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ABSTRACT
We introduce TinySec, the first fully-implemented link layer
security architecture for wireless sensor networks. In our
design, we leverage recent lessons learned from design vul-
nerabilities in security protocols for other wireless networks
such as 802.11b and GSM. Conventional security protocols
tend to be conservative in their security guarantees, typi-
cally adding 16–32 bytes of overhead. With small memories,
weak processors, limited energy, and 30 byte packets, sensor
networks cannot afford this luxury. TinySec addresses these
extreme resource constraints with careful design; we explore
the tradeoffs among different cryptographic primitives and
use the inherent sensor network limitations to our advan-
tage when choosing parameters to find a sweet spot for secu-
rity, packet overhead, and resource requirements. TinySec is
portable to a variety of hardware and radio platforms. Our
experimental results on a 36 node distributed sensor net-
work application clearly demonstrate that software based
link layer protocols are feasible and efficient, adding less
than 10% energy, latency, and bandwidth overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection Cryp-
tographic controls

General Terms
Security, Design

Keywords
Sensor Network Security, Link Layer Security

1. INTRODUCTION & MOTIVATION
There is considerable excitement about new applications

enabled by sensor networks, and we are on the cusp of a
broader deployment of these technologies. However, one
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challenge that faces us is the question of how to secure sen-
sor networks: without adequate security, widespread deploy-
ment could be curtailed.

We have taken up this challenge and introduce TinySec,
a lightweight, generic security package that developers can
easily integrate into sensor network applications. We fore-
see TinySec will cover the basic security needs of all but
the most security critical applications. As a part of this,
we were motivated by an observation about 802.11 wireless
networks: several studies report that 50-80% of all 802.11
wireless networks operate in the clear, without any crypto-
graphic protection whatsoever [24, 36, 37, 45]. To achieve
high deployment rates in sensor networks, we believe that a
security system must be easy to use and minimally impact
performance. Failure to meet either requirement creates a
justifiable reason for developers to leave out security.

We base the design of TinySec on existing security primi-
tives that other researchers have proven to be secure. Using
these primitives, we design a lightweight and efficient link-
layer security protocol that is tailored to sensor networks.
We describe a complete solution, defining packet formats
and application interfaces, and provide a detailed perfor-
mance characterization. Previous work, such as SNEP [33],
analyzed aspects of the design space. Many of their design
choices are sound, but further experience with sensor net-
works lead us to reevaluate their work as researchers gain
more understanding of the limitations and capabilities of the
devices. Correspondingly, we note that much of the value of
a link-layer security system comes from the higher level al-
gorithms with which it is paired. We designed TinySec with
this in mind and built TinySec as a research platform for
use in testing and evaluating higher level security packages.

One of the major barriers to deploying security on sensor
networks is that current sensor devices have limited compu-
tation and communication capabilities. Since cryptography
is not free, these performance constraints pose a non-trivial
challenge for any system that would incorporate cryptogra-
phy into sensor networks. We expect that people will use
Moore’s law to drive down the cost of these devices and
not to increase their performance capabilities. But with a
careful analysis, we can use the inherent limitations to our
advantage. For example, the bandwidth of the wireless chan-
nel used in sensor networks is significantly less than that of
conventional networks. This implies that even a powerful
adversary is limited in how many packets per second she
can inject or eavesdrop on. Designing protocols that rely on
properties such as these is one strategy we take in reducing
overhead. Our design choices are driven by sensor network



capabilities and realities; this ultimately separates TinySec
from other low overhead security protocols.

Before this work, an interesting open problem was whether
software cryptography could achieve acceptable performance
on typical sensor platforms, or whether hardware assistance
would be needed. Many previous systems (e.g., GSM, Blue-
tooth, 802.15.4) took the stance that hardware is needed. In
contrast, we show that, with sufficient engineering effort, it
is possible to encrypt and authenticate all communications
entirely in software, without special hardware, and without
major performance degradation.

The main contributions of this paper are:

• We introduce TinySec, the first fully-implemented pro-
tocol for link-layer cryptography in sensor networks.
We have incorporated our implementation of TinySec
into the official TinyOS release.

• We explore some of the tradeoffs between performance,
transparency, and cryptographic security, and we pro-
pose a design that meets the needs of applications in
the sensor network space.

• We measure the bandwidth, latency, and energy costs
of our implementation of TinySec and show that they
are minimal for sensor network applications. This demon-
strates for the first time that it is feasible to imple-
ment acceptable cryptographic protection for sensor
networks entirely in software.

• TinySec is a research platform that is easily extensible
and has been incorporated into higher level protocols.
We have evidence of several sensor network security
projects using TinySec in their research.

2. SENSOR NETWORKS
We use the term sensor network to refer to a heteroge-

neous system combining tiny sensors and actuators with
general-purpose computing elements. We envision sensor
networks will consist of hundreds or thousands of low-power,
low-cost wireless nodes deployed en masse to monitor and
affect the environment. Applications include habitat mon-
itoring [5, 31, 39], burglar alarms, inventory control, medi-
cal monitoring and emergency response [44], and battlefield
management [17].

A representative sensor node is the Mica2 [23], a several
cubic inch sensor/actuator unit with a CPU, radio, power
source, and optional sensing elements. The processor is a
8 MHz 8-bit Atmel ATMEGA128L CPU with 128 kB of
instruction memory, 4 kB of RAM for data, and 512 kB of
flash memory. It features a low-powered radio from Chipcon,
delivering up to 19.2 kbps application bandwidth on a single
shared channel and with a range of up to around hundred
meters. At full power, the Mica2 sensor node can run for
only two weeks or so before exhausting its batteries.

Mica2 sensor nodes run TinyOS [23], an event-driven op-
erating system for networked applications in wireless em-
bedded systems. The memory footprint of TinyOS is small,
with the core components requiring only 400 bytes of data
and instruction memory. TinyOS supports other hardware
platforms as well.

It is clear that we must discard many preconceptions about
network security: sensor networks differ from other dis-
tributed systems in important ways. These devices have

very little computational power; even efficient public-key
cryptography and fast symmetric ciphers must be used with
care. There is considerable pressure to ensure that our se-
curity protocols use a minimal amount of the limited RAM.
Additionally, communication bandwidth is extremely dear:
each bit transmitted consumes about as much power as exe-
cuting 800–1000 instructions [23], and as a consequence, any
message expansion caused by security mechanisms comes at
significant cost. Energy is the scarcest resource of all: each
milliamp consumed is one milliamp closer to death, and as
a result, nearly every aspect of sensor networks must be de-
signed with power in mind.

2.1 Security risks and threat models in sensor
networks

Because sensor networks use wireless communication, they
are vulnerable to attacks which are more difficult to launch
in the wired domain. Many wired networks benefit from
their inherent physical security properties. It is unlikely that
an adversary will dig up the Internet backbone and splice
into the line. However, wireless communications are diffi-
cult to protect; they are by nature a broadcast medium. In
a broadcast medium, adversaries can easily eavesdrop on,
intercept, inject, and alter transmitted data. In addition,
adversaries are not restricted to using sensor network hard-
ware. They can interact with the network from a distance
by using expensive radio transceivers and powerful worksta-
tions.

Sensor networks are vulnerable to resource consumption
attacks. Adversaries can repeatedly send packets to drain
the nodes’ batteries and waste network bandwidth. Since
sensor networks will be deployed in a variety of physically
insecure environments, adversary can steal nodes, recover
their cryptographic material, and pose as authorized nodes
in the network. However, we do not address these threats.
Our focus is on guaranteeing message authenticity, integrity,
and confidentiality. We do not address resource consump-
tion attacks, physical tamper resistance, or node capture
attacks.

