gle selection predicate which is applied after attributes have acquired.
Events can also serve as stopping conditions for queries. ApThe ordering of multiple predicates and interleaving of sampling and
pending a clause of the for8TOP ON EVENT(param) WHERE selection are discussed in detail in Section 4. Table 1 shows the param-
cond(param) will stop a continuous query when the specified event eters we use in this computation (we do not show processor costs since
arrives and the condition holds. they will be negligible for the simple selection predicates we support,

. . . . and have been subsumed into costs of sampling and delivering results.
In the current implementation of TinyDB, events are only signalled on ping 9)

Paper under submission. Please do not distribute without permission. 5

Predicted Voltage vs. Actual Voltage (Lifetime Goal = 24 Wks)

[Parameter] Description [Units 1100 ‘ TRy —
Actual Data °
l Query Iifetime goal hours 1000 Togem. Predicted Lifetime -—-----— T
Crem Remaining Battery Capacity Joules z
E, Energy to sample senser Joules §
Eirans Energy to transmit a single sample Joules é
Ereo Energy to receive a message Joules jﬁ
o Selectivity of selection predicate)
C Number of children nodes routing through this nogle & Insufficient
o ®r . tvv‘%p:o)t
Table 1: Parameters used in lifetime estimation 00 e o e T
Time (in Hours)
The first step is to determine the available powgeper hour: Figure 4: Predicted versus actual lifetime for a requested lifetime of 24
Ph = Crem I 1 weeks (168 days)
We then need to compute the energy to collect and transmit one samplgyTERVAL clause.) Otherwise, sampling is fixed a rateraind the
es, including the costs to forward data for our children: prior computation for transmission rate is done assuming a different
s . . . e
es = (XTUmSensos By 4 (Erew + Etrans) X C 4 Etrans X 0 rate for sampling and transmission. To provide the requested lifetime

and sampling rate, the system may not be able to actually transmit all of
the readings — it may be forced to combine (aggregate) or discard some
samples; we discuss this situation (as well as other contexts where it
T =pn/es may arise) in Section 6.2.

Finally, we can compute the maximum transmission r&tén samples
per hour), as :

To illustrate the effectiveness of this simple estimation, we in- Finally, we note that since estimation of power consumption was done
serted a lifetime-based quer$ELECT voltage, light FROM using simple selectivity estimation as well as cost-constants that can
sensors LIFETIME x) into a sensor (with a fresh pair of AA bat- vary from node-to-node (see Section 4.1) and parameters that vary
teries) and asked it to run for 24 weeks, which resulted in a sample ratgver time (such as number of childre@), we need to periodically

of 15.2 seconds per sample. We measured the remaining voltage q@-estimate power consumption. Section 6.3.1 discusses this runtime
the device 9 times over 12 days. The first two readings were outsidee-estimation in more detail.

the range of the voltage detector on the mote (e.g. they read “1024" —

the maximum value) so are not shown. Based on experiments with ot Power-Based Query Optimization

test mote connected to a power supply, we expect it to stop functioningziven our query language for ACQP environments, with special fea-
when its voltage reaches 350. Figure 4 shows the measured lifetime %res for event-based processing and lifetime queries, we now turn to

each point in time, with a linear fit of the data, versus the expectedquery processing issues. We begin with a discussion of optimization,

voltage” which was computed using the cost model above. The result(;jlnd then cover query dissemination and execution.

ing linear fit of voltage is quite close to the expected voltage. The linear
fit reaches V=350 about 5 days after the expected voltage line. Queries in TinyDB are parsed at the basestation and disseminated in a

simple binary format into the sensor network, where they are instan-

Given that it is possible to estimate lifetime on a single node, we NOWiated and executed. Before queries are disseminated, the basestation

discuss coordinating the tranmission rate across all nodes in the romm&erforms a simple gquery optimization phase to choose the correct or-
tree. Since sensors need to sleep between relaying of samples, it is irH-ering of sampling, selections, and joins

portant that senders and receivers synchronize their wake cycles. To do) o)
this, we allow nodes to transmit only when their parents in the routing”Vé Us€ @ simple cost-based optimizer to choose a query plan that will

tree are awake and listening (which is usually the same time they ar¥i€ld the lowest over.all power consumption. Optimizil_wg for power aI.-
transmitting.) By transitivity, this limits the maximum rate of the entire 10WS Us to subsume issues of processing cost and radio communication,

network to the transmission rate of the root of the routing tree. If a nodeVhich both contribute to power colnsumption and so will be taken.inj[o
must transmit slower than the root to meet the lifetime clause, it may2ccount. One of the most interesting aspects of power-based optimiza-
tion, and a key theme of acquisitional query processing, is that the cost

of a particular plan is often dominated by the cost of sampling the phys-
ical sensors and transmitting query results rather than the cost of apply-

))] ing individual operators (which are, most frequently, very simple.) We
The previous analysis left the user with no control over the sample ratebegin by looking at the types of metadata stored by the optimizer. Our

which C_OU|d be "_’1 problem because some gppllcatlons re.quwe the abllltXptimizerfocuses on ordering joins, selections, and sampling operations
to monitor physical phenomena at a particular granularity. To remed;&hat run on individual nodes

this, we allow an optionaMIN SAMPLE RATEr clause to be sup-
plied. If the computed sample rate for the specified lifetime is greated.1 Metadata Management

than this rate, sampling proceeds at the computed rate (since the alterna- N L .

L " pingp : P) (nIgach node in TinyDB maintains a catalog of metadata that describes

tive is expressible by replacing théFETIME clause with SSAMPLE . .) . . .
its local attributes, events, and user-defined functions. This metadata is

“4One possible optimization, which we do not explore, would involve selecting or reas-periodically copied to the root of the network for use by the optimizer.
signing the root to maximize transmission rate.

transmit at an integral divisor of the root’s rdtdo propagate this rate
through the network, each parent node (including the root) includes it
transmission rate in queries that it forwards to its children.

Paper under submission. Please do not distribute without permission. 6

[Metadata | Description | TinyDB also stores metadata information about the costs of processing
Power Cost to sample this attribute (in J) and delivering data, which is used in query-lifetime estimation. The
Sample Time Time to sample this attribute (in s)
Consiant? Is this atiribute constantvalued (e.g. 1d)? costs of these'phases.ln TinyDB were showr\ in Flgurg 2 — they range
Rate of Change How fast the attribute changes (units/s) from 2 mA while sleeping, to over 20 mA while transmitting and pro-
Range What range of values can this attribute take an (pair of unfts) cessing. Note that actual costs vary from mote to mote — for example,

with a small sample of 5 motes (using the same batteries), we found that
the average current with processor active varied from 13.9 to 17.6 mA
Metadata are registered with the system via static linking done at comgwith the average being 15.66 mA).

