
Passive Inference of Path Correlation∗

Lili Wang, James N. Griffioen, Kenneth L. Calvert, Sherlia Shi
Laboratory for Advanced Networking

University of Kentucky
{lwang0,griff,calvert,sherlia}@netlab.uky.edu

ABSTRACT
Overlays have been proposed as a means to improve application
performance in many areas, including multimedia streaming and
content distribution. Some overlays use parallel transmission to in-
crease aggregate throughput or use backup paths to improve relia-
bility. For such applications, an important consideration is whether
the “virtual links” at the overlay level (i.e. paths between overlay
nodes) share links in the underlying network. In particular, choos-
ing parallel or backup paths without any information about path
correlation can reduce the effectiveness of the overlay.

In this paper we show how to use passive measurement of TCP
throughput to provide information about path correlation, for use
in overlay routing decisions. Our methods have the advantage that
they send no probe traffic to collect path information. We present
results of experimental evaluation in both controlled testbed (Em-
ulab) and real wide area network (Planetlab). Our results demon-
strate that the methods together work well across a wide range of
operating conditions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Measurement

Keywords
Path correlation

1. INTRODUCTION
Recently application designers have turned to overlay networks

as a way to obtain new services in the Internet. Because overlays
are constructed from a set of cooperating end systems, new services

∗This work supported in part by NSF Grants EIA-0101242 and
ANI-0121438.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 16–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

needed by emerging applications can be deployed without requir-
ing any changes to the Internet’s existing network layer. As such,
overlays are particularly appealing for multimedia applications that
often want to multicast the data (e.g., application level multicast
services), transcode the data enroute, survive network failures or
route changes, etc.

Multimedia applications are also unique in that application qual-
ity —video quality, picture quality, sound quality, etc.—correlates
directly with the capacity (“bandwidth”) available for transmission.
In other words, increasing the bandwidth available to the applica-
tion results in the ability to offer a higher-quality multimedia expe-
rience. By providing greater application control of routing, over-
lay networks have the potential to support multipath approaches
that enable applications to achieve increased bandwidth by send-
ing data across multiple paths simultaneously, resulting in superior
sound/video quality to the end user.

Such an approach involves the creation of end-to-end “paths”
by concatenating connections between overlay nodes. Each such
connection, orvirtual link, corresponds to an end-to-end path at
the IP layer. For (overlay) applications that wish to use a multi-
path routing approach to increase bandwidth, an important issue is
avoidance of shared bottlenecks: If two virtual links in the overlay
network (i.e., IP-level paths between overlay nodes) share a link in
the underlying network, and that link is the bottleneck of both, any
application-level flows that traverse those two virtual links will end
up competing with one another. Ideally, the application would be
able to query the network to determine if two paths share a bottle-
neck link. Unfortunately, the Internet Protocol (IP) does not pro-
vide any simple way to obtain this information. Various heuristics
have been developed to identify the bottleneck bandwidth or guess
at the level of “shared congestion” [9]. Many of these approaches
are based on active measurement techniques, in which the appli-
cation and/or overlay nodes must inject additional packets into the
network to determine the level of (shared) congestion [14].

In this paper, we investigate approaches based on the passive
measurement of TCP throughput to determine the level of shared
congestion. Our approach does not send any probe traffic, but
rather passively gathers information, gradually learning of congested
links and sharing that information with other nodes in the system.
It is intended for use with long-lived, high-bandwidth applications
that are adaptive enough to use TCP. We present results from ex-
periments run over Emulab and Planetlab, showing that our corre-
lation technique is able to detect shared congestion (e.g., paths with
a shared bottleneck link) with a high degree of accuracy. Similarly,
it can tell when paths are independent with a high degree of accu-
racy. These methods are being applied in an overlay service we are
developing for immersive environments [15], which achieves high
bandwidth by aggregating the throughput of multiple overlay paths.

