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Abstract

In thispaperweattemptto gainanunderstandingof thebehaviour of usersin amultipoint,interactive
communicationscenario.In particular, we wish to understandthe dynamicsof userparticipationat a
sessionlevel. We presentwide-areasession-level tracesof the popularmultiplayernetworked games
Quake andHalf-Life. Thesetracesweregatheredby regularly polling 2256gameservers locatedall
over the Internet,and queryingthe numberof playerspresentat eachserver and how long they had
beenplaying. We analysethreespecificfeaturesof the data: the numberof playersin a game,the
interarrival times betweenplayersand the length of a player’s session. We find significant time-of-
day andnetwork externality effects in the numberof players. Playerdurationtimesfit an exponential
distribution,while interarrival timesfit a heavy-taileddistribution. The implicationsof our findingsare
discussedin thecontext of provisioningandcharging for network quality of servicefor multipoint and
multicasttransmission.Thiswork is ongoing.

1 Introduction

In spiteof beinganactiveresearchareafor overa decade,multicasthasyet to seelarge-scaledeployment.
This maybedueto a numberof factors,suchasthelack of compellingmulticastapplications,or thelack
of a methodfor multicastserviceprovidersto chargefor a multicastservice[10]. We arein theprocessof
developingapricingschemewhichallowsefficientandpredictablechargingfor multicast(initial detailsof
thisschemearedescribedin [15]). Oneproblemwith attemptingto chargefor multiple-sourceapplications,
however, is the needfor predictableprices. If userssharethe costof a multiusertransmission,and the
numberof userschangesas usersjoin and leave the session,the price paid per userwill also change.
We thereforeneedto understandhow usersbehave in multiuserscenariosif we are to engineerpricing
schemesthat will provide stableand predictableprices. Models for userbehaviour are also useful in
designingpricing schemesfor maximisingobjectivessuchasaggregateutility or network utilisation,and
for understandingandproviding for network Quality of Service(QoS).

In a somewhat“chickenandegg” situation,the limited deploymentof multicastalsomeansthat there
are few sourcesof datafrom which a model for userbehaviour can be determined. A featureof our
intendedpricing schemeis thatit shouldbeindependentof theunderlyingnetwork protocols.Thus,there
is no reasonwhy a modelfor multipoint userbehaviour needbe determinedfrom IP multicastsessions.
Fromanend-userviewpoint, thereis no functionaldifferencebetweenanIP multicastsessionandseveral
unicaststreams,andsouserbehaviour shouldbesimilar in bothof thesemultipoint situations.Theremay
bea differencein costandthis maybeusedasanincentive for theuseof multicast.

With theremoval of theabsoluterequirementfor nativeIP multicastsessionsin orderto providemulti-
point communications,theproblemof creatinga modelfor multipoint behaviour becomesmoretractable.
Therearemany existing,andpopular, multipoint applicationsthatuseunicastrouting,for example,online
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chatapplicationssuchasInternetRelayChat(IRC), or multiusernetworked gamessuchasQuake. We
have chosento examinethelatter to determineuserbehaviour, andthusto determinetherequirementsfor
pricing this behaviour andprovisioningnetwork resources.

This paperis structuredasfollows. We discussour motivation for choosinggamesasan application
andnoteprevious work in Section2. Section3 describesthe methodologyusedfor gatheringdataand
summarisesour results. Sections4, 5 and6 analysethreeparticularaspectsof the data,namelysession
membership,sessiondurationanduserinterarrival times respectively. Finally, Section7 concludesthe
paperanddiscussespossibilitiesfor futureresearch.

2 Motivation

Multiplayer networkedgamesarecontributing to an increasinglylargeproportionof network traffic [22].
Suchnetwork usageis likely to increasefurthernow thatconsolessuchastheSegaDreamcastandSony
Playstation2 featureEthernetandmodemconnections.Gamesplayersarealreadywilling to pay extra
to get an improvementin their playing experience,asevidencedby specialistgaminghardwaresuchas
joysticks,mice,mousepadsandevenfurniture.Gamepublishershaveproposedchargingplayersper-game
via network delivery, ratherthanthecurrentpracticeof charging a one-off feefor thesoftware[25], or by
charging a fee pergamewith the opportunityfor playersto win money or prizes[29]. More interesting,
from a networking point of view, is the existenceof modemsmarketedasbeingspeciallyoptimisedfor
games[1], andsoftwaredesignedto determinenetwork characteristicsof potentialgamesserverssuchas
delay[13]. Thesedevelopmentsindicatethatgamesplayersareinterestedin network QoS,andwould be
willing to payfor theability to improveit.

