A Distributed Architecture for Multiplayer
Interactive Applications on the Internet

Christophe DIOT! and Laurent GAUTIER?

1SPRINT ATL, 1 Adrian Court, Burlingame, CA 94030, USA. cdiot@sprintlabs.com
2INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France. gautier@sophiainriafr

Abstract: This paper describes the design, implementation, and evaluation of MiMaze, a dis-
tributed multiplayer game on the Internet, and, more precisely, on the design of dedicated
transmission control mechanisms. MiMaze isimplemented on a completely distributed commu-
nication architecture based on the IP multicast protocol suite (RTP/UDP/IP). Thisisthe first
work to analyze a distributed inter active game on the multicast Internet. The major element of
the MiMaze architecture is a distributed synchronization mechanism that guarantees the con-
sistency of the game regardless of network delay. This paper provides an evaluation of the
MiMaze game on the MBone, and discusses approaches to monitor and evaluate this new type
of application. The main contribution of this work is to show, based on an example, the feasi-
bility of this new family of applications on a best-effort network. It is shown that real-time
interactivity can be maintained, provided that some level of inconsistency can be tolerated by
the application. This work also highlights the role of multicast as an enabling technology for a
real-time Internet.

Keywor ds: System Architecture, Interactive Applications, Distributed Synchronization, Expe-
rimental System, Group Communication, Transmission Control, Internet.

1.0 Introduction

This article describes the design and the evaluation of a multiplayer game over the Internet.
MiMaze [22] is adistributed (i.e. serverless) game that uses an unreliable communication sys-
tem which is based on RTP [9] over UDP/IP multicast [16]. Multiplayer games are representa
tive of the new generation of Distributed Interactive Applications (DIASs) which also includes
Distributed Interactive Simulation (DIS), digital battlefields, Air Traffic Control (ATC), coo-
perative tools, and home interactive applicationg3][4]. These applications are expected to
represent amajor share of the Internet traffic within in the next 5 years.

We have chosen a distributed architecture, which relies on multicast communication, instead of
aclient/server architecture based on TCP, in order to increase the scalability of the application.
As aconsequence, we do not use a centra entity (or server) to compute the game state (see sec-
tion 2.1). On the contrary, each participant computes its own view of the game state, increasing
the chance of inconsistencyl. It is therefore the responsibility of each game entity to provide
synchronization facilities to cope with distributed state computation and heterogeneous Inter-
net delays. A server exists in MiMaze, but its use is limited to non-rea -time tasks (such as a
new player joining an ongoing session and session management issues in general).

This distributed architecture can be criticized because multicast is not widely deployed on the
Internet (it is experimental with the MBone). Nevertheless, group communication is currently
one of the most active research domainsin the Internet community. Access viamulticast tunne-
ling is available for experimental purpose, and some | SPs aready offer multicast in their Inter-
net services. Moreover, the experimental analysis of this new family of applications gives usan

1. Inconsistency occurs when participants have a different view of the game global state. Incon-
sistency isinherent to distributed networked applications (with heterogeneous delays).

opportunity to learn which multicast service definition best suits this new family of applica
tions.

The central theme of this paper is the evaluation d the synchronization mechanism in the
MiMaze game, referred to as bucket synchronization. The synchronization mechanism is the
minimum functionality required for a distributed game. Withou a synchronization mechanism,
the red-time requirements of an interactive game annot be satisfied. In MiMaze, we require
that information must be delivered to its destinations in less than 100ms. We have implemented
avery simple dead reckoning algorithm to recover lost or |late padets. This mechanism repla
ces classic ARQ-based error recovery which is not applicable in this context (acknowledg-
ment-based techniques introduce unacceptable delays).

This paper is dructured as follows. Sedion 2 describes MiMaze We start with a description of
the game and of its functional architecture. Then we give a detailed description d the bucket
synchronization algorithm. In sedion 3, we describe and analyze performance measurements
on the MBone, and we describe the monitoring tool used to resynchronize the distributed tra-
ces. The global clock problem is addressed. The performance results give us an gpportunity to
discuss what metric could be used to provide a redistic evaluation d the performance of a
DIA. We dso propose new medhanisms to improve ansistency and scalability in DIAs. We
conclude with a discussion d the next MiMaze design steps, and with the extension d the
game to amore redlistic interactive environment (including 3D graphics and virtual worlds).

The main contribution o this work is to show, based on an example, the feasibility of a new
family of applications on a best-effort network. We are conscious that MiMaze is a simple
application and that the following results are difficult to generalize. However, analyzing the
behavior of asimple gplication onthe Internet is an important first step in urderstanding haw
DIAs can be deployed onthe Internet. Consequently, we do not try to generalize our results;
instead, we try to analyze generalizable observations.

2.0 Description of MiMaze

The dharacteristics of distributed games are very similar to those of DIS applications [1][2].
The main difference between DIS applicaions and MiMaze is that the CPU requirement in
MiMazeislow. One reason for choosing such a"smple" game (in term of rules and gaphics)
isthat choosing amore complex game can make it difficult to analyzethe game traffic parame-
ters. The DIS characteritics that apply to MiMaze are:

* Interadion delay: any actionissued by any participant must reach, be processed and ke dis-
played to any other participant within the shortest possible del ayz.lf the network delay is
excessive, the received adion (encoded in an Application Data Unit, or ADU) is late and
typically cannot be used by the gplication.

* Participants can join and leave aMiMaze session dynamically. In this context, the IP multi-
cast model [16] is particularly convenient.

* The system architecture is distributed. This is justified, in the ase of DIS, by robustness
regquirements, and by a potentially better scalability (see sedion 21.1).

