
Dynamic Behavior of Slowly-Responsive Cong estion
Contr ol Algorithms

Deepak Bansal and Hari Balakrishnan
MIT Laboratory for Computer Science�

bansal,hari� @lcs.mit.edu

Sally Floyd and Scott Shenker
AT&T Center for Internet Research at ICSI�

floyd,shenker� @aciri.org

Abstract
The recentlydevelopednotion of TCP-compatibilityhasled to a
numberof proposalsfor alternative congestioncontrolalgorithms
whoselong-termthroughputasafunctionof asteady-statelossrate
is similar to thatof TCP. Motivatedby theneedsof somestream-
ingandmulticastapplications,thesealgorithmsseempoisedto take
thecurrentTCP-dominatedInternetto anInternetwheremany con-
gestioncontrolalgorithmsco-exist. An importantcharacteristicof
thesealternative algorithmsis that they areslowly-responsive, re-
fraining from reactingasdrasticallyasTCPto asinglepacket loss.

However, the TCP-compatibilitycriteria exploredso far in the
literatureconsidersonly the static condition of a fixed loss rate.
This paperinvestigatesthe behavior of slowly-responsive, TCP-
compatiblecongestioncontrolalgorithmsundermorerealisticdy-
namicnetwork conditions,addressingthefundamentalquestionof
whetherthesealgorithmsaresafeto deploy in thepublic Internet.
We studypersistentlossrates,long- andshort-termfairnessprop-
erties,bottlenecklink utilization, andsmoothnessof transmission
rates.

1. Intr oduction
In the Internet’s current congestioncontrol paradigm,routers

play a relatively passive role: they merely indicate congestion
throughpacket dropsor explicit congestionnotification. It is the
end-systemsthat performthecrucial role of respondingappropri-
atelyto thesecongestionsignals.This paradigmof passive routers
and active hostshas beenspectacularlysuccessful;the conges-
tion managementmechanismsof TCPdevelopedby Jacobson[10],
basedon the principles of packet conservation, slow-start, and
additive-increase/ multiplicative-decrease(AIMD) [3], is in large
part responsiblefor theremarkablestability of theInternetdespite
rapid(to saytheleast)growth in traffic, topology, andapplications.

BalakrishnanandBansalweresupportedin part by an NSF CA-
REERAward,by DARPA GrantNo. MDA972-99-1-0014,andby
a researchgrantfrom theNTT Corporation.Bansalwasalsosup-
portedfor a summerby ACIRI.

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
SIGCOMM’01,August27-31,2001,SanDiego,California,USA.
Copyright 2001ACM 1-58113-411-8/01/0008...$5.00.

An importantpropertyof theTCPcongestioncontrolalgorithm
is that similarly situatedend-systemsreceive roughlyequalband-
widths. TCP doesnot assureequalityof bandwidthbetweenend-
systemswith differentround-triptimes,or with multiplecongested
hops,or which usedifferentpacket sizes,but it doesassureusers
that similarly situatedflows using the samepacket sizeswill re-
ceive roughly the samebandwidth. We will call suchbandwidth
allocationsequitable(to avoid the overloadedterm fair) and it is
thebandwidthallocationgoalthatwe pursuein this paper.

Becauseroutersdon’t exerciseactive control over bandwidth,
the resultingbandwidthallocationsarea function of the conges-
tion controlmechanismsusedby thevariousend-systems.Before
theadventof theTCP-compatibleparadigm,whichwedescribebe-
low, the only way to reliably achieve equitablebandwidthalloca-
tionswasfor theend-systemsto all usethesamecongestioncontrol
mechanism.Thus,for fairnessreasons,TCPwasseennot only as
a sufficientconditionbut alsoasa necessaryone.

TheTCPcongestioncontrolmechanismproducesrapidly vary-
ing transmissionratesin the way it probesfor sparecapacityand
reactsto congestion.While several classesof best-effort Internet
traffic toleratethesevariationsquitewell, otherapplicationssuchas
best-effort, unicaststreamingvideoandaudioarebetterservedby
congestioncontrol mechanismsthat respondmoreslowly to con-
gestionandtherebyproducea smootherbandwidthusageprofile.
TheInternetcommunityhasstruggledwith thistensionbetweenthe
uniformity neededsothat fairnesscanbeobtained,andthedesire
to meetthedemandsof applicationsfor whomTCPis a far-from-
ideal solution. For multicasttraffic, for example,TCP congestion
controlwouldbeaparticularlybadfit becauseit requiresacknowl-
edgementsfrom all receiversin themulticastgroup.

A recently proposedresolution to this dilemma is the TCP-
compatibleparadigm.Thecornerstoneof this approachis theob-
servation, madeby a numberof researchers[11,13,14], that one
cancharacterizethe bandwidthusageof a TCP flow in the pres-
enceof a constantpacket lossrate � ; to first orderthe bandwidth
is proportionalto ����� � . A congestioncontrolmechanismis TCP-
compatibleif its bandwidthusage,in thepresenceof aconstantloss
rate,is thesameasTCP[11]. TheTCP-compatibleparadigmsim-
ply transformsthe requirementthatall congestioncontrol mecha-
nismsbeTCPinto the looserrequirementthatall congestioncon-
trol algorithmsmustbeTCP-compatible.

This approachis a dramaticchangefrom the earliernotionsof
congestioncontrol. It could take us from an almostexclusively
TCP-controlledworld to one where there is no single dominant
congestioncontrol mechanismandinsteadthereis a wide variety
of mechanismstailoredto differentapplicationrequirements.Al-
readyseveralalternativecongestioncontrolmechanismshavebeen

This is alsoknown asTCP-friendliness[11].

proposed,including TCP-FriendlyRateControl (TFRC) [6] and
other� formsof equation-basedcongestioncontrol,AIMD with dif-
ferent linear constantsfrom TCP [20], binomial congestioncon-
trol [2], and TCP Emulationat Receivers (TEAR) [17]. Unlike
TCP, suchmechanismsrefrain from halving their congestionwin-
dow (or transmissionrate)in responseto a singlepacket loss,and
aremoreslowlyresponsiveto packet losseventscomparedto TCP.
Theseproposalsareno mereacademicexercises:theIETF hasal-
readyadoptedasBestCurrentPracticea documentdiscussingand
suggestingTCP-compatibilityas a requirementfor the standard-
ization of new congestioncontrol proceduresfor traffic likely to
competewith best-effort TCP traffic [4]. In addition,the process
of standardizationof one mechanismfor equation-basedconges-
tion control is alreadyunderway in the IETF, at themomentasan
Internet-Draft[9].

Thus,we arepossiblyon theedgeof a rathersignificantchange
in the setof congestioncontrol mechanismsdeployed on the In-
ternet. However, this new approachis basedon a condition—the
TCP compatibility condition—thatrefersonly to the behavior of
thecongestioncontrolmechanismunderstaticconditions.TheIn-
ternetis clearly a very dynamicenvironment,andcertainlystatic
equivalenceto TCPdoesnot imply dynamicequivalence.Thefun-
damentalquestionwe addresshereis: are thesenew congestion
control algorithmssafeto deploy in the currentInternet?That is,
even though they were developedwith the static equivalencein
mind, are they still TCP-compatibleundermore dynamiccondi-
tions?

Weaddresstwo aspectsof thisquestion.First,weusesimulation
and analysisto evaluatethe behavior of several TCP-compatible
congestioncontrolmechanismsunderdynamicconditions;we fo-
cus on persistentpacket loss rates,long- and short-termfairness
properties,bottlenecklink utilization,andsmoothnessof transmis-
sion rates. We find that most of the TCP-compatiblealgorithms
we studiedappearto besafefor deployment. While thereareex-
amplesof algorithmsthatareTCP-compatibleunderstaticcondi-
tionsbut thatexhibit unfortunatebehavior in dynamicsettings,the
algorithmsthat have actually beenproposedmostly avoided this
problem.However, wefind thattwo algorithmsthatarecompatible
understaticconditionsmaynot competeequitablyundermoredy-
namicconditions,evenover long time-scales.In particular, while
slowly-responsive TCP-compatiblealgorithmsare safeto deploy
in that they do not mistreatTCP, it is alsotrue that they may not
alwaysget their equitablesharewhennetwork conditionschange
dynamically.

This leadsto the secondquestion: Why? That is, what as-
pectsof thesealgorithmsareresponsiblefor their remainingTCP-
compatibleunderdynamicconditions?We find that incorporating
the principle of packet conservation (e.g.,by self-clockingtrans-
missionsasin TCP)is crucialin dynamicsettingsto ensuresafety.
Theabsenceof long-termfairnessdespitestaticTCP-compatibility
is causedby a fundamentaltrade-off: in returnfor smoothertrans-
mission rates, slowly-responsive algorithms lose throughput to
fasterones(like TCP)underdynamicnetwork conditions.

