
A Distributed Architecture for Multiplayer
Interactive Applications on the Internet

Christophe DIOT1 and Laurent GAUTIER2

1SPRINT ATL, 1 Adrian Court, Burlingame, CA 94030, USA. cdiot@sprintlabs.com
2INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France. lgautier@sophia.inria.fr

Abstract: This paper describes the design, implementation, and evaluation of MiMaze, a dis-
tributed multiplayer game on the Internet, and, more precisely, on the design of dedicated
transmission control mechanisms. MiMaze is implemented on a completely distributed commu-
nication architecture based on the IP multicast protocol suite (RTP/UDP/IP). This is the first
work to analyze a distributed interactive game on the multicast Internet. The major element of
the MiMaze architecture is a distributed synchronization mechanism that guarantees the con-
sistency of the game regardless of network delay. This paper provides an evaluation of the
MiMaze game on the MBone, and discusses approaches to monitor and evaluate this new type
of application. The main contribution of this work is to show, based on an example, the feasi-
bility of this new family of applications on a best-effort network. It is shown that real-time
interactivity can be maintained, provided that some level of inconsistency can be tolerated by
the application. This work also highlights the role of multicast as an enabling technology for a
real-time Internet.

Keywords: System Architecture, Interactive Applications, Distributed Synchronization, Expe-
rimental System, Group Communication, Transmission Control, Internet.

1.0 Introduction
This article describes the design and the evaluation of a multiplayer game over the Internet.
MiMaze [22] is a distributed (i.e. serverless) game that uses an unreliable communication sys-
tem which is based on RTP [9] over UDP/IP multicast [16]. Multiplayer games are representa-
tive of the new generation of Distributed Interactive Applications (DIAs) which also includes
Distributed Interactive Simulation (DIS), digital battlefields, Air Traffic Control (ATC), coo-
perative tools, and home interactive applications[3][4]. These applications are expected to
represent a major share of the Internet traffic within in the next 5 years.

We have chosen a distributed architecture, which relies on multicast communication, instead of
a client/server architecture based on TCP, in order to increase the scalability of the application.
As a consequence, we do not use a central entity (or server) to compute the game state (see sec-
tion 2.1). On the contrary, each participant computes its own view of the game state, increasing
the chance of inconsistency1. It is therefore the responsibility of each game entity to provide
synchronization facilities to cope with distributed state computation and heterogeneous Inter-
net delays. A server exists in MiMaze, but its use is limited to non-real-time tasks (such as a
new player joining an ongoing session and session management issues in general).

This distributed architecture can be criticized because multicast is not widely deployed on the
Internet (it is experimental with the MBone). Nevertheless, group communication is currently
one of the most active research domains in the Internet community. Access via multicast tunne-
ling is available for experimental purpose, and some ISPs already offer multicast in their Inter-
net services. Moreover, the experimental analysis of this new family of applications gives us an

1. Inconsistency occurs when participants have a different view of the game global state. Incon-
sistency is inherent to distributed networked applications (with heterogeneous delays).

opportunity to learn which multicast service definition best suits this new family of applica-
tions.

The central theme of this paper is the evaluation of the synchronization mechanism in the
MiMaze game, referred to as bucket synchronization. The synchronization mechanism is the
minimum functionality required for a distributed game. Without a synchronization mechanism,
the real-time requirements of an interactive game cannot be satisfied. In MiMaze, we require
that information must be delivered to its destinations in less than 100ms. We have implemented
a very simple dead reckoning algorithm to recover lost or late packets. This mechanism repla-
ces classic ARQ-based error recovery which is not applicable in this context (acknowledg-
ment-based techniques introduce unacceptable delays).

This paper is structured as follows. Section 2 describes MiMaze. We start with a description of
the game and of its functional architecture. Then we give a detailed description of the bucket
synchronization algorithm. In section 3, we describe and analyze performance measurements
on the MBone, and we describe the monitoring tool used to resynchronize the distributed tra-
ces. The global clock problem is addressed. The performance results give us an opportunity to
discuss what metric could be used to provide a realistic evaluation of the performance of a
DIA. We also propose new mechanisms to improve consistency and scalability in DIAs. We
conclude with a discussion of the next MiMaze design steps, and with the extension of the
game to a more realistic interactive environment (including 3D graphics and virtual worlds).

The main contribution of this work is to show, based on an example, the feasibility of a new
family of applications on a best-effort network. We are conscious that MiMaze is a simple
application and that the following results are difficult to generalize. However, analyzing the
behavior of a simple application on the Internet is an important first step in understanding how
DIAs can be deployed on the Internet. Consequently, we do not try to generalize our results;
instead, we try to analyze generalizable observations.

2.0 Descr iption of MiMaze
The characteristics of distributed games are very similar to those of DIS applications [1][2].
The main difference between DIS applications and MiMaze is that the CPU requirement in
MiMaze is low. One reason for choosing such a "simple" game (in term of rules and graphics)
is that choosing a more complex game can make it difficult to analyze the game traffic parame-
ters. The DIS characteristics that apply to MiMaze are:

• Interaction delay: any action issued by any participant must reach, be processed and be dis-
played to any other participant within the shortest possible delay2.If the network delay is
excessive, the received action (encoded in an Application Data Unit, or ADU) is late and
typically cannot be used by the application.

• Participants can join and leave a MiMaze session dynamically. In this context, the IP multi-
cast model [16] is particularly convenient.

• The system architecture is distributed. This is justified, in the case of DIS, by robustness
requirements, and by a potentially better scalability (see section 2.1.1).