The gamesthat we study hereareof the type commonlyreferredto asFPS(First PersonShooter)
games.Playersconnectto a centralserverusingunicastUDP (or occasionallyTCP)flows. Themaximum
numberof playersthat canconnectto a server is setarbitrarily by the server administrator, accordingto
theamountof network traffic andCPUtime they wish thegameserver to consume(for thegamesstudied
here,this figure is typically set to 16 or 32 players). Players’actionsaretransmittedfirst to the central
server, which calculatesandmaintainsthe overall stateof the gameandthentransmitsthis statebackto
theplayers.Thegeneralobjectiveof mostof thesegamesis to explorea commonvirtual world andkill as
many of theotherplayersaspossible.

2.1 Previous work

Multicast sessionson the MBone arestudiedby Almeroth andAmmar [2]; thesesessionsareall single-
sourceandperhapsdo not reflectthedifferentdynamicsof multiple-sourceapplications.Thereis a long
historyof network andInternettraffic analysis(see[24] for asurvey). Themajorityof this,however, looks
at packet-level andnetwork-level traces. In particular, Bangunet al. [3] andBorella [5] both study the
traffic patternsof multiplayergames,but donotexaminesession-level userdynamics,andlimit thestudies
to local areanetwork traffic only. Althoughtheremaybeinterestingrelationshipsbetweenthedataat the
packetandsessionlevels,for instancein termsof self-similarity, wedonotconsiderthesein thisstudy, but
leave themfor possiblefuturework.

3 Methodology

AlmerothandAmmar [2] show that themonitoringof IP multicastsessionsis possiblethroughjoining a
sessionandthenwatchingothersessionmembersjoin andleave. This is impracticalfor networkedgames,
however, sinceto join a gameimpliesparticipation.As mostpeopleareonly capableof playingonegame
atatime,andonly for acertainnumberof hoursaday, thislimits thescopeof any datacollection.Although
it is possibleto simulatea userthrougha scriptor program,such“bots” arefrowneduponby many game
serveroperatorsandgenerallyleadto theuserin questionbeingbarredfrom thatserver. Furthermore,there
is adataintegrity problemin thatuserbehaviour mightdependon thenumberof playersin agame,andso
by joining agameto monitorit, we mightaffect theresults.
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Somegameserversoffer a queryingmechanism,wherebyspecificvariablesaboutgamestatuscanbe
retrieved. Sincejoining and continuouslymonitoring gamesseemedimpractical,polling and querying
gamesservers at regular intervals was determinedto be the next bestoption. By polling servers and
determiningthenumberof playersateachpoll, anapproximationof userbehaviour canbeobtained.Many
networkedgamesalsoallow thequeryingof suchvariablesasplayers’nicknamesandtheamountof time
thatthey havebeenplaying,andsothedurationof eachusers’sessioncanalsobeestimated.Theaccuracy
of thismethoddependson thefrequency of polls. If thepollsaretoofarapart,thenany userswhojoin and
leave betweenpolls will bemissed.If thepolls aretoo frequent,theamountof network traffic might have
aneffecton theserversandperhapsaffectuserbehaviour.

Datawerecollectedusing the QStattool [27], which is a programdesignedto display the statusof
gamesservers,andwhich supportsa largenumberof onlinemultiplayergames.Of thesegames,thegame
Half-Life [14] wasdeterminedto bethemostpopulargame,andwasalsooneof thegameswhichsupports
thereportingof a player’sconnectiontime,andsoit waschosento concentrateon playersof this game.

A list of 2193 IP address/portpairs1 of machinesrunning the Half-Life daemonwasobtainedfrom
a “masterserver” at half-life.west.won.net. This list is composedfrom submissionsby server
administratorsand/orautomaticregistrationby servers(dependingon the game). This list may alsobe
queriedby usersthroughtheapplicationitself, or throughtheuseof someof theaforementionedprograms
for determiningtheclosestor quickest-respondinggameserver.