The restof this paperdescribestheseresults. The next section
is an overview of TCP-compatiblealgorithms. We describethe
dynamicexperimentsandscenariosin Section3, andpresentand
explain our resultsin detail in Section4. We concludewith a sum-
maryof our findingsin Section5. We discusstherole of timeouts
in AppendixA

2. TCP-CompatibleCongestionControl Algo-
rithms

TCP-equivalent

TCP

RAP

TEAR

AIMD(a,b)
a = 4 (2b - b2)/3

b < 0.5

Binomial(k,l)
l < 1; k+l 	 1

Binomial(k,l)
l < 1; k+l = 1

TFRC(6)

Multiplicative-increase;
multiplicative-decrease

TCP-compatible

Slowly-responsive AIMD(a,b)
a = 4 (2b - b2)/3

b > 0.5

Figure 1: A classification of differ ent end-to-end congestion
control algorithms in relation to each other, with specific ex-
amples in rectangular boxes. This classificationis basedon a
static notion, and our goal is to understand their behavior un-
der dynamic conditions aswell.

In steady-state,a long-runningTCP connectionusestwo con-
gestioncontrolmechanisms:AIMD, which governsthesizeof the
window, andself-clocking,whichusestheprincipleof packet con-
servation to decidewhenthewindow mustchangeanddatatrans-
mitted.Proposalsfor end-to-endcongestioncontrolmaybeclassi-
fied asTCP-equivalent, TCP-compatible, or not TCP-compatible,
basedon their steady-statebehavior. Basedon their transientre-
sponseto congestion,end-to-endproposalscan be classifiedas
TCP-equivalent,slowly-responsive, or respondingfasterthanTCP.

A congestioncontrol algorithm is TCP-equivalentif it uses
AIMD to govern its transmissionwindow or rate, with the same
increaseand decreaseparametersas TCP. Examplesof TCP-
equivalent schemesincludevariousTCP variants,and rate-based
schemeslike Rejaieet al.’s RateAdaptationProtocol(RAP) [16].
Becauseof theabsenceof self-clocking,TCP-equivalentschemes
suchasRAPcanhave differenttransientbehavior thanTCP, aswe
discover.

A congestioncontrolmechanismis TCP-compatiblein thestatic
sense(or simply TCP-compatible) if it displayscongestioncontrol
behavior that,ontimescalesof severalround-triptimes(RTTs),ob-
tainsroughly thesamethroughputasa TCPconnectionin steady-
statewhentheavailablebandwidthdoesnotchangewith time. Un-
derconditionsof aninvariantpacket lossrate� , thethroughputof a
TCP-compatiblealgorithmobeys the“TCP-friendly” formulagiv-
ing the sendingrateof a TCP senderunderthe sameconditions.
In this paperwe usethe TCP responsefunction derived by Pad-
hye et al. [14], observingthat even for the staticcase,deriving a
formulathatcorrectlycharacterizesthesendingrateof a particular
TCPimplementationor modelacrosstheentirerangeof valuesfor� is anon-trivial chore[18]. It is easyto seethatall TCP-equivalent
schemesarealsoTCP-compatible,but not viceversa.

Not all TCP-compatiblealgorithmsneedto react in the same
fashionas TCP on detectingcongestion. A congestioncontrol
mechanismis saidto be slowly-responsive(relative to TCP) if its
window or ratereductionon a singlepacket lossor congestionno-
tification is smallerthanTCP. This slower responseto individual
packet dropsallows applicationsusing a slowly-responsive con-

gestioncontrol, or SlowCC, algorithmto benefitfrom a smoother
sending
 rate than if they had usedTCP’s strategy. Examplesof
suchalgorithmsincludeequation-basedmechanismssuchasTFRC
(TCP-FriendlyRateControl) [6], AIMD-basedmechanismswith
differentincrease/decreaseconstantsfrom TCP, andbinomialcon-
gestioncontrolmechanisms.A SlowCCalgorithmmayor maynot
beTCP-compatible,andconversely. Figure1 summarizestherela-
tionshipbetweenthesedifferentclasses.

Two otherkey componentsof TCP’s congestioncontrol mech-
anismsthatarenot reflectedin the above categoriesarethe slow-
startprocedureandtheexponentialbackoff of theretransmittimer.
TCP’sslow-startprocedureis a key congestioncontrolmechanism
that is not usedin steady-state,but is critical for transientbehavior
suchastheinitial start-up.Theexponentialbackoff of theretrans-
mit timer is critical in modelingTCP’s behavior in environments
with very high packet lossrates,in particularwhena flow’s aver-
agesendingrateis lessthanonepacket perround-triptime.

An AIMD-basedalgorithmis characterizedby two parameters,� and � , correspondingto the increaseanddecreaseparametersof
thealgorithm[8,20]. After a lossevent,thecongestionwindow is
decreasedfrom
 to ����������
 packets; in theabsenceof packet
loss,thecongestionwindow is increasedfrom
 to
�� � pack-
etseachRTT. TCPwithoutdelayedacknowledgmentsis anAIMD
schemewith ��� � and � ����� � . For anAIMD schemeto beTCP-
compatible,� and � arenotindependent—rather, ����� �! "���#�%$����'& .
Given an equationsuchasthe oneabove for deriving � from � , a
TCP-compatibleAIMD algorithmis completelycharacterizedby
theparameter� ; valuesof �)(��� � correspondto slowly-responsive
AIMD algorithms.We useAIMD(�) to referto a pureAIMD con-
gestioncontrolmechanismwith parameter� , andweuseTCP(�) to
referto TCPusingAIMD(�) alongwith theotherTCPmechanisms
of slow-start,retransmittimeouts,andself-clocking.

BansalandBalakrishnanconsiderbinomial congestioncontrol
algorithms, which are a nonlineargeneralizationof AIMD [2].
Thesealgorithmsarecharacterizedby four parameters,*,+.-!+ � + and� . Uponcongestion,abinomialalgorithmreducesits window (rate)
from
 to
/�)��
10 , while eachRTT withoutcongestionleadsto a
window (rate)increasefrom
 to
2� � �43#5 . A binomialconges-
tion controlalgorithmis TCP-compatibleif andonly if *6�7- � �
and -#89� , for suitablevaluesof � and � . It is slowly-responsive
for suitablevaluesof � and � when -:(;� . The two specificbino-
mial algorithmsinvestigatedin [2], IIAD (* � �<+=- �>�) andSQRT
(* � - �9�?� �), areboth TCP-compatibleandslowly-responsive.
Forbinomialalgorithms,smallervaluesof - tendtobemoreslowly-
responsive thanlargervalues.

Insteadof respondingin afixedfashionto eachlossor lossevent,
Floyd et al.’s TFRC respondsto the lossevent rateas measured
over someinterval of time [6]. In order to be TCP-compatible,
TFRCusestheTCPresponsefunctioncharacterizingTCP’s send-
ing rate as a function of the loss event rate and round-trip time.
We let TFRC(*) denotea variantof TFRC that computesthe av-
erageloss event rate over the most recent * loss intervals; the
default TFRC suggestedfor deployment correspondsroughly to
TFRC(6)[6, 9]. We investigateTFRC(*) for a rangeof valuesof* to understandbetterthelimits on theviableparametersfor these
SlowCCmechanisms,andderiveconditionsfor safedeploymentin
general.

Rheeet al.’s TCP Emulation at Receivers (TEAR) [17] is a
receiver-basedvariant of TCP, where the receiver maintainsan
exponentially-weightedmoving averageof the TCP congestion
window, anddividesthisby theestimatedround-triptimeto obtain
a TCP-compatiblesendingrate. Thus,insteadof changingTCP’s
algorithmsfor computingthe congestionwindow, TEAR keeps

TCP’s congestionwindow algorithmsunchangedand then aver-
agesthe currentwindow. TEAR is TCP-compatibleandslowly-
responsive understaticconditions.

In additionto characterizingthesendingrateof theseSlowCCal-
gorithmsgivena steady-statepacket lossrate,therehasbeensome
explorationof therelative fairnessof thesemechanismswith TCP
in the presenceof ON-OFF backgroundtraffic and underdiffer-
ent levels of statisticalmultiplexing [6, 19]. In addition, the rela-
tivesmoothnessof SlowCCproposalshasbeenexplored,with sev-
eral differentmetricsusedto measuresmoothness[8, 19]. There
hasalsobeensomeinvestigationof theeffect of SlowCC propos-
als on queuedynamics,including the effect on oscillationsin the
queuesize,both with andwithout active queuemanagement[7].
While therehasbeenapreliminaryevaluationof someSlowCCal-
gorithmsto measureaggressivenessandresponsiveness[6, 8,19],
we arenotawareof any systematicstudyof theimpactof SlowCC
mechanismsoncompetingtraffic, or of this impactasa functionof
the time constantsof theSlowCC mechanisms.Theseareimpor-
tantconsiderationsfor widespreaddeployment.

Our work systematicallyinvestigatesthe dynamicsof TFRC,
TCP, RAP, andtheSQRT binomialalgorithmundervariableband-
width conditions,usingpersistentlossrates,long- andshort-term
fairness,utilization,andsmoothnessasmetrics.

3. Dynamic TestScenarios

0

B/2Tx. rate
of CBR
source

Bandwidth
available to
SlowCC flows

B

B/2

period of oscillation

magnitude
of
oscillation

Figure2: Square-wave oscillating bandwidth usedin the simu-
lations.

