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Abstract— We present an approach to support massively
multi-player games on peer-to-peer overlays. Our approach
exploits the fact that players in MMGs display locality of
interest, and therefore can form self-organizing groups based
on their locations in the virtual world. To this end, we have
designed scalable mechanisms to distribute the game state to
the participating players and to maintain consistency in the
face of node failures. The resulting system dynamically scales
with the number of online players. It is more flexible and has a
lower deployment cost than centralized games servers. We have
implemented a simple game we call SimMud, and experimented
with up to 4000 players to demonstrate the applicability of this
approach.

I. Introduction
We propose the use of peer-to-peer (P2P) overlays to sup-

port massively multi-player games (MMGs) on the Internet.
Players participating in the game form an overlay on which
many of the game functions are implemented. The players
thus contribute the memory, CPU cycles and bandwidth to
manage the shared game state.

The premise of most MMGs is that of a large shared game
world inhabited by thousands of players. The emphasis is
often on social interactions and exciting story lines. Games
like Lineage have recorded two million registered players,
and 180K concurrent players in one night.

Online MMGs are traditionally supported by a client-
server architecture, where the server keeps both player
account information and handles game state. Scalability
is achieved by employing server clusters. The servers can
either be connected by LANs, as in Terazona [38], or
they can form a computing grid, as in Butterfly.net [7].
Although this architecture scales with the number of players,
it lacks flexibility and the server has to be over-provisioned
to handle peak loads. Furthermore, the client-server model
limits the deployment of user-designed games, which is an
important trend in game design. While games like EverQuest
allow limited user designed game extensions, security and
performance concerns will limit the scope of such extensions
since they would need to be hosted on the game servers
handling the core game.

Massively multiplayer online games are natural applica-
tions for peer-to-peer overlays. We take advantage of the
self-organizing characteristic of P2P overlays to create a
system that dynamically scales up and down with the number
of players. Game players also have incentives to join the
overlay, because the participation is limited to the duration

of the player’s game play.
Games are different from previous P2P applications that

focus on the harnessing of idle storage and network band-
width, including storage systems [12], [33], [11], content
distribution [9], [20] and instant messaging [26]. Games
utilize the memory and CPU cycles of peers to maintain
the shared game state. Three potential problems must be
addressed to make this approach fully applicable in practice:

• Performance—games have frequent updates, that must
be propagated under certain time constraints. Further-
more, peers have limited bandwidth since they are
located at the edge of the network.

• Availability—replicating game states to improve avail-
ability has two potential problems. First, once a peer
goes offline, its state quickly becomes stale and the
replica becomes invalid. Secondly, because of high
update frequency, maintaining a large set of replicas
is a potential performance bottleneck.

• Security—both the prevention of account thefts and
the prevention of cheating during game play should
be considered. Distributing game states to the peers
increases the opportunities for cheating.

This paper discusses the first two problems in detail.
Our design prevents account thefts, the problem most im-
portant to the game industry, by centralizing the account
management at the server, and only distributing game states
to the peers. Although cheat-prevention is a major concern
for online games [4], it is a separate issue from the basic
performance and availability of P2P gaming. We will make
note of instances where cheat-prevention has influenced
our design, but the details and particulars are a subject of
ongoing and future work.

The primary technical contributions of this work are
architectural and evaluative. We preset a novel architecture
marrying massively multiplayer games with peer-to-peer
networking technologies, and we provide a detailed perfor-
mance study to demonstrate the feasibility of our design.

The key to the feasibility of a P2P game architecture is
locality of interest [27]. Games are designed such that while
the game world is large, the area of interest to a single player
is limited, typically correlating to the sensory capabilities of
the game characters being modeled. The players, in turn, can
be arranged into groups with coinciding areas of interest.
This self-organizing property of MMGs matches the self-



organizing character of peer-to-peer networks. In particular,
nearby (as defined in game terms) players can form peer
groups, and keep updates to game state within the group.

The rest of this paper is organized as follows: Sections II
and III provide background material on online MMGs and
peer-to-peer overlays, respectively. Section IV discusses our
design choices. Section V describes the algorithm for keep-
ing game state consistent. Section VI details the implemen-
tation of our system. Section VII presents the experimental
results. Section VIII discusses related work. We conclude
and discuss future work in Section IX.

II. Online Massively Multiplayer Games
Massively multiplayer online games (MMGs) distinguish

themselves from other online games by allowing thousands
of players to share a single game world. Most existing
MMGs are role-playing games (RPG) or real-time strategy
(RTS)/RPG hybrids. Typical examples of MMGs include
EverQuest, Ultima Online, There.com, Star Wars Galaxies,
The Sims Online and Simcountry. Although First Person
Shooter (FPS) games like Quake and Doom also have large
numbers of concurrent players, they are usually divided into
many small isolated game sessions with a handful of players
each, and the same is true for many networked RTS games
like Warcraft III.

The basic premise in most MMGs is that the player
assumes the role of a character in a virtual world. The
classical setting for MMGs is Middle Earth-like, with char-
acters belonging to different races like dwarves, humans,
elves and classes like magicians, fighters and priests, but
could be an arbitrary world — past, present or future. The
player experiences the game world through a game avatar
— the representation of his character in the game — and is
typically limited to seeing, hearing and doing things through
his avatar.

The typical game involves the game character taking on
missions or quests, alone or as part of a group, that require
him to travel to different parts of the game world, inter-
acting with various players, and finding objects or earning
money, while accumulating experience (often abstracted into
abilities and experience points).

Superficial differences aside, much of the underlying
game mechanics, data structures and communication pat-
terns are similar. We review the common characteristics of
MMGs and existing network implementations in the rest of
this section.