An important property of DIAs isthat the red-time behavior of game objeds (also called ava
tars) is“continuous.” By continuous, we mean that the behavior of avatar X at time n+1 can be
extrapolated from its behavior at time n. As a consequence, an avatar description lost on the
network can be easily recovered from a previous description of the avatar, given that updetes
onthe avatar position are sent often enough. This allows usto use an urreliable communication
system based on RTP and UDP, where the effects of lost or overly delayed packets are minimi-

2. the delay range to preserve red-time interadion between participantsis 40msto 200ms,
depending on the gpli cation charaderisticg15][17][5]. In MiMaze we have chosen 100ms.

zed by the natural redundancy of the interadive data, and bythe use of asimple dead reckoning
algorithm (seesection 23).

The problem of number of participants is not addressed in this paper. At this stage of the pro-
ject, we have no ideaof what a "large" session is for an interactive game. We have mnse-
quently decided to have a single multicast group in MiMaze until initial experiments tell us
more about the feasibility of DIAs on the Internet.

2.1 MiMazedesign characteristics

MiMazeisinspired by iMaze [8], a 2-dimensional "Paaman” game in which each player has a
3D representation o itsview of the game (seescreen shot Figure 1). Avatars (Paanen) movein
alabyrinth where they try to "kill" each ather. Each participant, besides having a 3D represen-
tation d itsvisiondomain, also has a 2D "global" view of the game (from the top), that shows
thelocation of al players.

2.1.1 MiMazedistributed architecture

To our knowledge, MiMaze [13] isthe only game with a fully distributed architecture using IP
multicast (see Figure 2). A server is only used when a new entity joins a session, to learn the
session group address and to download the maze.

© Hitiaze 1,763 1o/ x|
Fle Windows Server Game Options ﬂelpl

| Server aidress:
| Game addres:
Game joined on 224.4.224.4

[droopy.inria 6644

224.4.224.4/442278

X Score.

_lofx|
X compass__[2IBIXI || X< Aear view _lol x| @ 0 Fly (Grenoble)

@ D Laurent (Sophia)
® I

u

m

u

X Front View 1811 X Atz -0 x
P

-

Figure 1. Screen shot showing MiMaze participant’ slocd view: mazeview from the top, ses-
sioninformation (multicast address, session properties, etc.), participant information (scoring,
participants names), front and rear views from the participant’s avatar (3D).

Distributed architectures have many advantages over server-based architectures.

* Robustness In adistributed architecture, the failure of any of the participants has no effect
on other participants. Each participant isindependent, and haslocdly al necessary informa-
tion to compute the state of the game & any time. Since aserverless architecture does not
require the availability of a server which supports currently active goplications, a serverless
architecture greatly simplifies the deployment of a game by an application povider. The
quality observed by a participant only relies on the network properties (including multicast
support) and on the participant equipment.

e Scdability. We have identified two factors which limit the scalability of centralized archi-
tectures:

- Since all data converge & the centralized server, the server becomes a bottleneck. Since a
centralized server must collect al participants' data and serve dl participants of a game, the

frequency at which the game state can be computed slows down orce the CPU of the server

bewmes saturated. In the worst case, overload of the server CPU leadsto aloss of interadi-

vity of the game®.

- With a server architecture, the amount of datatransferred onthe network isin the best case
equal to the amourt of data transferred with a distributed architecture. It is higher when
multicast is not used, or when TCP is used to collect data.

* Minimum delays. In a centralized architedure, information reaches its destination through
the server. Depending on network topdogy and onthe routing tree structure, this can
increase the network delay upto two times the delays in a distributed architecture. In adis-
tributed architedure, information crosses the network only once to reac its final destina
tions.

On the other hand, centralized architectures do have some alvantages. First, since dl partici-
pants in the game receive the same game state from the server, global consistency is guaran-
teed. Moreover, the server introduces a natural synchronization among players. Another
important feature of centralized architectures is that they alow game cmpanies to easily
charge players based on the duration of their participation.

Anacther major advantage of centralized architectures is that the presence of a server makes
cheating dfficult. In atotally distributed architecture, each entity makes its own decisions, and
there is not necessarily an authority to identify patential cheaters. In a eentralized architedure,
however, all information flows to the server, which can the exadnessof the global state. Con-
sequently, the deployment of distributed architectures will require the use of spedfic distribu-
ted mechanisms to deal with the "honesty" of participants[12].

sends ADUs o

compute the global state when joining o

display global state w gaih new participant
Player RN

N

Player <& JCP R

RTP/UDP
Player Game Server

sesson group address
Player game domain dstribution

Figure 2. MiMaze communication architecture showing the session management server used
by participant when joining a session, and the fully distributed communication orce the game
has started.

To summarize, choosing a distributed architecture improves the real-time properties of the
application, at the cost of consistency. The motivation of thiswork is consequently to show that
the real-time properties of a DIA can be preserved on the Internet, despite long and heteroge-
neous delays, provided that an acceptable level of inconsistency can be tolerated in the appli-
cation. This work shows that a simple distributed synchronization mechanism and a global
clock infrastructure (such as NTP) can help to control the consistency.

2.1.2 Datastructures

The DIS standard defines numerous types of information to be packetized and managed by the
application. The DIS standard is an application-level |IEEE standard designed by applications
experts. Itisnot optimized for network transmission, and it may be unrealistic to use this proto-
col over the Internet [3][4].

The DIS standard defines more than 25 dfferent packet types (caled PDU’s or Protocol Data
Units) [1][2]. Most of the DIS packet types are relevant to distributed games. The most fre-

3. Thisfailure mode dso appliesto distributed architecures. However, computational resour-
ces saturate & alarger group sizethan with asingle, centralized server.

guently used PDU isthe Entity State PDU (ESFDU) which carries state information describing
the game objects. A spedfic PDU type has also been defined for "exceptions” such as colli-
sions, fire (shooting), detonation (bullets or projediles), and also for logistics and exercise cn-
trol. A referenceto afredy available implementation o DIS can be found at [23].