ile time using the TinyOS C-like programming language. Events and . . .
P i g . Y . P g. g-ang g. 4.2 Ordering of Sampling And Predicates
attributes pertaining to various operating system and TinyDB compo-
nents are made available to queries by declaring them in an interfaceaving described the metadata maintained by TinyDB, we now describe
file and providing a small handler function. For example, in order to how it is used in query optimization.
expose network topology to the query processor, the Tinegork As Table 3 shows, sampling is often an expensive operation in terms of

component defines the att.rlbqbarent of, type mteger and reglsters. power. However, a sample from a sensanust be taken to evaluate
a handler that returns the id of the node’s parent in the current routln%ny predicate over the attribusensors.s . If a predicate discards a

tree. tuple of thesensors table, then subsequent predicates need not ex-
Event metadata consists of a name, a signature, and a frequency esdimine the tuple — and hence the expense of sampling any attributes
mate that is used in query optimization (see Section 4.3 below.) Usereferenced in those subsequent predicates can be avoided. Thus these
defined predicates also have a name and a signature, along with a selgredicates are “expensive”, and need to be ordered carefully. The predi-
tivity estimate which is provided by the author of the function. cate ordering problem here is somewhat different than than in the earlier
Table 2 summarizes the metadata associated with each attribute, alofiffrature (e.9. [20]) because (a) an attribute may be referenced in mul-
with a brief description. Attribute metadata is used primarily in two tP!€ predicates, and (b) expensive predicates are only on a single table,
contexts: information about the cost, time to fetch, and range of areensors . The first point introduces some subtlety, as it is not clear
attribute is used in query optimization, while information about the se-Which predicate should be “charged” the cost of the sample.

mantic properties of attributes is used in query dissemination and resuffo model this issue, we treat the sampling of a sertsas a sepa-
processing. Table 3 gives examples of power and sample time valuaste “job” 7 to be scheduled along with the predicates. Hence a set

Table 2: Metadata fields kept with each attribute

for some actual sensors — notice that the power consumption and timef predicatesP = {p1,...,pm} iS rewritten as a set of operations
to sample can differ across sensors by several orders of magnitude. S = {si,...,s,}, whereP C S, andS — P = {71,...,Th—m}
: contains one sampling operator for each distinct attribute referenced in
Sensor Power | Sampletime | Sample Energy . k . .
mw ms VI *1), uJ P. The selectivity of sampling operators is always 1. The selectiv-
Light, Temp 9 1[5] 90 ity of selection operators is derived by assuming attributes have a uni-
Magnetometer | 15 [22] 10 1500 form distribution over their range (which is available in the catalog.)
Accelerometer 1.8 [3] .1[5] 180 Relaxing thi ti by f | tori hist fi
Organic Byproducts 15 < 1000 > 1.5 x 107 elaxing this assumption by, for example, storing histograms or time-

dependent functions per-attribute remains an area of future work. The
Table 3: Energy costs of accessing various common sensors cost of an operator (predicate or sample) can be determined by con-

sulting the metadata, as described in the previous section. In the cases
we discuss here, selections and joins are essentially “free” compared to

The catalog also contains metadata about TinyDB’s extensible aggresampling, but this is not a requirement of our technique.

gate system. As with other extenS|bIe.database systems [39] the cataI%e also introduce a partial order &h wherer; must precede; if p;

includes names of aggregates and pointers to their code. Each aggreg?&?erences the attribute sampleddyThe combination of sampling op-

consists of a triplet of functions, that initialize, merge, and update theerators and the dependency of predicates on samples captures the costs

final value of partial aggregate records as they flow through the systemy; sampling operators and the sharing of operators across predicates.
As in the TAG[31] system, aggregate authors must provide informa-

tion about functional properties. In TinyDB, we currently require two: | "€ Partial order i.nduced oﬁ.fo.rms a graph with edges from sampling
whether the aggregaterisonotonicand whether it iexemplaryor sum- qperators t_o pred_lcates.. This 'sa smp@es-para!lelgr.aph. A_n op-
mary. COUNTis a monotonic aggregate as its value can only get Iargert'mal ordering of jobs with series-parallel constraints is a topic treated
as more values are aggregatstiN is an exemplary aggregate, as it re- in the Operations Research literature that inspired earlier optimization
turns a single value from the set of aggregate values, WWERAGHs vyork [23j 28, 20]; Monma and Sidm_ey present 3mie§-ParaIIeI Algo-
a summary aggregate because it computes some property over the enlﬂ'@r_n Using Parallel Cha_|n5[33], which gives an optimal ordering of
set of values. the jobs inO(| S| log|S|) time.
Due to space constraints, we have glossed over the details of handling
5Scientists are particularly interested in monitoring the micro-climates created by plantdhe expensive nature of sampling in t8&€LECT GROUP BYand

and their biological processes. See [13, 8]. An example of such a sensor is Figaro INCHAVING clauses. The basic idea is to add themStavith appropri-
H> .S sensor [15]

Paper under submission. Please do not distribute without permission. 7

ate selectivities, costs, and ordering constraints. stops running.
As an example of this process, consider the query: Note that, by the semantics formulated above, it is possible for multi-
SEFlhE(DCJ ggﬁgldgag ple instances of the internal query to be running at the same time. If
Xv'\||-|E|)ERE accel > ¢; enough such queries are running simultaneously, the benefit of event-
mag >
SAMPLEglNTclgRVAL 1s based queries (e.g. not having to poll for results) will be outweighed

The order of magnitude difference in per-sample costs for the acby the fact that each instance of the query consumes significant energy
celerometer and magnetometer suggests that the power costs of plaf@Mpling and delivering (independent) results. To alleviate the burden
with different orders of sampling and selection will vary substantially. ©f running multiple copies of the same identical query , we employ a
We consider three possible plans: in the first, the magnetometer an@tulti-query optimization technique based on rewriting. To do this, we
accelerometer are sampled before either selection is applied. In the segonvert external events (of typg into a stream of events, and rewrite
ond, the magnetometer is sampled and the selection over its readirij€ entire set of independent internal queries as a sliding window join
(which we call S,.q,) is applied before the accelerometer is sampled betweenevents andsensors , with a window size of: seconds on

or filtered. In the third plan, the accelerometer is sampled first and it§he event stream, and no window on the sensor stream. For example:
SELECT s.a;

selection f,ccet) is applied before the magnetometer is sampled. We FROM sensors AS s, events AS e
compared the cost of these three plans, and, as expected, found that Xvﬁgiﬁygg‘ofe"’e = e.nodeid
the first was always more expensive than the other two. More inter- AND stime - etime <= k AND s.ime > e.time

i) i SAMPLE INTERVALd
estingly, the second can be an order of magnitude more expensive than) o . o

. . . We execute this query by treating it as a join between a materialization
third, whenS,.c.; is much more selective thaff),.,. Conversely, when

. . point of sizek onevents and thesensors stream. When aavent
Smag iS highly selective, it can be cheaper to sample the magnetome-

