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ABSTRACT 
The complexity of AI characters in computer games is 
continually improving; however they still fall short of human 
players. In this paper we describe an AI bot for the game Quake 
II that tries to incorporate some of the missing capabilities. This 
bot is distinguished by its ability to build its own map as it 
explores a level, use a wide variety of tactics based on its 
internal map, and in some cases, anticipate its opponent’s 
actions. The bot was developed in the Soar architecture and 
uses dynamical hierarchical task decomposition to organize it 
knowledge and actions. It also uses internal prediction based on 
its own tactics to anticipate its opponent’s actions. This paper 
describes the implementation, its strengths and weaknesses, and 
discusses future research. 

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 
games. 

General Terms 
Algorithms, Performance, Design 

Keywords 
Computer Games, Anticipation, Quake, Soar 
 
1. INTRODUCTION 
AI bots in first-person shooter (FPS) computer games have 
continually gotten more complex and more intelligent. The 
original bots in FPSs were completely oblivious to their 
environment and used fixed scripts to attack the human player. 
Current bots, such as those found in Quake III [2] or Unreal 
Tournament, are beginning to approximate the game play of 
humans. They collect health and other powerups, and they have a 
variety of tactics such as circle-strafing and popping in and out of 
doorways. What, if anything, are they missing? Although they can 
react to different situations and opponents, as of yet they do not 
anticipate or adapt to the behavior of other players.  

The following quote from Dennis (Thresh) Fong, the Michael 
Jordon of Quake, gives some insight into the importance of 
anticipation (Newsweek, November 1999): 

Say my opponent walks into a room. I’m visualizing him 
walking in, picking up the weapon. On his way out, I’m 
waiting at the doorway and I fire a rocket two seconds 
before he even rounds the corner. A lot of people rely 
strictly on aim, but everybody has their bad aim days. So 
even if I’m having a bad day, I can still pull out a win. 
That’s why I’ve never lost a tournament. 

 
A related example is when you see an enemy running down a 
hallway far away. Because the enemy has only the blaster (an 
inferior weapon), you realize he is probably looking for the 
hyperblaster (a much better weapon), which is just around the 
corner from you. You decide to go get the hyperblaster first and 
directly confront the enemy, expecting that your better firepower 
will win the day.  
 
Each of these tactics can be added manually for specific locations 
in a specific level of a game. We could add tests that if the bot is 
ever in a specific location on a specific level and hears a specific 
sound (the sound of the enemy picking up a weapon), then it 
should set an ambush by a specific door. Unfortunately, this 
approach requires a tremendous effort to create a large number of 
tactics that work only for the specific level.  
 
Instead of trying to encode behaviors for each of these specific 
situations, an alternative is to add a general capability for 
anticipating an opponent’s actions. From an AI perspective, 
anticipation is a form of planning; a topic that researchers in AI 
have studied for 40 years. The power of chess and checkers 
programs comes directly from their ability to anticipate their 
opponent’s responses to their own moves. Anticipation for bots in 
first-person shooters (FPS) has a few twists that differentiate it 
from the standard AI techniques such as alpha-beta search. First, a 
player in a FPS does not have access to the complete game state as 
does a player in chess or checkers.  Second, the choices for action 
of a player in a FPS unfold continuously as time passes. At any 
time, the player can move, turn, shoot, jump, or just stay in one 
place. There is a breadth of possible actions that make search 
intractable and requires more knowledge about which actions 
might be useful. 
 
This paper describes the Soar Quakebot and how anticipation was 
added to it. The original Soar Quakebot [5] was designed to be a 
human-like expert at playing Quake deathmatches. It did not 
incorporate any planning, and was designed to be a reactive 
system that incorporated tactics via hierarchical goals based on the 
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techniques we used to successfully model the behavior of military 
pilots [1, 6]. However, as we developed the Quakebot, we found 
that improving the behavior of the bot required more and more 
specialized tactics. In addition, when we presented our work to 
game developers, they invariably asked, "Does it anticipate the 
human players actions? If it did, that would be really cool." Given 
that the underlying goal of all of our research is to be "really cool" 
(which may be hard to believe given that we are nerdy AI 
researchers), we finally got around to looking at adding 
anticipation, which is the subject of this paper.  
 