To minimize the network traffic generated by MiMaze, we use only one type of packet which
iscdled an ADU (Application Data Unit). The MiMaze ADU isvery similar to DIS sESFDU.
The size of an ADU is up to 52 bytes, including 8 bytes for the RTP header, 8 bytes for the
UDP header, 20 bytes for the IP header, and up to 16 bytes for MiMaze application payload.
MiMaze ADUs contain a description of the local state of an avatar, consisting o the locd posi-
tion in the game (x pasition, y position, angle) and the displacement vedor (speed, angular
speed) of the avatar and d the projectile emitted by the avatar.

A MiMaze entity sends ADUs on a periodic basis. In the airrent version of MiMaze, the ADU
transmission frequency is 25 times per second. For game experts, this value mrrespondsto a
very fast reaction speed of ahuman player, i.e. 40ms.

2.1.3 Related work

Amaze ca be considered as MiMaze' s ancestor. Amaze was designed by Berglund and Cheri-
ton in 1984 [14] to be played on a LAN, using point-to-point communication. MiMaze and
Amaze both have adistributed architectures but manage state differently. Amaze transmits the
game state on the network, and maintains replicated copies of the game state.

Distributed games on the Internet are now a real market for companies. Microsoft, BT, Intel,
Sony have their own projects for on-line distributed games or shared virtual worlds. There ae
also small companies that enhance multiplayer games with more sophisticated transmission
infrastructures (see for example [15]). But all commercial online games avail able to date till
use client/server architedures based onTCP transmisgon, simply because thisisthe only tedh-
nology fully available and stable on the Internet today. Additionally, closely related works
include the following:

* Spline[17][18] isavirtual distributed interadive world with 3D animation and spoken inte-
raction. Spline has a distributed architecture which is based onthe DIS standard. Most of
the effort in Spline has been dore onlocal flow synchronization. But there is no distributed
synchronization mechanism to deal with heterogeneous network delays.

* The PARADISE project [2]] at Stanford University aimsto architect and build alarge-scde
internetworked simulation environment that suppats multi-player interactive, 3D simula
tions running over a wide-areanetwork. This project has produced very interesting results
on goup communication, dead reckoning, entity aggregation, and collision detection. Our
work here differs from [20] in that our goal is to evaluate the MiMaze architedure from a
system standpoint, where the inter-related issues of bucket-synchronization, dead recko-
ning, and network impairments such as loss and delay are inextricably linked. In contrast,
the work in [20] is aimed primarily at aggregation (not considered here) and spedfic dead
reckoning algorithms. It worth noting that dead redkoning is used in [20] primarily to
decaease the frequency of state transmission and smoath trajectories between state updates.

2.2 The Bucket Synchronization Mechanism

In a serverless architecture, synchronization must be introduced to make sure that the state dis-
played by each entity is consistent, i.e. that:

* All ADUsissued at the same time (by various game entities) are computed together to eva
luate the state of the game.

* All the sesdon entities display to their own player the same game state simultaneoudly.

In MiMaze, time is divided into fixed length periods and a bucket is associated with each
period. All ADUs received by a player that were issued by senders during a given period are

stored by the receiver in the bucket corresponding to that interval. At the end of every bucket
interval, all ADUs in that bucket are used by the entity to compute its local view of the global
state. Buckets are computed 100ms after the end of the sampling period during which ADUs
have been issued (100ms s the playout del ay"'). In ather words, to compute anew global state,
an entity computes all the ADUs available in the "current” bucket.

For example, in Figure 3, withou synchronization, the ADU issued by player X at t; would be
processed together with the ADU issued at t; by player Y (but receved at t, by X, whichisin
the same state processing interval asts3). Bucket synchronization allows information received at
tg to be delayed in the bucket d (that will be processed at ty) in order to be synchronized with
the ADU issued at t; by Y.

We did not implement a specific medhanism to perform the another aspect of synchronization
(inter-entity synchronization). Thisis provided naturally by the bucket algorithm given that the
timeinterval between two bucketsis small enough.

When an ADU isreceived with atransmission delay which is more than 100ms, its destination
bucket has aready been computed. But the late ADU is dill stored in this bucket. It will be
used by the dead redoning algorithm to eventually replace a missing ADU when computing
future buckets (see sedion 2.3).

bucket frequency //—_ LT T T -
= - RN N
' ' | 17/
buckets a b 1]c 1 d e
i SRS sl
—@ —~y—® >
player X entity to T ===t _ e T gyl time
(Wherethestate ~ ~ T "7~ -7 ; :
is computed) - > -
' transmission delay v synchronization delay
Ym - -7 playout delay -
& >

remote player Y entity 1t

Figure 3. The bucket synchronization mechanism. The horizontal axis representstime. Player
X (upper ling) isthe player where the bucket algorithm is observed. The playout delay and the
bucket frequency are static parameters which are defined independently of the network proper-
ties.

2.2.1 Bucket frequency

The bucket frequency defines the rate at which a new game state is computed and displayed.
Since human vision perceives smooth motion when the frame rate exceeds 10-15 frames per
second, we have chosen to compute 25 huckets per second The bucket frequency is areceiver
application parameter that should not be influenced by network parameters.

With MiMazé€ s current settings, the ADU transmission frequency being equal to the bucket
frequency®, there shoud be one new ADU per entity at the time abucket is processed.

4. The bucket mechanism is similar to aplayout buffer mechanism [10] used to reduce network
jitter effedsin padket audio information.

5. Itisacoincidencethat these two parameters are egual.

2.2.2 Global clock medchanism

The bucket synchronization mechanism uses a globa clock system to evaluate the delay
between participating entities. A discussion onthe properties of the global clock system can be
foundin [19]. In our implementation, we use NTP [6]. In case NTP is not available, we use a
NTP-like agorithm based onthe evaluation of the rourd trip time [6]. There ae three difficul-
tieswith NTP:

* Thereare 3 levels(strata) of NTP serversandit isvery difficult to maintain good synchroni-
zaion among participants when level 3 servers are involved. Lower stratum mechanisms
(e.g. ntpdate) are not sufficient.