An important property of DIAs is that the real-time behavior of game objects (also called ava-
tars) is “continuous.” By continuous, we mean that the behavior of avatar X at time n+1 can be
extrapolated from its behavior at time n. As a consequence, an avatar description lost on the
network can be easily recovered from a previous description of the avatar, given that updates
on the avatar position are sent often enough. This allows us to use an unreliable communication
system based on RTP and UDP, where the effects of lost or overly delayed packets are minimi-

2. the delay range to preserve real-time interaction between participants is 40ms to 200ms,
depending on the application characteristics[15][17][5]. In MiMaze, we have chosen 100ms.

zed by the natural redundancy of the interactive data, and by the use of a simple dead reckoning
algorithm (see section 2.3).

The problem of number of participants is not addressed in this paper. At this stage of the pro-
ject, we have no idea of what a "large" session is for an interactive game. We have conse-
quently decided to have a single multicast group in MiMaze until initial experiments tell us
more about the feasibili ty of DIAs on the Internet.

2.1 MiMaze design characteristics

MiMaze is inspired by iMaze [8], a 2-dimensional "Pacman" game in which each player has a
3D representation of its view of the game (see screen shot Figure 1). Avatars (Pacmen) move in
a labyrinth where they try to "kill" each other. Each participant, besides having a 3D represen-
tation of its vision domain, also has a 2D "global" view of the game (from the top), that shows
the location of all players.

2.1.1 M iMaze distr ibuted architecture

To our knowledge, MiMaze [13] is the only game with a fully distributed architecture using IP
multicast (see Figure 2). A server is only used when a new entity joins a session, to learn the
session group address and to download the maze.

Figure 1. Screen shot showing MiMaze participant’s local view: maze view from the top, ses-
sion information (multicast address, session properties, etc.), participant information (scoring,
participants’ names), front and rear views from the participant’s avatar (3D).

Distributed architectures have many advantages over server-based architectures:

• Robustness. In a distributed architecture, the failure of any of the participants has no effect
on other participants. Each participant is independent, and has locally all necessary informa-
tion to compute the state of the game at any time. Since a serverless architecture does not
require the availability of a server which supports currently active applications, a serverless
architecture greatly simplifies the deployment of a game by an application provider. The
quality observed by a participant only relies on the network properties (including multicast
support) and on the participant equipment.

• Scalabil ity. We have identified two factors which limit the scalability of centralized archi-
tectures:

- Since all data converge at the centralized server, the server becomes a bottleneck. Since a
centralized server must collect all participants’ data and serve all participants of a game, the
frequency at which the game state can be computed slows down once the CPU of the server
becomes saturated. In the worst case, overload of the server CPU leads to a loss of interacti-
vity of the game3.

- With a server architecture, the amount of data transferred on the network is in the best case
equal to the amount of data transferred with a distributed architecture. It is higher when
multicast is not used, or when TCP is used to collect data.

• Minimum delays. In a centralized architecture, information reaches its destination through
the server. Depending on network topology and on the routing tree structure, this can
increase the network delay up to two times the delays in a distributed architecture. In a dis-
tributed architecture, information crosses the network only once to reach its final destina-
tions.

On the other hand, centralized architectures do have some advantages. First, since all partici-
pants in the game receive the same game state from the server, global consistency is guaran-
teed. Moreover, the server introduces a natural synchronization among players. Another
important feature of centralized architectures is that they allow game companies to easily
charge players based on the duration of their participation.

Another major advantage of centralized architectures is that the presence of a server makes
cheating difficult. In a totally distributed architecture, each entity makes its own decisions, and
there is not necessarily an authority to identify potential cheaters. In a centralized architecture,
however, all information flows to the server, which can the exactness of the global state. Con-
sequently, the deployment of distributed architectures will require the use of specific distribu-
ted mechanisms to deal with the "honesty" of participants [12].

Figure 2. MiMaze communication architecture showing the session management server used
by participant when joining a session, and the fully distributed communication once the game
has started.

To summarize, choosing a distributed architecture improves the real-time properties of the
application, at the cost of consistency. The motivation of this work is consequently to show that
the real-time properties of a DIA can be preserved on the Internet, despite long and heteroge-
neous delays, provided that an acceptable level of inconsistency can be tolerated in the appli-
cation. This work shows that a simple distributed synchronization mechanism and a global
clock infrastructure (such as NTP) can help to control the consistency.

2.1.2 Data structures

The DIS standard defines numerous types of information to be packetized and managed by the
application. The DIS standard is an application-level IEEE standard designed by applications
experts. It is not optimized for network transmission, and it may be unrealistic to use this proto-
col over the Internet [3][4].

The DIS standard defines more than 25 different packet types (called PDU’s or Protocol Data
Units) [1][2]. Most of the DIS packet types are relevant to distributed games. The most fre-

3. This failure mode also applies to distributed architectures. However, computational resour-
ces saturate at a larger group size than with a single, centralized server.

Game Server

compute the global state

Player

Player

Player

Player

sends ADUs

display global state

session group address
game domain distribution

when joining
with each new participant

TCP
RTP/UDP

quently used PDU is the Entity State PDU (ESPDU) which carries state information describing
the game objects. A specific PDU type has also been defined for "exceptions" such as colli -
sions, fire (shooting), detonation (bullets or projectiles), and also for logistics and exercise con-
trol. A reference to a freely available implementation of DIS can be found at [23].

To minimize the network traffic generated by MiMaze, we use only one type of packet which
is called an ADU (Application Data Unit). The MiMaze ADU is very similar to DIS’s ESPDU.
The size of an ADU is up to 52 bytes, including 8 bytes for the RTP header, 8 bytes for the
UDP header, 20 bytes for the IP header, and up to 16 bytes for MiMaze application payload.
MiMaze ADUs contain a description of the local state of an avatar, consisting of the local posi-
tion in the game (x position, y position, angle) and the displacement vector (speed, angular
speed) of the avatar and of the projectile emitted by the avatar.