2.2 Motivation for link-layer security in sen-
sor networks

In conventional networks, message authenticity, integrity,
and confidentiality are usually achieved by an end-to-end
security mechanism such as SSH [47], SSL [3], or IPSec [4]
because the dominant traffic pattern is end-to-end commu-
nication; intermediate routers only need to view message
headers and it is neither necessary nor desirable for them to
have access to message bodies.

This is not the case in sensor networks. The dominant
traffic pattern in sensor networks is many-to-one, with many
sensor nodes communicating sensor readings or network events
over a multihop topology to a central base station. However,
neighboring nodes in sensor networks often witness the same
or correlated environmental events, and if each node sends a
packet to the base station in response, precious energy and
bandwidth are wasted. To prune these redundant messages
to reduce traffic and save energy, sensor networks use in-
network processing such as aggregation and duplicate elim-
ination [29, 30]. Since in-network processing requires inter-
mediate nodes to access, modify, and suppress the contents
of messages, it is unlikely we can use end-to-end security
mechanisms between each sensor node and the base station



to guarantee the authenticity, integrity, and confidentiality
of these messages.

End-to-end security mechanisms are also vulnerable to
certain denial of service attacks. If message integrity is
only checked at the final destination, the network may route
packets injected by an adversary many hops before they are
detected. This kind of attack will waste precious energy
and bandwidth. A link-layer security architecture can de-
tect unauthorized packets when they are first injected into
the network. Link-layer security mechanisms have been pro-
posed for wired networks to resist similar denial of service
attacks [22].

For the above reasons, we decided on a link-layer secu-
rity architecture for TinySec. Link-layer security mecha-
nisms guarantee the authenticity, integrity, and confidential-
ity of messages between neighboring nodes, while permitting
in-network processing. Despite the problems enumerated
above, end-to-end security mechanisms can still useful in
sensor networks and complement TinySec.1

3. DESIGN GOALS
We have three goals for a link layer security mechanism

in sensor networks: security, performance, and usability.

3.1 Security goals
A link layer security protocol should satisfy three basic

security properties: access control, message integrity, and
message confidentiality.

Access control and message integrity. Access control
means the link layer protocol should prevent unauthorized
parties from participating in the network. Legitimate nodes
should be able to detect messages from unauthorized nodes
and reject them. Closely related to message authenticity is
message integrity: if an adversary modifies a message from
an authorized sender while the message is in transit, the re-
ceiver should be able to detect this tampering. We provide
message authentication and integrity by including a message
authentication code with each packet. We discuss message
authentication codes in more detail in Section 4.

Confidentiality. Confidentiality means keeping information
secret from unauthorized parties. It is typically achieved
with encryption. Preferably, an encryption scheme should
not only prevent message recovery, but also prevent adver-
saries from learning even partial information about the mes-
sages that have been encrypted. This strong property is
known as semantic security [8]. Semantic security implies
adversaries should have no better than a 50% chance in cor-
rectly answering any yes or no question about an encrypted
message. We discuss mechanisms for achieving semantic se-
curity in more detail in Section 4.

Explicit omission: Replay protection. An adversary that
eavesdrops on a legitimate message sent between two autho-
rized nodes and replays it at some later time engages in a
replay attack. Since the message originated from an autho-
rized sender, the same receiver will accept it again. Re-

1By removing the link-layer protocol headers, the TinySec
packet format could be used in an end-to-end security pro-
tocol as well. We do not address this modification in this
paper.

play protection is a difficult problem when there is a limited
amount of state that each recipient keeps.

A common defense is to include a monotonically increas-
ing counter with every message and reject messages with old
counter values. With this policy, every recipient must main-
tain a table of the last value from every sender it receives.
However, for RAM-constrained sensor nodes, this defense
becomes problematic for even modestly sized networks. As-
suming nodes devote only a small fraction of their RAM for
this neighbor table, an adversary replaying broadcast mes-
sages from many different senders can fill up the table. At
this point, the recipient has one of two options: ignore any
messages from senders not in its neighbor table, or purge en-
tries from the table. Neither is acceptable; the first creates a
DoS attack and the second permits replay attacks. This is a
realistic concern. If each counter requires 4 bytes and there
is only 100 bytes of RAM available for the neighbor table
(2.5% of the total RAM), networks larger than 25 nodes will
be vulnerable.

However, the application layer may be better equipped
to manage the replay table if it expects certain communica-
tion patterns or has information about the network topology.
This type of information is typically not available at the link
layer. For example, if the physical topology implies that only
nodes 1, 2, 3, 4 should be able to communicate with node
5, an application running on node 5 can efficiently manage
the neighbor table by only keeping replay counter entries for
these four nodes. For this reason, we believe replay protec-
tion belongs not in the link-layer, but rather in higher layers
of the protocol stack. By using information about the net-
work’s topology and communication patterns, the applica-
tion and routing layers can properly and efficiently manage
a limited amount of memory devoted to replay detection.

3.2 Performance
A system using cryptography will incur increased over-

head in the length of messages sent as well as in extra de-
mands on the processor and RAM. The increased message
length can decrease message throughput and increase la-
tency, but more importantly for sensor networks, it will also
increase power consumption. We would like to impose only a
modest increase in power consumption when using TinySec
and achieve comparable channel utilization and latency.

Due to the extreme resource limitations in sensor net-
works, it is important to carefully tune the strength of the
security mechanisms in a way that provides reasonable pro-
tection while limiting overhead. This is in sharp contrast to
conventional network security where the difference between
8 or 16 bytes of overhead is often inconsequential. Cryp-
tography designed for conventional networks is conservative
because it can afford to be. In sensor networks, 8 bytes is
nearly 25% of the total packet size, and overly conservative
choices of security parameters will consume resources too
quickly.

3.3 Ease of use

Security platform. We expect higher level security proto-
cols will rely on the link-layer security architecture as a prim-
itive. For example, key distribution protocols, some of which
utilize public key cryptography, could use TinySec to create
secure pairwise communication between neighboring nodes.
To reduce the effort in implementing these protocols, Tiny-



Sec must provide the right set of interfaces to facilitate their
development.

Transparency. A major challenge in deploying security mech-
anisms is the difficulty in properly using and implementing
them. Frequently, application programmers are unsure of
appropriate security parameters. Also, if the secure commu-
nication mechanism requires different APIs than the stan-
dard mechanism, then migrating legacy applications will be
difficult. Of course, if it is not easy to enable the security
features, many users and programmers will disable it and
continue to operate insecurely.

To alleviate these problems, an important design goal of
TinySec is that it should be transparent to applications run-
ning on TinyOS. To achieve this goal, we structured Tiny-
Sec as a link-layer security protocol. We believe that trans-
parency will play a crucial role in enabling widespread de-
ployment of TinySec and other security mechanisms.

At the same time, we try to make it easy for security-
aware applications to customize the level of security that
TinySec provides: application programmers should be able
to adjust the security performance tradeoffs if they have a
greater understanding of their application’s security needs.

Portability. An additional goal of TinySec is that it should
be portable. TinyOS runs on a host of different platforms,
including processors manufactured by Texas Instruments,
Atmel, Intel x86, and StrongArm. TinyOS also supports
two radio architectures: the Chipcon CC1000 and the RFM
TR1000. A radio stack bridges these two pieces of hardware.
A link layer security architecture should fit into the radio
stack so that porting the radio stack from one platform to
another is a simple job.