. . tuple arrives, it is added to the buffer of events. Wheseasor tuple
ter first, although only by a small factor (.8). The order of magnitude P] P
. . . . s.arrives, events older thanseconds are dropped from the buffer and
difference in relative costs represents an absolute difference of 1320 uJ . i .
Is joined with the remaining events.
per sample, or 3.96 mW at a (slow) sample rate of one sample per sec-
ond — putting the additional power consumption from sampling in the The advantage of this approach is that only one query runs at a time
incorrect order on par with the power costs of running the radio or CPUNO matter how frequently the events of typeare triggered. This of-
for an entire second. fers a large potential savings in sampling and transmission cost. At first
- s . it might seem as though requiring the sensors to be sampled éver
Similarly, we note that there are certain kinds of aggregate functions 9 i) 9 q 9 P Y
. seconds irrespective of the contents of the event buffer would be pro-
where the same kind of interleaving of sampling and processing can_ .. i)
. . hibitively expensive. However, the check to see if the the event buffer
also lead to a performance savings. Consider the query: . b hed bef h i fth q b
SELECT WINMAX(light8s.85) is empty can be pushed before the sampling of the sensors, and can be
FROM sensors done relatively quickly.
WHERE mag >
SAMPLE INTERVAL 1s Figure 5 shows the power tradeoff for event-based queries that have and
In this query, the maximum of eight seconds worth of light readingshave not been rewritten. Rewritten queries are labelestraam join
will be computed, but only light readings from sensors whose magenang non-rewritten queries @synch events We measure the cost in
tometers read greater tharwill be considered. Interestingly, it turns my of the two approaches using a numerical model of power costs for
out that, unless the predicate isvery selective, it will be cheaper to gling, sampling and processing (including the cost to check if the event
evaluate this query by checking to see if each tight readingis gueue is non-empty in the event-join case), but excluding transmission
greater than the previous reading and then applying the selection predysts to avoid complications of modeling differences in cardinalities
icate overmag, rather than first samplingiag This sort of reordering, petween the two approaches. We expect that the asynchronous approach
which we callexemplary aggregate pushdowan be applied to any ex- || generally transmit many more results. We varied the sample rate
emplary aggregate (e.¢4IN, MAX. Unfortunately, the selectivities of ang duration of the inner query, and the frequency of events. We chose
exemplary aggregates are very hard to capture, especially for windowne specific parameters in this plot to demonstrate query optimization
aggregates. We reserve the problem of ordering exemplary aggregat@gdeoffs; for much faster or slower event rates, one approach tends to

in query optimization for future work. always be preferable.

4.3 Event Query Batching to Conserve Power For very low event rates (fewer than 1 per second), the asynchronous
i o events approach is sometimes preferable due to the extra overhead of
As a second example of the benefit of power-aware optimization, we . -

. o empty-checks on the event queue in the stream-join case. However, for
consider the optimization of the query:

ON_EVENTe(nodeid) faster event rates, the power cost of this approach increases rapidly as

SELECT a3 independent samples are acquired for each event that few seconds. In-
FROM sensors AS s
WHERE s.nodeid = e.nodeid creasing the duration of the inner query increases the cost of the asyn-

SAMPLE INTERVALd FOR k chronous approach as more queries will be running simultaneously. The

This query will cause an instance of the internal QUERKECT ...) maximum absolute difference (of about .8mW) is roughly comparable
to be startecvery timethe evente occurs. The internal query samples 5 1/4 the power cost of the CPU or radio.

results at everyl seconds for a duration @f seconds, at which point it

Paper under submission. Please do not distribute without permission. 8

Event Rate(sv-szznmr;;nsummion rooted at that node can be excluded from the query, saving the costs of
! Stream Join — v disseminating, executing, and forwarding results for the query across
il §§§3§§§ﬁ§ e D=3 -] several nodes, significantly extending the node’s lifetime.
- 0.8 " .
% 0Ty . - Given the potential benefits of limiting the scope of queries, the chal-
£ 22 T e lenge is to determine when a node or its children need not participate in
§ 04t) " 1 a particular query. One common situation arises with constant-valued
% ey o" ’ attributes (e.g. nodeid or location in a fixed-location network) with a se-
Zj I U-**”'] lection predicate that indicates the node need not participate. Similarly,
T T T T P if a node knows that none of its children will ever satisfy the value of
Events Per Second some selection predicate, say because they have constant attribute val-

.) . ues outside the predicate’s range, it need not forward the query down
Figure 5: The cost of processing event-based queries as asynchronoys . S . . .
. the routing tree. To maintain information about child attribute values ,
events versus joins.

) . . . we propose the use ofssemantic routing tre¢SRT). We describe the
Finally, we note that there is a subtle semantic change introduced by this

I o) i properties of SRTs in the next section, and briefly outline how they are
rewriting. The initial formulation of the query caused samples in each

. .)) created and maintained.
of the internal queries to be produced relative to the time that the event

fired: for example, if event; fired at timet, samples would appear at 5.1 Semantic Routing Trees
timet + d,t + 2d,.... If a later event., fired at timet + 4, it would

. .) An SRT is a routing tree (similar to the tree discussed in Section 2.2
produce a different set of samples at timei +d, t + i + 2d, Thus,

. . . above) designed to allow each node to efficiently determine if any of
unlessi were equal tal (i.e. the events wera phasg, samples for the
the nodes below it will need to participate in a given query over some

two queries would be offset from each other by uplteeconds. In the

. .) constant attributel. Traditionally, in sensor networks, routing tree con-
rewritten version of the query, there is only one stream of sensor tuples o

S struction is done by having nodes pick a parent with the most reliable
which is shared by all events.
connection to the root (highekitk quality.) With SRTs, we argue that

In many cases, users may not care that tuples are out of phase Withe choice of parent should include some consideration of semantic
events. In some situations, however, phase may be very important. Igroperties as well. In general, SRTs are most applicable in situations
such situations, one way the system could improve the phase accuragy which there are several parents of comparable link quality. A link-
of samples while still rewriting multiple event queries into a single join quality-based parent selection algorithm, such as the one described in

is via oversamplingor acquiring some number of (additional) samples [42], should be used in conjunction with the SRT to prefilter the set of

everyd seconds. The increased phase accuracy of oversampling comggrents made available to the SRT.
at an increased cost of acquiring additional samples (which may still . .
q g ples (y Conceptually, an SRT is an index ovéthat can be used to locate nodes

be less than running multiple queries simultaneously.) For now, we . . .
9 pie g y) that have data relevant to the query. Unlike traditional indices, however,

smp!y .allow the user to specify that a query must be phase-aligned b)(he SRT is an overlay on the network. Each node stores a single unidi-
specifyingON ALIGNED EVENTh the event clause.) . .

mensional interval representing the rangedofalues beneath each of
Thus, we have shown that there are several interesting optimization ists children.® When a query; with a predicate oven arrives at a node
sues in ACQP systems; first, the system must properly order sampling,, », checks to see if any child’s value df overlaps the query range of
selection, and aggregation to be truly low power. Second, for frequenyy in ¢. If so, it prepares to receive results and forwards the query. If
event-based queries, rewriting them as a join between an event streafy child overlaps, the query is not forwarded. Also, if the query also
and thesensors stream can significantly reduce the rate at which a applies locally (whether or not it also applies to any childremegins
sensor must acquire samples. executing the query itself. If the query does not apply ar at any of