A MiMaze entity sends ADUs on a periodic basis. In the current version of MiMaze, the ADU
transmission frequency is 25 times per second. For game experts, this value corresponds to a
very fast reaction speed of a human player, i.e. 40ms.

2.1.3 Related work

Amaze can be considered as MiMaze’s ancestor. Amaze was designed by Berglund and Cheri-
ton in 1984 [14] to be played on a LAN, using point-to-point communication. MiMaze and
Amaze both have a distributed architectures but manage state differently. Amaze transmits the
game state on the network, and maintains replicated copies of the game state.

Distributed games on the Internet are now a real market for companies. Microsoft, BT, Intel,
Sony have their own projects for on-line distributed games or shared virtual worlds. There are
also small companies that enhance multiplayer games with more sophisticated transmission
infrastructures (see for example [15]). But all commercial on-line games available to date stil l
use client/server architectures based on TCP transmission, simply because this is the only tech-
nology fully available and stable on the Internet today. Additionally, closely related works
include the following:

• Spline [17][18] is a virtual distributed interactive world with 3D animation and spoken inte-
raction. Spline has a distributed architecture which is based on the DIS standard. Most of
the effort in Spline has been done on local flow synchronization. But there is no distributed
synchronization mechanism to deal with heterogeneous network delays.

• The PARADISE project [21] at Stanford University aims to architect and build a large-scale
internetworked simulation environment that supports multi-player interactive, 3D simula-
tions running over a wide-area network. This project has produced very interesting results
on group communication, dead reckoning, entity aggregation, and collision detection. Our
work here differs from [20] in that our goal is to evaluate the MiMaze architecture from a
system standpoint, where the inter-related issues of bucket-synchronization, dead recko-
ning, and network impairments such as loss and delay are inextricably linked. In contrast,
the work in [20] is aimed primarily at aggregation (not considered here) and specific dead
reckoning algorithms. It worth noting that dead reckoning is used in [20] primarily to
decrease the frequency of state transmission and smooth trajectories between state updates.

2.2 The Bucket Synchronization Mechanism

In a serverless architecture, synchronization must be introduced to make sure that the state dis-
played by each entity is consistent, i.e. that:

• All ADUs issued at the same time (by various game entities) are computed together to eva-
luate the state of the game.

• All the session entities display to their own player the same game state simultaneously.

In MiMaze, time is divided into fixed length periods and a bucket is associated with each
period. All ADUs received by a player that were issued by senders during a given period are

stored by the receiver in the bucket corresponding to that interval. At the end of every bucket
interval, all ADUs in that bucket are used by the entity to compute its local view of the global
state. Buckets are computed 100 ms after the end of the sampling period during which ADUs
have been issued (100ms is the playout delay4). In other words, to compute a new global state,
an entity computes all the ADUs available in the "current" bucket.

For example, in Figure 3, without synchronization, the ADU issued by player X at t3 would be
processed together with the ADU issued at t1 by player Y (but received at t2 by X, which is in
the same state processing interval as t3). Bucket synchronization allows information received at
t0 to be delayed in the bucket d (that will be processed at td) in order to be synchronized with
the ADU issued at t1 by Y.

We did not implement a specific mechanism to perform the another aspect of synchronization
(inter-entity synchronization). This is provided naturally by the bucket algorithm given that the
time interval between two buckets is small enough.

When an ADU is received with a transmission delay which is more than 100ms, its destination
bucket has already been computed. But the late ADU is still stored in this bucket. It will be
used by the dead reckoning algorithm to eventually replace a missing ADU when computing
future buckets (see section 2.3).

Figure 3. The bucket synchronization mechanism. The horizontal axis represents time. Player
X (upper line) is the player where the bucket algorithm is observed. The playout delay and the
bucket frequency are static parameters which are defined independently of the network proper-
ties.

2.2.1 Bucket frequency

The bucket frequency defines the rate at which a new game state is computed and displayed.
Since human vision perceives smooth motion when the frame rate exceeds 10-15 frames per
second, we have chosen to compute 25 buckets per second. The bucket frequency is a receiver
application parameter that should not be influenced by network parameters.

With MiMaze’s current settings, the ADU transmission frequency being equal to the bucket
frequency5, there should be one new ADU per entity at the time a bucket is processed.

4. The bucket mechanism is similar to a playout buffer mechanism [10] used to reduce network
jitter effects in packet audio information.

5. It is a coincidence that these two parameters are equal.

timeplayer X entity

remote player Y entity

buckets a b c d e

t0

t1

t2tb td
(where the state
is computed)

Xn Xn+1

Ym

synchronization delaytransmission delay

playout delay

bucket frequency

t3

2.2.2 Global clock mechanism

The bucket synchronization mechanism uses a global clock system to evaluate the delay
between participating entities. A discussion on the properties of the global clock system can be
found in [19]. In our implementation, we use NTP [6]. In case NTP is not available, we use a
NTP-like algorithm based on the evaluation of the round trip time [6]. There are three difficul-
ties with NTP:

• There are 3 levels (strata) of NTP servers and it is very difficult to maintain good synchroni-
zation among participants when level 3 servers are involved. Lower stratum mechanisms
(e.g. ntpdate) are not sufficient.

• NTP encodes clock information in 64 bits, while RTP uses a 32-bit clock. MiMaze has to
manipulate both clock representations.

• NTP does not provide a reference clock signal and each participant has to compute an offset
for every other participant in a game session.

• NTP makes the assumption that network links used to calculate timing delays are symme-
tric, which is often not the case in the Internet.

In our current implementation, in order to increase the precision of NTP under stratum 2 and 3,
we use both NTP and an NTP-like mechanism which we have specifically designed to compute
clock offsets (see [13]).