4. SECURITY PRIMITIVES
In this section, we give background on some well-studied

cryptographic primitives commonly used to achieve our se-
curity goals. We apply these primitives in TinySec.

Message authentication codes (MACs). A common so-
lution for achieving message authenticity and integrity is to
use a message authentication code (MAC).2 A MAC can be
viewed as a cryptographically secure checksum of a message.
Computing a MAC requires authorized senders and receivers
to share a secret key, and this key is part of the input to a
MAC computation. The sender computes a MAC over the
packet with the secret key and includes the MAC with the
packet. A receiver sharing the same secret key recomputes
the MAC and compares it with the received MAC value. If
they are equal, the receiver accepts the packet and rejects
it otherwise. MACs must be hard to forge without the se-
cret key. This implies if an adversary alters a valid message
or injects a bogus message, she cannot compute the corre-
sponding MAC value, and authorized receivers will reject
these messages.

2There is an unfortunate name collision between the cryp-
tographic and networking community. We will refer to the
acronym “MAC” only in the cryptographic sense and use
“media access control” to refer to protocols governing ac-
cess to channel.

Initialization vectors (IVs). Recall we want our encryp-
tion mechanism to achieve semantic security (Section 3.1).
One implication of semantic security is that encrypting the
same plaintext two times should give two different cipher-
texts. A common technique for achieving semantic security
is to use a unique initialization vector (IV) for each invo-
cation of the encryption algorithm. An IV can be thought
of as a side input to the encryption algorithm. The main
purpose of IVs is to add variation to the encryption process
when there is little variation in the set of messages. Since
the receiver must use the IV to decrypt messages, the se-
curity of most encryption schemes do not rely on IVs being
secret. IVs are typically sent in the clear and are included
in the same packet with the encrypted data. We discuss IVs
further in Section 5, including their necessary length and
how to generate them.

It might seem that given the resource constraints in sen-
sor networks, we could give up semantic security to eliminate
the additional packet overhead required by an IV. However,
semantic security is almost always necessary and desirable,
even in resource constrained environments. Consider ap-
plication messages with low entropy, such as YES or NO
messages that are sent periodically to report environmental
events such as movement. Without using an IV, all encryp-
tions of YES messages are identical. Once an adversary
determines what a YES message looks like, confidentiality
is lost; the adversary can determine the contents of every
YES/NO message by simply looking at its encryption.

5. DESIGN OF TINYSEC

5.1 Existing schemes are inadequate
Using cryptography to secure an untrusted channel has

been well-studied in the literature, and there are a plethora
of existing schemes that try to achieve this goal. In the
networking community, protocols such as IPSec, SSL/TLS,
and SSH all do a satisfactory job of securing Internet com-
munications. However, these protocols are too heavy-weight
for use in sensor networks. Their packet formats add many
bytes of overhead, and they were not designed to run on
computationally-constrained devices.

The wireless, cellular telephony, and ad-hoc networking
communities have developed schemes closer to our needs,
but even there, the existing designs have serious limitations.
The closest previous work is SNEP [33], which specifically
targets sensor networks, but SNEP was unfortunately nei-
ther fully specified nor fully implemented. Refer to Sec-
tion 10 for further discussion of these wireless security mech-
anisms.

The conclusion is that existing schemes are either insecure
or too resource intensive for use in sensor networks, and we
must design a new scheme.

5.2 TinySec design
TinySec supports two different security options: authen-

ticated encryption (TinySec-AE) and authentication only
(TinySec-Auth). With authenticated encryption, TinySec
encrypts the data payload and authenticates the packet with
a MAC. The MAC is computed over the encrypted data and
the packet header. In authentication only mode, TinySec
authenticates the entire packet with a MAC, but the data
payload is not encrypted.



5.2.1 Encryption
Using semantically secure encryption typically requires

two design decisions: selecting an encryption scheme and
specifying the IV format. In our design of TinySec, we use a
specially formatted 8 byte IV, and we use cipher block chain-
ing (CBC) [8]. In this section, we introduce the structure of
our IV format and argue why CBC is the most appropriate
encryption scheme for sensor networks.

TinySec IV format. Recall that our goal is to see how much
we can reduce the cost of security. The length of our IV, and
the way we generate IVs, can have a dramatic effect on both
security and on performance. If the IV is too long, we will
add unnecessary bits to the packet, which translates to a
significant cost in overall throughput and in energy drain.
At the same time, if the IV is too short, we run the risk that
the IV will repeat, and then our security warranty is void.

How long is long enough? By the pigeonhole principle, a
n-bit IV is guaranteed to repeat after 2n+1 packets are sent,
no matter how we choose the IV. If we use a n-bit counter,
repetitions will not occur before that point. However, for
some IV generation strategies, repetitions may occur earlier.
If we choose each IV as a random n-bit value, then by the
birthday paradox, we expect (probabilistically) to see the

first repetition after roughly 2n/2 packets have been sent.
Therefore, we use a counter in our IV, and we transmit it
in the packet so that the receiver can learn the value of the
counter.

The structure of the IV is dst||AM||`||src||ctr, where dst
is the destination address of the receiver, AM is the ac-
tive message (AM) handler type, ` is the length of the data
payload, src is the source address of the sender, and ctr is
a 16 bit counter. The counter starts at 0, and the sender
increases it by 1 after each message sent. We analyze the
security of this construction in Section 6.2.

Encryption schemes. In this section we argue why CBC is
the most appropriate encryption scheme for sensor networks.
Symmetric key encryption schemes generally fall into two
categories: stream ciphers and modes of operation using
block ciphers.

A stream cipher (typically) uses a key K and IV as a
seed and stretches it into a large pseudorandom keystream
GK(IV ). The keystream is then xored against the message:
C = (IV, GK(IV ) ⊕ P ). The fastest stream ciphers are
faster than the fastest block ciphers [41], which might make
them look tempting in a resource-constrained environment.
However, stream ciphers have a devastating failure mode: if
the same IV is ever used to encrypt two different packets,
then it is often possible to recover both plaintexts.3

Guaranteeing that IVs are never reused requires IVs to be
fairly long, say, at least 8 bytes. Since one of our goals is
to minimize packet overhead, we believe adding 8 additional
bytes to a 30-byte packet is unacceptable. The alternative
is require shorter IVs and accept that IV reuse will occur.
Therefore, we were guided by the following principle: “Use
an encryption scheme that is as robust as possible in the
presence of repeated IVs.” Stream ciphers clearly violate

3Given C = (IV, GK(IV )⊕P ) and C ′ = (IV, GK(IV )⊕P ′),
one can recover P ⊕ P ′, which is a lot of information about
P and P ′. When plaintexts have sufficient redundancy, one
can often recover most or all of P and P ′ from P ⊕ P ′ [15].

this principle, so the only alternative is to use a mode of
operation based on a block cipher [11].

A block cipher is a keyed pseudorandom permutation over
small bit strings, typically 8 or 16 bytes. Examples of block
ciphers include DES, AES, RC5, and Skipjack. Since we
usually want to encrypt and authenticate messages longer
than 8 or 16 bytes, block ciphers require a mode of operation
to encrypt longer messages. For a k byte block cipher, a
mode of operation typically breaks a message into segments
of k bytes and uses the block cipher in a special way to
encrypt the message block by block.

Using a block cipher for encryption has an additional ad-
vantage. Since the most efficient message authentication
code (MAC) algorithms use a block cipher, the nodes will
need to implement a block cipher in any event. Using this
block cipher for encryption as well conserves code space.

If we use block ciphers for encryption, we must choose a
mode of operation. One natural choice is counter (CTR)
mode [8]; however, CTR mode is a stream cipher mode of
operation, and shares all the problems as any other stream
cipher. Therefore, we rejected CTR mode.