In this section,we describethe testswe performedto evaluate
the behavior of the various TCP-compatiblemechanismsin dy-
namic network conditions. We conductedour experimentswith
thens-2network simulator[12]. Our simulationscriptsandresults
areavailablefor downloadfromhttp://nms.lcs.mit.edu/
slowcc/.

The first set of testsin Section4.1 considersthe responseof
SlowCC mechanismsto a suddenincreasein congestion;in the
simulationstheincreasein congestionis triggeredeitherby acom-
peting CBR flow or by a flashcrowd of many small TCP flows.
We definethestabilizationtimeasthetime for thepacket lossrate
to stabilizeafter thestartof a sustainedperiodof high congestion,
wherethepacket lossratehasstabilizedif it is within 1.5 timesits
steady-statevalueat this level of congestion.The key concernis
whetherSlowCC mechanismsresult in a transientperiodof high
packet drop rates,both for themselves and for competingtraffic,
aftera suddenincreasein congestion.We pay particularattention
to the cost of increasedpacket dropsas a function of the slow-
nessof thevariousSlowCCmechanisms.Theunderlyinggoalis to
evaluateany potentialdangersin thedeploymentof SlowCCmech-
anisms,sincetransientperiodsof high drop-ratescould result in
degradednetwork performanceandveryhigh responsetimes.

In Section4.2.1we studythe effect of changingnetwork con-
ditionsonthelong-termbandwidthfairnessof SlowCCcongestion

control.To createdynamicnetwork conditions,weuseanON/OFF
CBR sourcewith equalON andOFF times,giving the repeating
“square-wave” patternsof availablebandwidthshown in Figure2.
Other simulationscenariosinclude “sawtooth” patternsof avail-
ablebandwidth.Thesescenariosaremotivatedby concernfor the
behavior of SlowCC in dynamicenvironmentswith flashcrowds
andDoSattacks,routingchanges,competitionfrom higher-priority
ON/OFFtraffic, andthe like. However, thesetraffic scenariosare
not intendedto accuratelymodelreality, but to exploreandbench-
markthebehavior of SlowCC mechanismsin a well-characterized
environment. This can be thoughtof as a “stresstest” that ex-
ploresSlowCC congestioncontrol in an extremehostileenviron-
ment.We areparticularlyinterestedin therelative bandwidthfair-
nessof SlowCC mechanismswith TCPundertheseconditions,as
a functionof themagnitudeandfrequency of theoscillationsin the
availablebandwidth.

To measurethetransientfairnessof SlowCCcongestioncontrol,
in Section4.2.2we considertwo flows using the sameconges-
tion controlmechanismbut startingwith unequalsharesof thelink
bandwidth,andconsiderthetime until thetwo flows begin sharing
the link bandwidthequitably. More formally, we definethe @ -fair
convergencetime asthe time takenby the two flows to go from a
bandwidthallocationof �BAC�D�FE<+��%E"� to ��GIH,J$ AK+LG�MNJ$ AO� , andwe
measurethe average@ -fair convergencetime. Here, � E is a small
amountof bandwidthcorrespondingto 1 packet perRTT, andwe
assumeA;PQPR� E .

Anotherconcernwith SlowCC congestioncontrol mechanisms
is thatof a temporarilyunder-utilized link, resultingfrom theslow-
nessof SlowCC mechanismsin taking advantageof a suddenin-
creasein theavailablebandwidth.We studylink utilization in this
scenarioin Section4.2.3usinga new metric, ST�B*N� . ST�B*U� is de-
fined asthe fraction of bandwidthachieved by a congestioncon-
trol mechanismin the first * RTTs after the availablebandwidth
hasdoubled.In addition,we explore link utilization in a dynamic
environmentwith rapidchangesin theavailablebandwidthin Sec-
tion 4.2.4, wherewe studyscenarioswith a competingON/OFF
CBRsource,asdescribedearlier. Here,weconsiderlink utilization
asa functionof themagnitudeandfrequency of theoscillations.

We arealsointerestedin the benefitsof SlowCCs,andin Sec-
tion 4.3weexploretherelativesmoothnessof SlowCCmechanisms
in a rangeof dynamicenvironments. The smoothnessmetric for
TFRC hasbeendefinedas the largestratio betweenthe sending
ratesin two consecutive round-triptimes. In Section4.3 we con-
sider smoothnessover longer time intervals, without introducing
any new metricsto quantifythis.

Theresponsivenessof acongestioncontrolmechanismhasbeen
definedasthenumberof round-triptimesof persistentcongestion
until thesenderhalvesits sendingrate,wherepersistentcongestion
is definedas the lossof onepacket per round-trip time [6]. The
responsivenessof TCPis 1 round-triptime,andtheresponsiveness
of thecurrentlyproposedTFRCschemestendsto vary between4
and6 round-trip times, dependingon initial conditions[6]. One
of the goalsof this paperis to rigorously explore the impact of
SlowCC congestioncontrol mechanismswith a rangeof respon-
sivenessmeasures.Thus,weexploreTFRC(*) for * rangingfrom1
to 256.Similarly, weexploreTCP(���4�) for � from 1 to 256.Wede-
fineRAP(���4�) andSQRT(���4�) astheTCP-compatibleinstancesof
thosecongestioncontrolmechanismswith multiplicative decrease
factor� , andexplorethosemechanismsfor asimilarrangefor � . We
notethat, just asstandardTCPis equivalentto TCP(1/2),standard
RAPis equivalentto RAP(1/2).While RAPis TCP-equivalent,this
is not truefor RAP(�) for valuesof � otherthan1/2.

All of ourexperimentsuseasingle-bottleneck“dumbbell” topol-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

130 140 150 160 170 180 190 200 210 220

D
ro

p
ra

teV
Time (in seconds)

TCP(1/2)
TCP(1/256)

SQRT(1/256)
TFRC(256, no self clocking)

TFRC(256, self clocked)

Figure3: The drop rate for several SlowCC algorithms whena
CBR sourcerestartsat W � ��X � s after a & � s idle period.

0

5

10

15

20

25

0 50 100 150 200 250 300

S
ta

bi
liz

at
io

n
T

im
e

(in
 s

ec
.)

Y
Algorithm Parameter

Stabilization times with RED gateways

TCP
SQRT

RAP
TFRC(no self clocking)

TFRC(self clocked)

Figure4: The stabilization time (in seconds,1 RTT = 50ms)for
the various SlowCC algorithms asa function of the algorithm’ s
parameter, Z .

ogy with RED queuemanagementat thebottleneck.Unlessother-
wise mentioned,the queuesizeis setto 2.5 timesthebandwidth-
delayproduct,andthe []\B^ W�_N`<a4b�_ and [��c W�_N`'a'b�_ parameters
aresetto 0.25and1.25timesthebandwidth-delayproduct,respec-
tively. The round-triptime (RTT) for the connectionsis approxi-
mately50ms. Eachsimulationscenarioincludesdatatraffic flow-
ing in bothdirectionson thecongestedlink.

4. Results
In this section,we discussthe resultsof our experiments. We

start by investigatingthe potential dangerof slowly-responsive
TCP-compatiblealgorithmsin termsof increasedpacket lossrates,
anddiscusswaysof reducingthis danger. We thendiscusstwo ad-
ditional potentialdrawbacksof thesealgorithms: unfairnesswith
respectto TCP andpotentiallysub-optimalbottleneckutilization.
Finally, we discussthe benefitsof thesealgorithmsin termsof
smoothtransmissionratesunderdynamicnetwork conditions.

4.1 “The Ugly”: Potential Dangersof Slowly-
ResponsiveAlgorithms

By definition,SlowCCmechanismsrespondslowly to reductions
in theavailablebandwidth.As a consequence,despitebeingTCP-
compatibleunderstaticconditions,a SlowCC mechanismcouldin
factcausehigh packet lossratesfor extendedperiodsof time. This
is agrave concern,becausepersistentlyhigh dropratesresultin an
unnecessarydecreasein throughputandanunnecessaryincreasein
responsetimesfor theflows traversingthelink.

4.1.1 A CompetingCBRSource
Our first experimentinvestigatesthe performanceof different

TCP-compatibleSlowCC algorithms when confrontedwith an

0.25

1

4

16

64

256

0 50 100 150 200 250 300

S
ta

bi
liz

at
io

n
C

os
td

Algorithm Parameter

Stabilization costs with RED gateways

TCP
SQRT

RAP
TFRC(no self clocking)

TFRC(self clocked)

Figure 5: The stabilization cost for the various SlowCC algo-
rithms asa function of the algorithm’ s parameter, Z .

abruptreductionin theavailablebandwidth.We usetwenty long-
lived SlowCC flows, with changesin bandwidthbeing orches-
tratedby an ON/OFFCBR sourcethat startsat W �e� s, stopsatW � � �'� s, and restartsat W � ��X � s. When it is on, the CBR
sourceusesone-halfof thebandwidthof thebottlenecklink. The
bottleneckusesRED queuemanagementandtraffic sourcesasde-
scribedin Section3. During the W � � � +%� �'� � s interval, we mea-
suretheaveragepacket lossratein thequeue.Becausethequeue
usesFIFO schedulingwith RED queuemanagement,all connec-
tionsseesimilar lossrates.WhentheCBR sourceis idle betweenW � ��� �'� +4�%X � � s, thepacket droprateis negligible. WhentheCBR
sourcestartsagainat W � ��X � s, thenetwork hasa transientspike
with a high packet drop rate, with a packet drop rateof roughly
40% for at leastoneround-trip time, until end-to-endcongestion
control canbegin to take effect. The network then graduallyre-
turnsto thesamesteady-statedroprateasduringthe W � � � +�� �'� � s
interval. Figure3 shows thedropratefrom severalsimulationsus-
ing SlowCC mechanismswith veryslow responsetimes.