* NTP encodes clock information in 64 hits, while RTP uses a 32-bit clock. MiMaze has to
manipul ate both clock representations.

* NTPdoesnat provide areference clock signal and each participant has to compute an offset
for every other participant in a game session.

* NTP makes the assumption that network links used to cdculate timing delays are symme-
tric, which is often not the case in the Internet.

In our current implementation, in order to increase the precision of NTP under stratum 2 and 3
we use both NTP and an NTP-like mechanism which we have specifically designed to compute
clock offsets (see[13)]).

2.3 Dead redoning

To deliver a ommplete view of the game, the bucket algorithm requires at least one ADU per
participant to be available in each bucket. However an ADU can be missing for various
reasons. It may have been lost by the network or it may be late. Dead reckoning is used to
replacemissing ADUs.

For each missing ADU, the state computation algorithm goes back to the previous buckets, 100-
king for the most recent ADU received for the missing avatar. Once fourd, this ADU is dead
reckoned to evaluate the position where the avatar shoud "most probably" be at the current
time. The accuracy of the evaluation depends on the dead reckoning algorithm used (there ae
many passible dead reckoning algorithms available), on the age of the ADU used, and ongame
characteristics.

Deal reckoning being not the purpose of this paper, we have implemented in MiMazethe sim-
plest possible dead reckoning algorithm. When an avatar position (ADU) ismissing at thetime
we ompute abucket, we simply replay the last known pgsition of this avatar. We believe that
dead reckoning is a major mechanism for error correction in DIAS, and more dead redoning
algorithms will be evaluated in future work. But since the principa goal of thiswork isto gain
an understanding of the behavior of DIAs on the Internet, we intentionally dedded to have a
simple dead reckoning algorithm in order to analyze distributed synchronization with minimal
side effeds.

3.0 Parformance evaluation

This sction is organized in five parts. We begin with the description d the experimental set-
tings. The monitoring tool designed to resynchronize the distributed tracesiis briefly presented.
We then define the distributed game metric that we have chosen to evaluate MiMaze' s consis-
tency (the notion d consistency is the one defined in the Introduction section). The evaluation
section begins by providing an analysis of the behavior of MiMaze during an experimenta ses-
sion a the MBone. The influence of network parameters on the game consistency is analyzed.
We conclude this section with a discussion d the experimental observations.

3.1 Experimental environment

We have performed an evaluation d MiMaze on the MBone [11] with up to 25players located
in various places in France. The number of participants in experiments was varied in order to
vary the loss rate. We make the assumption that all losses are due to network congestion. A
total of 1600traces of 15 to 20 minutes each were collected. The architecture of the experimen-
tal multicast treeisgivenin Figure 4. The delay values given in Figure 4 are average values, on
the duration of a sesson, end-to-end network delays measured from host droopy. Note that
average network delays are always less than 100ms. The computers participating in the experi-
ment were SUN (SPARC 10, 20, ULTRA), DEC Alphas, and PCs.

3.2 Monitoring

During the experiment, participants play MiMaze and each participant collects a trace thet
which is composed of:

* Network level data: for each received ADU, we collect the senders’ identity, the transmis-
sion time-stamp, the reception time-stamp, and the sequence number.

e Application level data: information contained in all ADUs sent and received is time-stam-
ped and collected in the trace file. These data allow us to reconstruct the state of the game
computed by each participant.

* Synchronization data: network delays and clock offsets with respect to each participant.
These data are used to resynchronize the traces.

The main difficulty in analyzing the llected tracesis nat the benchmark computation, but the
trace resynchronization. Since the system is distributed, there is no absolute dock in a game
session, and each participant timestamps its local traces. Since the global clock mechanism is
imperfed, we used an algorithm based onleast-squares [24] to resynchronize traces. However,
this smple method to synchronizetracesis only valid when the docks are not drifting too fast
from each aher. Consequently, we decided to limit the analysis to those traces where NTP
clock synchronizationwas successful. We therefore omitted time intervals where relative clock
information was not interpretable [13].

Hence, the accuracy of the delays computed by MiMaze is drongly correlated to the ability of
NTP to maintain a synchronized global clock signal among participants.

pelvoux 8ms
droopy pif chouette
t ac sobone.inria.fr
django ® {om oreste.inria.fr

eurecom.eur ecom.fr
giroflee.eurecom.fr

almeria
r_jusren.reseau.jusieu.fr

soleil polytechnique.fr r_atmreseau.jusieu.fr fushia 10ms

MBone.eict.fr atlasibpfr

corneille.laas.fr
hugo feydau

55ms

Figure 4. MBone achitecture duringthe evaluation. Network delays are the averages measured
from droopy (located at INRIA Sophia Antipdis). All locations arein France.

3.3 Distributed game metrics

A major difficulty when attempting to analyze distributed multiplayer games is the definition
of meaningful performance metrics. These criteria must reflea how far the distributed game

behavior is from the perfect behavior that would have occurred if the game had been played
with no network delay and no network loss. Some people exped a networked game to behave
exactly as a non-networked solution, i.e., without any effeds of network delay. Clealy, thisis
impassible to achieve. The network introduces impairments which are an integral part of the
game, e.g., aprojedile does not reech its target instantaneously because of its gedl. Instead of
trying to eliminate the impairments (in particular, network losses and delays), we try to mini-
mize the impad of impairments on the game. The goa isto ddiver the same information to
each participant, even if this information is dightly different from what it would have been
withou network delay. Trying to compare a networked game session to the same session
played with no retwork would be wrong, since dl player adions are inevitably influenced by
the presence of the network.

For evaluation purposes, we have chosen a game metric called "drift distance." The drift dis-
tancerepresents, in distance units, the asolute value of the distance between the pasition o an
avatar asdisplayed byitslocal entity, and the position of the same avatar displayed by aremote
entity. The game is consistent if the drift distanceis zero. Nevertheless, a small drift does not
mean that the game is inconsistent. Given that the avatar radius is 32 urits and that the avatar
constant speed is 32 units per 40 ms, then we assume (based on an informal analysis of player
satisfaction) that errors of up to 50 units on a moving avatar are not significant (see next sec-
tion).