Another natural choice is cipher block chaining (CBC)
mode [8]. CBC mode is better: it degrades more gracefully
in the presence of repeated IVs. In particular, if we encrypt
two plaintexts P, P ′ with the same IV under CBC mode,
then the ciphertexts will leak the length (in blocks) of the
longest shared prefix of P and P ′, and nothing more. For in-
stance, if the first block of P is different from the first block
of P ′, as will typically be the case, then the cryptanalyst
learns nothing apart from this fact. Consequently, CBC
leaks only a small amount of information in the presence
of repeated IVs, a significant improvement over a stream
cipher. CBC mode is provably secure when IVs do not re-
peat [8].

CBC mode was designed to be used with a random IV,
and CBC mode has a separate leakage issue when used with
a counter as IV. Suppose we encrypt two plaintexts P, P ′

under IV, IV ′, respectively. If P1 ⊕ IV = P ′

1 ⊕ IV ′ (where
P1 denotes the first block of P , etc.), then the first block
of ciphertexts will be equal, and this discloses the value
P1 ⊕ P ′

1. In some cases, this can leak partial information
about plaintexts. For instance, suppose the IV is a counter,
and let IV, IV ′ be two consecutive IVs. We will often have
IV ′ = IV ⊕ 1. If the plaintexts occasionally satisfy the
same pattern, i.e., P ′ = P ⊕ 1, then we will have occasional
leakage. This is undesirable.

Fortunately, there is a simple fix that allows CBC mode to
be used with any non-repeating IV. The fix is to pre-encrypt
the IV, and we reject standard CBC mode in favor of this
variant.

Naively using CBC mode for encryption with a 8-byte
block cipher results in ciphertexts which are multiples of
8 bytes. This may result in message expansion, which in-
creases power consumption. We use a technique known as
ciphertext stealing [35] to ensure the ciphertext is the same
length as the underlying plaintext. Encrypting data pay-
loads of less than 8 bytes will produce a ciphertext of 8 bytes
because ciphertext stealing requires at least one block of ci-
phertext. However, the fixed overhead of sending a message
(turning on the radio, acquiring the channel, and sending
the start symbol) generally discourages short messages.



Block cipher choice. Conventional wisdom says when a
block cipher is needed, choose either AES or Triple-DES.
However, Triple-DES is too slow for software implementa-
tion in embedded microcontrollers. Our initial experiments
showed that AES was quite slow, too. Therefore, we rejected
AES.4

We surveyed other block ciphers to find one that is well-
suited for sensor networks. We found RC5 and Skipjack to
most appropriate for software implementation on embedded
microcontrollers. We discuss the performance of these ci-
phers in Section 9.1. Although RC5 is slightly faster, it is
patented. Also, for good performance, RC5 requires the key
schedule to be precomputed, which uses 104 extra bytes of
RAM per key. Because of these drawbacks, the default block
cipher in TinySec is Skipjack.

5.2.2 Message integrity: The need for a MAC
One might ask if encryption is enough; do we need an au-

thentication mechanism when messages are encrypted? His-
tory has proven that using encryption without authentica-
tion is insecure [10, 12, 27]. For example, flipping bits in
unauthenticated encrypted messages can cause predictable
changes in the plaintext [12], and without an authentica-
tion mechanism to guarantee integrity, receivers are unable
to detect the changes. Unauthenticated messages are also
vulnerable to cut-and-paste attacks [10]. In a cut-and-paste
attack, an adversary breaks apart an unauthenticated en-
crypted message and constructs another message which de-
crypts to something meaningful. For example, if all the au-
thorized nodes share a single key, an adversary can extract
the encrypted data payload from a message to one node and
send it to different node. Since the encrypted payload is un-
altered, the second node will successfully decrypt and accept
the message.

To address these vulnerabilities, TinySec always authen-
ticates messages, but encryption is optional. Message confi-
dentiality is only necessary when there is something to keep
secret. Consider a burglar alarm. The actual contents of
an alarm message could be empty; receiving an alarm mes-
sage signals an intrusion. Encryption is unnecessary and
only increases latency, computation, and power consump-
tion. However, most all applications require packet authen-
ticity, meaning authorized nodes will not accept invalid mes-
sages injected by an adversary. In our burglar alarm exam-
ple, this means adversaries cannot trigger false alarms.

TinySec uses a cipher block chaining construction, CBC-
MAC [9], for computing and verifying MACs. CBC-MAC
is efficient and fast, and the fact that it relies on a block
cipher as well minimizes the number of cryptographic prim-
itives we must implement in the limited memory we have
available. CBC-MAC is provably secure [9], however the
standard CBC-MAC construction is not secure for variably
sized messages. Adversaries can forge a MAC for certain
messages. Bellare, Kilian, and Rogaway suggest three alter-
natives for generating MACs for variable sized messages [9].
The variant we use xors the encryption of the message
length with the first plaintext block.

4We have since been informed that AES can be imple-
mented efficiently on our platform, with performance not
much worse than RC5 and Skipjack. AES does have the
small disadvantage that its block length is longer. However,
in retrospect, AES might be a perfectly suitable replace-
ment.

5.3 Packet format
We based TinySec’s packet format on the current packet

format in TinyOS. We show the differences between Tiny-
Sec packets and TinyOS packets in Figure 1. The common
fields are destination address, active message (AM) type,
and length. Active message types are similar to port num-
bers in TCP/IP. The AM type specifies the appropriate han-
dler function to extract and interpret the message on the
receiver. These fields are unencrypted because the benefits
of sending them in the clear generally outweigh any extra
protection from keeping them secret. To save power, a sen-
sor node may employ early rejection by turning off its radio
after determining the message is not addressed to it. With
broadcast messages, nodes can employ early rejection on
the AM field as well. If the address and AM type are en-
crypted, early rejection cannot be invoked until after these
fields are decrypted. This wastes power if rejection is fre-
quent. Encrypting the length field adds little to security
since the length of message can be inferred regardless.

To detect transmission errors, TinyOS senders compute a
16-bit cycle redundancy check (CRC) over the packet. The
receiver recomputes the CRC during reception and verifies
it with the received CRC field. If they are equal, the receiver
accepts the packet and rejects it otherwise. However, CRCs
provide no security against malicious modification or forgery
of packets. To guarantee message integrity and authentic-
ity, TinySec replaces the CRC with a MAC. The MAC pro-
tects the entire packet, including the destination address,
AM type, length, source address and counter (if present),
and the data (whether encrypted or not). This protects the
data from tampering. It also prevents attackers from re-
directing a packet intended for one node to another node,
and prevents packet truncation and other attacks. Since
MACs detect malicious changes, they also detect transmis-
sion errors, and TinySec does not require a CRC.

The TinyOS packet format contains a group field to pre-
vent different sensor networks from interfering with each
other. It can thought of as a kind of weak access control
mechanism for non-malicious environments. Since TinySec
enforces access control with a MAC, the group byte is un-
necessary in TinySec. Instead, different networks should use
different keys.

6. SECURITY ANALYSIS

6.1 Message integrity and authenticity
The security of CBC-MAC is directly related to the length

of the MAC. Conventional security protocols use MACs of
8 or 16 bytes, again erring on the side of caution. We show
here that our choice of a 4 byte MAC is not detrimental in
the context of sensor networks.