36

2. RELATED WORK
Multipath routing techniques have been studied in other contexts,

each addressing slightly different issues. One of the best-known
multipath overlay approaches is RON [4], a fault-tolerant routing
service that can quickly re-route packets via alternate overlay nodes
in response to failures. RON is based on active probes that contin-
uously monitor the fully-connected overlay’s virtual edges. Be-
cause RON’s goal is resilience and fault-tolerance rather than op-
timized throughput, accurately measuring bandwidth and identi-
fying shared bottlenecks is not one of RON’s objectives. More-
over, the active probing approach introduces scalability problems
that limit the size of the overlay that can be supported. Work
by Kommareddyet al. [13], describes a multipath approach based
on the ability to access AS-level information. Their more recent
work [11] presents a more general, measurement-based approach
that attempts to balance the load to meet certain requirements; iden-
tifying shared bottlenecks is not a goal.

In the context of a different problem, some applications have
used multiple paths from multiple replicated sources to increase
throughput or improve reliability. Apostolopouloset al. [5] sug-
gests using multiple description coding and path diversity to im-
prove loss resilience. The client parallelly retrieves the multiple
complementary descriptions through different paths. Byerset al.[8]
proposes using erasure codes downloading data in parallel from
multiple mirror sites to speed up the data transfer. Their methods
works well when multiple paths do not share loss.

Several approaches have been proposed to integrate congestion
control across multiple concurrent flows. Balakrishnanet al. in
[6] suggests modifying TCP to share TCP control block state to
improve performance. In [7], Balakrishnanet al.present an archi-
tecture to manage congestion across an ensemble of unicast flows.
The congestion manager described in the paper maintains network
congestion information and schedules data transmission. Unlike
our goal, the goal of these works is to enable different flows to co-
operatively share the available path bandwidth.

Various researchers have proposed techniques to detect shared
congestion. Harfoushet al. [12] uses a packet-pair (active) ap-
proach designed for paths originating at the same site. Rubenstein
et al.proposed an approach that measures loss/delay characteristics
using Poisson probes and then computes the autocorrelation and
cross-correlation. Like Harfoush, they assume either the senders
or the receivers are co-located. A recent paper by Cuiet al. [9]
presents an active probe monitoring approach to capture loss and
delay characteristics that are then used to estimated the level of
shared congestion. Although they indicate how the loss monitoring
might be done passively, the primary focus is again on active prob-
ing to identify loss. They also make assumptions about the way
packets are lost at routers and the effectiveness of their technique
when RED [10] is enabled is thus unclear.

In the following, we present two passive monitoring approaches
that do not inject probes to identify shared bottlenecks, nor do they
make any assumptions about the loss models at network routers.
Consequently, they scale better than active approaches and can be
used in a wide range of network environments under a range of
network conditions.

3. CAPACITY CONSERVATION (ALG 1)

Our first algorithm is based on the idea that flows traversing the
same bottleneck link share the link’s capacity. If one flow decreases
its usage of the bottleneck, the capacity available to other flows on
the bottleneck link will increase proportionally; similarly, if a flow
increases its usage, others should observe a decrease.

In theory, one should be able to determine if flows share a bot-
tleneck link simply by modulating one of the flows’ bandwidth us-
age and observing the throughput of the other flows. If their usage
changes proportionally, one might conclude they share the same
bottleneck. However, nodes in an overlay network can only ob-
serve overlay flows, not all flows sharing the bottleneck. We call
the flows that can be observed by the overlay networkforeground
flows. All other (unobservable) flows that share the bottleneck link
are calledbackground flows. If the capacity consumed by back-
ground flows is relatively constant, the conservation principle can
be applied to the foreground flows alone. However, if the back-
ground capacity changes frequently, it may affect the overlay’s abil-
ity to detect proportional changes in the foreground flows.

3.1 The Algorithm
Given two (or more) flows, the conservation algorithm intention-

ally reduces the rate of one of the flows by a known amount for a
fixed time period (i.e., we turn the flow off) and then later returns
the flow to its normal rate (i.e., we turn the flow back on). During
these time periods the algorithm looks for proportional changes in
the bandwidth of the other flow(s). If a change is observed that is
consistent with the other flow’s modulation, we assume the flows
share a bottleneck; otherwise we assume they take independent
paths.