. . L . its children, it is simply forgotten.
5 Power Sensitive Dissemination and Routing

Building an SRT is a two phase process: first 8RT build requess
After the query has been optimized, itis disseminated into the networkf oo ded (re-transmitted by every mote until all motes have heard the re-
dissemination begins with a broadcast of the query from the root of thgy,est) down the network. This request includes the name of the attribute
network. As each sensor hears the query, it must if decide the query gyer which the tree should be built. As a request floods down the net-
applies locally and/or needs to be broadcast to its children in the roUtyork, a noden may have several possible choices of parent, since, in
ing tree. We say a query appliesto a noden if there is @ non-zero general, many nodes in radio range may be closer to the roathdfs
probability thatn will produce results fory. Deciding where a par- chjigren, it forwards the request on to them and waits until they reply.
ticular query should run is an important ACQP-related decision. Al- |t ,, has no children, it chooses a noddrom available parents to be
though such decisions occur in other distributed query processing envizg parent, and then reports the valuefto p in a parent selection
ronments, the costs of incorrectly initiating queries in ACQP e”"iron'messagelf n doeshave children, it records the value dfalong with
ments like TinyDB can be unusually high, as we will show. the child's id. When it has heard from all of its children, it chooses a
If a query does not apply at a particular node, and the node does not
have any children for which the query applies, then the entire subtree 5a natural extension to SRTs would be to store multiple intervals at each node.

Paper under submission. Please do not distribute without permission. 9

parent and sends a selection message indicating the range of valuestbft applies ta: will likely also apply to its descendents. This can be
A which it and its descendents cover. The parent records this intervaéxpected for geographic attributes, for example, since network topology
with the id of the child node and proceeds to choose its own parent iris correlated with geography.

the same manner, until the root has heard from all of its children. We study three policies for SRT parent selection. In the fiestdom

Figure 6 shows an SRT over the latitude. The query arrives at the roofgpproach, each node picks a random parent from the nodes with which
is forwarded down the tree, and then only the gray nodes are required tio can communication reliably. In the secordhsest-parenapproach,
participate in the query (note that node 3 must forward results for nodeach parent reports the value of its index attribute with the SRT-build
4, despite the fact that its own location precludes it from participation.)request, and children pick the parent whose attribute value is closest
to their own. In theclusteredapproach, nodes select a parent as in
[feceon 7 the closest-parent approach, except, if a node hears a sibling node send

[SATG).

QUERY
SELECT light
WHERE x>3

ANDx <7,

(11

S a parent selection messagesiitoopson the message to determine its
siblings parent and value. It then picks its own parent (which could be

SAT
4[5

Sl the same as one of its siblings) to minimize spread of attribute values
underneath all of its available parents.

I - We studied these policies in a simple simulation environment — nodes
were arranged on anxn grid and were asked to choose a constant
e attribute value from some distribution (which we varied between exper-

Figure 6: A semantic routing tree in use for a query. Gray arrows in-iments.) We used a perfect (lossless) connectivity model where each
dicate flow of the query down the tree, gray nodes must produce ofode could talk to its immediate neighbors in the grid (so routing trees

forward results in the query. weren nodes deep), and each node had 8 neighbors (with 3 choices of
parent, on average.) We compared the total number of nodes involved in
5.2 Maintaining SRTs range queries of different sizes for the three SRT parent selection poli-

o) _ cies to thebest-cas@pproach and theo SRTapproach. Théest-case
Even though SRTs are limited to constant attributes, some SRT mainsnnrach would only result if exactly those nodes that overlapped the

tenance must oceur. In particular, new nodes can appear, link qualitie®nge predicate were activated, which is not possible in our topologies
can change, and existing nodes can fail. but provides a convenient lower bound. In the SRTapproach, all
Node appearance and link quality change can both require a node taodes participate in each query.

switch parents. To do this, it sends a parent selection message 10 i{§e experimented with a number of sensor value distributions; we re-
new parenty. If this message changes the rangentf interval, it o1t on two here. In theandomdistribution, each constant attribute
notifies its parent; in this way, updates can propagate to the root of thga e was randomly and uniformly selected from the interval [0,1000].
tree. In the geographicdistribution, (one-dimensional) sensor values were
To handle the disappearance of a child node, parents assocatthvan computed based on a function of sensor’s x and y position in the grid,
query idandlast epoctwith every child in the SRT (recall that an epoch such that a sensor’s value tended to be highly correlated to the values of
is the period of time between successive samples.) When a parentits neighbors.

forwards a query to a childc, it setsc's active query id to the id of £jgyre 7 shows the number of nodes which participate in queries over
and sets its last epoch entry to 0. Every tipferwards or aggregates a \ariably-sized query intervals (where the interval size is shown on the
result forg from ¢, it updates”s last epoch with the epoch onwhich the -y 4is) of the attribute space in a 20x20 grid. The interval for queries
result was received. Ji does not heas for some number of epochisit a5 randomly selected from the uniform distribution. Each point in
assumes has moved away, and removes its SRT entry. Thesends he graph was obtained by averaging over five trials for each of the
a request asking its remaining children retransmit their ranges. It useg,ree parent selection policies in each of the sensor distributions (for a
this information to construct a new interval. If this new interval differs ;51 of 30 experiments). In each experiment, an SRT was constructed
in size from the previous intervah sends a parent selection message yccording to the appropriate policy and sensor value distribution. Then,
up the routing tree to reflect this change. for each interval size, the average number of nodes participating in 100
Finally, we note that, by using these maintenance rules proposed, itandomly constructed queries of the appropriate size was measured.

is possiblle to support SRTS over non-constant att.ributes, althO.”gh.iP‘:or both distributions, the clustered approach was superior to other SRT
those attributes change quickly, the cost of propagating changes in Ch'lglgorithms, beating the random approach by about 25% and the closest
intervals could be prohibitive. parent approach by about 10% on average. With the geographic distri-
5.3 Evaluation of Benefit of SRTs bution, the performance of the clustered approach is close to optimal:
for most ranges, all of the nodes in the range tend to be co-located, so
The benefit that an SRT provides is dependent on the quality of thgey intermediate nodes are required to relay information for queries in
clustering of children beneath parents. If the descendents of some nodgnich they themselves are not participating. This simulation is admit-
n are clustered around the value of the index attribute #ten a query tedly optimistic, since geography and topology are perfectly correlated

Paper under submission. Please do not distribute without permission. 10

Query Range v. Nodes in Query (Random Dist) Query Range v. Nodes in Query (Geographic Dist)
T T T T T T T T T T T T T T T T T

450

450

400 400
> « >
g ol g ol
3 350 3 3
c =
- 300 - & © 300
|53 |4
2 2
]) S
E 250 ? E 250
@ @
L4} L o L
g w0z § 200
z & z
5 1504 5 150 |
2 2
£ 100 No SRT —*%— -+ £ 100 - No SRT —*%— o
2 Random Parent —@— 2 = Random Parent —@—

50 | Closest Parent {3 | 50 Closest Parent -3 |

Clustered & Clustered ---a
N ,Best Case —+— N ,Best Case —+—
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Query Size as Percent of Value Range Query Size as Percent of Value Range
(a)Random Distribution (b)Geographic Distribution

Figure 7: Number of nodes participating in range queries of different sizes for different parent selection policies in a semantic routing tree (20x2(
grid, 400 sensors, each point average of 500 queries of the appropriate size.)

in our experiment. Real sensor network deployments show significanand received from neighbors, and then deliver results to their parent. We
but not perfect correlation [16]. (briefly) describe ACQP-relevant issues in each of these phases.