We can model TinySec’s CBC-MAC as a function that
produces 4 bytes of output [9]. Given a 4 byte MAC, then,
an adversary has a 1 in 232 chance in blindly forging a valid
MAC for a particular message. If an adversary repeatedly
attempts blind forgeries, she should succeed after about 231

tries. Note that adversaries cannot determine off-line if a
forgery will be successful or not; an adversary can only test
the validity of an attempted forgery by sending it to an
authorized receiver. This implies she must send about 231

packets before she can succeed at forging the MAC for a sin-
gle malicious packet. In conventional networks, this number



(a) TinySec-AE packet format

(b) TinySec-Auth packet format

(c) TinyOS packet format

Figure 1: The TinySec and TinyOS packet formats. The byte size of each field is indicated below the label.
Fields that have been hatched are protected by the MAC. In TinySec-AE, the data field, shaded gray, is
encrypted.

is not large enough for security. However, in sensor net-
works, this may provide an adequate level of security. Ad-
versaries can try to flood the channel with forgeries, but on
a 19.2kb/s channel, one can only send 40 forgery attempts
per second, so sending 231 packets at this rate would take
over 20 months. Battery-operated sensor nodes do not have
enough energy to receive that many messages. Furthermore,
the adversary will have launched a quite effective denial of
service attack since they need to occupy the radio channel
for such a long time.

Clearly, it is both desirable and feasible to detect when
such a attack is underway. A simple heuristic is probably
sufficient: nodes could signal the base station when the rate
of MAC failures exceeds some predetermined threshold.

6.2 Confidentiality
The security of CBC mode encryption reduces to the length

of the IV, but this security assumes no IV reuse.5 With an
8 byte counter or 16 byte random IV, avoiding repetition
is relatively easy. Although TinySec uses an 8 byte IV, we
limited ourselves to 4 additional bytes of overhead in the
packet to represent the IV. The other 4 bytes of the IV bor-
row from the existing header fields: the destination address,
the AM type, and the length.

TinySec partitions the last 4 bytes of the IV into src||ctr,
where src is the source address of the sender and ctr is a 16
bit counter starting at 0. We selected this format because

5The security of CBC mode also depends on the security of
underlying block cipher, but we assume Skipjack is a secure
block cipher.

the other alternatives are insecure. Having every node gen-
erate IVs from a 4 byte counter starting at 0 is bad idea;
the first packet sent from one node will reuse the same IV
as the first packet sent from all other nodes. Generating
IVs randomly is also a poor choice; the birthday paradox
implies we can expect a collision after 216 total packets in
the network.

Our format for the last 4 bytes strives to maximize the
number of packets each node can send before there is a global
repetition of an IV value. The src||ctr format of the last 4
bytes guarantees each node can send at least 216 packets
before IV reuse occurs. For a network of n nodes all send-
ing packets at approximately the same rate, this results in
about n·216 total packets before we expect an instance of IV
reuse. In conventional networks, end hosts transmitting at
1 Mb/s will send 216 packets in less than an hour. However,
since sensor nodes must conserve power to be long-lived, we
envision the average data rate in most sensor networks will
be dramatically less than conventional networks. For ex-
ample, the sensors deployed at Great Duck Island send a
reading once every 70 seconds [39]. We expect data rates to
be on the order of 1 packet per minute, hour, or day. At
one packet per minute per node, IV reuse will not occur for
over 45 days.

IV reuse is only a problem when we reuse the same IV
with the same key. If IV reuse is imminent, a key update
protocol can be used to exchange new TinySec keys. Other
researchers are currently exploring key update protocols in
TinySec, and we do not address them here.

We specifically selected CBC mode for TinySec because
of its robustness to information leakage when IVs repeat.



In contrast to stream ciphers, where a repeated IV can re-
veal the plaintext of both messages, in CBC mode IV reuse
reveals only the length (in blocks) of the longest shared
prefix of the two messages. The first 4 bytes of the IV,
dst||AM||`, help prevent information leakage during the un-
fortunate event of a counter on a node repeating. If a
counter value for a particular source address is reused, there
is only potential information leakage when the dst||AM||`
values are exactly the same for both messages. The means
both messages were sent to the same destination and AM
type, and both messages have the same length. Moreover,
even in this case, information only leaks if both plaintexts
agree in their first block. Consequently, information only
leaks when one node sends two different packets with the
same first 8 bytes and IV, to the same destination, with the
same AM type, and of the same length.

In summary, the combination of carefully formatted IVs,
low data rates, and CBC mode for encryption enables Tiny-
Sec to provide strong confidentiality guarantees for appli-
cations in sensor networks. Conventional network security
protocols are overly conservative because they can afford to
be. In sensor networks we cannot afford this luxury. Fortu-
nately, by selecting the right cryptographic primitives and
using them carefully, we can tune down the security param-
eters and get the most out of the overhead.

7. KEYING MECHANISMS
A keying mechanism determines how cryptographic keys

are distributed and shared throughout the network. The
TinySec protocol is not limited to any particular keying
mechanism; any can be used in conjunction with TinySec.
In this section, we discuss the tradeoffs among different pos-
sible keying mechanisms in sensor networks. See Table 1 for
a summary.

The appropriate keying mechanism for a particular net-
work depends on several factors such as the target threat
model, ease of use, and the networking and security require-
ments of applications. In cryptographic design, a good rule
of thumb is to use different keys for different applications.
When we refer to a TinySec key, we mean a pair of Skipjack
keys, one for encrypting data, and one for computing MACs.

The simplest keying mechanism is to use a single network-
wide TinySec key among the authorized nodes. A network-
wide shared key provides a baseline level of security, max-
imizes usability, and minimizes configuration. Any autho-
rized node can exchange messages with any other authorized
node, and all communication is encrypted. Messages from
unauthorized nodes are rejected. Key distribution is rela-
tively simple; nodes are loaded with the shared key before
deployment. This also makes it easy to secure legacy ap-
plications, since TinySec is transparent and can be enabled
without disrupting existing code.

However, network-wide keying cannot protect against node
capture attacks. If an adversary compromises a single node
or learns the secret key, she can eavesdrop on traffic and
inject messages anywhere in the network. To address the
node capture threat, we need a keying mechanism with finer
granularity.

A more robust option is for nodes to share a key for com-
munication only if they need to communicate with each
other. The simplest example of this idea is per-link key-
ing, where we use a separate TinySec key for each pair of
nodes who might wish to communicate. This provides bet-

ter resilience against node capture attacks: a compromised
node can only decrypt traffic addressed to it and can only
inject traffic to its immediate neighbors. This approach has
drawbacks. Key distribution becomes challenging, but re-
cent research is beginning to address this issue [14, 16, 19,
28]. Also, per-link keying limits passive participation [26],
a type of in-network processing where nodes take actions
based on messages they overhear, and local broadcast, where
nodes can cheaply send a packet to all their neighbors. Since
a node cannot decrypt and authenticate messages not ad-
dressed to it, passive participation and local broadcast are
incompatible with per-link keying.

A less restrictive approach is for groups of neighboring
nodes to share a TinySec key rather than each pair. This
enables passive participation and local broadcast, but key
distribution and setup is still an issue. Group keying pro-
vides an intermediate level of resilience to node capture at-
tacks: a compromised node can decrypt all messages from
nodes in its group, but cannot violate the confidentiality of
other groups’ messages and cannot inject messages to other
groups.

8. IMPLEMENTATION
We have implemented TinySec for the Berkeley sensor

nodes. TinySec currently runs on the Mica, Mica2, and
Mica2Dot platforms, each using Atmel processors; the Mica
sensor node uses the RFM TR1000 radio, while the Mica2
and Mica2Dot nodes use the Chipcon CC1000 radio. Addi-
tionally, TinySec is integrated into the TOSSIM simulator,
which runs on an Intel x86 platform. Others have ported
TinySec to a Texas Instruments microprocessor. Given the
broad range of platforms that TinySec runs on, we believe
it will be easily portable to both new processors as well as
new radio architectures.