Our algorithm records the TCP throughput of every flow at ten
second intervals. Given the throughput record and information
about when flows were modulated on/off, the algorithm can com-
pute the observed change in throughput. If the modulated flow
stops transmitting at timeτ , we compute the change in throughput
(slope) for each flowi at timeτ assi(τ) = (ri(τ)− ri(τ +2))/2,
whereri(τ) is the throughput of flowi at timeτ . Assuming fair
sharing of the bottleneck byn flows (i.e. each gets1/n of the
link capacity), the slope should be negative and proportional to
n. Since we don’t known, we simply check whether the slope
is negative or not for each on-to-off transition point. Similarly, if
the modulated flow is restarted at timeτ , we computesi(τ) =
(ri(τ +2)−ri(τ))/2, again looking for negative slopes. If there is
a high enough percentage of slopes that are negative, we consider
that the two flows are correlated.

Clearly this approach is sensitive to several factors including
the number of flows sharing the bottleneck. Asn increases, each
foreground flows’ share of the bottleneck capacity decreases mak-
ing it more difficult to distinguish the effects of modulation from
“noise” changes in throughput (i.e., normal changes resulting from
the steady-state behavior of TCP congestion avoidance). A second
problem with this method is that background flows may also tran-
sition between on and off states; these transitions may contribute to
(or against) the changes observed in the foreground flows.

3.2 Experimental Results
We conducted experiments using the University of Kentucky Em-

ulab facility [3, 1] to investigate the effectiveness of “conservation
of bandwidth” as a basis for determining path correlation. Figure 1
shows the topology and parameters used in the experiments. Nodes
S1 and S2 are the sources of the foreground flows, and D is the
destination. N1 and N2 both send background traffic to D. Each
flow is an on/off data source, with mean durations of on and off
periods1/µ and1/λ, respectively. (That is,1/µb is the mean “on
time” for background flows, while1/λb is the average interarrival
time, with 1/µf and1/λf denoting the corresponding means for
the foreground flows.) All interarrival times were exponentially
distributed; background service times were chosen according to a
truncated Pareto distribution (shape=1.25, truncated to 1000 sec-

37

Exp. 1 Exp. 2
nb

1
µf

1
λf

1
µb

1
λb

% corr # % corr

4 500 100 20 20 34 0.7059 26 0.8846
4 500 100 100 20 27 0.5185 28 0.8571
4 200 100 20 100 42 0.8810 44 0.7727
4 200 100 200 100 45 0.8444 40 0.6750
4 20 100 20 100 57 0.6140 56 0.7143
4 20 100 200 100 69 0.6522 68 0.6176

20 500 100 20 20 32 0.5312 24 0.4167
20 500 100 100 20 20 0.4500 30 0.5667
20 200 100 20 100 35 0.6286 44 0.6591
20 200 100 200 100 42 0.4286 41 0.7561
20 20 100 20 100 48 0.6875 56 0.7143
20 20 100 200 100 77 0.5325 92 0.6304

Table 1: Parameters and results for Exp 1 and Exp 2.

onds). To investigate sensitivity ton, the number of background
flows on each path was either 2 or 10 for each background source
(sonb, the total number of background flows was either 4 or 20).

Table 1 lists the parameters used in each of the tests along with
the correlation results for each test. We simulated a wide range of
traffic scenarios including mixes of “long” and “short” foreground
and background flows, as well as higher and lower “utilizations”
of the foreground flows. For each set of parameters we ran the
experiment for 7200 seconds of simulation time.

In the first experiment (Exp 1), the two foreground paths had
different round-trip times, but shared a bottleneck link that strongly
constrained their throughput. In the second experiment (Exp 2), the
R3–R4 link had capacity 20 Mb/s, while the links adjacent to the
flow sources were set to 10 Mb/s, and all other links to 100 Mb/s.

The results for Exp 1 and Exp 2 are shown in Table 1. The
column titled “#” shows the number of on-off (or off-on) transi-
tions recorded in the experiment; the column titled “% corr” indi-
cates the percentage of those transitions in which the slope of the
non-transitioning flow had the appropriate sign. The main conclu-
sion to be drawn from these results is that with a small number of
background flows, the fraction of transitions with slopes of oppo-
site signs was almost always over 60%; however, with more back-
ground traffic the fraction was much closer to 50%. In other words,
this method is better suited for situations with a modest number of
background flows.