3.4 Performance analysis

In this sedion, wefirst provide aninformal analysis of MiMaze gaming sessions. Then we ana
lyze network parameters during these sesdons. Understanding the network parameters helps us
to unckrstand the game behavior, and haw to improveits consistency. The final part of this sc-
tion analyzes MiMaze mnsistency with regard to network parameters.

In order to keep the figures clear, we present performance observed between ony two partici-
pants (droopy and hugo). We have verified that any pair of participants on the MBone have
roughly the same behavior.

It isimportant to natice here that most of the results interpretations provided in this paper are
conjectures. As discussed in the section on metrics, and due to the nature of the gplication,
where human related facors have amajor impact, one hasto caution against ageneralization of
our results. Nevertheless the level of confidence we have in these @njectures is very high,
since we have only provided an explanation for those phenomenons that we have observed
almost systematically, on more than 1000 experimental traces (after filtering of traces not con-
forming to synchronization prerequisites).

3.4.1 Informal analysis

Since MiMaze was our first experience with a distributed game over the Internet, it is useful to
first informally describe how players “perceived” the game. This informal evaluation is aso
useful to urderstand the limits of the consistency metric chosen.

* We found that neither the network delay (note that network delays were on average less
than 100ms) nor the number of participants had a negative impad on the “quality” of the
game. The displacement of avatarsin the labyrinth was smooth and regular at all participant
locations. We observed from thisinformal evaluation that an error of 50 units, i.e. less than
the diameter of an avatar, on a moving avatar position did na create any inconvenience to
the participants. Thisresult isimportant, and shows that giving preferenceto interactivity at
the expense of consistency was a good choice.

* The behavior of each participant is independent. Due to the distributed nature of the archi-
tecture, few unexpected behaviors, such as participant disconnection (due to CPU load,
network failure, trace memory saturation, etc.) or synchronization loss (NTP resynchroniza-
tion or failure) occurred during the evaluation session. Such "failures' only annoyed the
victim of the problem, and had no effects on the other participants.

* The MBone load and topology were stable during the experiments. We atse noticed that the
paths are not symmetrica on the MBone. This problem makes it difficult to compute
network delays based on round trip times (including NTP). We consequently did not use
computers connected to aNTP server by an asymmetric link.

3.4.2 Network parameters
Delay distribution and clock

Figure 5 shows the delay distribution measured (between hosts hugo and droopy) on the
MBone during the experiment.

40

35

w
8
T

N
&

percentage

0 50 100 0 250 300

delay (ms)

Figure 5. Network delay distribution observed by MiMaze on aregion of the MBone (between
hosts hugo and droopy).

We observe in Figure 5 that the delay distribution is long tailed. The standard deviation is
50.44 ms; the mean (55.47 ms) is very close to the average delay measured during the experi-
ments (55 ms as shown in Figure 5).

The long-tailed distribution means that a significant part of the ADUs are late (i.e. they are not
available at the time the bucket is computed). The dead reckoning algorithm used being quite
simple, this should result in a significant drift increase for these late ADUs. Figure 5 indicates
that more than 15% of the ADUs experience network delays higher than 100 ms. These ADUs
will consequently not be used for on-time bucket computation. Reducing the standard devia-
tion would reduce the proportion of late ADUs with immediate consequences for the game
consistency.

To confirm the previous observation, Figure 6 gives two different observations of late ADUs.
Late ADUs are ADUs that reached their destination after 150ms, and they result in a missing
ADU at the time their respective bucket is computed. ADUs that were lost or corrupted are not
considered (they will be analyzed in the next section). Figure 6a shows, over atime period of
220 seconds, the percentage of ADUs which have not arrived the time when the bucket is com-
puted.

Figure 6b plots, on same time interval, the late ADUs distribution. Figure 6b shows that late
ADUSs occur in less than 15% of the buckets. In other words, in more than 85% of the buckets,
thereis no late ADU. Thisresult is consistent with the observations from Figure 5.

A reduction in the delay standard deviation would have a significant influence on the propor-
tion of late ADUs. Using NTP strata 1 and 2 synchronized on a global clock network (such as
GPS) should reduce the standard deviation to less than 10ms [7], and would shorten the delay
and late-ADUs distribution tail.

| IRAAL

. . .
0 50 100 150 200 250 0 20 A /n 100 120 140

40 0
time (s) percentage of late ADUs

100

=
5
3

N
)
S
@
3
T

=
S
3

®
3
@
<]
T

@
3

IS

S

percentage of buckets

percentage of late ADUs

N
S
T

N
S

Figure 6. (a) Percentage and (b) distribution of late ADUs on the MBone (between hosts hugo
and droopy).

Before addressing the problem of network losses, note that late ADUs have exactly the same
application effect as losses on the synchronization algorithm (since corresponding data is not
available in the bucket at the time of computation).

L osses

Figure 7 now gives two observations of lost ADUs. Only network losses are observed. Figure
7a shows the percentage of ADUs missing in each bucket due to losses in the Mbone. The
observation period isthe same asin Figure 6. Figures 7b givesthe loss distribution, i.e. the dis-
tribution of ADUs lost during a bucket interval. The mean packet |oss rate on the MBone was
7% during this experimental session. The loss distribution shows that there are no ADUs mis-
sing because of network loss in 75% of the buckets. We discuss the consequences of network
losses on the game consistency in the next section.

=
5
3

100

N
)
S

N
S
3

40

percentage of buckets

IS
S

percentage of ADUs losses

N
S

L L L
100 150 200 250 0 20 A0 |0 100 120 140

40
time (s) percentage of ADUs|osses

o

o
@
S

Figure 7. (a) Percentage and (b) distribution of lost ADUs on the MBone (between hosts hugo
and droopy).