ServerswerepolledusingQStatat regular intervals (Figure1). At eachpoll, the numberof players,
their chosennicknamesandthe numberof secondsthat eachplayerhadbeenconnectedwereretrieved
(exampleoutputfrom QStatis shown in Figure2). If a responsewasnot received from a server, group
membershipwasassumedto bethesameasat theprevioussuccessfulpoll. Sincepolling tookplaceat the
applicationlevel, we could not detectsucheventsasunsuccessfuljoin attempts,asthesedo not register
in thegame.We werealsolimited in thatpolling takesplacefrom a centralmachineat UCL, andsoany
network failuresthatexistedsolelybetweenUCL andthegameservers(but not betweenthegameserver
andtheplayers)wouldaffectour results.

SERVER
GAMEPOLLING

USER USER

USERUSER

REPLY (2 UDP pkts) <−

QUERY (2 UDP pkts) −>

(PlayerName, ConnectTime)

MACHINE

Figure1: Datagatheringsetup

Servers Game Frequency Duration
O-I 2193 Half-Life 30min 1 week
O-II 35 Half-Life 5min 3 days
O-III 22 Quake 5min 1 week
O-IV 3 Half-Life 5min 2 months
O-V 3 QuakeIII Arena 5min 2 months

Table1: Observations

1It is not uncommonfor a singlemachineto run several serverson differentports;of our list of 2193servers,therewere1725
uniqueIP addresses.
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NAME: Merlin TIME: 5710
NAME: [F.u.T]The_LAW TIME: 5728
NAME: MagNETo [FH] TIME: 2176
NAME: TomiN TIME: 2409
NAME: [DEM] Guybrush T. TIME: 8575
NAME: [.HoF.]Ben Kenobi TIME: 1177
NAME: [Thug]Tosh TIME: 142
NAME: TDMT_Silvan TIME: 1540
NAME: Gulzak TIME: 874
NAME: [DBK]HannibalTC TIME: 954
NAME: [STANDARD] Kill Demon TIME: 1085
NAME: -=Phoenix=- TIME: 5593

Figure2: ExampleQStatoutput

Severalsetsof observationsweretaken; thedifferencesbetweenthese,andthe labelsthatareusedin
this paperto referto them,areshown in Table1. Thefirst setO-I usedthemasterlist of Half-Life servers.
From this, the 35 most popularservers were selectedfor more detailedobservation over one weekend
in O-II.

SetO-III used22Quakeservers,theaddressesof whichwerealsoobtainedby queryingamasterserver.
Quake is an older game,introducedin 1996,which is why the numberof serversis so muchlower than
Half-Life, whichfirst wentonsalein 1998.Quake, however, is oneof thefew gamesto allow thequerying
of players’IP addresses,which maybeusefulfor determiningthenetwork topologiesandspatialanalysis
of games.Thesourcecodefor thegameis freelyavailable,sothissetof observationsmayproveusefulfor
futurework.

Thelastpair of observations,O-IV andO-V, comefrom two setsof serverswhich MicrosoftResearch
havebeenrunningat their sitein Cambridge,UK. Usingapublic list of serversprovedto havedifficulties,
sincesomeof the IP addresseson the list weredynamicallyallocated(for instance,usersrunninggame
serverson dial-up machines).It would appearthat the masterlist doesnot updatefrequentlyenoughto
eliminatethese,andso many polls would endup targetingmachineswhich wereno longerrunning the
gameserver. Of the original list of 2193addresses,we found that 265 of thesewerenever running the
serverduringthecourseof ourpolls. Thegameusedin O-V, QuakeIII Arena, doesnotallow thequerying
of playerduration.For this setof datawe assumethateachplayerjoinedat thetime of thepoll at which
they arefirst noticed;this figurethushasaninaccuracy of up to two poll periods.

3.1 Summary of observations

We observed a total of 1,757,539individual sessions(i.e., individual usersjoining and then leaving a
game). Table2 shows someof the overall aspectsof the data. We were interestedin examining three
specificfeatures:thenumberof participantsin a game,theinterarrival timebetweenparticipants,andhow
longa playerremainedin a game.