For eachSlowCC algorithm,we definethestabilizationtimeas
thenumberof RTTs,afteraperiodof highcongestionbegins,until
thenetwork lossratediminishesto within 1.5timesits steady-state
valuefor this level of congestion.In thesesimulationsthe period
of high congestionbegins at time 180, and the steady-statedrop
ratefor that level of congestionis given by the drop rateover the
first 150 seconds.Clearly the stabilizationtime will be different
from onescenarioto another;thepurposeof themetric is to com-
parethe stabilizationtimesfor differenttransportprotocolsin the
sametraffic scenario.We calculatethelossrateasanaverageover
the previous tenRTT periods.Longerstabilizationtimesindicate
congestioncontrolmechanismswith longerperiodsof congestion
following a suddendecreasein theavailablebandwidth.

Figure4 shows the stabilizationtime for the differentSlowCC
mechanisms.For eachcongestioncontrol mechanism,the c -axis
shows the parameterZ , correspondingto TCP(�"��Z), RAP(�"�"Z),
SQRT(�"��Z), andTFRC(Z). For example,theparameterZ � �4f
correspondsto TCP(1/256)andTFRC(256)respectively. Notethat
TCP(�"��Z), RAP(���"Z), SQRT(���"Z), andTFRC(Z) arenot neces-
sarily an equivalentcomparisonfor a specificvalueof Z . Figure
4 shows that thereare extremecases,notably TFRC(256)with-
out self-clocking,wherethestabilizationtime is hundredsof RTTs
(abouta half minute). TFRC without self-clockingis the default
versionof TFRCin ns-2.

While thestabilizationtimemeasurestheamountof timeit takes
for the lossrateto returnto nearthepreviousvalue,thestabiliza-
tion cost incorporatesnot only the time for stabilization,but also
the averagevalueof the lossrateduring this stabilizationperiod.
More formally, we definethestabilizationcostto betheproductof

thestabilizationtime andtheaveragelossrate(in percentage)dur-
ing the stabilizationinterval. The stabilizationcostquantifiesthe
trueeffectsof persistentoverload;acongestioncontrolmechanism
with a stabilizationcost of 1 correspondsto an entire round-trip
timeworthof packetsdroppedat thecongestedlink duringthesta-
bilization period,whetherthis is from a 100%packet dropratefor
oneround-triptime, a 50% drop ratefor two round-triptimes,or
somethingelse.

Figure5 showsthestabilizationcostfor differentSlowCCmech-
anisms,showing that, for large valuesof Z , someof them are
two orders of magnitudeworsethan the most slowly-responsive
TCP(���"Z) or SQRT(�"��Z) algorithmswe investigated. Note that
theverticalaxisis on a log-scale.Figure5 alsoshows thatthesta-
bilization costis acceptablylow for SlowCC mechanismswith the
rangeof parametersthathave actuallybeenproposedfor usein the
Internet.

DoesFigure5 indicatethatSlowCCmechanismswith largeval-
uesof Z , correspondingto very slow response(andstabilization)
times,cancausepersistenthigh packet lossratesandaretherefore
not safefor deploymentin theInternet?It turnsout thatthereis in
fact a way to improve the stabilizationcostof the RAP(�"��Z) and
TFRC(Z) mechanismswith largevaluesfor Z .

To understandthe differencebetweenTFRC and RAP on the
onehand,andTCPandSQRT on theother, it is worthaskingwhat
mechanismsarepresentin oneclassandnotin theother. RAP(���"Z)
andTCP(�"��Z) are the closestof thesealgorithmsin termsof the
increase/decreaserules,with themaindifferencebetweenthembe-
ing the useof a rate variableratherthan a window in RAP. The
window-basedTCP(�"��Z), unlike RAP(���"Z), religiously follows
the principle of packet conservation, beingself-clocked by the ar-
rival of acknowledgmentsfrom thesender. In contrast,RAP(���"Z)
andTFRC(Z) arerate-based;they transmitdatabasedon the rate
determinedby the increase/decreasealgorithm,irrespective of the
numberof acknowledgementsreceived. Although they do useac-
knowledgementsto updatetheir sendingrate, datatransmissions
themselvesarenot directly triggeredby acknowledgmentsbut in-
steadaresentoutbasedonthedeterminedrate.Theconsequenceof
self-clockingis thatTCP(�"��Z) andSQRT(�"�"Z) reducetheir trans-
missionratesdrasticallywhentheavailablebandwidthdrastically
decreases,sinceacknowledgmentsstart arriving only at the rate
currently available to the flow at the bottleneckand the sending
rate is thereforelimited to the bottleneck(acknowledgment)rate
from thepreviousRTT.

To evaluatewhetherself-clockingis in factthekey differentiator
for thebehavior of theveryslow variantsof theseSlowCC mecha-
nismsin thisscenario,weaddedstrongerself-clockingto theTFRC
algorithm.TFRCalreadylimits thesender’ssendingrateto atmost
twice the rateat which datais received by the receiver in thepre-
viousroundtrip [6]; this is critical to preventsevereover-shooting,
andemulatesTCP’sslow-startphase.To incorporatestrongerself-
clocking in TFRC, we introduceda conservative option to
TFRCin ns-2that,for theround-triptime following a packet loss,
limits thesender’s rateto at mosttherateat which datais received
by thereceiver in theprevious roundtrip (i.e., theRTT containing
theloss).Wecall this TFRCwith self-clocking.

In addition, for TFRC with self-clockingwe needto limit the
amountby which thesendingratecanexceedthereceive rateeven
in the absenceof loss. Oncethe sendingrate is reduceddue to
self-clocking,theabsenceof lossesmaycauseTFRCto drastically
increaseits allowedsendingrate(becauseof thememoryof good
times),onceagainviolating self-clocking.Therefore,whennot in
slow-start, theconservative option pegs TFRC’s maximum

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

K
B

ps
)

(1
 s

ec
 b

in
s)

g
Time (seconds)

Response of SlowCCs to flash crowd of 1000 short flows

TCP(1/2)
Flash crowd

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

K
B

ps
)

(1
 s

ec
 b

in
s)

g
Time (seconds)

Response of SlowCCs to flash crowd of 1000 short flows

TFRC(256, no self clocking)
Flash crowd

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

K
B

ps
)

(1
 s

ec
 b

in
s)

g
Time (seconds)

Response of SlowCCs to flash crowd of 1000 short flows

TFRC(256)
Flash crowd

Figure 6: The aggregatethr oughput for long running SlowCC
flows with a flash crowd of short TCP flows at time 25. Note
that self-clockinghelpsTFRC(256)becomequite responsive to
the flashcrowd.

sendingrateto at mostaconstanth timestheearlierreceive rate.
Thepseudo-codefor this extensionto TFRCis asfollows:

CALCULATESENDRATE()
/*
SEND RATE is theappropriatesendingrate.
CALC RATE is whattheequationallows.
RECV RATE is thereportedreceive rate.hjik� is a constant,1.1 in ourexperiments.
*/
if � lossis reported� then

SEND RATE ��lKmon � CALC RATE, RECV RATE �
elseif � NOT SLOWSTART � then

SEND RATE ��lKmon � CALC RATE, hqp RECV RATE �
Thus,after a periodof heavy lossesin the network, the con-

servative option causesTFRC’s sendingrateto immediately
reduceto thereportedreceive rate.Theresultsof TFRC(256)with
self-clockingareshown in Figures4 and5. Theimprovementrel-
ative to theoriginal TFRC(256)without self-clockingis apparent;
the stabilizationcost is also small as in TCP. Thesesimulations
weredonewith droptail queuemanagementaswell anda similar
benefitof self-clockingwasseenin thosesimulationsalso.

4.1.2 CompetingWebFlashCrowd
We alsoexperimentedwith a morerealisticscenariowherethe

dramaticreductionin bandwidthis causedby aflashcrowd of small
Web transfersratherthana new CBR source.The flashcrowd is
startedat time25with astreamof shortTCPtransfers(10packets)
arriving at a rateof 200 flows/secfor 5 seconds.Figure6 shows
the aggregatethroughputachieved by the small TCP connections
andtheaggregatethroughputof thebackgroundSlowCCtraffic for
threedifferentSlowCC traffic types,TCP(1/2),TFRC(256)with-
out self clocking and TFRC(256)with self clocking. From this

We have experimentedwith variousvaluesof h andused h �� � � in theresultsreportedhere.Thevaluein theNS simulatorfor
TFRC’sconservative optionis h � � � � .

figure, the benefitof self-clockingin helpingSlowCC respondto
theflashcrowd is clear. Becausetheflashcrowd consistsof many
short flows in slow-start, the flash crowd grabsbandwidthquite
rapidly regardlessof whetherthebackgroundtraffic is TCP(1/2)or
TFRC(256)(with self clocking).