2.3 Dead reckoning

To deliver a complete view of the game, the bucket algorithm requires at least one ADU per
participant to be available in each bucket. However an ADU can be missing for various
reasons. It may have been lost by the network or it may be late. Dead reckoning is used to
replace missing ADUs.

For each missing ADU, the state computation algorithm goes back to the previous buckets, loo-
king for the most recent ADU received for the missing avatar. Once found, this ADU is dead
reckoned to evaluate the position where the avatar should "most probably" be at the current
time. The accuracy of the evaluation depends on the dead reckoning algorithm used (there are
many possible dead reckoning algorithms available), on the age of the ADU used, and on game
characteristics.

Dead reckoning being not the purpose of this paper, we have implemented in MiMaze the sim-
plest possible dead reckoning algorithm. When an avatar position (ADU) is missing at the time
we compute a bucket, we simply replay the last known position of this avatar. We believe that
dead reckoning is a major mechanism for error correction in DIAs, and more dead reckoning
algorithms wil l be evaluated in future work. But since the principal goal of this work is to gain
an understanding of the behavior of DIAs on the Internet, we intentionally decided to have a
simple dead reckoning algorithm in order to analyze distributed synchronization with minimal
side effects.

3.0 Per formance evaluation
This section is organized in five parts. We begin with the description of the experimental set-
tings. The monitoring tool designed to resynchronize the distributed traces is briefly presented.
We then define the distributed game metric that we have chosen to evaluate MiMaze’s consis-
tency (the notion of consistency is the one defined in the Introduction section). The evaluation
section begins by providing an analysis of the behavior of MiMaze during an experimental ses-
sion on the MBone. The influence of network parameters on the game consistency is analyzed.
We conclude this section with a discussion of the experimental observations.

3.1 Exper imental environment

We have performed an evaluation of MiMaze on the MBone [11] with up to 25 players located
in various places in France. The number of participants in experiments was varied in order to
vary the loss rate. We make the assumption that all losses are due to network congestion. A
total of 1600 traces of 15 to 20 minutes each were collected. The architecture of the experimen-
tal multicast tree is given in Figure 4. The delay values given in Figure 4 are average values, on
the duration of a session, end-to-end network delays measured from host droopy. Note that
average network delays are always less than 100ms. The computers participating in the experi-
ment were SUN (SPARC 10, 20, ULTRA), DEC Alphas, and PCs.

3.2 Monitor ing

During the experiment, participants play MiMaze and each participant collects a trace that
which is composed of:

• Network level data: for each received ADU, we collect the senders’ identity, the transmis-
sion time-stamp, the reception time-stamp, and the sequence number.

• Application level data: information contained in all ADUs sent and received is time-stam-
ped and collected in the trace file. These data allow us to reconstruct the state of the game
computed by each participant.

• Synchronization data: network delays and clock offsets with respect to each participant.
These data are used to resynchronize the traces.

The main difficulty in analyzing the collected traces is not the benchmark computation, but the
trace resynchronization. Since the system is distributed, there is no absolute clock in a game
session, and each participant timestamps its local traces. Since the global clock mechanism is
imperfect, we used an algorithm based on least-squares [24] to resynchronize traces. However,
this simple method to synchronize traces is only valid when the clocks are not drifting too fast
from each other. Consequently, we decided to limit the analysis to those traces where NTP
clock synchronization was successful. We therefore omitted time intervals where relative clock
information was not interpretable [13].

Hence, the accuracy of the delays computed by MiMaze is strongly correlated to the ability of
NTP to maintain a synchronized global clock signal among participants.

Figure 4. MBone architecture during the evaluation. Network delays are the averages measured
from droopy (located at INRIA Sophia Antipolis). All locations are in France.

3.3 Distr ibuted game metr ics

A major difficulty when attempting to analyze distributed multiplayer games is the definition
of meaningful performance metrics. These criteria must reflect how far the distributed game

sobone.inria.fr

oreste.inria.fr
eurecom.eurecom.fr

giroflee.eurecom.frr_jusren.reseau.jusieu.fr

r_atm.reseau.jusieu.fr

atlas.ibp.fr

soleil.polytechnique.fr

MBone.eict.fr

corneille.laas.fr

hugo
otos

fushia

almeria

tomdjango

pifdroopy

tac
chouette

10ms

55ms

40ms

pelvoux

feydau
ceyx

8ms

behavior is from the perfect behavior that would have occurred if the game had been played
with no network delay and no network loss. Some people expect a networked game to behave
exactly as a non-networked solution, i.e., without any effects of network delay. Clearly, this is
impossible to achieve. The network introduces impairments which are an integral part of the
game, e.g., a projectile does not reach its target instantaneously because of its speed. Instead of
trying to eliminate the impairments (in particular, network losses and delays), we try to mini-
mize the impact of impairments on the game. The goal is to deliver the same information to
each participant, even if this information is slightly different from what it would have been
without network delay. Trying to compare a networked game session to the same session
played with no network would be wrong, since all player actions are inevitably influenced by
the presence of the network.

For evaluation purposes, we have chosen a game metric called "drift distance." The drift dis-
tance represents, in distance units, the absolute value of the distance between the position of an
avatar as displayed by its local entity, and the position of the same avatar displayed by a remote
entity. The game is consistent if the drift distance is zero. Nevertheless, a small drift does not
mean that the game is inconsistent. Given that the avatar radius is 32 units and that the avatar
constant speed is 32 units per 40 ms, then we assume (based on an informal analysis of player
satisfaction) that errors of up to 50 units on a moving avatar are not significant (see next sec-
tion).

3.4 Per formance analysis

In this section, we first provide an informal analysis of MiMaze gaming sessions. Then we ana-
lyze network parameters during these sessions. Understanding the network parameters helps us
to understand the game behavior, and how to improve its consistency. The final part of this sec-
tion analyzes MiMaze consistency with regard to network parameters.