4 Session membership

Figure3(a)shows thetotal numberof playersfor all theserversin O-I andO-III to O-V, aggregatedto a
one-weekperiod.Figure3(b) shows thenumberof playersfor oneserver from O-IV, againscaledto one
week.It canbeseenthatthenumberof participantsin agameexhibits strongtime-of-dayeffects,peaking
in the middleof the day. Thestrongsinusoidalpatternin the correlogramsin Figures3(c) and3(d) also
indicatesseasonalvariation.

It canbeseenfrom Figure3(a)thatmid-Tuesdayis anoutlier, with anunusuallylow numberof players.
This might have beendue,for instance,to a breakin network connectivity. This outlier wasremovedby
replacingthedatawith theaverageof thesamples24 hoursbeforeand24 hoursafter.
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Total joins Average
joins/server/hr

Median
interarrival
(sec)

Max interar-
rival (sec)

Median du-
ration (sec)

Max dura-
tion (sec)

O-I 1510445 4.65 225 246171 1576 3165999
O-II 69961 27.76 70 17309 1098 66738
O-III 37037 10.01 118 51706 618 410699
O-IV 23559 4.19 115 77843 612 2614737
O-V 5872 1.04 300 76800 901 403201

Table2: Summaryof results
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Figure3: Numberof users
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Sincethetime-of-dayeffect is soclearlyevident, it is possibleto do a simpleseasonaldecomposition
by subtractingeachobservationfrom themeanvaluefor all theobservationstakenat thattime of day[7].
Theresultsof this areshown in Figure4, wherethehighersolid line representsthetime-of-dayeffect, the
lowersolid line theremainder, andthedashedline theobserveddata.Threedaysarehigherthantheothers;
these,asonemightexpect,areFridayto Sunday.

Seasonal decomposition of members
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Figure4: Seasonaldecompositionof smoothedmembershipdata

4.1 Network externalities

It is acceptedthat thevalueof a groupactivity to an individual participantmaybe relatedto thenumber
of participantsin thatgroup. This hasbeenquantifiedconjecturallyby engineersasMetcalfe’s Law (the
valueof a network is proportionalto n2, wheren is the numberof users[23]), or more recentlyas the
Group-FormingLaw (thevalueof theInternetis proportionalto 2n [28]). Economists,however, generally
referto theseeffectsas“positiveconsumption”or “network externalities”: for example,Katz andShapiro
definenetwork externalitiesas“productsfor which theutility thata userderivesfrom consumptionof the
goodincreaseswith thenumberof otheragentsconsumingthegood.” [18] Network externalitieshavemost
commonlybeenstudiedin termsof standardisationandcompatibility (e.g.,thetake-upandacceptanceof
faxmachines[11]), althoughHenrietandMoulin [16] presentacostallocationschemefor networkswhere
userssharecostsaccordingto thenetwork externalitiesthatareaccrued.

Onewould expectthatmultiplayergameswould alsoexhibit network externalities.Thepurposeof a
networkedmultiplayergameis to participatewith otherpeople;if a userwishesto play againstelectronic
opponentstherewould be lessneedfor the networked aspectof the game(unless,for example,a user
wishedto playagainsta farmorepowerful computersuchasthefamouschessmatchesbetweenKasparov
andIBM machines).In general,however, it is reasonableto assumethatagivenparticipantin anetworked
gameis takingpartbecausethey wish to interactwith otherremote,humanusers,and,therefore,thattheir
utility is derived,to someextent,from theexistenceandnumberof theseotherusers.

Figure5 shows thetemporalACF (autocorrelationfunction)of thecorrecteddatafrom Figure4, after
removing the time-of-dayeffect; this shows the degreeto which the numberof playersin a subsequent
time perioddependson the sessionmembershipin the previous period. It canbe seenthat the level of
autocorrelationis high, even for a large numberof time periods. Thus,asexpected,thereappearto be
somenetwork externalityeffects.