Our conclusionis that it is possiblefor certainrate-basedTCP-
compatiblealgorithmsto causeperiodsof persistentlyhigh loss
ratesunderdynamicconditions.However, systematicallyapplying
the principle of packet conservation (e.g.,by self-clockingtrans-
missions)overcomesthis problemeven for the variantsof these
algorithmsconfiguredwith very slow responsetimes.Thus,while
the possibility of periodsof high packet lossratesis a significant
concernin somecases,thisconcerncanbeeliminatedby following
theprincipleof packet conservation.

4.2 “The Bad”: Potential Drawbacks of
Slowly-ResponsiveAlgorithms

We now turn our attentionto two potentialdrawbacksof TCP-
compatibleSlowCCalgorithmsin highly variableenvironments:(i)
unfairnesswith respectto TCPandeachother, and(ii) potentially
lower bottlenecklink utilization. We studyboth long- andshort-
termfairnessin dynamicenvironments.

4.2.1 Long-termFairness

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0.01 0.1 1 10 100B
an

dw
id

th
 (

no
rm

al
iz

ed
)

Length of high/low bandwidth (15Mb/5Mb) period

Square wave (competing TCP and TFRC flows)

TFRC
TCP

Figure7: Thr oughput of TCP and TFRC flowswhen the avail-
able bandwidth changesby a 3:1 factor.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0.01 0.1 1 10 100B
an

dw
id

th
 (

no
rm

al
iz

ed
)

Length of high/low bandwidth (15Mb/5Mb) period

Square wave (competing TCP and TCP(1/8) flows)

TCP(1/8)
TCP

Figure 8: Thr oughput of TCP and TCP(1/8) flows when the
available bandwidth changesby a 3:1 factor.

To investigatelong-termfairnessin a rapidly-changingenviron-
ment,we considera somewhat extremescenariowherethe avail-
able bandwidthis periodically increasedto threetimes its lower
value. In this scenario,ten long-lived flows (five TCP and five
TFRC) competewith a “square-wave” CBR source, using the
topologydescribedin Section3. The congestedlink is 15 Mbps,
with only 5 Mbpsavailableto the long-livedflows whentheCBR
sourceis active. This givesa 3:1 variationin thebandwidthavail-
ableto the long-lived flows. During an extendedhigh-bandwidth
periodin this scenario,we would expectthepacket dropratewith

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0.01 0.1 1 10 100

B
an

dw
id

th
 (n

or
m

al
iz

ed
)

Length of high/low bandwidth (15Mb/5Mb) period

Square wave (competing TCP and SQRT flows)

TCP
SQRT

Figure 9: Thr oughput of TCP and SQRT(1/2) flows when the
available bandwidth changesby a 3:1 factor.

tenlong-livedflows to beroughly0.7%,with anaverageTCPcon-
gestionwindow of 14.4packets.

Our interestis in the relative fairnessbetweenTCP andTFRC
asa function of the periodof the CBR source. In Figure7, each
columnof marksshows the resultsfrom a singlesimulation,with
onemarkgiving theobservedthroughputfor eachof thetenflows.
The c -axis shows the length in secondsof a combinedhigh- and
low-bandwidthperiodin thatsimulation,andthe r -axisshows the
throughputnormalizedby a singleflow’s fair shareof theavailable
bandwidth.Thetwo linesshow theaveragethroughputreceivedby
theTCPandtheTFRCflows.

As Figure7 shows, overall link utilization is high whenthepe-
riod of the CBR sourceis low, while the overall link utilization
sufferswhentheperiodof theCBRsourceis 0.2seconds(4 RTTs).
Whentheperiodof theCBR sourceis betweenoneandthreesec-
onds,theTCPflowsreceive morethroughputthattheTFRCflows,
showing thatvaryingnetwork conditionsfavor TCPover TFRC.

In an effort to find a scenariowhereTFRC might competeun-
fairly with TCP, we alsoran simulationswith a rangeof patterns
for the competingCBR source,include“sawtooth” patternswith
theCBRsourceslowly increasedits sendingrateandthenabruptly
enteredanOFFperiod,or reversesawtoothpatternswheretheCBR
sourceabruptlyenteredan ON periodandthenslowly decreased
its sendingratedown to an OFF period. The resultswereessen-
tially thesameasin Figure7, with thedifferencebetweenTCPand
TFRC lesspronounced.Theseresultsdemonstratethat thereare
many dynamicscenarioswhenTCPreceivesmorebandwidththan
competingTFRC flows. However, despitemuchtrying, we could
notfind any scenarioswith varyingbandwidthsin whichTFRCre-
ceivesmorebandwidththanTCPin the long-term.Over shortpe-
riodsof time, immediatelyaftera reductionin theavailableband-
width, TFRCflowsmaygethigherthroughputthanTCPflows,but
in thelongrun,theTCPflowsaremorethancompetitive. Figures8
and9 show similar resultswhenTCP competeswith TCP(1/8)or
with SQRT in this dynamicenvironment.Althoughnot asagileas
TCP, theseSlowCC mechanismsarereasonablypromptin reduc-
ing theirsendingratein responsesto extremecongestion;however,
they are observably slower at increasingtheir sendingratewhen
the available bandwidthhas increased. Our resultssuggestthat
thereneedbeno concernsaboutunfair competitionwith TCPover
long-termdurationsthatwould preventSlowCC from beingsafely
deployedin thecurrentInternet.

We observed similar trendswhen competingalgorithmswere
subjectedto an even more extreme10:1 oscillation in the avail-
ablebandwidth—thethroughputdifferencewassignificantlymore
prominentin this case. In a nutshell,SlowCC mechanismslose
to TCPunderdynamicnetwork conditionsin thelong run because
their responseto network conditionsis slow; they do notsenddata
fastenoughwhenthe bandwidthis actuallyavailable. Thus, two
mechanismsthat are TCP-compatibleunderstatic conditionsdo

notnecessarilycompeteequitably, evenin thelong term,in amore
dynamicenvironment.In returnfor a smoothersendingrateunder
morestaticconditions,SlowCCmechanismspaythepriceof losing
bandwidth,relative to TCP, in moredynamicenvironments.

4.2.2 TransientFairness

0
20
40
60
80

100
120
140
160
180
200

0 0.2 0.4 0.6 0.8 1

T
im

e
(in

 s
ec

on
ds

)s
TCP decrease parameter b

0.1-fair convergence times

avg 0.1-fair convergence time

Figure10: Time (in seconds)for convergenceto �?� � -fair nessfor
TCP(b) flows.

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 A

C
K

s

AIMD decrease parameter b

0.1-fair convergence times for a drop rate of 0.1

Figure11: Number of ACKs for convergenceto 0.1-fairnessfor
TCP(b) flows.

0
50

100
150
200
250
300
350
400

0 50 100 150 200 250 300

T
im

e
(s

ec
.)

b

0.1-fair convergence times for different values of b in TFRC(b)

avg 0.1-fair convergence time

Figure12: Time (in seconds)for convergenceto �?� � -fair nessfor
TFRC(b) flows.

We now considerthe effect of SlowCC algorithmson transient
fairnessunderdynamicconditions.Wediscussthetimefor conver-
genceto fairnessfor two flowsusingidenticalSlowCCmechanisms
but startingat differentsendingrates.Transientfairnesswould be
particularlyimportantfor shortflows, whoseentirelifetime might
becontainedin thetransientperiodof convergenceto fairness.

Figure10showstheresultsof simulationswith two TCP(�) flows
sharinga link of bandwidth A . Let �ut G +�t $ � denotethe band-
widthsof thefirst andsecondflows respectively. We measurethe@ -fair convergencetime, definedin Section3, for v�a"-wW �x�k�?� � . We
usea valueof thebottleneckbandwidth,A � � �<y �I�,b , muchbig-
gerthan � E which is thebandwidthcorrespondingto 1 packet/RTT
(our RTT is 50 ms). Thus, the ��� � -fair convergencetime being
measuredcorrespondsroughly to the time taken for an initial un-
fair allocationof �BAz+ � � to convergeto � �?� �<� Az+ ��� �{� AO� . Figure10

shows the 0.1-fair convergencetimes for two TCP(�) flows for a
range| of valuesof � . If wedecreasedthelink bandwidth,wewould
expecttheconvergencetimesto decreaseaccordingly.