3.4.3 Bucket synchronization efficiency

Consistency of MiMaze

Recdl that the drift is the distance between the adua position of an avatar, as seen bytheloca
entity, and the position d the same avatar seen by aremote entity. In aperfed scenario or with
a server based architecture, the overall game drift is zero. This is obviously na the cae in
MiMaze

Figure 8 shows the drift distance between hug (the remote entity) and doopy (the reference
paosition). The drift distance appears on the verticd axis of Figure 8a, and onthe horizontal axis
of Figure 8h.

450 T —] T 70

400

350

300

state drift

=
S
S

percentage of buckets

@
S

o

1 m
0 I ‘ n

. . . .)) .
0 50 100 150 200 250 -50 0 50 100 150 200 250 300 350 400 450

time (s) state drift

-50

Figure 8. Evaluation d the drift distance between the local position d an avatar (measured at
droopy) andits position olserved by aremote entity (hugo); including (a) sample and (b) distri-
bution.

Thefirst and immediate observationis that the drift does not diverge, and that the remote entity
will systematicdly come back to compute the rea paosition, even if it has computed a wrong
position ere for a while. One reason is that an entity just needs to receive a single "on-time"
ADU to reset to the corred position. Another reasonisthat network delays are less than 100ms.
With higher delays, we mnjecture the same behavior with ahigher error. Recdl that late ADUs
which are late at the time a new bucket is computer are assumed to be lost.

The second olservation is that the drift is 97% of the time less than 50 dstance units. It is also
lessthan 20 dstance unitsin 83% of the buckets. This error did na result in inconvenience &
the player level, since avatar diameter is 64 urits. We ansequently consider it as an insignifi-
cant error.

The drift distribution shows that in 65% of the cases, remote antities display the "exad" posi-
tion d an avatar. This result was expected from observations on delay and losses (Figures 6
and 7show that ADUs are missing in up to 40% of the buckets). The drift analysis reveal s that
only 35% of the buckets are computed with missing ADUs. More experimentation is needed to
confirm this observation, but it is credible in our experimenta condtions.

I mpact of the synchronization mechanism

In order to understand haw the distributed synchronization mechanism impads MiMaze @n-
sistency, we have observed MiMaz's consistency with and without bucket synchronization.
Figure 9 gvesthe gain onthe drift distance, for drift distances observed. It is based onthe dis-
tribution o drift distances observed duing the experiments. A value of 1 on the verticd axis
correspondsto no gain and 2correspondsto a100% gain.

We report the average loss rate and delay for each experiment, after filtering o non confor-
ming traces. The session parameters are as described in section 31, except for the participants
location: speedy islocated at UCL (UK), pegase & L1P6 (Paris), elvisand droopy are at INRIA
(Sophia Antipalis).

Bucket Synchronization

T T T T T T T
speedy-elvis: high loss (80%), high delay (198ms), MBone ——
elvis-speedy: low loss (20%), high delay (226ms) MBone -----
pegase-elvis: high loss (70%), low delay (55ms) MBone -----
25+ elvis-pegase: low loss (6%), low delay (64ms) MBone
elvis-droopy: no loss, low delay (18ms) LAN ---

15 b e

gain

05

0

.
0 50 100 150 200 250 300 350 400 450 500
state drift

Figure 9. Consistency improvement (gain) with distributed synchronization (for various
network loss/delay scenarios).

Thefirst important result is that synchronization significantly reduces the drift for the most fre-
quent drift values, i.e. between 1 and 150 distance units. In the case of large drifts correspon-
ding to large sequences of losses, synchronization can not help to reduce the drift. This is
confirmed by the second observation: synchronization reduces the drift for long delays (curves
elvis-pegase and elvis-speedy have long delays and low losses); in the case of high losses with
similar delays (on the pegase-elvis and speedy-elvis curves) the gain is smaller. Consequently,
a new mechanism needs to be added to MiMaze in order to reduce inconsistencies due to los-
ses. Such mechanisms will be discussed in the next section. We also observe in Figure 8 that
for loca communication (short delays, no loss), synchronization dightly reduces the consis-
tency. We conjecture that this is due to the clock inaccuracy that causes some ADUSs to be
scheduled in an incorrect bucket (one in advance or one late) in the case of bucket synchroniza-
tion.

3.5 Discusson

The main problem addressed in this work is the design of a communication infrastructure
which that allows distributed interactive applications to be played on heterogeneous networks
such as the Internet. We have shown that using a distributed architecture together with syn-
chronization, it is possible to preserve the real-time interactive properties of the application,
provided that some level of inconsistency can be accepted.

A major problem solved addressed in this study is the definition of a metric which issuitableto
express the satisfaction of session participantsin arealistic manner.

The performance analysis provided in the previous section shows that "only" 65% of buckets
deliver the exact position of a given avatar. At the same time, players were very satisfied
during the entire game session. This indicates that this type of application is more tolerant to
network impairments than numerical observations would tend to show. Our finding is that 65%
of consistent state evaluation is acceptable by MiMaze game usersin the current network con-
ditions. To better reflect player satisfaction, the following parameters should be involved in the
consistency eva uation:

* Thecharacteristics of the avatar, in term of speed, acceleration, size, shape can influencethe
acceptable error on the position of this avatar. E.g., a small error on the position of a very
slow avatar can be dramatic. The same error on avery fast avatar would not be visible to the
player (i.e. if this error is along the trajectory of the avatar).

* The game nature. An avatar movingin a 3D spacewith noterrain limits may be more diffi-
cult to dead reckonthan aMiMaze avatar whase trajedory is constrained by the maze topo-
logy. It will consequently be easier to "extrapolate" or dead redon the avatar trajectory in
MiMaze

Our approach was to deliver on-time aview of the game that is"close" to the real one, and that
is"amost" the same at each participant location. This deliberate lack of precision (due to the
unreliability of the architecture) alows more scalability, provides real-time interaction
between participants, and daes not alter participants' satisfaction. We believe that similar
results could be observed with more complex games and shared virtual worlds.