N2

N1

S1

S2

D

50 / 0
10 / 0

10 / 0

100 / 0

20 / 10

2 / 0 100 / 10

bw(Mb/s) / delay(ms)

20 / 5R1

R2

R3 R4

Figure 1: Topology with link parameters for Exp 1.

4. CORRELATED VARIATION (ALG 2)

Although the previous algorithm works well when the background
traffic in constant, it is less effective when the background traffic
changes frequently, or when the total number of flows sharing the

bottleneck is large. Although there are situations in which one may
assume the background traffic is stable, there are also many situa-
tions where the level of background traffic is constantly changing.

Our second algorithm avoids these problems by taking a kind
of opposite approach, which is based on the observation that if two
flows share a bottleneck link, their behavior should be similar. That
is, any changes in background traffic should cause the foreground
flows to react in similar ways—they should see the same congestion
and adapt their windows in similar ways.

4.1 The Algorithm
The basic idea is that random background traffic will cause ran-

dom changes to the foreground flows. Ourcorrelated variation
algorithm treats TCP throughput as a random variable and infers
correlation between two flows by calculating thecorrelation coef-
ficientof the flow throughputs observed at approximately the same
times.

The correlation coefficient between random variablesX andY
is defined in the normal way to be

ρ = Cov(X, Y)/
√

Var(X)Var(Y)

For this method, we record the data throughputonly while the ap-
plication is sending datato rule out the possibility that unavail-
ability of application data limits TCP throughput. We then use the
formula above to calculate the correlation coefficient between the
two TCP flows.

4.2 Performance
To investigate the effectiveness of this method, we conducted

experiments using both Emulab and PlanetLab. In all these experi-
ments, the foreground flows transmitted continuously.

Emulab Experiments
To evaluate the performance ofcorrelated variationin a con-

trolled environment, we again used the University of Kentucky Em-
ulab Facility [3, 1] which allows us to construct different topologies
and test our methods under diverse conditions. Our goal was to see
whether two TCP flows would behave in similar ways if they shared
a common bottleneck link (but nothing else). Similarly, we wanted
to verify that two independent TCP flows wouldnot exhibit good
correlation.

For each experiment we present both the topology and results
in a single figure; foreground flows are represented by solid lines,
and background flows are represented by dashed lines. The interar-
rival time of background flows is exponentially distributed and the
distribution of their lifetime is a Pareto distribution (shape=1.25).
We record TCP throughput of each foreground flow at one second
intervals and use the average value over a window of 10 intervals
as samples for computing the coefficient of variation. Each exper-
iment runs for 1000 seconds. Each row of each table shows the
mean interarrival and service times for the background flows.

The first experiment (Figure 2) involves a single congested link
shared by the two foreground flows. From the table we see that the
two flows show strong correlation. Moreover, the effectiveness of
the algorithm does not decrease when background traffic increases
or is bursty. To evaluate the effect RTT has on correlation, we in-
tentionally used flows with very different RTTs (25ms vs 50ms).
It is well-known that TCP flows with significantly different RTTs
will to react differently to congestion (e.g., one will react more ag-
gressively than another) which could lead to low correlation scores.
However, despite the large difference in round trip times, the flows
in Figure 2 exhibit remarkably good correlation.

In the second experiment, background traffic is sent along the
link between R0 and R1, and between R1 and R2. As shown in

38

1/λ 1/µ correlated
10 100 0.92
10 200 0.76
20 100 0.93
20 200 0.93
20 300 0.97
20 400 0.95

foreground traffic

background traffic

N0

N2

N6
N1

N3 N4

N5

R0 R1 R2

50 / 10
20 / 10

bw(Mb/s)/delay(ms)

10 / 10 10 / 10

50 / 10 100 / 0

20 / 5

100 / 0

100 / 20

Figure 2: Single Congested Link

1/λ1 1/µ1 1/λ2 1/µ2 correlated
10 100 10 100 0.85
10 200 10 200 0.97
10 200 20 100 0.93

N0

N2

N6
N1

N3 N4

N5

R0 R1 R2

20 / 5

50 / 10
20 / 10

bw(Mb/s)/delay(ms)

10 / 10

50 / 10

20 / 10

background traffic

foreground traffic

100 / 0

100 / 20

100 / 0

Figure 3: Two Congested Links

Figure 3, the two foreground flows sharetwo congested links. De-
spite the “double bottleneck”, our correlation-based algorithm is
able to determine that the two paths are highly correlated.