Having observedthetime-of-dayandnetwork externalityeffects,weanalysedthesessionmembership
datausingtime-seriesanalysis.ARIMA (Autoregressive IntegratedMoving Average)models,introduced
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Figure5: Temporalautocorrelationin numberof players

by Box andJenkins[6] area popularmeansof modellingtime seriesdata. An autoregressive processis
definedasa serially dependentprocesswherebyelementsin a time seriescanbe describedin termsof
previouselements:

Xt � φ1Xt � 1 � φ2Xt � 2 � φ3Xt � 3 �����	�
� ε (1)

A moving averageprocessis whereeachelementin a timeseriesis affectedby pasterrors,independent
of theautoregressiveprocess:

Xt � µ � εt � θ1εt � 1 � θ2εt � 2 � θ3εt � 3 � �	��� (2)

An ARIMA modelincorporatesboth theautoregressive andmoving averageprocesses.Suchmodels
arereferredto asARIMA � p 
 d 
 q� , wherep is theautoregressive parameter, d thenumberof differencing
passesrequiredto make theinput seriesstationary, andq themoving averageparameter. If thetime series
hasa seasonalcomponent,additionalseasonalparametersarerequired,andthemodelis referredto asan
ARIMA � p 
 d 
 q����� P
 D 
 Q� s model,whereP, D andQ representthe ARIMA parametersof the seasonal
component,ands is theperiodof theseasonality.

For theaggregatesessionmembershipdatafrom Figure4, thereis little to choosebetweena � 1 
 1 
 1���� 0 
 1 
 1� 48 anda � 2 
 1 
 1����� 0 
 1 
 1� 48 model(Figure6 shows thediagnosticoutputfor thelatter).Applying
thesetwo modelsto individual servers’ data,however, showed that a � 2 
 1 
 1����� 0 
 1 
 1� 48 model is the
mostappropriate.Figure7 shows thediagnosticsfor oneserver; theBox-Piercestatisticindicatesa high
goodnessof fit.

A � 2 
 1 
 1����� 0 
 1 
 1� 48 modelincorporatesbothnetwork externalities,sincetheautoregressivecompo-
nentmeansthat the numberof playersup to an hour prior to a playerjoining hasan effect on a player’s
decisionto join, andalsoincludesthetime-of-dayeffect throughtheseasonal� 0 
 1 
 1� 48 component.

Proportionalfairnesshasbecomea popularmetric for allocatingbandwidthbetweenflows on a con-
gestedlink [19]. This relieson theassumptionof usershaving logarithmicutility functions.It is unclear,
however, whetherthis sameunicastlogarithmicutility functionshouldbeassumedfor a multicastor mul-
tipoint transmission.Chiu [8] shows that proportionalfairnessmay producean “unfair” outcomein the
multicastcase,andproposesaweightedproportionallyfair solution,wheremulticastflowsreceiveaband-
width shareweightedaccordingto the aggregateutility of the downstreamreceivers. Legout et al. [20]
suggestthat this bandwidthsharemight relateeither linearly or logarithmicallyto the numberof down-
streamreceivers.Thedatapresentedheresupportsthelattersuggestion,sincethey imply that it might be
moreappropriateto assumeindividualutility functionswhich incorporatenetwork externalities.
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Time-of-daypricing is commonlyusedfor pricing utilities suchaselectricity andtelephoneservice,
andhasbeenproposedasasimple,if suboptimal,methodfor pricing Internettraffic [21]. Thetime-of-day
effectsobserved heremeanthat this might be appropriateon a per-applicationbasis,at leastfor games.
Thismightalsohaveimplicationsfor network provisioning,wherebyanetwork designedfor gameswould
wantto beableto dealwith thepeaks.

5 User duration

Gameservers tend to run continuously, with usersjoining and leaving as they wish. As suchit is not
meaningfulto discussthe overall sessionduration,i.e., a whole game. Insteadwe examinethe duration
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of eachindividual session,i.e., a user’s game. Figure8 shows the durationof users’individual sessions
from O-II: it canbeseenthat thesedurationsvary quitewidely, andthatmany gamedurationsarelower
thanour polling periodof five minutes. This might be due to droppedconnections,or usersbrowsing
gamesby startingasessionto seewhatis goingonanddecidingthataparticulargameis not to their liking.
At theotherendof thespectrum,thereareseveral long gamedurationsof over 24 hours.Thesemight be
“hardcore”gamers,automatedplayers/botsor userswhohavemistakenly left their connectionsactive.

In Figure 9 we fit the userdurationdatafor two individual servers to a set of randomlygenerated
exponentially-distributeddata. The Quantile-Quantileplots show that this is an appropriatemodel. This
agreeswith thefindingsfor multicastsessionsin [2]. It is alsoknown thatsomesingle-userapplications,
suchasvoicetelephonecalls[4] fit anexponentialdistribution.