The MiMazedesign proves that for a ssimple human controll ed application, thereisno reed for
"100% reliable" transmission, and that the game is perceived as being “consistent” even if only
65% of the buckets are filled in time. A more complete analysis of game parameters, such as
frequency of ADU transmissions, dead reckoning algorithm, etc., would show how much relia-
bility can be "relaxed." In particular we expect, from the above observations, that dead recko-
ning is a key tedhnique in increasing the consistency of the game within more demanding
network environments, e.g. with high loss rates.

The dead reckoning algorithm we use in MiMaze is the simplest possible. Nevertheless it
appears that due to the nature of the goplication, and due to the ADU transmission frequency
(whichishighin MiMaze), this algorithm is sufficient to minimizethe drift distance in most of
the aases. With faster avatars and different game environments, more sophisticated dead recko-
ning algorithms will be required.

Dea reckoning can help in various stuations:

* Repladnglost or late ADUs. There are many dead reckoning algorithms defined in the DIS
standard [1][2], some of them being very complex. Choosing (or designing) a dead recko-
ning algorithm is a cmplex task that is influenced by the game nature, by the ADU struc-
ture, and by the CPU load level.

* Smoothing the trajectory between two recaved ADUSs. If one or more ADUs are missing
between two received ADUs, dead redoning can be run to interpolate the trajectory
between the two received paositions, thus displaying a smoacther tragjectory.

* Anticipating collisions between avatars. When a collision happens, it is most of the timetoo
late to compute the mnsequences of the wllisionin red time (e.g. in case of digital battle
field appli caions, where very complex changes can happen). Not anticipating colli sions can
also lead to game inconsistencies. dead reckoning can be used by the sending entities to
anticipate potential future collisions.

* Reducing network congestion. By reducing the ADU transmission frequency, dead recko-
ning can help to reduce the network load, depending on the gplication characteristics and
onthe network situation. The drawback isincreasing the CPU load at receiving entities and
possibly increase inconsistency.

To concluding this discussion, it shoud be naticed here that bursty losses might significantly
affect game consistency, and that a specific mechanism will have to be installed to prevent
such losses.

4.0 Conclusion

MiMazeis afirst (and necessary) step in understanding what changes a new generation of dis-
tributed interadive gplications will introduce to the Internet, and how to deploy them safely
onwhat is considered to be a non-red-time network.

The main contribution of thiswork isto show that with a multicast communication architecure
and with a simple synchronization mechanism (the bucket mechanism), afully distributed inte-

ractive applicaion can provide an acceptable level of consistency to dstributed interadive
applications on the Internet. We have shown that relaxing reliability constraints is posdble,
given that some level of inaccuracy isintroduced in the global state computation. We have dso
identified the problem of defining a metric for the evaluation of the application consistency.

We were not able to analyze MiMaze's sdability with this experimentation. This is mostly
because MiMaze isnat aredlistic goplication from a data mmplexity paint of view: ADUs are
short, CPU requirements are small, and the number of participants was limited.

Scdability will become amajor problem as ©onas ADU size or global state computing time
increase.

Another major contribution of thiswork is a proof of feasibility of distributed multipee archi-
tectures on heterogeneous best-effort networks. Today, the most popular architecture in distri-
buted systems is a dient-server architedure. We have shown that a distributed approach
provides a good level of performance with pdentially better scdability and better real-time
cgpabilities.

The advent of distributed games and ather DIAs will increase the need for a wide development
of multicast on the Internet. Multicast is the only technique capable of reducing transmission
delaysin amulti-user sessionin pdnt-to-point networks. More work on distributed games will
tell us how to deploy multicast, and provide us with insights in need for specific group seman-
tics, group management, pricing schemes, etc.

The MiMaze display has been recently modified to offer areal 3D view of the game terrain,
with passible mapping of MPEG video onthe maze walls [22]. This makes MiMaze a more
realistic application for the evaluation of interadive virtual worlds. To allow further investiga-
tions, MiMaze needs to be improved with:

e Congestion control. The idea here will be to vary the sending entity ADU transmission fre-
guency depending on network congestion feedback information (probably carried by
RTCP).

* Avatar collision detection and anticipation. Locd states will be dead reckoned at the source
in order to anticipate their position in the close future. If a potential collision is detected,
specific ADUswill be sent to ather entities to announce the collision.

* Session management in subgroups of participants. Dividing a session into subgroups is
necgessary in order to increase the scalability and the consistency of applications[18].

Extension of MiMaze with synchronized 3D Virtual Reality Modeling Language (VRML)
objeds, video scenes (MPEG4), and 3D spatial audio (that need a higher clock resolution [19])
will also be anecessary step to increase the complexity of the application. MiMaze is available
for evaluation on the MiMaze web site [22].

Acknowledgments

"Remerciements’ are going to all volunteer players that made experimental sessions possible;
to their Ph.D. advisors who did na say anything duing these long game sessions (sometimes
playing themselves!); and to Jim Kurose who helped to analyze the MiMaze behavior. Also
large thanks to Don Brutzman who has supported ou work since the beginning and helped
improve this paper. Final thanks to Jorg Liebeherr that has been an extremely efficient and hel-
pful editor.

References

[1] IEEE Standard for Distributed Interactive Simulation -- Application Protocols (IEEE Std
1278.1-1995). IEEE Computer Society. 1995.

[2] IEEE Standard for Distributed Interactive Simulation -- Communication Services and Pro-
files IEEE Std 12782-1995). IEEE Computer Society. 1995.

[3] S. Seidensticker and W. Garth Smith and M. Myjak. "Scenarios and Appropriate Protocols
for Distributed Interactive Simulation. Working Internet Draft <draft-ietf-lsma-scenarios-
0Lltxt>. March 1997.