In order to keep the figures clear, we present performance observed between only two partici-
pants (droopy and hugo). We have verified that any pair of participants on the MBone have
roughly the same behavior.

It is important to notice here that most of the results interpretations provided in this paper are
conjectures. As discussed in the section on metrics, and due to the nature of the application,
where human related factors have a major impact, one has to caution against a generalization of
our results. Nevertheless the level of confidence we have in these conjectures is very high,
since we have only provided an explanation for those phenomenons that we have observed
almost systematically, on more than 1000 experimental traces (after filtering of traces not con-
forming to synchronization prerequisites).

3.4.1 Informal analysis

Since MiMaze was our first experience with a distributed game over the Internet, it is useful to
first informally describe how players “perceived” the game. This informal evaluation is also
useful to understand the limits of the consistency metric chosen.

• We found that neither the network delay (note that network delays were on average less
than 100ms) nor the number of participants had a negative impact on the “quali ty” of the
game. The displacement of avatars in the labyrinth was smooth and regular at all participant
locations. We observed from this informal evaluation that an error of 50 units, i.e. less than
the diameter of an avatar, on a moving avatar position did not create any inconvenience to
the participants. This result is important, and shows that giving preference to interactivity at
the expense of consistency was a good choice.

• The behavior of each participant is independent. Due to the distributed nature of the archi-
tecture, few unexpected behaviors, such as participant disconnection (due to CPU load,
network failure, trace memory saturation, etc.) or synchronization loss (NTP resynchroniza-
tion or failure) occurred during the evaluation session. Such "failures" only annoyed the
victim of the problem, and had no effects on the other participants.

• The MBone load and topology were stable during the experiments. We also noticed that the
paths are not symmetrical on the MBone. This problem makes it difficult to compute
network delays based on round trip times (including NTP). We consequently did not use
computers connected to a NTP server by an asymmetric link.

3.4.2 Network parameters

Delay distribution and clock

Figure 5 shows the delay distribution measured (between hosts hugo and droopy) on the
MBone during the experiment.

Figure 5. Network delay distribution observed by MiMaze on a region of the MBone (between
hosts hugo and droopy).

We observe in Figure 5 that the delay distribution is long tailed. The standard deviation is
50.44 ms; the mean (55.47 ms) is very close to the average delay measured during the experi-
ments (55 ms as shown in Figure 5).

The long-tailed distribution means that a significant part of the ADUs are late (i.e. they are not
available at the time the bucket is computed). The dead reckoning algorithm used being quite
simple, this should result in a significant drift increase for these late ADUs. Figure 5 indicates
that more than 15% of the ADUs experience network delays higher than 100 ms. These ADUs
will consequently not be used for on-time bucket computation. Reducing the standard devia-
tion would reduce the proportion of late ADUs with immediate consequences for the game
consistency.

To confirm the previous observation, Figure 6 gives two different observations of late ADUs.
Late ADUs are ADUs that reached their destination after 150ms, and they result in a missing
ADU at the time their respective bucket is computed. ADUs that were lost or corrupted are not
considered (they will be analyzed in the next section). Figure 6a shows, over a time period of
220 seconds, the percentage of ADUs which have not arrived the time when the bucket is com-
puted.

Figure 6b plots, on same time interval, the late ADUs distribution. Figure 6b shows that late
ADUs occur in less than 15% of the buckets. In other words, in more than 85% of the buckets,
there is no late ADU. This result is consistent with the observations from Figure 5.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

P
er

ce
nt

ag
e

Delay (ms)

Distribution of delays from 23 to 43

pe
rc

en
ta

ge

delay (ms)

A reduction in the delay standard deviation would have a significant influence on the propor-
tion of late ADUs. Using NTP strata 1 and 2 synchronized on a global clock network (such as
GPS) should reduce the standard deviation to less than 10ms [7], and would shorten the delay
and late-ADUs distribution tail.

Figure 6. (a) Percentage and (b) distribution of late ADUs on the MBone (between hosts hugo
and droopy).

Before addressing the problem of network losses, note that late ADUs have exactly the same
application effect as losses on the synchronization algorithm (since corresponding data is not
available in the bucket at the time of computation).

Losses

Figure 7 now gives two observations of lost ADUs. Only network losses are observed. Figure
7a shows the percentage of ADUs missing in each bucket due to losses in the Mbone. The
observation period is the same as in Figure 6. Figures 7b gives the loss distribution, i.e. the dis-
tribution of ADUs lost during a bucket interval. The mean packet loss rate on the MBone was
7% during this experimental session. The loss distribution shows that there are no ADUs mis-
sing because of network loss in 75% of the buckets. We discuss the consequences of network
losses on the game consistency in the next section.

Figure 7. (a) Percentage and (b) distribution of lost ADUs on the MBone (between hosts hugo
and droopy).

3.4.3 Bucket synchronization efficiency

Consistency of MiMaze

0

20

40

60

80

100

120

140

0 50 100 150 200 250

P
er

ce
nt

ag
e

of
 a

ct
io

ns

Time (s)

Unsynchronized actions by 43

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Percentage of actions

Distribution of unsynchronized actions by 43
pe

rc
en

ta
ge

 o
f

la
te

 A
D

U
s

time (s)

pe
rc

en
ta

ge
 o

f
bu

ck
et

s

percentage of late ADUs

0

20

40

60

80

100

120

140

0 50 100 150 200 250

P
er

ce
nt

ag
e

of
 a

ct
io

ns

Time (s)

Lost actions by 43

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Percentage of actions

Distribution of lost actions by 43

percentage of ADUs losses

pe
rc

en
ta

ge
 o

f
bu

ck
et

s

time (s)

pe
rc

en
ta

ge
 o

f
A

D
U

s
lo

ss
es

Recall that the drift is the distance between the actual position of an avatar, as seen by the local
entity, and the position of the same avatar seen by a remote entity. In a perfect scenario or with
a server based architecture, the overall game drift is zero. This is obviously not the case in
MiMaze.