In the third experiment, the foreground flows share one link (from
R0 to R1), and both flows see cross traffic on that link. However,
one of the flows also sees cross traffic on the nonshared link be-
tween R1 and R2. As the table in Figure 4 shows, our method still
correctly classifies the two correlated paths. From the first three
rows of the table in Figure 4, we can see that the correlation is still
greater than0.80, even when the capacity of link between R1 and
R2 is reduced.

Figure 5 shows our fourth experiment, which is similar to the
previous one in that the two foreground flows see the same cross
traffic on one link, but one flow sees different cross traffic on the
other link. Whether the flows share a bottleneck thus depends on
the capacities B1 and B2. The first three rows of the table show
performance when R0 to R1, which only one foreground flow tra-
verses, is the bottleneck link for that flow. In this case the flow
from N0 to N5 (correctly) does not correlate with the flow from
N3 to N4, despite the fact that they share the R1–R2 link. Even
when the link from R1 to R2 becomes more congested, the corre-
lation estimate is still low, because R0 to R1 remains the primary
bottleneck. However, when the R1 to R2 link becomes the primary
bottleneck, the two foreground flows exhibit strong correlation (see

B1 B2 1/λ1 1/µ1 1/λ2 1/µ2 correlated
10 100 10 100 10 100 0.91
10 50 10 100 10 100 0.84
10 30 10 100 10 100 0.81
10 100 10 200 10 200 0.85
10 100 10 100 20 100 0.81

N0

N2

N6
N1

N3 N4

N5

R0 R1 R2

20 / 5

50 / 10

100 / 0

bw(Mb/s)/delay(ms)

50 / 10

B2 / 10

background traffic

foreground traffic

20 / 10

100 / 0

100 / 0

B1 / 10

Figure 4: Shared Link Followed by Nonshared Link

B1 B2 1/λ1 1/µ1 1/λ2 1/µ2 correlated
10 100 10 100 10 100 - 0.11
10 50 10 100 10 100 - 0.04
10 30 10 100 10 100 - 0.05
100 10 10 100 10 100 0.85
50 10 10 100 10 100 0.81
30 10 10 100 10 100 0.81

N0

N2

N6
N1

N3 N4

N5

R0 R1 R2

20 / 5

50 / 10

100 / 0

100 / 0

20 / 10

bw(Mb/s)/delay(ms)

B1 / 10

50 / 10

B2 / 10

background traffic

foreground traffic

100 / 0

Figure 5: Nonshared Link followed by Shared Link

rows 4-6 in the table). Moreover, as the R0-R1 capacity is reduced,
the method still works well.

Figure 6 shows our fifth experiment. The two target paths reside
on separate networks and thus do not share any link. However, the
links in both of the topologies have the same parameter settings and
thus should behave similarly. However, because the background
traffic is not the same in the two topologies, the foreground flows
do not exhibit correlated behavior. From the table in Figure 6, our
method correctly detects that the two paths do not share any link.

Planetlab Experiments
To evaluate how well the correlated variation algorithm works

in a real overlay network, we performed experiments using 220
nodes from thePlanetlaboverlay network [2]. The 220 nodes are
sited at locations across the world and the virtual links connecting
them experience real Internet background traffic. Again we tested
situations where (a) the two flows share a bottleneck, and (b) the
two flows do not share a bottleneck link.