We implemented TinySec in 3000 lines of nesC code [21],
the programming language used for TinyOS. Our implemen-
tation of TinySec requires 728 bytes of RAM and 7146 bytes
of program space.6

We modified the default TinyOS 1.1.2 radio stack to in-
corporate TinySec. We modified the stack to re-direct byte
level radio events to the TinySecM module.

Integration into TinyOS required some modifications to
the scheduler. When the media access control layer success-
fully acquires the channel, it signals TinySecM. At this point,
the security module begins the cryptographic computations.
The cryptographic computations must be completed by the
time the radio finishes sending the start symbol. To achieve
the real-time deadline, we modified the TinyOS scheduling
process. TinyOS provides a rudimentary form of process
management. Tasks run until completion in FIFO order.
One option for implementing TinySec would be to submit
a task with the cryptographic operations to the scheduler.
However, if the task queue is non-empty, the cryptographic
operations may not complete in time, since they must wait
until the task queue empties. We instead implement a two-
priority scheduler, where cryptographic operations are run

6We have subsequently improved the RAM usage of our
TinySec implementation, which requires 256 bytes of RAM
and 8152 bytes of ROM. Our optimizations save 472 bytes of
RAM at the expense of 6% slower block cipher operations.
All performance results in this paper use the old implemen-
tation, but we do not expect significant differences with our
new implementation.



Keying mechanism Benefits Costs

Single network-wide key Simple; easy to deploy; supports passive
participation and local broadcast

Not robust to node compromise

Per-link keys between
neighboring nodes

Graceful degradation in the presence of com-
promised nodes

Needs a key distribution protocol; prohibits
passive participation and local broadcast

Group keys Graceful degradation in the presence of
compromised nodes; supports passive
participation and local broadcast

Requires key distribution; trades off robust-
ness to node compromise for added function-
ality

Table 1: A summary of different keying mechanisms for link-layer security.

with high priority and all other tasks run at low priority.
The two-priority scheduler ensures that cryptographic oper-
ations complete on time so that encryption and decryption
execute concurrently with packet transmission and recep-
tion.

TinySec is cipher independent. We have implemented
both RC5 and Skipjack and can switch between them with-
out difficulty.

Since the maximum data payload in TinyOS is 29 bytes,
we can safely use the upper two bits of the length byte to
indicate which level of protection is enabled on that packet:
TinySec-AE, TinySec-Auth, or unprotected TinyOS pack-
ets. When sending a packet, the TinySec stack encodes the
TinySec mode of the packet into the length bit.

For ease of deployment, we implemented a network-wide
shared key model. We modified the application build pro-
cess to include the key at compile time to ease key deploy-
ment hassles. The build process maintains a key file at the
developer’s machine and uses a key from the file. Other re-
searchers have extended TinySec to use finer grained keying
mechanisms. Refer to Section 9.2 for further details.

To enable the TinySec stack, an application writer needs
only to specify “TINYSEC=true” on the command line to
make (or in the Makefile). Messages sent in this configura-
tion will then be sent using TinySec-Auth. We chose this as
the default TinySec mode since it imposes a minimal amount
of overhead (Section 9.1). An application writer can send
authenticated and encrypted packets with TinySec-AE by
simply making a function call to switch modes.

TinySec is currently distributed with the official TinyOS
releases.

9. EVALUATION

9.1 Measurements
TinySec increases the computational and energy costs of

sending a packet. For application writers to adopt TinySec,
these costs must be modest compared to the benefits that
TinySec provides. There are two main components to these
costs: larger packet sizes when using TinySec, and the ex-
tra computation time and energy needed for cryptography.
The costs due to increased packet length will be borne by
all implementations, even those using cryptographic hard-
ware. Naturally, the computation costs will vary based on
the implementation.

To analytically estimate the costs of the cryptography, we
first calculate the effect of packet lengths in TinySec. Re-
call that TinySec increases packet lengths by 1 or 5 bytes
(according to whether TinySec-Auth or TinySec-AE is in
use). Longer packets cost us in several ways: first, they re-

Cipher & Time Time
Impl. (ms) (byte times)

RC5 (C) 0.90 2.2
Skipjack (C) 0.38 0.9
RC5 (C, assembly) 0.26 0.6

Table 3: Time to execute cipher operations on the
Mica2 sensor nodes. We display the time both in
milliseconds and in byte times.

duce bandwidth; second, because the communications chan-
nel is fairly slow, they increase latency; third, they increase
energy consumption, because the radio must be turned on
longer when transmitting longer packets. We first calculate
the expected contribution to TinySec’s overhead that comes
solely from increased packet sizes. Table 2 shows the extra
time needed to transmit a packet using TinySec. We ex-
pect TinySec-AE to increase packet latencies (compared to
the current TinyOS stack) by 8.0%; for TinySec-Auth, the
corresponding figure is 1.5%. Note that sending a packet
involves sending many more bits than just the data and its
associated header; as a part of the media access control pro-
tocol, a 28 byte start symbol and additional synchronization
bytes are also sent. This reduces the impact of adding an
additional byte of overhead to a header, since there is a high
fixed cost for sending a packet.

Next, we implemented TinySec and experimentally mea-
sured its performance costs. In these experiments, we empir-
ically determined TinySec’s impact on bandwidth, energy,
and latency on the Berkeley Mica2 sensor nodes. We used a
variety of microbenchmarks and macrobenchmarks to eval-
uate TinySec. In addition to allowing us to obtain latency
figures, the macrobenchmark allowed us to evaluate the dif-
ficulty in enabling TinySec for an existing, large sensor net-
work application.

We introduce the term byte time to refer to the duration
that it takes to transmit a single byte of data over the radio.
On the Mica2, a byte time is 0.42 ms. Measuring time in
byte times is a convenience that allows us to relate the time
of an operation to the packet length.

Cipher performance. We tested the performance of two
64-bit block ciphers, Skipjack and RC5, to determine their
speed. We must be able to complete a block cipher operation
quickly since the cryptographic operations are overlapped
with the radio operations; if the cipher operation doesn’t
complete in time, the data needed for the radio will not be
available. More importantly, faster block ciphers consume
less energy.



Application Packet Total Time to Increase Over Current
Data (b) Overhead (b) Size (b) Transmit(ms) TinyOS Stack

Current TinyOS Stack 24 39 63 26.2 —
TinySec-Auth 24 40 64 26.7 1.6%
TinySec-AE 24 44 68 28.3 7.9%

Table 2: Table listing the expected latency overhead incurred by TinySec. The packet overhead includes
space needed for the header and media access control information, such as the start symbol. Since TinySec
increases the packet size by a fixed amount, it will increase the time needed to send the packet over the
radio. This impacts bandwidth, latency, and the energy needed to send a packet. We confirm this predicted
overhead increase experimentally.

Energy Increase
(mAH)

Current TinyOS 0.000160 —
Stack

TinySec-Auth 0.000165 3%
TinySec-AE 0.000176 10%

Table 4: Total energy consumed to send a 24 byte
packet.