Figure 8 shows the drift distance between hugo (the remote entity) and droopy (the reference
position). The drift distance appears on the vertical axis of Figure 8a, and on the horizontal axis
of Figure 8b.

Figure 8. Evaluation of the drift distance between the local position of an avatar (measured at
droopy) and its position observed by a remote entity (hugo); including (a) sample and (b) distri-
bution.

The first and immediate observation is that the drift does not diverge, and that the remote entity
will systematically come back to compute the real position, even if it has computed a wrong
position one for a while. One reason is that an entity just needs to receive a single "on-time"
ADU to reset to the correct position. Another reason is that network delays are less than 100ms.
With higher delays, we conjecture the same behavior with a higher error. Recall that late ADUs
which are late at the time a new bucket is computer are assumed to be lost.

The second observation is that the drift is 97% of the time less than 50 distance units. It is also
less than 20 distance units in 85% of the buckets. This error did not result in inconvenience at
the player level, since avatar diameter is 64 units. We consequently consider it as an insignifi-
cant error.

The drift distribution shows that in 65% of the cases, remote entities display the "exact" posi-
tion of an avatar. This result was expected from observations on delay and losses (Figures 6
and 7 show that ADUs are missing in up to 40% of the buckets). The drift analysis reveals that
only 35% of the buckets are computed with missing ADUs. More experimentation is needed to
confirm this observation, but it is credible in our experimental conditions.

Impact of the synchronization mechanism

In order to understand how the distributed synchronization mechanism impacts MiMaze con-
sistency, we have observed MiMaze’s consistency with and without bucket synchronization.
Figure 9 gives the gain on the drift distance, for drift distances observed. It is based on the dis-
tribution of drift distances observed during the experiments. A value of 1 on the vertical axis
corresponds to no gain and 2 corresponds to a 100% gain.

We report the average loss rate and delay for each experiment, after filtering of non confor-
ming traces. The session parameters are as described in section 3.1, except for the participants
location: speedy is located at UCL (UK), pegase at LIP6 (Paris), elvis and droopy are at INRIA
(Sophia Antipolis).

-50

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250

S
ta

te
 d

rif
t

Time (s)

Average drift state of player 43

0

10

20

30

40

50

60

70

-50 0 50 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

Position drift

Distribution of average drift state of player 43

st
at

e
dr

if
t

time (s)
pe

rc
en

ta
ge

 o
f

bu
ck

et
s

state drift

Figure 9. Consistency improvement (gain) with distributed synchronization (for various
network loss/delay scenarios).

The first important result is that synchronization significantly reduces the drift for the most fre-
quent drift values, i.e. between 1 and 150 distance units. In the case of large drifts correspon-
ding to large sequences of losses, synchronization can not help to reduce the drift. This is
confirmed by the second observation: synchronization reduces the drift for long delays (curves
elvis-pegase and elvis-speedy have long delays and low losses); in the case of high losses with
similar delays (on the pegase-elvis and speedy-elvis curves) the gain is smaller. Consequently,
a new mechanism needs to be added to MiMaze in order to reduce inconsistencies due to los-
ses. Such mechanisms will be discussed in the next section. We also observe in Figure 8 that
for local communication (short delays, no loss), synchronization slightly reduces the consis-
tency. We conjecture that this is due to the clock inaccuracy that causes some ADUs to be
scheduled in an incorrect bucket (one in advance or one late) in the case of bucket synchroniza-
tion.

3.5 Discussion

The main problem addressed in this work is the design of a communication infrastructure
which that allows distributed interactive applications to be played on heterogeneous networks
such as the Internet. We have shown that using a distributed architecture together with syn-
chronization, it is possible to preserve the real-time interactive properties of the application,
provided that some level of inconsistency can be accepted.

A major problem solved addressed in this study is the definition of a metric which is suitable to
express the satisfaction of session participants in a realistic manner.

The performance analysis provided in the previous section shows that "only" 65% of buckets
deliver the exact position of a given avatar. At the same time, players were very satisfied
during the entire game session. This indicates that this type of application is more tolerant to
network impairments than numerical observations would tend to show. Our finding is that 65%
of consistent state evaluation is acceptable by MiMaze game users in the current network con-
ditions. To better reflect player satisfaction, the following parameters should be involved in the
consistency evaluation:

• The characteristics of the avatar, in term of speed, acceleration, size, shape can influence the
acceptable error on the position of this avatar. E.g., a small error on the position of a very
slow avatar can be dramatic. The same error on a very fast avatar would not be visible to the
player (i.e. if this error is along the trajectory of the avatar).

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500

ga
in

state drift

Bucket Synchronization

speedy-elvis: high loss (80%), high delay (198ms), MBone
elvis-speedy: low loss (20%), high delay (226ms) MBone
pegase-elvis: high loss (70%), low delay (55ms) MBone

elvis-pegase: low loss (6%), low delay (64ms) MBone
elvis-droopy: no loss, low delay (18ms) LAN

• The game nature. An avatar moving in a 3D space with no terrain limits may be more diffi-
cult to dead reckon than a MiMaze avatar whose trajectory is constrained by the maze topo-
logy. It will consequently be easier to "extrapolate" or dead reckon the avatar trajectory in
MiMaze.

Our approach was to deliver on-time a view of the game that is "close" to the real one, and that
is "almost" the same at each participant location. This deliberate lack of precision (due to the
unreliability of the architecture) allows more scalability, provides real-time interaction
between participants, and does not alter participants’ satisfaction. We believe that similar
results could be observed with more complex games and shared virtual worlds.