A. Game states
A typical multiplayer game world is made up of im-

mutable landscape information (the terrain), characters con-
trolled by players (PCs), mutable objects such as food, tools,
weapons, mutable landscape information (e.g., breakable
windows), and non-player characters (NPCs) that are con-
trolled by automated algorithms. NPCs can be either allies,
bystanders or enemies, and are not always immediately
distinguishable from PCs, except by their interaction.

The terrain consists of all immutable elements in the
game. Graphic elements for the terrain are typically installed
as part of the game client software, and updated using the
normal software update mechanisms. The abstract descrip-
tion of the terrain of a region can be created offline and
inserted into the system dynamically.

The state of a player includes his position in the world
and the state of his game avatar, such as its abilities, health
and possessions. Avatar states are often persistent and can
be carried along from one login session to another. Similar
states exists for NPCs and game objects, and depending
on their role in the game, they may either be persistent or
temporary.

In general, a player is allowed three kinds of actions:
position change, player-object interaction, and player-
player interaction. Players interacting with objects (includ-
ing NPCs) or other players may, subject to game rules,
change their state as well as the state of their avatar. For
example, drinking from a bottle would change the state of
the bottle object from full to empty, and decrease the thirst
parameter of the player object. Similarly, if the player fights
another player, both player objects’ health parameters would
change.

Except for persistent player states and the terrain, most
other game states are periodically rebuilt. This is because as
the game progresses, all NPC opponents will eventually be
killed, all food be eaten and all quests solved. The rebuild is
either implemented as a game-wide “reset”, or as a periodic
“respawn” of individual NPCs and objects.

The resulting world is huge, and is typically statically
divided into regions connected with each other, possibly
taking the player from one game server to another. These
connections can be implemented using game mechanics, e.g.
a tunnel. Each region can be further subdivided to keep the
amount of data that the client handles small enough to fit in
memory.

B. Existing system support
The client-server architecture is the predominant paradigm

for implementing online MMGs. In this model, players
connect to a centralized server using their client software.
The clients can be anything from text terminals to advanced
3D rendering systems that allows the player to see the world
in which he is playing. The server is typically responsible
for both maintaining and disseminating game state to the
players, as well as account management and player authen-
tication [38], [7].

The main reason for hosting game state on a centralized
server is to allow the players to share the same virtual
world. Scalability is approached in a number of different
ways; large dedicated servers are used to allow a single
server to handle thousands of simultaneous players. Further
scalability is achieved by clustering servers, and by dividing
the game universe into multiple different, or parallel, worlds
and spreading the users over them. A typical single machine
server can support 2000 to 6000 concurrent clients, and the



cluster solution allows TeraZona [38] to support up to 32,000
players.

Some multiplayer games, such as MiMaze [14] and Age
of Empires [28], are implemented using a decentralized
model. These designs have severe limitations on scalabil-
ity because the game states are broadcast to all players.
AMaze [5] and Mercury [6] are based on group commu-
nications, where nearby players in the game world form
a multicast group. These multicast-based games are first
person shooter games. They are different from MMGs in
that there are no mutable objects such as food and drinks.
The lack of shared game state allows a simple distributed
implementation that only sends the positions of players and
objects.

C. The effect of latency on player performance
Player tolerance for network latency (a.k.a lag) varies

from game to game. In general, games where a player is
guiding an avatar rather than directly controlling the game
action can better tolerate latency. It is therefore unsurprising
that this is how most MMGs are designed.

First person shooter games (such as Quake 3) where the
player directly controls the avatar can only tolerate latencies
less than 180 milliseconds [3]. Real time strategy games like
Warcraft III, on the other hand, can tolerate up to several
seconds of network latency [35], because the emphasis is on
strategy rather than direct interaction. Although there is no
study of latency tolerance for MMGs, role playing games are
generally considered to have a latency tolerance similar to
RTS games, since the player controls the game by telling his
avatar what to do, e.g. “pick up object” or “attack monster”,
rather than how to do it.

III. Peer-to-Peer Infrastructure
A number of peer-to-peer overlays have recently been

proposed, including CAN [29], Chord [36], Tapestry [37]
and Pastry [32]. These self-organizing, decentralized sys-
tems provide the functionality of a scalable distributed hash
table, by reliably mapping a given object key to a unique
live node in the network. The systems balance object hosting
and query load, transparently reconfigure after node failures,
and provide efficient routing of queries [31].

We built our application on top of Pastry [32], a widely
used P2P overlay, and we use Scribe [10], the multicast
infrastructure built on top of Pastry, to disseminate game
state.

A. Pastry
Pastry maps both the participating nodes and the appli-

cation objects to random, uniformly distributed IDs from a
circular 128-bit name space, and implements a distributed
hash table to support object insertion and lookup.

Objects are mapped on the live nodes whose ID is
numerically closest to the object ID. For example, if we
have four nodes with IDs 1, 3, 7 and 10, then message 4 will
be routed to node 3, and message 8 to node 7. Each node
also has “pointers” to its closest neighbors on both sides.

(“Closeness” in this context is limited to the numerical ID,
no geographical or topological closeness is implied.)

Pastry routes a message toward its destination within an
expected log2bN routing steps (where b is a configuration
parameter). For example, in a network of 10,000 nodes
with b = 4, an average message would route through three
intermediate nodes. Each Pastry node maintains a leaf set,
consisting of l nodes whose IDs are numerically closest
to and centered around the local node ID. The leaf set
ensures reliable message delivery even when multiple fail-
ures happens. Despite the possibility of concurrent failures,
eventual message delivery is guaranteed unless l/2 nodes
with adjacent node IDs in a leaf set fail simultaneously,
where l has a typical value of 8 ∗ log2bN . Node additions
and fail-stop node failures are handled efficiently, and Pastry
routing invariants are quickly restored.

B. Scribe
Scribe [10] is a scalable application level multicast infras-

tructure built on top of Pastry. Multicast groups are mapped
to the same 128-bit ring of identifiers. A multicast tree
associated with the group is formed by the union of the
Pastry routes from each group member to the group ID’s
root, which also serves as the root of the multicast tree.
Messages are multicast from the root to the members using
reverse path forwarding.