The results in Table 3 indicate that both RC5 and Skip-
jack are reasonable choices for use in link layer security: each
block cipher operation takes less than a byte time. Because
each such operation operates on 8 bytes, this is reasonably
fast. We use the rule of thumb that the block cipher op-
eration should complete in under a few byte times. If it
does not, we can encounter problems when the radio must
wait for the processor to complete the cryptographic oper-
ation. Note that our initial C-only version of RC5 was not
fast enough in all cases, so we optimized its inner loop using
in-line assembly code to get better performance. We have
not optimized Skipjack similarly, but we believe it would
be possible to improve Skipjack’s performance so that it is
fairly competitive with RC5. As we mentioned, we settled on
Skipjack for the default TinySec configuration even though
it is slower than our best RC5 implementation since it has
minimal key setup costs and is free from patent issues. We
use Skipjack as our cipher for all of our experiments.

Energy costs. To determine the energy overhead in using
TinySec, we sampled the instantaneous current drawn by
a transmitter sending 24 bytes of application data. Fig-
ure 2 shows the current as a function of time for sending the
packet. We provide graphs for the current TinyOS stack (no
security), TinySec-Auth, and TinySec-AE.

The radio exposes a byte-level interface. Small periodic
spikes occur once every byte time. When the radio is in
transmit mode, the radio stack delivers a new byte to the
radio once every byte time. When the radio isn’t transmit-
ting, the stack samples the radio once a byte time looking
for the start symbol from a new packet.

There are a number of features of the graph that illustrate
TinySec’s implementation. The large power draw at the
start of sending a packet for both TinySec graphs is due to
the cryptographic operations. When sending a packet, Tiny-
Sec overlaps the MAC and encryption computation with the
sending of the start symbol. The start symbol lasts for 28
bytes. For the largest possible packet size using TinySec-
AE, a maximum of 10 block cipher operations are required,

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.01

0.02

0.03
No TinySec

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.01

0.02

0.03
TinySec: Authentication only

cu
rr

en
t (

am
ps

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.01

0.02

0.03
TinySec: Authentication and Encryption

time (s)

Figure 2: The power consumption for sending a
packet. All packets contained 24 byte payloads. The
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ing the packet with the current TinyOS stack (no se-
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while the bottom graph uses TinySec-AE. Notice
the large power draw at the beginning of sending as
the encryption and MAC computation is overlapped
with the sending of the start symbol. Additionally,
note that when sending with TinySec, the packets
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hence the block cipher must take no more than 28/10 = 2.8
byte times per operation. The block cipher uses the proces-
sor heavily, leading to a large initial power draw while the
packet is encrypted. As one would expect, the computation
period is larger when using encryption since there are more
block cipher operations.

The power consumption measurements show that the send-
ing period for TinySec-AE is about 5 byte times longer than
without TinySec. Also, TinySec-Auth is longer by a single
additional byte time. This is due to the extra packet over-
head that TinySec imposes.

After integrating to calculate the area under the curves for
the sending period, we find that the total energy consumed
for sending a packet with the default stack is 0.00016 mAH.
Using TinySec-Auth, it is 0.000165 mAH, a 3% increase.
Using TinySec-AE, the total energy to send a packet is
0.000176 mAH, a 10% increase over the energy costs for
sending a packet without TinySec.

Comparing these figures to Table 2 illustrates an interest-
ing point: the cryptographic operations do not consume a
significant amount of energy. TinySec’s energy costs come
from two sources: increased packet lengths, and extra com-
putation from the cryptography. Using the fact that TinySec-
AE performs about twice as many block cipher operations
as TinySec-Auth, it is possible to estimate the relative mag-
nitude of these two sources of energy overhead. We esti-
mate that, of TinySec-Auth’s measured 3% energy overhead,
roughly 1% comes from increased packets lengths and 2%
from extra computation. Of TinySec-AE’s measured 10%
energy overhead, perhaps 6% comes from increased packet
lengths and 4% from extra computation. Our measurements
provide an upper bound on the energy savings that hard-
ware support for cryptography could provide: at best, hard-
ware could eliminate the energy costs due to the crypto-
graphic computations, but even hardware-accelerated ver-
sions of TinySec would still have to pay the energy overhead
associated with TinySec’s increased packet lengths.

This demonstrates that hardware support is not a pre-
condition for efficient link-layer cryptography in sensor net-
works; software cryptography achieves acceptable energy
costs. Also, as we have shown, even hardware-assisted cryp-
tography would not perform significantly better than Tiny-
Sec’s software-only implementation.

Throughput. To measure the maximum throughput when
using TinySec, we computed the total number of packets
that could be sent in a 30 second time period. In this ex-
periment, we configured a network of nodes so that multiple
nodes would simultaneously transmit as rapidly as possible.
Since the number of senders affects the channel utilization,
we varied the number of senders. This allows us to char-
acterize the throughput at different regimes. We sent 24
bytes of application data using the current TinyOS stack,
TinySec-Auth, and TinySec-AE. We measured the number
of packets that were successfully received. The results are
in Figure 3.

TinySec-Auth’s bandwidth characteristics are nearly iden-
tical to those of the current TinyOS stack. TinySec-AE,
with its 5 byte larger packets, consistently achieved 6% lower
throughput when more than 5 senders participated. With
fewer senders, channel contention is less of an issue, so the
packet length overhead does not affect the throughput. We
expect sensor networks to largely operate in the latter regime,
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Figure 4: End-to-end latency in a large system using
TinySec. We measured the time to route a message
over a number of hops. We used 37 nodes in this
experiment. Note that TinySec increases end-to-end
latency. As shown in Figure 5, the extra latency can
be fully explained by TinySec’s impact on packet
sizes: longer packets take longer to transmit and
hence increase latency.

since at higher bandwidths, the lifetime of the network will
be limited.

As further confirmation that the throughput difference is
only due to the differences in packet length and not the
computational costs, we reran the experiments with the to-
tal packet size adjusted to be the same for all three radio
stacks. We compared TinySec-AE with a 24 byte data pay-
load, TinySec-Auth with a 28 byte data payload, and the
current TinyOS stack with a 29 byte payload so that all
three packets were 36 bytes in total. We then reran the
bandwidth tests, again varying the number of senders, and
all three stacks delivered the same bandwidth. We thus
conclude that the bandwidth difference is fully explained by
the difference in packet sizes, and not due to any increased
computation costs.

Latency macrobenchmarks. For our final test, we inte-
grated TinySec into a large existing TinyOS sensor network
application. The test had two purposes: we wanted to mea-
sure the latency when routing packets and to see how usable
TinySec is with a large existing system.

The NEST Pursuit-Evasion Midterm Demo Game is a
sensor network application that tracks the movements of
a mobile evader using magnetometers. The sensor nodes
are deployed in a field and form a landmark based routing
tree [40]. Separately, autonomous mobile pursuer robots
collect data from the sensor networks to follow the evaders.
Nodes that have magnetometer readings from the the evader
route the data to a central landmark node that routes it to
the mobile pursuers.

In our test, we set up 36 nodes in a 6 foot by 7.75 foot grid.
The total network diameter was 10 hops. Additionally, we
used a base station connected to a computer to control the
network and snoop on traffic. For our tests, we measured
the time it took for a message to go from the base station to
a sensor network node and get routed through the landmark
to another node which broadcasts a reply back to the base
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Figure 5: The increase in latency when routing pack-
ets using TinySec. We display the results in byte

times, the time it takes to transmit one byte of in-
formation over the radio. This shows that TinySec’s
impact on end-to-end latency is caused by the in-
creased length of TinySec packets. There is a close
correspondence between theory and practice: us-
ing authentication and encryption increases packet
length by 5 bytes, and empirically, we see that la-
tency is increased by 4.6 byte times; similarly, using
authentication alone increases packet lengths by 1
byte, and empirically it increases latency by 1.1 byte
times. Note that we have normalized by the route
distance.

station. Since all routes in our landmark routing scheme
pass through the landmark, sending a message from A to B
takes at least two hops. Additionally, the base station must
send a message to A telling it to initiate its transmission,
and B sends a message back to the base station. This means
that all paths in our test are at least 4 hops in length.