Itis a bit surprising that, even for a random distribution of sensor valuesNodes sleep for as much of each epoch as possible to minimize power
the closest-parent and clustered approaches are substantially better theansumption. They wake up only to sample sensors and relay and de-
the random-parent approach. The reason for this is that these techniquieger results. Because nodes are time synchronized, they all sleep and
reduce the spread of sensor values beneath parents, thereby reducing theke up at the same time, ensuring that results will not be lost as a re-
probability that a randomly selected range query will require a particu-sult of a parent sleeping when a child tries to propagate a message. The
lar parent to participate. amount of time{,waqke that a sensor node must be awake to success-

As the previous results show, the benefit of using an SRT can be substaﬂ“lIIy accomplish the latter three steps above is largely dependent on the
tial. There are, however, maintenance and construction costs associatBgmPer of other nodes transmitting in the same radlo_ cell, since onl_y a
with SRTSs; as discussed above. Construction costs are comparable §6nall number of messages per second can be transmitted over the single

those in conventional sensor networks (which also have a routing tree)s,hared radio channel.

but slightly higher due to the fact that parent selection messages are eXinyDB uses a simple algorithm to scdlg, ... based on the neighbor-
plicitly sent, whereas parents do not always require confirmation fromhood size, the details of which we omit. Note, however, that there are
their children in other sensor network environments. situations in which a node will be forced to drop or combine results as a
result of the eithet,...xe Or the sample interval being too short to per-
form all needed computation and communication. We discuss policies
SRTs provide an efficient mechanism for disseminating queries and colfor choosing how to aggregate data and which results to drop in the next
lecting query results for queries over constant attributes. For attributesubsection.

that are highly correlated amongst neighbors in the routing tree (€.9once a node is awake, it begins sampling and filtering results according
location), SRTs can reduce the number of nodes that must disseminafg ine plan provided by the optimizer. Samples are taken at the appropri-
queries and forward the continuous stream of results from children by (current) sample rate for the query, based on lifetime computations
nearly an order of magnitude. and information about radio contention and power consumption (see
Section 6.3 for more information on how TinyDB adapts sampling in

response to variations during execution.) Filters are applied and results
Once queries have been disseminated and optimized, the query procesre routed to join and aggregation operators further up the query plan.

sor begins executing them. Query execution is straightforward, so we- . aggregation queries across nodes, we adopt the approach of TAG

describe it only briefly. Thg rt_erngmder of the section .|s devoteql to th 31], although TAG does not support temporal aggregates but only ag-
ACQP-related issues of prioritizing results and adapting sampling an regates of values from different nodes produced in the same epoch.

delivery rates. We present simple schemes for prioritizing data in se-

lection queries, briefly discuss prioritizing data in aggregation queries, '® P@sic approach used in both TAG and TinyDB is to compyiara

and then turn to adaptation. We discuss two situations in which adaptaIial state recordat each intermediate node in the routing topology. This

tion is necessary: when the radio is highly contented and when powerfecord represents the partially evaluated aggregation of local sensor val-
consumption is more rapid than expected ues with sensor values received from child nodes as they flow up the

routing tree. The benefit of doing this is that a great deal less data is
6.1 Query Execution transmitted than when all sensors’ values are sent to the root of the net-

Query execution consists of a simple sequence of operations at eac‘:’ﬁork to be aggregated together.

node during every epoch: first, nodes sleep for most of an epoch; thehinally, we note that in event-based queries, @& EVENTclause
they wake, sample sensors and apply operators to data generated locathyust be handled specially. When an event fires on a node, that node

5.4 SRT Summary

6 Processing Queries

Paper under submission. Please do not distribute without permission. 11

disseminates the query, specifying itself as the query root. This nodeot fit in the queue.
collects query results, and delivers them to the basestation or a Ioca[Ihe winavg scheme works similarly

except that instead of dropping
materialization point.

results when the queue fills, the two results at the head of the queue are
6.2 Prioritizing Data Delivery averaged to make room for new results. Since the head of the queue is

now an average of multiple records, we associate a count with it.
Once results have been sampled and all local operators have been ap-

plied, they are enqueued onto a radio queue for delivery to the node‘!sn the delta scheme, a tuple is assigned an initial score relative to its

parent. This queue contains both tuples from the local node as well a%lf‘ference from the most recent (in time) value successfully transmitted

twples that are being forwarded on behalf of other nodes in the netTfrom this node, and at each point in time, the tuple with the highest score

work. When network contention and data rates are low, this queués delivered. The tuple with the lowest score is evicted when the queue

can be drained faster than results arrive. However, because the nunqyerflows. Out of order delivery (in time) is allowed. This scheme re-

ber of messages produced during a single epoch can vary dramaticalll)'/‘,ﬁ's on the intuition that the largest changes are probably interesting. It

. . . L .. works as follows: when a tuplewith timestamgl is initially enqueued
depending on the number of queries running, the cardinality of joins, q g it with the fi £ th v d
and the number of groups and aggregates, there are situations when {fiad scored, we mar it with the timestanpof this most recently de-

queue will overflow. In these situations, the system must decide if ithvered tupler. Since tuples can be delivered out of order, it is possible

should try to retransmit this tuple, re-enqueue this tuple and try to sen(tlhat atuple with a timestamp betwednandT” could be delivered next

. . . . (indicating thatr was delivered out of order), in which case the score
a different tuple, combine this tuple with some other tuple for the same)) i
. . we computed fot as well as itsk timestamp are now incorrect. Thus,
query, or simply discard the tuple.

in general, we must rescore some enqueued tuples after every delivery.

The ability to make runtime decisions about the value of an individual)))
\We compared these three approaches on a single mote running TinyDB.

data item is central to ACQP systems, because the cost of acquiringll)))
L . N 0 measure their effect in a controlled setting, we set the sample rate
and delivering data is high, and because of these situations where the

. to be a fixed numbek faster than the maximum delivery rate (such
rate of data items arriving at a node will exceed the maximum delivery

rate. A simple conceptual approach for making such runtime decision%hat 1 of everyK tuples was delivered, on average) and compared their

.) . . &)erformance against several predefined sets of sensor readings (stored
is as follows: whenever the system is ready to deliver a tuple, senc i)
in the EEPROM of the device.) In this case, delta had a buffer of 5

the result that will most improve the “quality” of the answer that the -
. . . tuples; we performed reordering of out of order tuples at the basesta-
user sees. Clearly, the proper metric for quality will depend on the ap-

o . . . tion. To illustrate the effect of winavg and delta, Figure 8 shows how
plication: for a raw signal, root-mean-square (RMS) error is a typical

metric. For aggregation queries, minimizing the confidence intervals O‘delta and winavg approximate a high-periodicity trace of sensor read-

the values of group records could be the goal [38]. In other applications',ngS gel.'lerated b_y a shaking gccelergmeter (we om|_t naive due to Spéce
._constraints.) Notice that delta is considerably closer in shape to the orig-

users may be concerned with preserving frequencies, receiving statisti- s o)
. . . L inal signal in this case, as it is tends to emphasize extremes, whereas
cal summaries (average, variance, or histograms), or maintaining more

- . u " average tends to dampen them.
tenuous qualities such as signal “shape”.