Group member management in Scribe is decentralized
and highly efficient because it leverages the existing Pastry
overlay. Adding a member to a group merely involves
routing toward the group ID until the message reaches a
member of the tree, followed by adding the route traversed
by the message to the group multicast tree. As a result,
Scribe can efficiently support large numbers of groups,
arbitrary numbers of group members, and groups with highly
dynamic membership.

IV. General Distributed Game Design
This section discusses how to partition the world and how

to synchronize game states in a general decentralized system
with best-effort multicast capabilities. In the next section
we discuss how to implement the general design on a P2P
overlay and deal with features of P2P networks such as
addressing and replication.

Our idea is to distribute the transient game state of the
MMGs on a peer-to-peer network, while persistent user state
(payment information and character experience) is handled
by a central server. The important property of our system is
that it allows a centralized server to delegate the bandwidth
and processing intensive game state management to the peer-
to-peer network formed by clients participating in the game,
while retaining control over the less frequently updated
persistent game state.

The system could also be used without a server for ad
hoc game sessions when hundreds or thousands of players
gather together to play a game for a few hours, and where
all game data is transient.



A. Partition of the game world
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Fig. 1. Game Design

Our design is based on the fact that players in games
have limited movement speed and sensing capabilities, thus
the data access in games exhibits both temporal and spa-
tial localities. Networked games and distributed real-time
simulations have exploited this property and applied interest
management [27] to game state. Interest management allows
us to limit the amount of state any given player has access
to, so that we can both distribute the game world at a fine
granularity and localize the communication.

We partition the world into regions based on the limited
sensing capabilities of a player’s avatar. Players in the same
region form an interest group for that portion of the map,
so that state updates relevant to that part are disseminated
only within the group. A player changes group when he
moves from one region to another, as illustrated in the design
overview in Figure 1. He could also be allowed to listen
to updates in other, e.g. adjacent, regions if motivated or
required by game mechanics.

Additionally, objects residing in a given region only need
to communicate the part of their state that is visible to play-
ers. For example, a chest in a dungeon must communicate
its location and appearance to players, but not its status as
locked or unlocked, or its content. This also helps preventing
cheating by players snooping on traffic or in-client memory.

Interest management details are highly application depen-
dent [27]. To keep our prototype simple, we use fixed size
regions and limit a player to listening to one region at a
time. We vary the group size and the frequency of group
changes to emulate the network effect of various interest
management approaches.

B. Game state consistency
The game state must be consistent among the players

withing the same region. If, for example, player A drank
half of a bottle of wine, player B who later arrives on the
scene will only be able to drink the remaining half.

This section only considers consistency under failure-free
environments. Fault tolerance will be discussed in the next
section, because it is closely related to features of the P2P

overlay.
Our basic approach employs coordinators to resolve up-

date conflicts. Since different game states have different
access patterns and consistency requirements, we split game
state management into the classes presented below.

1) Player state: Player state is accessed in a single-
writer multiple-reader pattern. Each player updates his own
location as he moves around. Player-player interactions, such
as fighting and trading, only affect the states, e.g., life points,
of the players involved.

Because position change is the most common event in
a game, the position of each player is multicast at a fixed
interval to all other players in the same region. The interval is
determined during game design, based on the requirements
of the game. We use best effort multicast to disseminate
position updates. Although additional reliability can be
added by implementing receiver-reliable multicast [19], it
is usually unnecessary. The loss and delay of messages
can be masked by application level mechanisms such as
dead reckoning [5], that interpolates or extrapolates player
positions. An alternative to periodic updates is to multicast
the position only if it has changed or is significantly different
from what dead reckoning would predict. This approach
potentially reduces the network traffic, but incurs additional
overhead for detecting lost or delayed messages.

Players usually have to be in close proximity in the virtual
world in order to interact. Player-player interaction often
involve multiple actions in quick succession, e.g. in a heated
battle, and often require fast responses [28]. The increased
communication requirements are, however, limited to the
involved players and, possibly, the players in the immediate
vicinity (i.e. to allow them see a fight).

2) Object State: We use a coordinator-based mechanism
to keep shared objects consistent. Each object is assigned a
coordinator, to which all updates are sent (the distribution
and replication of coordinators are discussed in the next
section). The coordinator both resolves conflicting updates,
and is a repository for the current value of the object.

Successful updates are multicast to the region to keep
each player’s local copy fresh. We use best-effort multicast,
and provide functions to allow a client to probe the value
to verify the current value. Timely delivery of object state
is necessary, but like position updates, missing information
can be corrected with subsequent messages.

3) The Map: Graphic elements for the terrain and players
are typically installed as part of the game client software,
and can be updated using the normal software update mech-
anisms. A map is a non-graphical, abstract description of the
terrain of a region. Maps are considered read-only because
they remain unchanged during the game play. They can be
created offline and inserted into the system dynamically.
Dynamic map elements are handled as objects.

V. Distributed Game On A P2P Overlay
This section discusses how to map distributed game states

to an P2P overlay and how to replicate game states to



improve availability. We base our discussions on Pastry [32]
and Scribe [10], the two P2P infrastructures on which we
implemented SimMud. Our algorithm can, however, readily
be extended to other hashing functions, and it can even be
simplified for a more deterministic routing algorithm like
Chord [36].

A. Mapping games states on to peers
We group players and objects by regions, and distribute

the game regions onto different peers by mapping them to
the Pastry key space. Each region is assigned an ID, com-
puted by hashing the region’s textual name using a collision
resistant hash function (e.g. SHA-1). A live node whose ID
is the closest to the region ID serves as the coordinator
for the region. In our current design, the coordinator not
only coordinates all shared objects in the region, but also
serves as the root of the multicast tree, as well as the
distribution server for the region map. Although mapping all
synchronization responsibilities to the same node simplifies
the design, it might incur a high network load on the
coordinator. However, the load can be distributed by creating
a different ID for each type of object in the region, thus
mapping them on to different peers.