Weuseananalyticalmodelwith thesameframework to estimate
the expected@ -fair convergencetimesfor pureAIMD(� , �) flows
in an environmentwith a steady-statepacket mark rate � , whenA9PQPk�%E . (For simplicity of discussionassumethat this is anen-
vironmentwith Explicit CongestionNotification(ECN) [15].) Lett~}G and t�}$ denotetheexpectedvaluesof thecongestionwindows
of thefirst andsecondflowsafterthearrival of the \ -th ACK packet,
andconsidertheeffect of the \T��� -th ACK packet. The \T��� -th
ACK belongsto flow 1 with probability ����� �� H � �� , andto flow 2 with

probability � ��� �� H � �� . After the �u\,�>�"���u� ACK, theexpectedvalues

of thetwo congestionwindows becomet }G � t }Gt }G ��t }$ � � �������,�t }G �����Nt }G��
and t }$ � t }$t }G ��t }$ � � �������,�t }$ �����Nt }$ �
respectively. Theexpecteddifferencein thecongestionwindowsof
thetwo flows changesfrom� } ��� t }G ��t }$ �
to � } H�G �/���� t }G ��t }$ ���I� � �ut }G ��$t }G ��t }$ � �ut }$ ��$t }G ��t }$ � ����� � } �������I�,� �
Thus the expectednumberof ACKs neededfor a @ -fair alloca-
tion, startingfrom a highly skewed initial allocation,is essentially-w�4�?� G�M������ @ .

Figure11shows thenumberof ACKsneededfor a @ -fair alloca-
tion for variousvaluesof � for @ �k�?� � and� �>��� � ; othervaluesof� give almostidenticallyshapedcurves. Notethat theabove anal-
ysisappliesto TCPonly for moderateto low lossprobabilities,as
it doesnot includeretransmittimeoutsor accuratelymodelTCP’s
behavior whenmultiple packetsarelost from a window of data.

Figure 11 shows that for values of ��P)� ��� and a drop
rateof 10%,0.1-fair convergenceis achieved fairly rapidly, while
for smaller valuesof � convergencetakes exponentially longer.
This suggeststhat for transientfairness,AIMD(�) for valuesof��P)� �?� could give acceptabletransientfairness,while signif-
icantly lower valuesfor � would give unacceptably-longconver-
gencetimes.

In Figure12,weplot the0.1-fair convergencetimesfor TFRC(�)
flows for differentvaluesof � . As this figure shows, the 0.1-fair
convergencetimedoesnot increaseasrapidlywith increasedslow-
nessof TFRCflows. This canbeexplainedby thefact thatunlike
multiplicative decreasein TCP, TFRCrelieson a fixednumberof
lossintervalsto adjustits sendingrateto theavailablerate.

4.2.3 Lossin Throughputin a Timeof Plenty
Theslow increaserateof SlowCCcanresultin a lossof through-

put, ascomparedto TCP, whenthereis a suddenincreasein the
bandwidthavailableto a flow. Theaggressivenessof a congestion
control mechanismhasbeendefinedasthe maximumincreasein
thesendingratein oneround-triptime,in packetspersecond,given
theabsenceof congestion[8]. For TCP(� , �), theaggressivenessis
simply theparameter� , while for TFRCtheaggressivenessranges

from 0.14to 0.28packets/sec,dependingon whethera TFRCop-
tion calledhistorydiscountinghasbeeninvoked[7].

In this section we considersome of the implications of the
low aggressivenessof SlowCC mechanismsin environmentswith
a suddenincreasein the available bandwidth. The fundamen-
tal underlyingtradeoff in SlowCC mechanismsis that, in return
for a smoothsendingrateduring timesof steady-stateconditions,
SlowCC mechanismsareslow to take advantageof a suddenin-
creasein theavailablebandwidth,relative to TCP. Theslower the
SlowCC mechanism,themoresluggishit will be in takingadvan-
tageof asuddenincreasein theavailablebandwidth.Thisdoesnot
in any way interferewith competingtraffic in thenetwork, but we
believe this sluggishnesswill be a compellingreasonfor applica-
tionsnot to useextremelyslow congestioncontrolmechanisms.

To make this concrete,we considerscenarioswith long-lived
flowswherethebandwidthavailableto thoseflowsissuddenlydou-
bled. We define ST�B*N� astheaveragelink utilization (expressedas
a fraction)over thefirst * round-triptimesafterthebandwidthhas
doubled.This link utilization is a functionnot only of theconges-
tion controlmechanismandthenumberof round-triptimes * , but
alsoof theround-triptimeandthelink bandwidthin packets/sec.

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

1 10 100 1000

f(
)�

1/b factor for TCP(b) and SQRT(b)

f(200) for TCP(1/x)
f(200) for SQRT(1/x)

f(20) for TCP(1/x)
f(200) for SQRT(1/x)

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

1 10 100 1000

f(
)�

b in TFRC(b)

f(200) for TFRC(x)
f(20) for TFRC(x)

Figure 13: Averagelink utilization ST�! � � and ST�! �<� � for vari-
ousSlowCCs,for a link bandwidth of 10Mbps anda round-trip
time of 50ms.

To evaluate ST�B*N� , we usea simulationscenariowith ten identi-
cal flows, all usingthesamecongestioncontrolmechanism,shar-
ing a bottlenecklink of 10 Mbps. At time 500 sec.,five flows
arestopped,effectively doublingthebandwidthavailableto there-
mainingfive flows. Figure13 shows ST�! � � and ST�! �<� � , the link
utilization in the first 20 and 200 round-trip times, respectively,
after the first five flows stopped,for TCP(���4�), SQRT(���4�), and
TFRC(�) for a rangeof parameters� . Figure13 shows thatfor this
scenario,while TCP achievesabout86% utilization after the first
20 round-triptimes,TCP(1/8)andTFRC(8)achieve 75%and65%
utilization respectively, showing thecostpaidby SlowCC mecha-
nismsin failing to make promptuseof the newly-availableband-
width.

Although slower congestion control mechanismssuch as
TCP(���4�) or TFRC(�) for ��P�X have not beenproposedfor de-
ployment,we investigatethemto illustrate the extremesluggish-
nessof suchmechanismsin reactingof anincreasein theavailable

bandwidth. TCP(1/256)and TFRC(256)both receive only 60%
utilization after20 round-triptimes,andafter200round-triptimes
haveonly increasedthelink utilizationto 65-70%.Wenotethat,for
TFRC,thesesimulationsusetheTFRCimplementationin theNS
simulatorwith history discounting(a configurableoption, turned
onby default) turnedoff, andthatthis makesTFRC’sperformance
somewhatworsethanit would beotherwise.This allows us to fo-
cussolely on the part of TFRC that respondsto packet lossrates
andsetsthetransmissionrateaccordingly.

For a particularcongestioncontrolmechanism,ST�B*U� canbede-
riveddirectly from theaggressivenessmetric. ConsiderTCP� � +��%�
whenthe link bandwidthhasbeenincreasedfrom to < pack-
ets/sec,and let the RTT be ¡ s. After * round-trip times with-
out congestion,TCP� � +���� will have increasedits sendingrate
from to ���* � �4¡ packets/sec,for an averagesendingrateof ��>* � ���! '¡Q� packets/sec.Therefore,ST�B*U� canbe approximated
by �"�< ¢�£* � ��� � ¡Q �� for TCP(� ,�).
4.2.4 Lossin Throughputin a Timeof Oscillations

Section4.2.1consideredtherelativelong-termfairnessbetween
TCP and SlowCC in an environment with sharpchangesin the
availablebandwidth,andSection4.2.3showed the penaltypaid
by SlowCC in beingslow to take advantageof a suddenincrease
in the availablebandwidth. In this section,we considerthe over-
all link utilization in anenvironmentof rapidly-changingavailable
bandwidthwhenall of the flows usethe samecongestioncontrol
mechanism.We show that in sucha dynamicenvironment,if all
of thetraffic consistedof long-livedflowsusingSlowCC,theover-
all link utilization canbe somewhat lower than it would be with
long-lived TCP flows in the sameenvironment,dependingon the
natureof thechangesin theavailablebandwidth.Wedonotpresent
this asa reasonnot to deploy SlowCC,but asanexplorationof the
possiblecostsof SlowCCin extremeenvironments.

0
0.2
0.4
0.6
0.8

1

0.01 0.1 1 10 100B
an

dw
id

th
 (

no
rm

al
iz

ed
)

Length of high/low bandwidth (15Mb/5Mb) period

Square wave (results from three different simulation sets)

TCP(1/8)
TCP

TFRC

Figure14: Effect of varying bandwidth on link utilization.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0.01 0.1 1 10 100

D
ro

p
ra

te¤
Length of high/low bandwidth (15Mb/5Mb) period

Square wave (results from three different simulation sets)

TCP(1/8)
TCP

TFRC

Figure15: The correspondingpacket lossrate.

To studythis lossin throughputfor SlowCC in anenvironment
with changingnetwork conditions,we usea simulationscenario
with ten identicalcongestion-controlledflows competingwith an
ON/OFFCBR source.Thebandwidthavailableto thecongestion-
controlledflowsvariesfrom 15Mbpsand5 Mbps(i.e.,a 3:1 ratio)
astheCBR flow is OFF andON respectively. We do not pretend

that this is a realisticscenario;however, this simplescenariocan
provide insight into the dynamicsof TCP and of SlowCC in an
environmentof changingnetwork conditions.