Our goal is not to fully explore the spectrum of techniques available in - Approximations of Acceleration Signal

this space. Instead, we have implemented several policies in TinyDB € 700 | Accelefation)Signal

to illustrate that substantial quality improvements are possible given a % ggg I 1
particular workload and quality metric. Generalizing concepts of qual- @ 400

ity and implementing and exploring more sophisticated prioritization g 800 o
schemes remains an area of future work. i Zgg | |
There is a large body of related work on approximation and compression fﬂg igg I]
schemes for streams in the database literature (e.g. [17, 9]), although g 800 v

these approaches typically focus on the problem of building histograms %“; Zgg I]
or summary structures over the streams rather than trying to preserve g 500 L)
the (in order) signal as best as possible, which is the goal we tackle @ 400, o s s pos o
first. Algorithms from signal processing, such as Fourier analysis and # of Samples

wavelets are likely applicable, although the extreme memory and profFigure 8: An acceleration signal (top) approximated by a delta (middle)
cessor limitations of our devices and the online nature of our problennd an average (bottom), K=4.

(e.g. choosing which tuple in an overflowing queue to evict) make itWe also measured RMS error for this signal as well as two others: a
non-obvious how to apply them. square wave-like signal from a light sensor being covered and uncov-
ered, and a slow sinusoidal signal generated by moving a magnet around
naive winavg and delta for simple selection queries. In theaive a magnetometer. The error for each of these signals and techniques is
scheme no tuple is considered more valuable than any other, so th%‘o""” in Table 4. Although delta appears to match the shape of the

queue is drained in a FIFO manner and tuples are dropped if they dgcceleration signal better, its RMS value is about the same as average’s
(due to the few peaks that delta incorrectly merges together.) Delta out-

We begin with a comparison of three simple prioritization schemes,

Paper under submission. Please do not distribute without permission. 12

performs either other approach for the fast changing step-functions imumber of packets delivered is substantially less than if each of those
the light signal because it does not smooth edges as much as averagenodes tries to transmit at a lower rate. Compare this line with the per-
formance of a single node (where there is no contention) — a single node
does not exhibit the same falling off because there is no contention (al-

[| Accel [Light (Step) | Magnetometer (Sinusoid)

Winavg | 64 129 54 ,
Delta 63 81 28 though the percentage of successfully delivered packets does fall off.)
Naive 77 143 63 Finally, the4 motes adaptivéine does not have the same precipitous

performance because it is able to monitor the network channel and adapt

Table 4: RMS Error for Different Prioritization Schemes and Signals .
to contention.

(1000 Samples, Sample Interval = 64ms)
Note that the performance of the adaptive approach is slightly less than

We omit a discussion of prioritization policies for aggregation queries.the non-adaptive approach at 4 and 8 samples per second as backoff
TAG [31] discusses several snooping-based techniques unique to sendsggins to throttle communication in this regime. However, when we
networks that can be used to priortize aggregation queries. There is alsmmpared the percentage of successful transmission attempts at 8 pack-
significant related work on using wavelets and histograms to approxiets per second, the adaptive scheme achieves twice the success rate of
mate distributions of aggregate queries when there are many groups, fatie non-adaptive scheme, suggesting the adaptation is still effective in
example [17, 9]. These techniques are applicable in sensor networks asducing wasted communication effort, despite the lower utilization.

well, although we expect that the number of groups will be small (e.g.
at most tens or hundreds), so they may be less valuable.

Sample Rate vs. Delivery Rate

T T
4 motes ——

1mote <

4 motes, adaptive K- |

Thus, we have illustrated some examples where prioritization of results
can be used improve the overall quality of that data that are transmitted
to the root when some results must be dropped or aggregated. Choosing
the proper policies to apply general and understanding how various
existing approximation and prioritization schemes map into ACQP is an
important future direction.

0 2 4 6 8 10 12 14 16
Samples Per Second (per mote)

Delivery Rate, Aggregate over All Motes (packets per second)

6.3 Adapting Rates and Power Consumption

We saw in the previous sections how TinyDB can exploit query seman-
tics to transmit the most relevant results when limited bandwidth or
power is available. In this section, we discuss selecting and adjustThe problem with reducing transmission rate is that it will rapidly cause
ing sampling and transmission rates to limit the frequency of network-the network queue to fill, forcing TinyDB to discard tuples using the se-
related losses and fill rates of queues. This adaptation is the other half §hantic techniques for victim selection presented in Section 6.2 above.
the runtime techniques in ACQP: because the systemadijust rates, We note, however, that had TinyDB not chosen to slow its transmis-
significant reductions can be made in the frequency with which datzsion rate, fewer total packets would have been delivered. Furthermore,
prioritization decisions must be made. These techniques are simply ndty choosing which packets to drop using semantic information derived

available in non-acquisitional query processing systems. from the queries (rather than losing some random sample of them),

When initiall fimizi TinvDB's optimi h) TinyDB is able to substantially improve the quality of results delivered
en Ifally opamizing a query, TINyDIS's OpimIzer CNO0SEs a TaNns- o eng yser. To illustrate this in practice, we ran a selection query

mission and sample rate based on current network load conditions, and .) .
o) o over four motes running TinyDB, asking them each to sample data at 16
requested sample rates and lifetimes. However, static decisions made at . .
samples per second, and compared the quality of the delivered results

the start of query processing may not be valid after many days runnln%sing an adaptive-backoff version of our delta approach to results over

h m ntin ry. i ry pr in . . o
the same continuous query. Just as adaptive query processing SVSteﬂ%% same dataset without adaptation or result prioritization. We show

like Tulwila and Eddy [26, 6] dynamically reorder operators as the ©*®here traces from two of the nodes on the left and right of Figure 10. The

cution environment changes, TinyDB must react to changing condition%Op plots show the performance of the adaptive delta, the middle plots

a hciwe\(/jer, tu.nll_lk_.e w:jgrewom:)s_ adr:ftlve qtueryt p_rtockessmg syjtems’(;a'tl'show the non-adaptive case, and the bottom plots show the the origi-
ure to:adaptin Tinybb can bring the system fo 11S knees, reducing aalg,), signals (which were stored in EEPROM to allow repeatable trials.)

rowl to a trickle or causing the system to severely miss power budgeI\Iotice that the delta scheme does substantially better in both cases.
goals.