Because of the random mapping, the coordinator of a
region is unlikely to be a member of the region, but the
lack of locality actually works to our benefit for a number
of reasons. First, it reduces the opportunities for cheating
by separating the shared objects from the players that
access them. Second, instead of handing off the coordinator
when the corresponding player leave the region, the random
mapping limits coordinator hand-offs to when a player either
joins or leaves the game. Finally, random mapping improves
robustness by reducing the impact of localized (game and
real world) events. For example, multiple disconnects in the
same region do not typically result in losing the region’s
state.

B. The fault-tolerance problem
There is one major obstacle that all P2P-systems must

overcome: Participating machines can be expected to dis-
connect (or crash) in a much less controllable fashion than
pampered servers in a corporate data center. We must there-
fore make fault-tolerance and efficient failover a priority.

Pastry and Scribe provide limited fault-tolerance in that
their routing is resilient to network and node failures, but
game states still need to be replicated to improve their avail-
ability. Furthermore, the replicas must be kept consistent
upon node and network failures. Since an efficient general
solution to this problem is impossible to construct, we make
some assumptions based on our target application and the
expected configuration of a sufficiently large P2P network.

1) Node failures are independent: The node ID assign-
ment in P2P networks is quasi-random, and ensures that at
large scales, there is no correlation between the node ID
and the node’s geographic or network topological location
or ownership. It follows that a set of nodes with adjacent

node IDs are highly likely to have independent failures.
2) The failure frequency is relatively low: We expect

players to be online for extended periods of time and
have incentives not to disconnect except when they exit
(gracefully) from the game. This allows us to use lazy node
failure discovery, i.e. use existing game events to discover
node failures, instead of actively probing. It also means we
need fewer replicas of data to maintain consistency in the
face of node failures.

3) Messages will be routed to the correct node: The low
failure frequency implies that a key will almost always be
routed to the node whose ID is numerically closest to key.
P2P systems such as Chord have demonstrated this property
even when half of the nodes fail simultaneously [36]. With
a much lower failure frequency, it is reasonable to assume
that messages eventually reach the correct node.

C. Shared state replication
We design a lightweight primary-backup mechanism to

tolerate fail-stop failures of the network and nodes. Fail-
ures are detected using regular game events, without any
additional network traffic. We dynamically replicate the
coordinator once a failure is detected. The algorithm tries
to keep at least one replica up under all circumstances, to
prevent losses. Furthermore, our replication algorithm does
not currently distinguish graceful departures (i.e. quitting)
from fail-stop failures (i.e. node crash/disconnect), however
keep in mind that graceful departures can be handled more
efficiently.

Our discussion is based on a single replica, but can be
extended to multiple replicas to cope with higher failure fre-
quencies, at the cost of increased bandwidth usage for repli-
cation messages. Additional replicas can be added/removed
dynamically, in response to join/leave rates.

Failover and replication use the property of the P2P
communication subsystem that routes messages with key K
to the node whose ID N is closest to K.

As stated above, the object coordinator will be the node
whose ID is closest to the ID of the object. Given an object
with key K, then the numerically closest node N will be
its coordinator. We will similarly make the next numerically
closest node M the object replica. (N,M : ∀I : |N −K| ≤
|M − K| ≤ |I − K|.)

This means that a Pastry message with key K will always
be routed to the corresponding coordinator N , and should
N fail, this message will instead be routed to the replica M .
Handling of failover thus becomes very simple—if node M
receives a query for K, this implies that node N has failed
and that node M should become the new coordinator. The
only delay incurred is the time it takes the underlying P2P
routing to determine that N has failed.

Since N is the node closest to K, we know that the replica
M must be the closest node on either side of N . Pastry keeps
the leaf set of N updated, so N just sends to whichever of its
nearest neighbors is closest to K. This way, should a replica
node fail, the next eligible replica node will automatically



become the replica as soon as the leaf set in N is updated.
Similarly, if a node joins which is closer to K than M , it
will automatically become the new replica.

A newly joined node can also become a coordinator. If
a node T where |N − K| ≥ |T − K| is added, then T
will now receive update requests for object K. On receiving
a request for an object K that T does not coordinate, T
will find the current coordinator N and request a transfer
of all state of K. Until the transfer is complete, T will
continue to forward updates to N , but keep copies. Once
the transfer is complete, it will apply all the stored updates
to the transferred object and take over as coordinator. Thus,
should the new coordinator die during a state transfer, the
old coordinator will just continue as coordinator. When the
new coordinator takes over, the old coordinator becomes the
new replica and the old replica will be retired.

With this approach, accesses to the shared objects do
not need to block during the data transfer between the
old and the new replicas. Data replication can be done in
the background, and allows the game to progress with no
noticeable delays for the client.

D. Discussions of the replication algorithm
When all but one replica or coordinator is lost, there exists

a window of vulnerability during which only a single copy
of the consistent state exists, and should that copy also be
lost before recovery, consistency is lost.

The size of this window is a sum of the failure detection
and the recovery times. Since we use normal game events
to detect failures, the failure detection time depends on how
often the coordinator is contacted, which is proportional to
the number of players in the group. The recovery time is
the time to transfer data to the new coordinator or replica,
which depends on both the size of the game state and the
network characteristics.

We do not know of any comprehensible study of session
times in RPGs, but through interviews with players, we
have gathered some anecdotal data. Large quests often take
multiple hours to complete, with averages of four to five
hours. During the quest, players have strong incentives not
to leave the game, since doing so may lose them their invest-
ment in time. Novice players start with smaller quests that
take less time, but session times are not necessarily shorter,
partly because of the need and excitement of exploring and
experimenting with a new game.