To ensure the two flows in case (a) shared a bottleneck link,
we selected the two source nodes from the same planetlab site,
and we selected the two destination nodes from the same planet-
lab site. Consequently, packets from both flows followed the same
path across the Internet to the destination. The planetlab sites used

39

1/µ1 1/λ1 1/µ2 1/λ2 correlated
10 200 5 10 0.06
10 100 10 100 0.06
20 100 10 200 0.06
50 100 10 300 0.10

B−S1 B−D1

R1 R2
10 / 10

50 / 10

F−S1 F−D1

F−S3
10 / 1020 / 10 20 / 10

F−D3R3 R4

50 / 10

50 / 10

50 / 10

B−S2 B−D2

foreground traffic

background traffic

bw(Mb/s)/delay(ms)

Figure 6: No shared bottleneck link

for source and destination locations were varied throughout the test
to capture performance under a range of bottlenecks conditions.

To achieve independent paths for the test cases in (b), we ran-
domly selected nodes from different planetlab sites making it far
less likely that the flows shared a bottleneck link. Simple traceroute
analysis of the paths selected seemed to indicate that the selected
paths did not share a link, let alone a bottleneck link.

For each pair of selected paths, we sent a 30 second TCP flow
along each path, monitored the throughput. The interval between
path tests was exponential distribution with mean value of 150 sec-
onds. A total of 32 pairs of independent paths and 40 pairs of shared
paths were tested. Testing of all path pairs constituted a round, and
20 rounds of tests were conducted to get a good cross section of
performance over time. Results shown are for rounds that occurred
between 9am and 5pm EST (i.e., during normal work hours). At
other times when there was little background traffic, the correlation
tended to be low. (Note that in the absence of a bottleneck the lack
of correlation leads to the correct conclusion.)

Figure 7 shows the Planetlab experiment results, in the form
of the cumulative distribution of the correlation values for the two
different types of paths. The results show that there is a stronger
correlation among the shared paths than the independent paths. It
also shows that setting the correlation cutoff for deciding whether
two flows are dependent or independent can be done easily and ro-
bustly. Note the plateau in both lines between 0.2 and 0.4, implying
that almost any cutoff in that range would yield the same results.
The vertical line shows a cutoff at 0.28; using that cutoff, the algo-
rithm would consider pairs with a correlation factor less than 0.28
to be independent, and pairs with a correlation factor greater than
0.28 to be dependent (i.e., correlated). At a 0.28 cutoff, the num-
ber of incorrectly classified path pairs is less than 20% for both the
independent and dependent pairs.

0%

20%

40%

60%

80%

100%

 0 0.2 0.4 0.6 0.8 1

C
D

F

Correlation

Shared
Bottlenecks

Independent
Paths

Two paths that share bottlenecks
Two indepedent paths

Figure 7: Planetlab Experiment

5. COMPUTING THE CORRELATION
The foregoing sections describe a method of collecting data at

endpoints, to be used in determining correlation of virtual links.
A key step in this process is synchronizing and matching up the
measurements taken on each of the virtual links for computation
of correlation coefficients. Because there will be times when no
data is being transferred across a virtual link, these periods should
be removed from the correlation computation. We assume that end
systems know when data is being sent (at full TCP bandwidth) and
not being sent, to within the granularity of the measurement peri-
ods. Thus, each endpoint has a list of “on” periods for the links
on which it is a source, including the start and end times of the pe-
riod, and the periodic throughput measurements during each “on”
period. For both methods discussed in this paper, the correlation
computation involves selecting the relevant overlapping portions of
the “on” periods of the two links, and then performing a computa-
tion on those portions of the on intervals. Note that each node main-
tains a time window of “on” periods for each virtual link—say, M
minutes’ worth. If on average there are m “on” periods per record-
ing interval M , then it takes O(m) time to compute the correlation
between two virtual links. With N overlay nodes there are N2−N
virtual links that must be compared to each other. To check correla-
tion for all pairs of virtual links thus requires O(mN4) time. More-
over, each node needs to ship its data to all other nodes so they are
able to perform the computation. Clearly, a brute force approach
will not scale. Even with the use of readily available topology data
(e.g., BGP information) to rule out some of the comparisons, the
computational overhead can still be quite high.