Figure14 shows theeffect of thechangingavailablebandwidth
on the overall throughput. Threeseparatesimulation setswere
run, usingTCP(1/8),TCP, andTFRC(6)respectively. The c -axis
shows the lengthof the ON andthe OFF periodsfor the compet-
ing CBR flow in seconds,andthe r -axisshows the throughputof
thecongestion-controlledflows, asa fractionof theaverageavail-
ablebandwidth. Eachcolumnshows the resultsof threeseparate
simulations,usingTCP(1/8),TCP, andTFRC(6).For eachsimula-
tion, thegraphshows thebandwidthof eachflow (asa fractionof
its bandwidthshare),aswell astheaveragebandwidth.Figure15
shows thepacket dropratefor thesimulationsin Figure14.

As we can seefrom the Figure 14, the period of the compet-
ing CBR flow hasa significantimpacton theoverall throughputof
thecongestion-controlledflows. For example,whentheCBR flow
hasON andOFFtimesof 50 ms,throughputis high for TCP(1/8),
TCP, and for TFRC(6). This shows that short burstsof compet-
ing traffic are not harmful to TCP or to SlowCC, as theseshort
burstscanbeeffectively accommodatedby theactive queueman-
agementat the congestedrouter. In contrast,whenthe CBR flow
hasON andOFFtimesof 200ms, four timestheround-triptime,
a congestion-controlledflow receiveslessthan80%of theoverall
availablebandwidth,whethertheflow is usingTCP(1/8),TFRC,or
TCP.

0
0.2
0.4
0.6
0.8

1

0.01 0.1 1 10 100B
an

dw
id

th
 (

no
rm

al
iz

ed
)

Length of high(low) bw (1.5Mb/15Mb) period

Square wave (results from three simulation sets)

TCP-1/8
TCP

TFRC

Figure 16: Effect of 10:1 oscillations in network bandwidth on
bandwidth utilization of various congestioncontrol algorithms.

Figure 16 shows that in a more extremeenvironmentwith re-
peated10:1changesin theavailablebandwidth,noneof the three
congestioncontrolmechanismsareparticularlysuccessful,but for
certainfrequenciesof changein theunderlyingbandwidth,TFRC
performsparticularlybadlyrelativeto TCP. Thisunderliesthepoint
thatalthoughTCPandSlowCC mechanismsmight performsome-
what similarly in a steady-stateenvironment,this is not necessar-
ily the casein more extremeconditionswith rapid changes. In
particular, an environmentwith varying load may result in lower
throughput(andhence,lower link utilization) with SlowCCsthan
with TCPs.

4.3 “The Good”: Potential Benefitsof Slowly-
ResponsiveAlgorithms

The main motivation for the developmentand deployment of
SlowCC mechanismshasbeenthat their sendingrateis smoother
than that of TCP in a steady-stateenvironment with a reason-
ably smoothpacket loss process. The smoothnessmetric is de-
finedasthe largestratio betweenthesendingratesin two consec-
utive round-triptimes. In a steady-stateenvironmentwith a peri-
odic packet droprate,TFRChasa perfectsmoothnessmetricof 1,
while TCP(�) congestioncontrolhasasmoothnessmetricof �¥�~� ;
congestioncontrol mechanismsthat reducetheir window or rate

in responseto a singledrop cannothave perfectsmoothness[8].
Thefocus¦ of this sectionis to considerthesmoothnessof SlowCC
mechanismsin environmentswith bursty losspatterns.With such
burstypacket losspatternstherelativesmoothnessof variousTCP-
compatiblecongestioncontrolsbecomeconsiderablymore com-
plex.

0
20
40
60
80

100
120
140

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

K
B

/0
.2

 s
ec

)

�
Time

flow 0, 0.2 sec bins
1 sec bins

drops

0
20
40
60
80

100
120
140

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

K
B

/0
.2

 s
ec

)

Time

flow 0, 0.2 sec bins
1 sec bins

drops

Figure 17: TFRC (top) and TCP(1/8) (bottom) with a mildly
bursty losspattern.

0
20
40
60
80

100
120
140

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

K
B

/0
.2

 s
ec

)

Time

flow 0, 0.2 sec bins
1 sec bins

drops

0
20
40
60
80

100
120
140

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

K
B

/0
.2

 s
ec

)

Time

flow 0, 0.2 sec bins
1 sec bins

drops

Figure 18: TFRC (top) and TCP(1/8) (bottom) with a more
bursty losspattern.

While the averaging of the loss rate in TFRC gives greater
smoothnessin steady-stateor in mildly burstyconditions,thissame
averagingof the loss rate resultsin very poor smoothnessfrom
TFRC in othermorebursty conditionsthat exploit TFRC’s slow-
nessto forgetaboutpastconditions.Figures17and18show TFRC
andTCP(1/8)in two carefullydesignedscenariosintendedto illus-
tratethebestandtheworst,respectively, in TFRC’ssmoothnessin
thefaceof burstypacket losses.

Thesimulationsin Figure17 eachshow a singleflow subjected
to a repeatinglosspatternof threelosses,eachafter50 packet ar-
rivals,followedby threemorelosses,eachafter400packetarrivals.
For eachgraphthesolid line shows thesendingrateaveragedover
0.2-secondintervals,andthedashedline showsthesendingrateav-
eragedover one-secondintervals. At thebottomof eachgraphis a
markfor eachpacket drop. This losspatternis designedto fit well
with TFRC’s mechanismof averagingthe loss rateover roughly
six successive lossintervals,sothatTFRCmaintainsa steadyesti-
mation of the packet loss rate even with this bursty losspattern.
As Figure 17 shows, TFRC in this environment is considerably
smootherthanTCP(1/8),andat the sametime achievesa slightly
higherthroughput.

In contrast,the more bursty loss pattern in Figure 18 is de-
signedto bring out the worst in TFRC in termsof both smooth-
nessandthroughput.Thesesimulationsusearepeatinglosspattern
of a six-secondlow-congestionphasewhereevery 200thpacket is
dropped,followedby a one-secondheavy-congestionphasewhere
every fourth packet is dropped.Theheavy-congestionphaseis de-
signedto be just long enoughto includesix lossintervals,so that
TFRC losesall memoryof the earlier low-congestionperiod. In
contrast,thelow-congestionphaseis designedto includeonly three
or four loss intervals, not enoughto totally supplantthe memory
of the heavy-congestionphase.The consequenceis that, for this
scenario,TFRC performsconsiderablyworsethanTCP(1/8),and
indeedworsethanTCP(1/2),in both smoothnessandthroughput.
Figure18 explainswhy TFRCperformedbadly in Figure7, com-
petingagainstTCPfor a scenariowith oscillatingbandwidthwith
a periodof four to eight seconds.In Figure18, TFRC performs
worserelative to TCP thanit doesin Figure7. This suggeststhat
thegreatestdifferencebetweenTCPandTFRCthroughputoccurs
not whencompetingwith a square-wave CBR source,but with a
CBR sourcewith short ON times and longer OFF times, giving
relatively shortperiodsof highcongestion.

An equation-basedcongestioncontrol mechanismother than
TFRC,with adifferentalgorithmfor estimatingthelossrate,would
requirea different losspatternto illustrateits worst performance,
but we would conjecturethatany equation-basedmechanismwill
have a correspondinglosspatternthat exploits the weaknessesof
the loss estimationalgorithm, and for which the equation-based
mechanismwill performbadlyrelative to TCPandto TCP(1/8).

Figure 19 shows IIAD and SQRT congestioncontrol with the
samemildly bursty losspatternasin Figure17. BecauseIIAD re-
ducesits window additively andincreasesits window slowly when
bandwidthbecomesavailable,it achievessmoothnessat thecostof
throughput,relative to SQRT.

5. Conclusion
Theinappropriatenessof TCP’sAIMD for certainclassesof ap-

plications,includingsomestreamingmediaandmulticast,hasmo-
tivatedthe developmentof alternateslowly-responsive congestion
control mechanismsgovernedby the TCP-compatibilityrequire-
ment. However, this requirementis basedon a static notion of
throughputundera steady-statelossrate. Internetconditionsare
dynamic,which leadsus to ask if the variousproposedSlowCC
TCP-compatiblealgorithmsarecompatibleunderdynamiccondi-
tions as well. This questionis particularly importantas thereis
somejustified scepticismin the communityaboutthe sufficiency
of thestaticrequirementin practice.