The MiMaze design proves that for a simple human controlled application, there is no need for
"100% reliable" transmission, and that the game is perceived as being “consistent” even if only
65% of the buckets are filled in time. A more complete analysis of game parameters, such as
frequency of ADU transmissions, dead reckoning algorithm, etc., would show how much relia-
bili ty can be "relaxed." In particular we expect, from the above observations, that dead recko-
ning is a key technique in increasing the consistency of the game within more demanding
network environments, e.g. with high loss rates.

The dead reckoning algorithm we use in MiMaze is the simplest possible. Nevertheless it
appears that due to the nature of the application, and due to the ADU transmission frequency
(which is high in MiMaze), this algorithm is sufficient to minimize the drift distance in most of
the cases. With faster avatars and different game environments, more sophisticated dead recko-
ning algorithms will be required.

Dead reckoning can help in various situations:

• Replacing lost or late ADUs. There are many dead reckoning algorithms defined in the DIS
standard [1][2], some of them being very complex. Choosing (or designing) a dead recko-
ning algorithm is a complex task that is influenced by the game nature, by the ADU struc-
ture, and by the CPU load level.

• Smoothing the trajectory between two received ADUs. If one or more ADUs are missing
between two received ADUs, dead reckoning can be run to interpolate the trajectory
between the two received positions, thus displaying a smoother trajectory.

• Anticipating collisions between avatars. When a collision happens, it is most of the time too
late to compute the consequences of the collision in real time (e.g. in case of digital battle
field applications, where very complex changes can happen). Not anticipating collisions can
also lead to game inconsistencies. dead reckoning can be used by the sending entities to
anticipate potential future coll isions.

• Reducing network congestion. By reducing the ADU transmission frequency, dead recko-
ning can help to reduce the network load, depending on the application characteristics and
on the network situation. The drawback is increasing the CPU load at receiving entities and
possibly increase inconsistency.

To concluding this discussion, it should be noticed here that bursty losses might significantly
affect game consistency, and that a specific mechanism will have to be installed to prevent
such losses.

4.0 Conclusion
MiMaze is a first (and necessary) step in understanding what changes a new generation of dis-
tributed interactive applications will i ntroduce to the Internet, and how to deploy them safely
on what is considered to be a non-real-time network.

The main contribution of this work is to show that with a multicast communication architecture
and with a simple synchronization mechanism (the bucket mechanism), a fully distributed inte-

ractive application can provide an acceptable level of consistency to distributed interactive
applications on the Internet. We have shown that relaxing reliabili ty constraints is possible,
given that some level of inaccuracy is introduced in the global state computation. We have also
identified the problem of defining a metric for the evaluation of the application consistency.

We were not able to analyze MiMaze’s scalability with this experimentation. This is mostly
because MiMaze is not a realistic application from a data complexity point of view: ADUs are
short, CPU requirements are small, and the number of participants was limited.

Scalability will become a major problem as soon as ADU size or global state computing time
increase.

Another major contribution of this work is a proof of feasibility of distributed multipeer archi-
tectures on heterogeneous best-effort networks. Today, the most popular architecture in distri-
buted systems is a client-server architecture. We have shown that a distributed approach
provides a good level of performance with potentially better scalabil ity and better real-time
capabilities.

The advent of distributed games and other DIAs will increase the need for a wide development
of multicast on the Internet. Multicast is the only technique capable of reducing transmission
delays in a multi-user session in point-to-point networks. More work on distributed games wil l
tell us how to deploy multicast, and provide us with insights in need for specific group seman-
tics, group management, pricing schemes, etc.

The MiMaze display has been recently modified to offer a real 3D view of the game terrain,
with possible mapping of MPEG video on the maze walls [22]. This makes MiMaze a more
realistic application for the evaluation of interactive virtual worlds. To allow further investiga-
tions, MiMaze needs to be improved with:

• Congestion control. The idea here will be to vary the sending entity ADU transmission fre-
quency depending on network congestion feedback information (probably carried by
RTCP).

• Avatar collision detection and anticipation. Local states will be dead reckoned at the source
in order to anticipate their position in the close future. If a potential collision is detected,
specific ADUs will be sent to other entities to announce the coll ision.

• Session management in subgroups of participants. Dividing a session into subgroups is
necessary in order to increase the scalability and the consistency of applications [18].

Extension of MiMaze with synchronized 3D Virtual Reality Modeling Language (VRML)
objects, video scenes (MPEG4), and 3D spatial audio (that need a higher clock resolution [19])
will also be a necessary step to increase the complexity of the application. MiMaze is available
for evaluation on the MiMaze web site [22].

Acknowledgments

"Remerciements" are going to all volunteer players that made experimental sessions possible;
to their Ph.D. advisors who did not say anything during these long game sessions (sometimes
playing themselves!); and to Jim Kurose who helped to analyze the MiMaze behavior. Also
large thanks to Don Brutzman who has supported our work since the beginning and helped
improve this paper. Final thanks to Jorg Liebeherr that has been an extremely efficient and hel-
pful editor.

References

[1] IEEE Standard for Distributed Interactive Simulation -- Application Protocols (IEEE Std
1278.1-1995). IEEE Computer Society. 1995.

[2] IEEE Standard for Distributed Interactive Simulation -- Communication Services and Pro-
files (IEEE Std 1278.2-1995). IEEE Computer Society. 1995.

[3] S. Seidensticker and W. Garth Smith and M. Myjak. "Scenarios and Appropriate Protocols
for Distributed Interactive Simulation". Working Internet Draft <draft-ietf-lsma-scenarios-
01.txt>. March 1997.