To reduce network load and the time complexity of the corre-
lation computation, we take a lazy-evaluation approach. Periodi-
cally, nodes exchange their available bandwidth numbers (an N2

matrix of available bandwidth passively observed by the N overlay
nodes [15]). Using this information, candidate paths through the
overlay are selected [15]. Only after the paths have been selected is
the path correlation computation performed, by having the source
contact each node along the selected paths to request throughput
measurements for the appropriate link. As a result, the correlation
measurement lists are only transferred for links on which corre-
lation is a concern—not on all links. This reduces network traf-
fic overhead, and also restricts the correlation computation to only
those links in use. Finally, as nodes discover path correlation infor-
mation, they record it for future use in selecting paths. (Of course,
any such information needs to be aged and eventually discarded, so
that routing and topology changes can be caught.)

40

6. CONCLUSION
Recently, many applications have used path diversity to provide

better performance. In this paper, we proposed two techniques
to detect path correlation which helps such applications make in-
formed decisions. One technique is to observe the throughput change
(increase/decrease) of one flow when the other flow starts or fin-
ishes sending. The other technique is to apply statistic technique
to infer path correlation by collecting TCP throughput samples at
different times. The advantages of our methods are that no prob-
ing traffic is sent, and they can be easily applied to a wide range
of topologies. Our techniques assume busy sources (i.e. source
that transmit fairly constantly), but do not impose any other con-
straints. Our “Conservation of Capacity” method works best when
background traffic is fairly constant, while our method based on
correlated variation works best when background traffic is chang-
ing randomly. Thus, the two methods are complementary. In future
work, in addition to further experiments, we will consider methods
for dynamically adapting the method to existing conditions.

7. REFERENCES
[1] Netbed/Emulab, 2004. http://www.emulab.net.
[2] PlanetLab, 2004. http://www.planet-lab.org.
[3] The UK Emulab, 2004. http://www.uky.emulab.net.
[4] D. G. Andersen and H. Balakrishnan. Resilient Overlay

Networks. In Proceedings of the 18th ACM Symposium on
Operating Principles (SOSP), Banff, Canada, October 2001.

[5] J. Apostolopoulos, T. Wong, W. tian Tan, and S. Wee. On
Multiple Description Streaming with Content Delivery
Networks. In IEEE INFOCOM, July 2002.

[6] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm,
and R. H. Katz. TCP Behavior of a Busy Internet Server:
Analysis and Improvements. In Proceedings of INFOCOM
1998, San Francisco, CA, March 1998.

[7] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated
Congestion Management Architecture for Internet Hosts. In
Proceedings of the SIGCOMM 1999, Cambridge, MA,
September 1999.

[8] J. Byers, M. Luby, and M. Mitzenmacher. Accessing
Multiple Mirror Sites in Parallel: Using Tornado Codes to
Speed Up Downloads. In Proceedings of the IEEE
INFOCOM Conference, pages 275–283, March 1999.

[9] W. Cui, S. Machiraju, R. H. Katz, and I. Stoica. Estimating
Shared Congestion Among Internet Paths.
http://sahara.cs.berkeley.edu/jun2003-retreat/wdc talk.pdf.

[10] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. In IEEE/ACM
Transactions on Networking, August 1993.

[11] T. Guven, C. Kommareddy, R. J. La, M. Shayman, and
B. Bhattacharjee. Measurement Based Optimal Multi-path
Routing. In Proceedings of the IEEE INFOCOM Conference,
March 2004.

[12] K. Harfosuh, J. Byers, and A. Bestavros. Robust
Identification of Shared Losses Using End-to-end Unicast
Probes. In Proceedings of the ICNP 2000 Conference,
November 2000.

[13] C. Kommareddy, T. Guven, B. Bhattacharjee, R. La, and
M. Shayman. Intradomain Overlay: Architecture and
Applications. Technical Report UMIACS-TR 2003-70, July
2003. http://www.umiacs.umd.edu/res/proj/menter/
umiacs tr 2003 70.pdf.

[14] D. Rubenstein, J. Kurose, and D. Towsley. Detecting Shared
Congestion of FLows Via End-to-End Measurement. In
IEEE/ACM Transactions on Networking, June 2002.

[15] S. Shi, L. Wang, K. L. Calvert, and J. N. Griffioen. A
Multi-path Routing Service for Immersive Environments. In
Proceedings of the CCGRID 2004 Conference: Grid and
Advanced Networks Track, April 2004.

41