[4] J. M. Pullen and M. Myjak and C. Bouwens. "Limitations of Internet Protocol Suite for
Distributed Simulation in the Large Multicast Environment". Working Internet Draft <draft-
ietf-lsma-limitations-01.txt>, March 197.

[5] JC. Bolot, A. Vega Garcia, "Control mechanisms for padket audio in the Internet”, Procee-
dings of IEEE Infocom '96, San Fransisco, pp. 232-239, April 19%.

[6] D. L. Mills, "Network Time Protocol (Version 3 Spedfication, Implementation and Analy-
sis', RFC-1305 March 1992

[7] A. Cox, E. Luiijf, R. van Kampen, R. Ripley. "Time Synchronization Experiments", Pro-
ceedings of the 14th DIS workshop (dis-96-14-175). Spring 1996.

[8] J. Czeranski, H-U. Kiel. "Softwarepraktikum Netzwerkprogrammierung urter Unix am
Beispiel des Spiels’, 199/94, http://www.tu-clausthal .de/student/iM aze/.

[9] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. "RTP: A Transport Protocol for Real-
Time Applications', RFC-1889, January 1996.

[10] R. Ramjee, J. Kurose, D. Towsley, H. Schulzrinne, "Adaptive playout mechanisms for
packetized audio applications in wide-area networks", Proceadings of Infocom '94, Toronto,
Canada, pp. 680-688, April 1994.

[11] H. Eriksson. "MBone: The Multicast Backbone". Communication of the ACM. Vol. 37.
pp. 54-60. August 1994

[12] A. Goscinsky. "Distributed Operating System, The Logical Design”. Addision-Wesley
pubishing company. 1991.

[13] L. Gautier and C. Diot. "Design and evaluation of MiMaze, a Multiplayer Game on the
Internet". IEEEMultimedia System Conference. Austin. June 28 - July 1, 1998

[14] E. Berglund and D. R. Cheriton. "Amaze: a multiplayer computer game”. |EEE Software.
2(3):30-39, May 1985

[15] J. Rothshild, "Designing and Writing Multiplayer Games for the Internet: Technica
Considerations', www.mpath.com/news/white_paper.html.

[16] S. Deering. "Host Extensions for IP Multicasting'. RFC 1112. 17. August 1989

[17] D. B. Anderson, J. W. Barrus, D. C. Brogan, M. A. Casey, S. G. McKeown, I. B. Sterns,
R. C. Waters, and W. S. Yerazunis. "Diamond Park and Spline: A Virtual Reality System with
3D animation, Spoken Interadion, and Runtime Modifiability". MERL report TR96-02a. 1996.

[18] J. W. Barrus, R. C. Waters and D. B. Anderson. "Locales and Beacons: Efficient and pre-
cise Suppat for Large Scale Multiuser Virtual Environments'. IEEE Virtua Reality Annual
International Symposium. Santa Clara (CA). March 1996.

[19] R. C. Waters. "Time synchronizationin Spline". MERL report TR96-09. April 199%.

[20] S. Singhal, "Effective Remote Modeling in Large Scale Distributed Simulation and
Visualization Environments,” PhD thesis, Department of Computer Science, Stanford Univer-
sity, Stanford, CA, August 1996.

[21] The PARADISE project web site. www-DSG.Stanford. EDU/paradise.html.
[22] L. Gautier, E. Lety, C. Diot. "The MiMaze web page". www.inria.fr/rodeo/MiMaze/.

[23] D. Brutzman. "The Virtua Redity Modeling Language and Java', Communications of the
ACM, Val. 41, No. 6, pp. 57-64, June 1998.

[24] L. Gautier. "Une architecture de communicaion pour les applications multi-utilisateurs
interactives distribuees aur Internet". PhD report (in French language). University of Nice
Sophia-Antipolis. September 1998.

Glossary

ADU: Application Data Unit. An ADU is a dunk d data manipulated by the gplication. For
transmission efficiency purposes, it is recommended not to fragment ADU s within the commu-
nication stadk.

Avatar: Any dyramic object in agame that is controlled either by a participant or automatically
by the system.

Deal Reckoning: An extrapalation technique used in the aviation systems to compute an esti-
mate of the aurrent position of aplane based onthe knowledge of its position in the past and on
itstrgjectory.

DIA: Distributed Interadive Application are real-time gplications where users (i.e. partici-
pants) interad in a defined environment. Examples of DIAs are distributed games, digital batt-
lefield, shared virtual worlds, cooperative todls, etc.

DIS: Digributed Interadive Simulation. DISis an IEEE standard (see references [1][2]) which
describes the format of the packets that shoud be exchanged between simulation entitiesin a
distributed simulation, and that defines the protocol to hand e these packets.

IP multicast: An extension of IP to support the construction o trees (instead of point-to-point
routes) for the delivery of datato agroupof receivers.

Mbone: Virtual overlay installed onthe Internet to implement | P multicast.

RTP/RTCP: Red-Time transport Protocol / Real-Time Control Protocol [9]. RTP is an encep-
sulation format designed to handle realtime data transmission onthe Internet. RTP is generaly
used in conjunction with UDP. RTCP is a control protocol that carries gatistic and control
information for RTP data flows.

NTP: Network Time Protocol [6]. NTP is a protocol used to synchronize a clock signal over a
network (in ather words, to provide aglobal clock in a network). NTP is a dient/server proto-
cols where servers are organized in stratum. NTP is sensitive to link asymmetry.

PDU: Protocol Data Unit. PDU isthe standard way to describe apacket constructed by a proto-
col for transmisgon purposes. In the DIS, the most popular PDU is the Entity State PDU that
caries adescription of an avatar.

UDP: User Datagram Protocol. UDP is an unreliable transport protocol (as opposed to TCP
that guarantees ordered and reliable data transmission). UDP's main functionality is to multi-
plex/demultiplex data. UDP has been designed to implement real-time gplicaions on the
Internet.