The remainder of the paper is as follows. First, we present the 
design of the Soar Quakebot sans anticipation. Next we describe 
how anticipation was added to the Quakebot and present examples 
of its behavior. To our surprise, it was straightforward to add 
anticipation to the Soar Quakebot, and it also provided a general 
approach to encoding many of the tactics that originally required 
specialized knowledge. Finally, we describe future work to extend 
the work on anticipation with the main emphasis on learning 
opponent-specific models of behavior. 

2.  THE SOAR QUAKEBOT 
The Soar Quakebot plays the death match version of Quake II. In 
a death match, players exist in a "level", which contains hallways 
and rooms. The players can move through the level, picking up 
objects, called powerups, and firing weapons. The object of the 
game is to be the first to kill the other players a specified number 
of times. Each time a player is shot or is near an explosion, its 
health decreases. When a player’s health reaches zero, the player 
dies. A dead player is then "spawned" at one of a set of spawning 
sites within the level. Powerups, which include weapons, health, 
armor, and ammo, are distributed throughout the level in static 
locations. When a powerup is picked up, a replacement will 
automatically regenerate in 30 seconds. Weapons vary according 
to their range, accuracy, spread of damage, time to reload, type of 
ammo used, and amount of damage they do. For example, the 
shotgun does damage in a wide area if used close to an enemy, but 
does no damage if used from a distance. In contrast, the railgun 
kills in a single shot at any distance, but requires very precise aim 
because it has no spread.  
 
The Soar Quakebot controls a single player in the game. We have 
attempted to make the perceptual information and motor 
commands that are available to the bot similar to those that a 
human has playing the game. For example, a bot can see only 
unobstructed objects in their view cone and they can hear only 
nearby sounds. One issue is that bots cannot sense the walls in a 
level as coherent objects because they consist of many polygons 
that are displayed to the user to give the appearance of solid walls, 
open doorways, etc. To navigate a level, the Quakebot explores 
the level and deliberately builds up a map based on range data to 
walls. The Quakebot uses this internally generated map to know 
 

where walls, rooms, hallways, and doors are when it is running 
through a level. To simplify the map construction code, we 
restricted the Soar Quakebot so that it maps only two-dimensional 
levels that consist of rectangular rooms and hallways. Once a map 
is built, it can be saved for later use when the Soar Quakebot 
replays the same level. 
 
As shown in Figure 1, the Soar Quakebot reasoning code currently 
runs on a separate computer and interacts with the game using the 
Quake II interface DLL (dynamically linked library). C code, 
which implements the Soar Quakebot’s sensors and motor actions, 
is embedded in the DLL along with our inter-computer 
communication code, called Socket I/O. Socket I/O provides a 
platform independent mechanism for communicating all 
perception and action information between the Quakebot and the 
game and has also been used to interface Soar to Descent 3. The 
Quakebot uses Soar [3] as its underlying AI engine. All the 
knowledge for playing the game, including constructing and using 
the internal map, is encoded in Soar rules. The underlying Quake 
II game engine updates the world and calls the DLL ten times a 
second (the graphics engine updates more often than the game 
engine). On each of these cycles, all changes to the bots sensors 
are updated and any requested motor actions are initiated. 
 
In this configuration, Soar runs asynchronously to Quake II and 
executes its basic decision cycle anywhere from 30-50 times a 
second on a 400MHz Pentium II, allowing it to take multiple 
reasoning steps for each change in its sensors.  
 
Soar is an engine for making and executing decisions - selecting 
the next thing the system should do and then doing it. In Soar, the 
basic objects of decision are call operators. An operator can 
consist of primitive actions to be performed in the world (such as 
move, turn, or shoot), internal actions (remember the last position 
of the enemy), or more abstract goals to be achieved (such as 
attack, get-item, go-through-door) that in turn must be 
dynamically decomposed into simpler operators that ultimately 
bottom out in operators with primitive actions. These primitive 
actions are implemented by if-then rules, with multiple rules firing 
in parallel and sequence to implement a single operator.  
 