Lacking hard data on RPGs, we have instead used real
life measurement of the Gnutella P2P system. It has been
found that over a period of 60 hours, the average session
time was 2.3 hours [34]. We realize that file sharing and
online gaming session lengths are apples and oranges, but
given our anecdotal data, 2.3 hours seems conservative, if
anything.

Equating failure and exits, this gives a failure percentage
per minute of 0.007, i.e. out of 1000 nodes, 7 will fail or
exit any given minute.

As we will show in Section VII-G, the window of vul-

nerability for SimMud is small enough that the replication
algorithm can tolerate a relatively high failure frequency
without loss of consistency.

Should a catastrophic failure happen, i.e. coordinator and
all replicas fail simultaneously, we can still recover the state,
although without consistency guarantees. Since every node
that has registered itself as interested in the (now lost) state
caches it, we can regenerate the lost state from the caches
with a high probability.

Isolated network outages are indistinguishable from node
failures, except at the affected node, and handled as such.
Larger scale outages, such as those that lead to network
partitions, are more troublesome. The system can continue
to allow shared state access, but with no communication
between partitions, the original world would split into two or
more parallel worlds, likely with loss of consistency. Brewer
neatly codifies the issue in his “CAP conjuncture” [17]
which states that a distributed system can enjoy only two out
of three of the following properties: Consistency, Availability
and tolerance of network Partitions.

One option is to sacrifice consistency for availability and
tolerance of network partitions. The real challenge is when
the partitions again merge. Since the parallel worlds may
have diverged a lot by this time, they cannot be merged back
without potentially causing paradoxes. If, however, the game
world has a limited lifetime, it could be better to just let the
parallel world exist until the next reset and then attempt to
sort out any remaining paradoxes in persistent data.

The approach we take is to require that coordinators be
“blessed” by the central server, i.e., the node that handles
account information and persistent player states. Thus, even
if the partition is only partial, meaning that nodes in one
partition cannot reach nodes in another partition, but both
can reach the central server, the central server refuses to
“bless” concurrent coordinators for any given object.

This solution insists on consistency, but will lose avail-
ability in the face of network partition. Since the centralized
account server is already a single point of failure in our
scheme, we do not make the situation worse. Our goal
of using a distributed P2P platform was never to improve
resiliency, but rather to improve flexibility and scalability.
With this approach, availability will be no worse than that
of a traditional client-server solution.

VI. Implementation details
We have implemented SimMud on top of FreePastry, an

open source version of Pastry [32]. SimMud is purposely
simple and mostly unoptimized, since we do not want to
obscure the effects we want to study.

A. Map and objects
Each region is described by a two-dimensional array of

terrain information, and an object array that tracks the one
kind of mutable object, food, that our game models. Each
food object consists of a counter that keeps track of how
much nutrition (food units) the object consists of.



The player object handles the player’s current position and
other states. Players can perform three different actions—
moving, eating and fighting. Eating is a typical player/object
interaction, and fighting is a typical inter-player interaction.

We distribute the computational and communication load
by mapping regions to the Pastry key space, as described in
the previous section.

Each multicast message for position updates includes
player ID, the current location on the map, and a player
specific sequence number. The sequence number can be used
to detect re-ordered or missing packets.

B. Inter-player interaction
Inter-player interactions are implemented with direct UDP

messages. To reduce the opportunity of cheating, all actions
are executed on all participating parties, with the same input
and algorithm, and the results are exchanged for comparison.
In fighting, the damage to each player is usually calculated
based on the capability (e.g., skill, health) of each player
and a pseudo-random number. The pseudo random number
is generated by each player with the same seed, which can
be agreed upon either by applying a simple deterministic
function over the two player IDs, or from a third party. The
coordinator can be used as arbiter where event ordering is
important.

C. Object updates
The implementation of object updates aims to reduce the

number of message round trips between players and the
coordinator while maintaining fairness among the players.
We recognize two basic types of object updates. The first
type is initialization, where the old value does not matter,
e.g., a spell that restores your health. The second type is
read-write updates, where the update value depends on the
result from the preceding read.

Initializations can be implemented trivially, by just send-
ing the object name and the new value to the coordinator.

For read-write updates, the update is only valid if the
current actual value matches the client’s cached value. An
example would be for a spell that doubles your strength.
These updates are implemented by sending the object name,
the original value V 1, and the new value V 2 to the coordi-
nator. The coordinator keeps a queue of requests. For each
request at the top of the queue, the coordinator compares V 1
with the object’s current value to ensure that it is up-to-date.
The update will proceed only if two match, otherwise the
request is rejected and the current value is sent back to the
player. The player will then examine the current value and
decide whether to request again.

In some cases, object version numbers are used instead
of its value. To illustrate how version numbers are used
and why, consider an object that has a value X . A player
P1 updates X to X ′. Lets assume that a player P2 now
updates X ′ to X ′′ = X . If, at this time, a third player P3
wants to update the value X of the object, then without
any additional mechanisms, he would succeed despite the

fact that the object has been updated twice compared to
the object in P3’s cache, and it is only because of the
coincidence that X == X ′′ that he would succeed. If this
behavior is unacceptable, historic dependency is needed, and
this is implemented by adding a monotonically increasing
version number to the object. An update will only succeed
if the version number provided matches the version number
of the object.

VII. Experimental Results
This section presents the experimental results we have

obtained with a prototype implementation of SimMud on
FreePastry, the open source version of Pastry [32]. We
use the network emulation environment in FreePastry to
experiment with large networks of Pastry nodes, through
which the instances of the node software communicate.
The network emulator is largely transparent to the Pastry
implementation. We concentrate on the networking aspect
of results because the computing load on each node is
negligible compared with the bandwidth requirement.