[4] J. M. Pullen and M. Myjak and C. Bouwens. "Limitations of Internet Protocol Suite for
Distributed Simulation in the Large Multicast Environment''. Working Internet Draft <draft-
ietf-lsma-limitations-01.txt>, March 1997.

[5] J-C. Bolot, A. Vega Garcia, "Control mechanisms for packet audio in the Internet'', Procee-
dings of IEEE Infocom '96, San Fransisco, pp. 232-239, April 1996.

[6] D. L. Mills, "Network Time Protocol (Version 3) Specification, Implementation and Analy-
sis", RFC-1305, March 1992.

[7] A. Cox, E. Luiijf, R. van Kampen, R. Ripley. "Time Synchronization Experiments", Pro-
ceedings of the 14th DIS workshop (dis-96-14-175). Spring 1996.

[8] J. Czeranski, H-U. Kiel. "Softwarepraktikum Netzwerkprogrammierung unter Unix am
Beispiel des Spiels", 1993/94, http://www.tu-clausthal.de/student/iMaze/.

[9] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. "RTP: A Transport Protocol for Real-
Time Applications", RFC-1889, January 1996.

[10] R. Ramjee, J. Kurose, D. Towsley, H. Schulzrinne, "Adaptive playout mechanisms for
packetized audio applications in wide-area networks'', Proceedings of Infocom '94, Toronto,
Canada, pp. 680-688, April 1994.

[11] H. Eriksson. "MBone: The Multicast Backbone". Communication of the ACM. Vol. 37.
pp. 54-60. August 1994.

[12] A. Goscinsky. "Distributed Operating System, The Logical Design". Addision-Wesley
publishing company. 1991.

[13] L. Gautier and C. Diot. "Design and evaluation of MiMaze, a Multiplayer Game on the
Internet". IEEE Multimedia System Conference. Austin. June 28 - July 1, 1998.

[14] E. Berglund and D. R. Cheriton. "Amaze: a multiplayer computer game". IEEE Software.
2(3):30-39, May 1985.

[15] J. Rothshild, "Designing and Writing Multiplayer Games for the Internet: Technical
Considerations", www.mpath.com/news/white_paper.html.

[16] S. Deering. "Host Extensions for IP Multicasting". RFC 1112. 17. August 1989.

[17] D. B. Anderson, J. W. Barrus, D. C. Brogan, M. A. Casey, S. G. McKeown, I. B. Sterns,
R. C. Waters, and W. S. Yerazunis. "Diamond Park and Spline: A Virtual Reality System with
3D animation, Spoken Interaction, and Runtime Modifiability". MERL report TR96-02a. 1996.

[18] J. W. Barrus, R. C. Waters and D. B. Anderson. "Locales and Beacons: Efficient and pre-
cise Support for Large Scale Multiuser Virtual Environments". IEEE Virtual Reality Annual
International Symposium. Santa Clara (CA). March 1996.

[19] R. C. Waters. "Time synchronization in Spline". MERL report TR96-09. April 1996.

[20] S. Singhal, "Effective Remote Modeling in Large Scale Distributed Simulation and
Visualization Environments," PhD thesis, Department of Computer Science, Stanford Univer-
sity, Stanford, CA, August 1996.

[21] The PARADISE project web site. www-DSG.Stanford.EDU/paradise.html.

[22] L. Gautier, E. Lety, C. Diot. "The MiMaze web page". www.inria.fr/rodeo/MiMaze/.

[23] D. Brutzman. "The Virtual Reali ty Modeling Language and Java", Communications of the
ACM, Vol. 41, No. 6, pp. 57-64, June 1998.

[24] L. Gautier. "Une architecture de communication pour les applications multi-utilisateurs
interactives distribuees sur Internet". PhD report (in French language). University of Nice
Sophia-Antipolis. September 1998.

Glossary

ADU: Application Data Unit. An ADU is a chunk of data manipulated by the application. For
transmission efficiency purposes, it is recommended not to fragment ADUs within the commu-
nication stack.

Avatar: Any dynamic object in a game that is controlled either by a participant or automatically
by the system.

Dead Reckoning: An extrapolation technique used in the aviation systems to compute an esti-
mate of the current position of a plane based on the knowledge of its position in the past and on
its trajectory.

DIA: Distributed Interactive Application are real-time applications where users (i.e. partici-
pants) interact in a defined environment. Examples of DIAs are distributed games, digital batt-
lefield, shared virtual worlds, cooperative tools, etc.

DIS: Distributed Interactive Simulation. DIS is an IEEE standard (see references [1][2]) which
describes the format of the packets that should be exchanged between simulation entities in a
distributed simulation, and that defines the protocol to handle these packets.

IP multicast: An extension of IP to support the construction of trees (instead of point-to-point
routes) for the delivery of data to a group of receivers.

Mbone: Virtual overlay installed on the Internet to implement IP multicast.

RTP/RTCP: Real-Time transport Protocol / Real-Time Control Protocol [9]. RTP is an encap-
sulation format designed to handle realtime data transmission on the Internet. RTP is generally
used in conjunction with UDP. RTCP is a control protocol that carries statistic and control
information for RTP data flows.

NTP: Network Time Protocol [6]. NTP is a protocol used to synchronize a clock signal over a
network (in other words, to provide a global clock in a network). NTP is a client/server proto-
cols where servers are organized in stratum. NTP is sensitive to link asymmetry.

PDU: Protocol Data Unit. PDU is the standard way to describe a packet constructed by a proto-
col for transmission purposes. In the DIS, the most popular PDU is the Entity State PDU that
carries a description of an avatar.

UDP: User Datagram Protocol. UDP is an unreliable transport protocol (as opposed to TCP
that guarantees ordered and reliable data transmission). UDP’s main functionali ty is to multi-
plex/demultiplex data. UDP has been designed to implement real-time applications on the
Internet.