Sincewehadalreadyobservednetwork externalityeffectsin thenumberof players,weexpectedto find
acorrelationbetweenthedurationof aplayer’ssessionandthenumberof playersin thatgame;agamewith
moreplayersmightbelikely to leadto playersenjoying thegamemore,whichshouldleadto themstaying
longer. Surprisingly, thereappearsto beno evidencefor this. Figure10(a)showsa boxplotof thenumber
of playersat thestartof aplayer’ssessionagainstthedurationof theirsession.Theredoesnotseemto bea
correlation,andthemediandurationis relativelyconstantirrespectiveof thenumberof players.Comparing
thedurationto theaveragenumberof playersover thefirst hourof asession(Figure10(b))showedaslight
correlation,but this wasinsignificant.This might indicatethattheabsolutenumberof playersin a session
is notnecessarilyadeterminantof whenaplayerdecidesto leaveasession;it maybethebehaviour or skill
of thespecificplayersthatis moreimportant,or a completelyunrelatedfactor.

6 Interarrival times

Figure 11 shows the interarrival times betweenplayersfor one server. As for duration, there is large
variation. Unlike the durationdata,interarrival timesdo not appearto fit an exponentialdistribution, as
shown in Figure12.

Interarrival timesbetweenusersfor single-userapplicationshave beenfoundto fit a Poissondistribu-
tion [12, 26]. This is unlikely to be the casefor multiuserapplications,however, wherethe presenceof
otherusersmayalteruserbehaviour. Borella[5] findsthat for games,packet interarrival timesarehighly
correlated.Figure13 showsthatthis is alsotruefor playerinterarrivals;thereis significantautocorrelation
atshortlags,whichimpliesthatthearrival of someuserswill leadto othersarriving. Thus,theinterarrivals
do not fit theindependentarrivalsof thePoissondistribution.

Heavy-taileddistributionshavebeenobservedfor Internetusagebehaviour, for examplein World Wide
Webusage[9] andaggregateEthernettraffic [30]. Onemethodfor visualisinga heavy-taileddistribution
is a log-log complementarydistribution (LLCD) plot, wherethe complementarycumulative distribution
is plottedon logarithmicaxes. Linear behaviour in an LLCD plot indicatesa heavy-tailed distribution.
Figure 14(a)shows sucha plot for the interarrival times, and linear behaviour canbe observed for the
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Figure9: Fitting anexponentialdistribution to userdurationdata

largerobservations(Figure14(b)).
A morerigoroustestfor heavy-taileddistributionsis theHill estimator[17]. A distribution of variable

X is heavy-tailedif
P �X � x��� x� α 
 asx  ∞ 
 0 ! α ! 2 � (3)

TheHill estimatorcanbeusedto calculateα

α̂n � "
1 # k i $ k � 1

∑
i $ 0

� logX% n � i & � logX% n � k& �(' � 1

(4)

wheren is thenumberof theobservations,andk indicateshow many of thelargestobservationshavebeen
usedto calculateα̂n. Figure15 shows thatα̂ is approximately1.15.

Comparingthe interarrival times to the numberof playersin a sessionshows someevidenceof an
inverselyproportionalrelationship(Figure16); asthenumberof playersin a sessionincreases,the inter-
arrival timesdecrease.This supportsthe hypothesisthat the numberof playersis a determinantin other
players’decisionsto join a session.

Thehigh variationin userdurationandinterarrival timeshave several implicationsfor pricestability
andprovisioning if the membersof a multicastgroupareto sharethe overall costof a sessionamongst
themselves.Theautocorrelationin thenumberof playersandinterarrival timesmeansthatif theusersare
sharingthe costsof a session,this costwill snowball; new usersjoining will be followedby otherusers
joining (anduserswill join fasterasthenumberof usersincreases),leadingto rapiddecreasesin thecost
peruser, andvice versafor whenusersleave. This couldberectified,for example,by only changingthe
price for eachuseron a periodicbasisratherthanwith eachjoin or leave. The autocorrelationseemsto
exist for large lags,however, which meansthat the periodsof price reevaluationwould alsohave to be
large,andthiscouldimpedetheefficiency of any pricingscheme.
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Figure10: Numberof playersversusdurationof session
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Figure11: Interarrival times