We configured Pastry nodes to run in a single Java
VM. All experiments are performed on dual-processor Dell
PowerEdge 1550 with 1.2 GHz Pentium III CPUs and 2 GB
of main memory. The machines run Linux 2.4.17 and Sun
JDK 1.4.1. Both SimMud and our extension of FreePastry
are written in Java, and built on top of FreePastry 1.1. We
run FreePastry with a key base of 24 and a leaf set of 32.
The maximum simulation size is constrained by the memory
available, and for our system translates to a practical limit
of about 4000 virtual nodes.

We analyze the effect of total population, group size,
network dynamics, and of our aggregation optimizations on
the communication load and message delay of our system.
In every instance, the results corroborate our hypothesis that
our system has the scalability properties we designed it for.

Since real traces for role-playing and strategy games
are not available, we generate our own traces based on a
simple, but aggressive, model of typical movements in online
role-playing games such as EverQuest. In our model, our
simulated players on average eat and fight every 20 seconds
and only remain in the same region for 40 seconds. This is
more sustained activity than we’d expect from a real player,
but compensates for the relative simplicity of our game.

Similarly, in our game, two or three position updates
per second would be more than adequate, but we multicast
position updates every 150 milliseconds to really stress our
system (for comparison, the first-person shooter Quake II
broadcasts player position updates every 50ms).

Each region consists of a 200x300 map grid and is
described using a 60 KB array. Associated with each region
is also a 60KB object array, describing the type and amount
of each object. In the base implementation, position and
object updates are sent in 200 byte serialized Java records.
The map and object arrays are inherently sparse, and in
packed format the messages to transfer maps and objects



are only 2 ∗ 6 KB. One replica is kept for each coordinator.
For the simulations, we randomize the actions taken by each
simulated player, and average the results of 5 runs for each
data point.

A. Base Results
Our first measurements of the system are when the game

is at a stable state, i.e. when no players join or leave the
game, and with no optimizations applied. These measure-
ments will allow us to evaluate the basic performance of the
platform. In our first experiments, we measure 300 seconds
of simulated game play with an average of 10 players per
region. In a real game, we would strive to have an average
of less than one player per region by dividing the world
into more regions. (For comparison, EverQuest groups are
limited to six members, which means our simulation would
correspond to having almost two full parties of players
present in every region.) In order to obtain message delays,
we use a randomly generated network topology in which
each link between two nodes is assigned a random link delay
in the range of 3–100 ms.
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Fig. 2. Distributions of message rate. Average group size is 10.
No message aggregation.

Figure 2 presents the distribution of message rates for
1000 and 4000 players with 100 and 400 regions, respec-
tively. Each node receives between 50 and 120 messages per
second, which matches our expectations given the region
density (10 players/region) and update frequency (about
7/second) yielding 10 ∗ 7 update messages per second1.
Eating and fighting take place at intervals of 20 seconds,
region change at intervals of 40 seconds, and generate a
much smaller number of messages.

The distribution of unicast message hops is similarly
illustrated in Figure 3. We find that practically all unicast
messages are delivered within six hops. With our simulated
delays, we see a maximum delay of about 400ms, with most
messages being delivered in less than 200ms.

Most multicast messages are also delivered using six or
less hops, but the distribution, illustrated in Figure 4, has
a long tail with about 1% taking more than 18 hops and

1At 200 bytes per message, this translates into a 14KB/s flow of
messages, or twice the capacity of a modem. We will explore how to reduce
this without resorting to the obvious reductions in message size or update
frequency.
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size is 10. No message aggregation.

going well beyond 50 hops in the 4000 node experiment.
This translates to delays of up to several seconds. This
behavior is due to idiosyncrasies in Scribe multicast routing,
and although the Scribe authors suggest a solution to this
problem [10], it is not implemented in the software available
to us.

B. Breakdown of messages
Table I presents a breakdown of the per second message

rate by their functionalities. Without message aggregation
(an optimization discussed in Section VII-E), more than 99%
of messages are position updates. The remaining messages
are split between object updates, player-player interactions
and moves across regions. The message rate for object
updates is higher than that of player-player interactions, even
though they take place at the same frequency. This is because
successful object updates are multicast to the region, as well
as sent to the replica, while player-player interactions only
affect the participating players. Although region changes are
the most infrequent events in the system, due to the amount
of data involved in this event, they consume more bandwidth
than the rest of the operations.

Although the communication is dominated by position
updates, it is also important to understand the distribution
of other actions so that we can generalize our results to
games with different characteristics. Among the rest of the
operations, position update is the most likely to generate
unbalanced load. Figure 5 presents the message distribution
of object updates. It demonstrates that the coordinator task
is concentrated on about 10% of the nodes, with a small
percentage of the coordinators handling more than one
region.



Number of Nodes 1000 1000 4000 4000 1000 1000 1000
Number of Regions 100 100 400 400 25 25 100

Message Aggregation Yes No Yes No Yes No Yes
Failure (node(s) per sec) 0 0 0 0 0 0 1

Total Messages Average 24.12 82.17 26.98 82.12 26.58 283.13 24.52
Max 227.62 115.57 216.14 125.18 383.11 341.71 221.38

Average Application Messages 14.76 81.84 14.73 81.7 17.46 282.81 15.09
Average Position Updates 13.34 80.33 13.34 80.18 13.34 278.89 13.31

Object Update Average 0.85 0.84 0.93 0.95 2.31 2.28 1.07
Messages Max 8.24 7.82 11.31 10.75 13.92 14.42 13.48

TABLE I

BREAKDOWN OF MESSAGE RATE BY FUNCTIONALITIES.

0 20 40 60 80
Percentage of nodes

[0.0-0.5]

[0.5-1.0]

[1.0-1.5]

[1.5-2.0]

[2.0-2.5]

[2.5-3.0]

[3.0-3.5]

[3.5-4.0]

[4.0-4.5]

[4.5-5.0]

[5.0-5.5]

[5.5-6.0]

M
es

sa
ge

s/
se

co
nd

1000/100
4000/400

Fig. 5. Distribution of object update messages.