Figure 9: Per-mote sample rate versus aggregate delivery rate.

6.3.1 Measuring Power Consumption

We study the need for adaptivity in two contexts: network contention . .
. . . . We now turn to the problem of adapting tuple delivery rate to meet spe-
and power consumption. We first examine network contention. Rather |~~~ .) .]
cific lifetime requirements in response to incorrect sample rates com-

than simply assuming that a specific transmission rate will result in a

. i . uted at query optimization time (see Section 3.3). We first note that
relatively uncontested network channel, TinyDB monitors channel con-p query op () '

tention and adaptively reduces the number of packets transmitted agssmg similar computations to those shown Section 3.3, it is possible to

. compute gredicted battery voltagfr a timet seconds into processin
contention rises. This backoff is very important: as theotesline pute @ y g P 9

. . . . uery. We omit the calculation due to space constraints.
of Figure 9 shows, if several nodes try to transmit at high rates, the tota"f1 query P
The system can then compare its current voltage to this predicted volt-

Paper under submission. Please do not distribute without permission. 13

Adaptive vs. Non-Adaptive (Accel) Adaptive vs. Non-Adaptive (Mag.) 8 Related Work
800 Adaptive Delt 750 - Adaptive Delt 1
aptive Delta — aptive Delta — . . .

700 - P , 600 ? There has been some recent publication in the database and systems
600 | EBrvs=81) 450 communities on query processing-like operations in sensor networks
500 F | 300 c [25, 31, 36, 30, 43]. As mentioned above, these papers noted the impor-
800 150 RS tance of power sensitivity. Their predominant focus to date has been on

No Adaptation — 750 | No Adaptation —

in-networkprocessing — that is, the pushing of operations, particularly

700 E 600 |]
600 g =112 . 450 LFM—L\ selections and aggregations, into the network to reduce communication.
500 ﬁ 300 | Equs=109 | We too endorse in-network processing, but believe that, for a sensor net-

800 150

Sample Value Sample Value Sample Value

AcCelerometer Sigpal 750 F Magnetometer Signal — | work system to be truly power sensitive, acqusitional issues of when,
600 - q . .
450 | where, and in what order to sample and which samples to process must
300 + . be considered. To our knowledge, no prior work addresses these issues.
150 L L L
500 520 540 560 580 600 350 400 450 500 550 There is a small body of work related to query processing in mobile
Sample # Sample # environments [24, 2]. This work is concerned with laptop-like devices

Figure 10: Comparison of delivered values (bottom) versus actual read ot are carried with the user, can be readily recharged every few hours,
ings for from two motes (left and right) sampling at 16 packets per seCypq with the exception of a wireless network interface basically have
ond and sending simulataneously. Four motes were communicating sie capabilities of a wired, powered PC. Lifetime-based queries, notions
multaneously when this data was collected. of sampling the associated costs, and runtime issues regarding rates and

age. By assuming that voltage decays linearly (see Figure 4 for emcontention are not considered. Many of the proposed techniques, as well

pirical evidence of this property), we cae-estimatethe power con- as more recent work on moving object databases (such as [41]) focus on
sumption characteristics of the device (e.g. the costs of sampling, tran§be highly mobile nature of devices, a situation we are not (yet) dealing
mitting, and receiving) and then re-run our lifetime calculation. By with, but which could certainly arise in sensor networks.

re-estimating these parameters, the system can ensure that this new lifeewer sensitive query optimization was proposed in [1], although, as
time calculation tracks the actual lifetime more closely. with the previous work, the focus is on optimizing costs in tradtional
mobile devices (e.g. laptops and palmtops), so concerns about the cost

serve an important role by allowing sensors in TinyDB to satisfy occa—and ordering of sampling do not appear. Furthermore, laptop-style de-

sional ad-hoc queries and relay results for other sensors without comff'Ces t.yplcally do not offer the same d.egree of rapid p0\./ver-cycl.|ng tha.1t
promising the lifetime goals of long running monitoring queries. is available on embedded platforms like motes. Even if they did, their
interactive, user oriented nature makes it undesirable to turn off dis-

Finally, we note that incorrect measurements of power COnsumpt'orblays, network interfaces, etc. because they are doing more than simply

may also be dPe to incorrect estimates of the cost of vanogsI phasgs %Ilecting and processing data, so there are many fewer power optimiza-
query processing, or may be as a result of incorrect selectivity estlmaﬂonS that can be applied

tion. We cover both by tuning sample rate. As future work, we intend
to explore adaptation of optimizer estimates and ordering decisions (i
the spirit of other adaptive work like Eddies [6]) and the effect of fre-
guency of re-estimation on lifetime (currently, in TinyDB, re-estimation
can only be triggered by an explict request from the user.)

Although this calculation and re-optimization are straightforward, they

IJ;Building an SRT is analogous to building an index in a conventional
database system. Due to the resource limitations of sensor networks,
the actual indexing implementations are quite different. See [27] for
a survey of relevant research on distributed indexing in conventional
database systems. There is also some similarity to indexing in peer-
7 Summary to-peer systems [4]. However, peer-to-peer systems differ in that they

are inexact and not subject to the same paucity of communications or

This completes our discussion of the novel issues and techniques thaE . .
Storage infrastructure as sensor networks, so algorithms tend to be stor-

arise when taking an acquisitional perspective on query processing. In s Lo L .
9 q Persp query p 9 age and communication heavy. Similar indexing issues also appear in

summary, we first discussed important aspects of an acqusitional queWigth mobile environments (like [41, 24]), but this work relies on a

language, introducing event and lifetime clauses for controlling when
guage, 9 9 centralized location servers for tracking recent positions of objects.

and how often sampling occurs. We then discussed query optimization

with the associated issues of modeling sampling costs and ordering dihe observation that interleaving the fetching of attributes and applica-

sampling operators. We showed how event-based queries can be rewrtion of operators also arises in the context of compressed databases [11],

ten as joins between streams of events and sensor samples. Once quefi§decompression effectively imposes a penalty for fetching an individ-

have been optimized, we demonstrated the use of semantic routing tre@! attribute, so it is beneficial to apply selections and joins on already

as a mechanism for efficiently disseminating queries and collecting red€compressed or easy to decompress attributes.

sults. Finally, we showed the importance of priortizing data accordingThere is a large body of work on event-based query processing in the

to quality and discussed the need for techniques to adapt the transmigctive database literature. Languages for event composition and sys-

sion and sampling rates of an ACQP system. tems for evaluating composite events, such as [10], as well as systems
for efficiently determining when an event has fired, such as [19] could
(possibly) be useful in TinyDB.

Paper under submission. Please do not distribute without permission.

Approximate and best effort caches [35], as well as systems for onlinefl5] Figaro, Inc.
aggregation [38] and approximate [17] and stream query processingm]
[34,
is focused on quality with respect to summaries, aggregates, or stale-

7] include some notion of data quality. Most of this other work

ness of individual objects, whereas we focus on quality as a measure

fidelity to the underlying continuous signal. Aurora [7] mentions a need[18]

for this kind of metric, but proposes no specific approaches.