Costsharingmay alsochangethe behaviour of players,sincewe have observed that the numberof
playersin a sessionis not a largefactorin theutility receivedfrom a game.Oncenetwork pricing or QoS
area featureof networks, thenuserswill needto choosebetweennetwork flows dependingon the value
that they receive from eachapplication;in otherwords,they will attemptto maximisetheir utility given
their individualbudgets.Thepriceof asessionthusbecomesa factorin userbehaviour, andif thecostof a
sessionis sharedamongstsessionmembers,thenthenumberof playersin a sessionwill becomea factor,
sinceit will be a determinantin the price of the session.Additionally, the numberof usersin a session
might affect theQoS,which would becomea furtherfactorfor users’behaviour.
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Figure12: Fitting anexponentialdistribution to interarrival times
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Figure13: ACFof interarrival times

7 Conclusions and future work

Therehasbeenlittle study of session-level userbehaviour in large-scalemultiple-sourcescenarios.In
this paperwe have presentedstatisticalanalysisof severalsession-level tracesof popularmultiplayernet-

12



1 2 5 10 20 50 100 500

0.
1

0.
2

0.
5

1.
0

x = interarrival time

P
[X

>
x]

(a) full dataset

500 1000 1500 2500 3500

0.
1

0.
2

0.
5

1.
0

x = interarrival time

P
[X

>
x]

(b) uppertail

Figure14: Log-logcomplementaryplotsof interarrival times
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Figure15: Hill estimatorfor interarrival times

workedgames.We have foundthat thenumberof playersexhibits strongtime-of-dayandnetwork exter-
nality effects,andwe have fitted anappropriateARIMA model.Players’durationtimesfit anexponential
distribution, while interarrival times fit a heavy-tailed distribution. The numberof playersin a session
appearsto have a greatereffect on players’decisionsto join a sessionratherthanleave. In many respects
we have observedsimilar behaviour to that seenfor multicastapplications,despitethe unicastnatureof
thesegames.This impliesthatin theabsenceof appropriatemulticastdata,unicastmultipointapplications
areanappropriatesubstitute.Wehavediscussedhow theseresultscouldimpactpotentialmulticastpricing
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Figure16: Numberof playersversusinterarrival time

policiesandnetwork provisioning.
Networking researchinto multiplayergamesis still at an early stage,andthereis muchfuture work

thatneedsto becarriedout. Understandinguserbehaviour is but onestagein creatingappropriatepricing
policies.It doesnot,for example,helpusexplainwhatusersdesireor require.Futurework will investigate
theQoSrequirementsfor networkedgames,in particular, concentratingon how therequirementschange
dependingon thecompositionof asessionandgroup.

We alsointendto look at packet-level traffic statistics.Someof the resultspresentedherehave been
similar to thoseof previous packet-level gamesstudies,and it will be interestingto conductsimultane-
ousanalysisat the packet andsessionlevels, to determinewhetherthereis any relationshipbetweenthe
behaviour at bothlevels. This is important,for example,if QoSprovisioningis to take placethroughcon-
gestionpricing, i.e., chargingusersfor thenetwork congestionthatthey cause.Unfortunately, mostof the
gameserveroperatorsandISPsthatwehavespokento donot log many of theappropriatestatistics.Thus,
we arenow runningour own gamesserversin orderto collectpacket-level data.Runningour own servers
presentsmany opportunitiesfor furtherwork. Sincewe canlog theexacttimeswhenplayersconnectand
leaveto theserver, wecanbetterestimatetheinaccuracy of thepolling methodthatwehaveusedhere.We
arealsousingthesegamesserversfor experimentalratherthancorrelationalstudy;for examplechanging
suchvariablesasnetwork delayin orderto determinetheeffectson userbehaviour.

Thestudypresentedherehasonly lookedatonetypeof game,theFPS.Althoughweexaminetwo of the
mostpopulargamesof this genre,it is notnecessarilytruethattheseresultswill hold for otherFPSgames
andthis shouldbefurtherexamined.Moreover, othertypesof games,for instanceMMORPGs(Massively
Multiplayer OnlineRole-PlayingGames)suchasEverquest,arelikely to exhibit differentuserbehaviour,
sincetheMMORPGcanbeslightly slowerpaced,andcaninvolvethousandsof usersconnectingto asingle
server, ratherthanthelargenumberof smallgroupsin FPSgames.
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