C. Effect of Population Growth
Revisiting the experiments illustrated in Figures 2, 3

and 4, we see that for an average of 10 players per region, the
results for 1000 players and 4000 players are quite similar.
We can thus conclude that as long as average region density
is kept constant, increases in player population can be
handled. This is consistent with the approach existing online
games take—they expand their world to keep a comfortable
population density.

The message delay largely depends on the underlying
overlay routing. Pastry routing will typically route a message
within log(N) hops, where N is the total number of nodes.
This means that routing times will increase with population
size, but only very slowly. As discussed in the base results,
the long delay in the 4000 player case is largely due to the
Scribe’s multicast algorithm.

D. Effect of Population Density
We have also evaluated the effect of population density

by re-running the experiment with 1000 players and 25 re-
gions, thus increasing the average player density to 40 per
region. As we would expect, the number of position updates
received by each node increases linearly with the increase
in density. Table I shows that, without message aggregation,
the number of total message increases by four times when
the average players per region is increased from 10 to 40.

Obviously, our scheme is much more sensitive to player
density than to the total number of players in the game.
This also indicates that non-uniform player distributions

could hurt our performance. We propose three ways to deal
with this, presented in increasing order of implementation
complexity.

The first is to simply use game mechanics to enforce limits
on player density, for example by having a gate keeper that
will not let players pass unless they are carrying the right
amulet. If every region can be “guarded” in this way, that in
itself will solve the problem. It will, however, place arbitrary
and sometimes strange limitations on what can be done.

The second way requires that the region division be non-
uniform. That is, different regions can have different size.
This allow us to statically partition regions with higher ex-
pected density into many smaller regions. This would make
sense e.g. for villages and cities, where walls would naturally
create barriers limiting the player’s sensory abilities. This
approach can be combined with the game mechanics above.

The third way is to allow the system to dynamically re-
partition regions when the player density increases. This is
significantly more complex than the above two solutions,
and harder to combine with game mechanics, but adds the
ability to handle unexpected aggregations of players, e.g., if
players decide to re-enact Woodstock on an otherwise empty
field.

E. Effects of message aggregation
Since updates are multicast, this allows us to aggregate

messages in the root before relaying them. This allows us to
both reduce the number of messages and to amortize the per-
message overhead over more payload, significantly reducing
the average per-node load.

We have altered our system so that position updates from
all players present in a region are aggregated before being
sent out. This means that in the case with 10 players/region,
ten update messages will be aggregated into a single mes-
sage. The aggregated update is 1 KB, about 50% of the size
of 10 individual messages, cutting bandwidth requirements
by half.

Since the position updates are aggregated at the root of
the multicast tree, the number of messages received by the
root remains unchanged, while the regular nodes observe a
decrease of messages proportional to the number of nodes
in the group. This effect is demonstrated in Figure 6. For
a majority of the nodes, the message rate drops from 60-
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Fig. 6. Effect of message aggregations. 1000 players, 100 regions.

110 per second to 0-10 per second, leaving only the 10%
of nodes that are root nodes to handle the same number of
messages as before.

For the same reasons that one node may coordinate mul-
tiple regions, a node may also become the root of multiple
multicast trees, resulting in a large amount of messages
being handled by one node. This mechanism can be further
improved by performing aggregation on several nodes, using
techniques similar to those of SplitStream [9]. This could
allow us to distribute traffic more evenly across the network.

F. Effect of Network Dynamics
Our experiments so far have excluded effects caused by

node join and departures. One of the major challenges in
distributing an MMG over a peer-to-peer network is that we
can expect nodes to be added and removed randomly.

As we’ve outlined earlier, our failover mechanism will
recover from node losses transparently and quickly, but
each node join and departure will cause an overhead for
transferring state to new replicas and coordinators above
what is motivated by normal player movements.

To measure this, we repeat the 1000/100 experiment, but
with nodes joining and leaving during the experiment. We
simulate one random node join and node depart event per
second on average, thus keeping the total number of nodes
at approximately 1000 for the duration of the experiment.

This evaluates to a per-node failure rate of 0.06 per minute
and an average session length of 16.7 minutes. This is
close to the median session length of 18 minutes reported
by Henderson and Bhatti on a set of popular Half Life
servers [18]. Half Life is a first person shooter (FPS), and
we expect significantly longer sessions in RPGs. Using this
short session length will, however, allow us to generate a
measurable amount of transfers of coordinators and replicas.

In our experiment, the stipulated join/leave rate leads
to 112 coordinator migrations, and 173 replica migrations
during the 300 second run. The average message rate with
node joins and departures is higher than with a stable system,
and the overhead caused can be pinpointed by examining
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Fig. 7. Coordinator handling overhead with node joins and leaves.
1000 players, 100 regions. One node join and one node leave each
second on average.

the message distribution attributed to handling coordinators,
illustrated in Figure 7. The average message rate is increased
from 24.12 to 24.52. Even with this artificially high failure
frequency, we see that for the majority of nodes, there is
little change in the message rate.

G. The possibility of catastrophic failures
The loss of consistent states results from losing both a

coordinator and all its replicas in the time-window before
the loss is detected and a state transfer can be completed.
We define this scenario a catastrophic failure. Our system
detects the failure of a coordinator only when processing
a update request. In our experiments we have a single
replica, and region coordinators receives update requests
every 1.5 to 2 seconds on average. The transfer size of
a region is 12 KB, which means it can be transmitted in
less than two seconds even at modem speeds. To account
for re-transmission attempts, we will stipulate a window of
vulnerability W of 10 seconds.

This means that if, for example, the coordinator crashes,
the replica will be the sole repository of region data for
the next 10 seconds, after which it will have taken over as
coordinator and created a new replica. Only if the replica
also crashes before it can take over as coordinator and create
a new replica will data potentially be permanently lost.