(19]

9 Conclusions and Future Work

[
Acquisitional query processing provides a framework for addressing is-
sues of when, where, and how often data is sampled and which da

is delivered in distributed, emdedded sensing environments. Althougi??]
other research has identified the opportunities for query processing ife3]
sensor networks, this work is the first to discuss these fundamental is[24]

sues in an acquisitional framework.

We believe that ACQP notions are of critical importance for preserv-(y)
ing the longevity and usefulness of any deployment of battery powered
sensing devices, such as those that are now appearing in biological prgsg)
serves, roads, businesses, and homes. Without appropriate query lan-
guages, optimization models, and query dissemination and data delivery
schemes that are cognisant of semantics and the costs and capabilities of
the underlying harware the success of such deployments will be limited35]
References

(1]

(2]
(3]
(4
(5]
(6]

(7]

(8]

(9]

[10]

[11]
[12]
[13]
[14]

25
We identified several opportunities for future research. We are currentI)E !
actively pursuing two of these: first, we are exploring how query opti- [26]
mizer statistics change in acqusitional environments and studying the

role of online re-optimization in sample rate and operator orderings in27]
response to bursts of data or unexpected power consumption. Secordg]
we are pursuing more sophisticated priortization schemes, like wavele[tzg]
analysis, that can capture salient properties of signals other than large

. . 30] S. Madden and M. J. Franklin. Fjording the stream: An architechture for
changes (as our delta mechanism does) as well as mechanisms to allow

users to express their priortization preferences.

1 M. Garofalakis and P. Gibbons.

] J. M. Hellerstein.

(31]

14

TGS-825 - Special Sensor For Hydrogen Sulfide
http://www.figarosensor.com.
D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wickera. Complex behavior at scale: An experimental study of
low-power wireless sensor networks. Under submission. Available at:
http://lecs.cs.ucla.edu/ deepak/PAPERS/empirical.pdf, July 2002.

| Agfroximate query processing: Taming
the terabytes! (tutorial). IWLDB, 2001.
J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggre-
gates over continual data streams. Piroceedings of the ACM SIGMOD
Conference on Management of Daganta Barbara, CA, May 2001.
E. N. Hanson. The design and implementation of the ariel active database
rule system. IEEE Transactions on Knowledge and Data Engineering
8(1):157-172, February 1996.

Optimization techniques for queries with expensive
methods.TODS 23(2):113-157, 1998.

] J. Hill, R. Szewczyk, A. Woo, S. Hollar, and D. C. K. Pister. System archi-

tecture directions for networked sensors ABPLOSNovember2000.

Honeywell, Inc. Magnetic Sensor Specs HMC1002

http://www.ssec.honeywell.com/magnetic/sgbeets/spec$002.html.

T. Ibaraki and T. Kameda. On the optimal nesting order for computing

n-relational joins.TODS 9(3):482-502, 1984.

T. Imielinski and B. Badrinath. Querying in highly mobile distributed en-

vironments. INVLDB, Vancouver, Canada, 1992.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A

scalable and robust communication paradigm for sensor networkgo4n

biCOM, Boston, MA, August 2000.

Z.G. lves, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive

guery execution system for data integration. Pioceedings of the ACM
IGMOD, 1999.

D. Kossman. The state of the art in distributed query processk@v

Computing Survey2000.

R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive

queries. INVLDB, pages 128-137, 1986.

C. Lin, C. Federspiel, and D. Auslander. Multi-Sensor Single Actuator

Control of HVAC Systems. 2002.

gueries over streaming sensor datalGDE, 2002.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny
Agogzreganon Service for Ad-Hoc Sensor Networks.Q8DI (to appear,)

A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor
networks for habitat monitoring. 1ACM Workshop on Sensor Networks
and Applications2002.

C. L. Monma and J. Sidney. Sequencing with seriesparallel precedence
constraints Mathematics of Operations Researd®79.

34] R. Motwani, J. Window, A. Arasu, B. Babcock, S.Babu, M. Data, C. Ol-

R. Alonso and S. Ganguly. Query optimization in mobile environments. In

Workshop on Foundations of Models and Languages for Data and Objects[37]

pages 1-17, September 1993.

R. Alonso and H. F. Korth. Database system issues in nomadic computing[38]

In ACM SIGMOD Washington DC, June 1993.

Analog Devices, INCADXL202E: Low-Cost 2 g Dual-Axis Accelerometer
http://products.analog.com/products/info.asp?product=ADXL202.

H. G. Arturo Crespo. Routing indices for peer-to-peer systemkCIDCS
July 2002.

Atmel Corporation. Atmel ATMega 128 Microcontroller Datasheet.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query pro- [41]

cessing. IrProceedings of the ACM SIGMQPages 261-272, Dallas, TX,
May 2000.

D. Carnei/), U. Centiemel, M. Cherniak, C. Convey, S. Lee, G. Seidman,[42]
r

M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams - a new
class of data management applicationsVLiDB, 2002. [

43
A. Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, , and J. Zhao. Habitat

monitoring: Application driver for wireless communications technology.

In ACM SIGCOMM Workshop on Data Communications in Latin America
and the Caribbean2001.

K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate
query processing using wavele¥s DB Journaj 10, 2001.

S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim. Composite
events for active databases: Semantics, contexts and detectivi.DB

Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed
database systems. ACM SIGMOD 2001.

I. Crosshow. Wireless sensor networks (mica
http://www.xbow.com/Products/Wirele&ensorNetworks.htm.
K. A.Delinand S. P. Jackson. Sensor webifositu exploration of gaseous
biosignatures. INEEE Aerospace Conferenc2000.

J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts.O$DI go appear,)2002.

motes).

(36

(39]

[40]

ston, J. Rosenstein, and R. Varma. Query processing, approximation and

resource management in a data stream management syst&DRn(to
appear) 2003.

C. Olston and J.Widom. Best effort cache sychronization with source co-
operation.SIGMOD, 2002.

] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database systems.

Conference on Mobile Data Managemeianuary 2001.
G. Pottie and W. Kaiser. Wireless integrated network senggosnmuni-
cations of the ACM43(5):51 — 58, May 2000.

V. Raman, B. Raman, and J. Hellerstein. Online dynamic reordefihg.
VLDB Journal 9(3), 2002.

M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation
ngt?té%Sle Management SysteBommunications of the ACN84(10):78—

UC Berkeley. Smart buildings admit their faults. Web Page, November
2001. Lab Notes: Research from the College of Engineering, UC Berkeley.
http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. DOMINO:
Databases fOr MovINg Objects tracking. ACM SIGMOD Philadelphia,

PA, June 1999.

A. Woo and D. Culler. A transmission control scheme for media access in
sensor networks. IACM Mobicom July 2001.

Y. Yao and J. Gehrke. The cougar approach to in-network query processing
in sensor networks. IBIGMOD RecordSeptember 2002.

n