We evaluatedseveral recentproposalsfor SlowCC algorithms,
including the equation-basedTFRC, AIMD-based mechanisms
with differentconstantsfrom TCP, binomialalgorithms,andRAP
(a rate-basedvariant of TCP AIMD). We considerseveral per-

0
20
40
60
80

100
120
140

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

K
B

/0
.2

 s
ec

)

Time

flow 0, 0.2 sec bins
1 sec bins

drops

0
20
40
60
80

100
120
140

0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

K
B

/0
.2

 s
ec

)

Time

flow 0, 0.2 sec bins
1 sec bins

drops

Figure19: IIAD (top) and SQRT (bottom) with a mildly bursty
losspattern.

formancemetrics, including persistentpacket loss rates, long-
andshort-termfairnessproperties,bottlenecklink utilization, and
smoothnessof transmissionrates. We find that mostof the TCP-
compatiblealgorithmswestudiedappearto besafefor deployment;
even themoreslowly responsive onescanbemadeto avoid caus-
ing thenetwork to go into persistentoverloadpersistentlossrates
on suddenbandwidthreductionsby incorporatinga self-clocking
mechanismbasedon packet conservation. However, we alsofind
thatin returnfor smoothertransmissionrates,slowly-responsiveal-
gorithmslosethroughputto fasterones(like TCP)underdynamic
network conditions. Fortunately, this doesnot detractfrom their
deployability becausethey do not take throughputaway from the
deployed baseof TCP connections.We hopethat thesefindings
will helpovercomesomeof thescepticismsurroundingthebehav-
ior of slowly-responsive congestioncontrol algorithmsandmove
the Internetfrom an “only-TCP” paradigmto a TCP-compatible
paradigmwheremultiple congestioncontrolalgorithmsco-exist.

6. References
[1] ALLMAN, M., BALAKRISHNAN, H., AND FLOYD, S. Enhancing

TCP’s LossRecoveryUsingLimitedTransmit. InternetEngineering
TaskForce,January2001.RFC3042.

[2] BANSAL , D., AND BALAKRISHNAN, H. Binomial Congestion
ControlAlgorithms.In Proceedingsof theConferenceonComputer
Communications(IEEE Infocom)(Anchorage,AK, April 2001),
pp.631–640.

[3] CHIU, D.-M., AND JAIN, R. Analysisof theIncreaseandDecrease
Algorithmsfor CongestionAvoidancein ComputerNetworks.
ComputerNetworksandISDNSystems17 (1989),1–14.

[4] FLOYD, S. CongestionControl Principles. InternetEngineeringTask
Force,September2000.RFC2914.

[5] FLOYD, S., AND FALL , K . PromotingtheUseof End-to-End
CongestionControlin theInternet.IEEE/ACM Trans.onNetworking
7, 4 (Aug. 1999),458–472.

[6] FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J.
Equation-BasedCongestionControlfor UnicastApplications.In
SIGCOMMSymposiumonCommunicationsArchitecturesand
Protocols(Stockholm,Sweden,August2000),pp.43–56.

[7] FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J.
Equation-BasedCongestionControlfor UnicastApplications:The
ExtendedVersion.Tech.Rep.TR-00-03,InternationalComputer

ScienceInstitute,March2000.Availablefrom
http://www.aciri.org/tfrc/.

[8] FLOYD, S. AND HANDLEY, M. AND PADHYE, J. A Comparisonof
Equation-BasedandAIMD CongestionControl,May 2000.
Availablefrom http://www.aciri.org/tfrc/.

[9] HANDLEY, M., PADHYE, J., FLOYD, S., AND WIDMER, J. TCP
FriendlyRateControl(TFRC):ProtocolSpecification,May 2001.
draft-ietf-tsvwg-tfrc-02.txt, Internet-Draft,
work-in-progress.

[10] JACOBSON, V. CongestionAvoidanceandControl.In SIGCOMM
SymposiumonCommunicationsArchitecturesandProtocols
(Stanford,CA, Aug. 1988),pp.314–329.An updatedversionis
availablefrom
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z .

[11] MAHDAVI , J., AND FLOYD, S. TCP-FriendlyUnicastRate-Based
Flow Control.Availablefrom http://www.psc.edu/
networking/papers/tcp_friendly.html, January1997.

[12] ns-2Network Simulator.http://www.isi.edu/nsnam/ns/,
2001.

[13] OTT, T., KEMPERMAN, J., AND MATHIS, M. TheStationary
Distribution of IdealTCPCongestionAvoidance.In DIMACS
WorkshoponPerformanceof RealtimeApplicationson theInternet
(November1996).

[14] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J.
ModelingTCPThroughput:A SimpleModel andits Empirical
Validation.In SIGCOMMSymposiumonCommunications
ArchitecturesandProtocols(Vancouver, Canada,Aug. 1998),
pp.303–314.

[15] RAMAKRISHNAN, K ., AND FLOYD, S. A Proposalto AddExplicit
CongestionNotification(ECN)to IP. InternetEngineeringTask
Force,Jan1999.RFC2481.

[16] REJAIE, R., HANDLEY, M., AND ESTRIN, D. RAP:An End-to-end
Rate-basedCongestionControlMechanismfor RealtimeStreamsin
theInternet.In Proceedingsof theConferenceonComputer
Communications(IEEEInfocom)(New York, NY, 1999),
pp.1337–1345.

[17] RHEE, I ., OZDEMIR, V., AND Y I , Y. TEAR: TCPEmulationat
Receivers—Flow Controlfor MultimediaStreaming.Tech.rep.,
NCSU,April 2000.Availablefrom http://www.csc.ncsu.
edu/faculty/rhee/export/tear_page/.

[18] TheTCP-FriendlyWebPage.http:
//www.psc.edu/networking/tcp_friendly.html .

[19] YANG, Y., K IM , M., AND LAM , S. TransientBehaviors of
TCP-friendlyCongestionControlProtocols.In Proceedingsof the
ConferenceonComputerCommunications(IEEEInfocom)
(Anchorage,AK, April 2001),pp.1716–1725.

[20] YANG, Y., AND LAM , S. GeneralAIMD CongestionControl.Tech.
Rep.TR-2000-09,Universityof TexasatAustin,May 2000.
Availablefrom http://www.cs.utexas.edu/users/lam/
NRL/TechReports/.

Appendix

A. Modeling the Role of Timeouts
As mentionedearlier, TCP’s retransmittimeoutsarea key com-

ponent of TCP congestioncontrol, and the relative fairnessof
SlowCC congestioncontrol mechanismsrelies on their ability to
takeinto accountTCP’stimeoutsaswell astheAIMD mechanisms.
Here, we show that the exponentialbackoff of TCP’s retransmit
timerscanin factbeviewedasanextensionof theAIMD modelto
anenvironmentwith sendingrateslessthanonepacket perRTT.

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1S
en

di
ng

 R
at

e
(P

kt
s/

R
T

T
)

§
Loss Rate P

pure AIMD
Reno TCP

AIMD with timeouts

Figure20: The thr oughput equation for modelswith and with-
out timeouts.

Thedashedline labeled“RenoTCP” in Figure20showstheTCP
throughputequation[14] taking into accountthe role of retrans-
mit timeoutsin RenoTCPwithoutdelayedacknowledgments.The
solid line labeled“pure AIMD” in Figure20 shows the through-
put equationfor a pureAIMD schemewithout timeouts[5]. The
solid line is derived from a simpledeterministicmodelwhere,for
a packet drop-rate� , onein every �"�=� packetsaredropped,caus-
ing the sendingrateto be halved. This “pure AIMD” modelof a
sendingrateof about ¨ � � � �=� packets/RTT doesnot applyto TCP
for a sendingratelessthanonepacket perround-triptime (i.e., for
packet dropratesgreaterthanaboutone-third).

To apply theAIMD modelto sendingrateslessthanonepacket
per RTT, we assumethat only completepacketscanbe sent,and
that when the sendingrate is lessthan one packet per RTT, the
senderwaits for a completeinter-packet interval beforesendinga
new packet. In this deterministicmodelwith the availableband-
width lessthanonepacket/RTT, thesendingratecanbedetermined
asfollows. Definestagessuchthatatstate0 thesendingrateis one
packet/RTT, andat state\ thesendingrateis ���< } packets/RTT, or
onepacket every } RTTs. At any stageif a packet is acknowl-
edgedthe senderreturnsto stage0, and immediatelysendsone
packet. Otherwise,thesenderhalvesits sendingrate,waiting } H©G
RTTs beforeretransmittinga packet. This halvingof the sending
ratein responseto apacketdropis thenequivalentto anexponential
backoff of theretransmittimer.

Under this model of transmission,let the steady-statepacket
dropratebe � � ªª H�G . Thus,thesendersendŝ��>� packetsover ª H©G �x� round-triptimes,with all but thelastpacketdropped.This
givesa steady-statesendingratein thismodelof:^K��� ª H©G �R� � GG�MU� ���«{¬ �R�
packets/RTT. For example,for � � ���< , we have ^ � � , andthe
sendersendstwo packetseverythreeround-triptimes,for asteady-
statesendingrateof '�'& packets/RTT. This is shown in Figure20
with theshortdashedline labeled“AIMD with timeouts”.Wenote
thatthisanalysisis only valid for packetdropratesof 50%or more,
while the“pure AIMD” analysiscanapplyto packet dropratesup

to 33%. The “AIMD with timeouts” line gives an upperbound
for theanalyticbehavior of TCP, while the“RenoTCP” line gives
a lower bound. The behavior of TCPswith Selective Acknowl-
edgements,Limited Transmit[1], andECNshouldfall somewhere
betweenthetwo lines.