The failure frequency R in our previous experiment is
one failure per second, or 60 failures per minute, and the
ratio of coordinators to nodes N is 1/10. The coordinator
failure frequency is thus R∗N , or 6 coordinator failures per
minute. If during this window W the corresponding replica
dies, we have a catastrophic failure. Since we know that the
failure frequency L of nodes in the experiment is 0.06, we
can now calculate the catastrophic failure frequency C =
(R ∗ N) ∗ (W ∗ L). For our experiment it thus comes to
(60 ∗ (1/10)) ∗ ((10/60) ∗ 0.06) = 0.06, or once every 16
minutes.

Using the more realistic session length of 2.3 hours (see
Section V-D for details) and again interpreting all session
ends as node failures, we get 1000∗0.007 = 7 node failures



per minute. This gives us a catastrophic failure frequency
of (7 ∗ (1/10) ∗ ((10/60) ∗ 0.007) = 0.0008, or about once
every 20 hours.

Assuming a fast network and shorter timeouts before the
replica takes over, the window of vulnerability can be shrunk
to around two seconds, which would cause the catastrophic
failure frequency to drop to once every four hours for our
exaggerated failure frequency and once every four days
using the more realistic rate derived from the 2.3 hour
average session length. Similarly, if we keep the 10 second
window of vulnerability and add a second replica, we get
catastrophic failures once every 4 1/2 hours and 121 days
respectively.

VIII. Related Work
Our target games are Massively Multiplayer Games such

as EverQuest and Ultima Online. Most existing MMGs
are based on a client/server model, and employ server
clusters to improve scalability. Butterfly.net [38] and Zona’s
TeraZona [38] both provide middleware for grid and cluster
based game servers. The client-server approach uses dedi-
cated server resources instead of resources provided by the
game players as in our P2P approach. Although the P2P
approach is more flexible, and lowers the deployment cost
of user designed games, it also incurs a higher security risk
because of the game state is distributed to the peers.

Group communications and interest management are also
used in many other distributed game implementations, in-
cluding AMaze [5], Mercury [6], and by Fiedler et al. [16].
Interest management is also used in DIS [8] and HLA [13],
distributed interactive simulations that feature large scale
virtual environments. Although SimMud shares many tech-
niques from previous efforts in games and distributed sim-
ulations, we distinguish ourselves from previous work in
that SimMud uses the cycles and bandwidth of the player
machines instead of dedicated servers. As a result, state
replication is an integral part of SimMud, but has not been
considered in previous systems.

Replication is an integral part in peer-to-peer file shar-
ing [33], [12], [22] for both availability and performance.
However, those are read-only file systems, while SimMud
applies frequent update to shared data. As a result, SimMud
must maintain data consistency while tolerating network and
node failures. Our approach to always maintain a constant
number of replicas is similar to that of CFS [12]. However,
the consistency requirements in SimMud, require us to
design a replication mechanism that has a small window
of vulnerability.

Fault tolerant consistent data services can be built with
quorum systems [23], [24], [25]. Unlike SimMud which
requires the central server to “bless” one of the partitions,
these approaches are completely distributed. In quorum
systems, updates cannot proceed if the number of nodes in
the partition is not large enough to form a quorum. Fault
tolerant consistent data services can also be built on top

of view-synchronous group communication [15], [30] using
global totally ordered broadcast services [21], [1]. Those
approaches provide stronger consistency guarantees than our
approach, but may incur much higher performance costs
because of the use of totally ordered multicast.

Finally, similar to Seti@home[2] and distributed.net, peers
in SimMud contribute not only network bandwidth, but also
memory and CPU cycles. In particular, the coordinator con-
tributes compute power to manage shared states. Although
this contribution is dwarfed by the corresponding contri-
bution in network bandwidth, consistency mechanism in
SimMud can be applied to distributed peer-to-per computing.
This will allow peer-to-peer computing platforms to support
more sophisticated computing than their current staple—
embarrassingly parallel programs.

IX. Conclusions And Future Work
This paper presents the design and implementation of

SimMud, a simple massively multiplayer game, on a peer-to-
peer overlay. We take advantage of the interest management
characteristic in games, and design a scalable mechanism to
distribute and map game states to the peers. Furthermore, we
present a lightweight replication algorithm that has a narrow
window of vulnerability, and can tolerate high failure rates
with a small number of replicas.

Measurements with up to 4000 players show that SimMud
scales with the number of players. The average message
delay of 150ms can be easily tolerated by massively mul-
tiplayer games. The bandwidth requirement on a peer is
7.2KB/sec on average, and peaks at 22.34KB/sec. This is
well within the capacity of consumer broadband services
like DSL. Moreover, with only one coordinator backup,
SimMud can sustain a practical failure rate for up to 20
hours, exceeding the interval for which game states are
refreshed.

In conclusion, we have demonstrated that a new applica-
tion, massively multiplayer games, can be supported on peer-
to-peer overlays. This application is significantly different
from existing P2P applications, which focus on file sharing
and content distribution. The shared state distribution and
replication mechanism presented in this paper not only can
handle games, but can also be extended to handle other
forms of peer-to-peer computing.

Much work need to be done beyond this proof-of-concept
demonstration. To begin with, SimMud is a simple game
and our network emulation assumes uniform latency. We
are experimenting with games with larger amount of states
on globally distributed network platforms. In addition to
further validating this idea, the result may also motivate
optimizations of state transfer and latency reduction. Fur-
thermore, cheating is a serious problem in online games, and
the problem is exacerbated in the P2P architecture, because a
large portion of the game function are executed on untrusted
peers. We plan to prevent cheating by detection. Since cheat
detection is a resource consuming job, we can distribute the



load to the peers. The P2P architecture is potentially suitable
for cheat detection, because locality of interest and the basic
replication scheme apply to both the game and monitoring
of game states.
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