We measured the round-trip time it took to transmit pack-
ets across paths of different hop lengths. For each route
length, we routed 200 packets with the current TinyOS radio
stack (no security), with TinySec-Auth, and with TinySec-
AE. The media access control protocol waits a uniformly
random amount of time before sending the packet. The sum
of many uniformly distributed random variables approaches
a normal distribution, which is what we see with the longest
routes. Note that the carrier sense in the media access con-
trol protocol is occasionally wrong, so that it backs off for a
longer time; this leads to a heavy tail in the distribution.

To compare the different radio stacks to each other, we
average the individual experimental results to obtain an av-
erage single route time per route length. We plot the results
in Figure 4. Each data point represents the average elapsed
time needed to transmit the packets across a route of a given
hopcount. Routing with TinySec-Auth takes longer than
with the current TinyOS radio stack; routing with TinySec-
AE takes longer than both. As one example, across 12-hop
routes, the total difference between TinySec-AE and the cur-
rent TinyOS stack is 26 ms. As before, the latency difference
can be explained by the increased packet size.

We would expect the total time to transmit a packet to
increase by 5 byte times per link when using TinySec-AE.
Since each byte time is 0.42 ms, over a 12 hop route, latency

is expected to be 25.20 ms worse; we observed a 26 ms differ-
ence. We quantify this effect more precisely in Figure 5. We
compare the average byte time difference between the two
TinySec modes and the current TinyOS radio stack. We
normalize the result by the hop count. The outliers from
the heavy tail skew the average, so we remove those values
from consideration. Recall the heavy tail is due to the me-
dia access control protocol backing off erroneously, and are
not material to the metric we are measuring. In the chart,
then, we see byte time differences that we measure match
our expectations: it takes an extra 5 byte times to trans-
mit a TinySec-AE packet one hop, and 1 extra byte-time to
transmit a TinySec-Auth packet.

Summary. In all cases, the energy, bandwidth, and latency
overhead of using TinySec is less than 10%. Much of the
overhead can be fully explained by the increased packet
length that TinySec imposes. There is an additional en-
ergy cost to performing the cryptographic computations,
amounting to less than 1/2 of the total energy increase of
TinySec-AE. Thus, TinySec will be very competitive with
hardware solutions.

9.2 Ease of Use
We use an indirect means to evaluate TinySec’s ease of

use. In the first test, noted above in our latency measure-
ments, we integrated TinySec into a large, existing applica-
tion. Including TinySec did not require any changes to the
application code and only required a one line change to the
makefile. Other applications can enable TinySec with the
same ease.

TinySec has gathered a number of external users. In par-
ticular, we are aware of five other projects that are using
TinySec as a research platform to enable their research in
key distribution. TinyPK uses RSA to authenticate network
downloaded code and to exchange TinySec keys [43]; it is
built on top of TinySec, and relies upon TinySec for link-
layer security. TinyCrypt, still in development at Harvard,
aims to use elliptic curve cryptography to exchange TinySec
keys for the Mica2 sensor nodes [32]. Meanwhile, researchers
at SRI have designed a scheme for key exchange, group man-
agement, and key revocation [18]; they use TinySec’s packet
format for transport-level security. Also, SecureSense pro-
vides dynamic security service composition using the Tiny-
Sec infrastructure [46], and the Bosch corporation used a
modified version of TinySec to implement a prototype bur-
glar alarm security system. Finally, our TinySec implemen-
tation is included in the current TinyOS public release and
is available for routine use as well.

10. RELATED WORK

GSM, IEEE 802.11, and Bluetooth. The GSM frame
format was intended to provide confidentiality (but not in-
tegrity) protection of voice data with little overhead. Un-
fortunately, researchers have found serious vulnerabilities
with the GSM security mechanisms [7]. The 802.11 wireless
networking standard initially specified WEP, a scheme that
used RC4 encryption for confidentiality and a CRC check-
sum for integrity protection. However, security researchers
quickly found WEP to be thoroughly flawed [12, 20, 38, 42]:
its 24-bit IVs are too short; the CRC checksum fails to pro-



tect integrity; and, naive use of the IV to diversify RC4’s
key enables devastating cryptanalytic related-key attacks.
Subsequently, the standards group has designed TKIP, an
interim replacement for WEP with stronger message au-
thentication and more careful mixing of the IV with the
key. However, TKIP is only designed as a short-term band-
aid, and its per-packet overhead is substantial. The long-
term successor to WEP and TKIP will be 802.11i’s CCMP,
which uses AES in CCM mode, 48-bit IVs, and a strong
64-bit message authentication code. CCMP appears to be
well-designed, but unfortunately for our purposes, the per-
packet overhead is too high to be practical for use in sensor
networks [13]. The Bluetooth specification also includes a
cryptographic security mechanism, but this has also been
shown to be flawed [25].

SNEP. The closest previous work is SNEP [33], which specif-
ically targets sensor networks, but SNEP was unfortunately
neither fully specified nor fully implemented. Also, each
recipient must maintain a counter for each sender commu-
nicating with it. Managing this state encounters similar
complexity as maintaining replay counters, as we discussed
in Section 3.1.

IEEE 802.15.4. Recently, the IEEE adopted the 802.15.4
standard, specifying a physical and media access control
layer for low data rate wireless applications [6]. Vendors
are starting to sell sensor nodes equipped with this radio
platform [1, 2].

The 802.15.4 standard includes provisions for link-layer
security. Many features of their architecture are similar to
TinySec, although there are important differences. For ex-
ample, 802.15.4 specifies a stream cipher mode of encryp-
tion, and to avoid IV reuse they require a larger IV. They
have also chosen to include replay protection, as an optional
feature, into the link-layer security package.

IEEE 802.15.4 radio chips perform all of their computa-
tions in hardware, reducing energy consumption and CPU
utilization. However, as we have shown, in retrospect the
use of hardware was not strictly necessary for security: soft-
ware cryptography could have been used with only a small
increase in energy consumption.

Sastry and Wagner have found a few problems with some
of the optional modes in the 802.15.4 specification and the
feasibility of supporting different keying models [34]. De-
spite the presence of these defects, the 802.15.4 security ar-
chitecture is sound. It includes many well designed security
features and presents a step forward for embedded device
wireless security. Proper use of the security API can lead to
secure applications.

11. CONCLUSION
TinySec addresses security in devices where energy and

computation power present significant resource limitations.
We have designed TinySec to address these deficiencies us-
ing the lessons we have learned from other security proto-
cols. We have tried to highlight our design process from
a cryptographic perspective that meets both the intended
resource constraints and security requirements. TinySec re-
lies on cryptographic primitives that have been vetted in the
security community for many years.

Our TinySec implementation is in wide use throughout

the sensor network community. We know of researchers
building key exchange protocols on top of TinySec. Others
have ported TinySec to their own custom hardware. Tiny-
Sec is simple enough to integrate into existing applications
that the burden on application programmers is minimal.

Finally, we have extensively measured the performance
characteristics of TinySec. Its energy consumption, even
when used in the most resource-intensive and most secure
mode, is a modest 10%. Using TinySec-Auth, the extra
energy consumed is a scant 3%. Similarly low impacts on
bandwidth and latency prove that software based link layer
security is a feasible reality for devices with extreme resource
limitations.
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