The basic operation of Soar is to continually propose, select, and 
apply operators to the current state via rules that match against the 
current state. When an abstract operator is selected that cannot be 
applied immediately, such as get-item, then a substate is 
generated. For this substate, additional operators are then 
proposed, selected and applied until the original operator is 
completed, or the world changes in such a way as to lead to the 
selection of another operator. Figure 2 shows a typical trace of 
operators being selected. Indentation indicates that a substate has 
been created and that operators are then selected to pursue the 
operator that led to the substate. 
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Figure 1. Interface between Quake II and the Soar Quakebot 



 
10:    O: O11 (collect-powerups) 
11:    ==>S: S14  
12:       O: O12 (get-item) 
13:       ==>S: S16  
14:          O: O19 (goto-item) 
15:          ==>S: S17  
16:             O: O23 (face-item) 
17:             ==>S: S20  
18:                ==>S: S21  
22:                   O: O25 (wait) 
23:                   O: O24 (wait) 
24:             O: O28 (move-to-item) 
25:             ==>S: S23  
26:                ==>S: S24  
27:                   O: O29 (wait) 
28:                   O: O30 (wait) 
29:                   O: O31 (wait) 

 
Figure 2. Trace of operator selections 

 
The trace starts with the selection of the collect-powerups operator 
(O11). This operator immediately becomes a goal, as it is not 
possible to apply it immediately. In the resulting substate (S14), 
many rules can fire (not shown) to propose getting specific items 
that the bot needs. Additional rules fire (also not shown) that 
create preferences for the operators based on the worth of the item, 
its distance, etc. At decision 12, one instance is selected, which in 
this case is to get the supershotgun in the current room. Get-item 
is further decomposed into suboperators go-through-door, when 
the item is not in the current room, and goto-item, when the item 
is in the current room. The supershotgun is in the room, so goto-
item is selected, which is then implemented in a substate by face-
item and move-to-item. The proposal for face-item tests that if the 
bot is not facing the item being picked up, then the bot should turn 
toward it. Facing an item is not instantaneous, and decisions 17-23 
show how the bot just waits until the turning is complete. Once the 
bot is facing the item, the proposal for move-to-item fires, and 
move-to-item is selected, which also takes time to complete.  
 
Figure 3 shows the underlying organization of operators that gave 
rise to the trace in Figure 2. This is just a small part of the overall 
hierarchy, but includes some of the top-level-operators, such as 
wander, explore, attack, and those that are used in the substate that 
can arise to apply the collect-powerups operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Partial operator hierarchy 

 
Soar does not use any pre-defined ordering to determine which 
operators to select and apply. As mentioned earlier, the knowledge 
in Soar to propose, select, and apply operators is encoded as if-
then rules. The rules are Soar’s long-term procedural knowledge, 
and they are matched against the states stored in Soar’s global 
declarative working memory. Working memory holds all of the 
bot’s information about the current situation, including perception, 
elaborations of perception, data structures representing the map of 
the game, etc. All rules that successfully match working memory 
fire in parallel to change working memory by either adding or 
deleting declarative structures. There is no underlying program 
counter that inexorably moves execution from one statement to the 
next, independent of changes to the situation, possibly performing 
an action that has become obsolete. Instead, each action is selected 
by rules that continually test the current situation. 
 
Soar’s underlying processing cycle that selects and applies 
operators consists of five phases as shown in Figure 4. The 
following paragraphs describe the processing cycle to a level of 
detail that can be skipped for those only interested in anticipation. 
1. Sensing: Updating the available perceptual information in the 

top state. The creation and updating of perceptual 
information is done automatically by C routines in the 
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Figure 4. The Soar Decision Cycle 



Quake DLL that simulate the sensing of a human. For 
example, the Quakebot can "see" unobstructed objects in a 
forward facing view cone out to a pre-set range. The 
Quakebot can "hear" movement, explosions, and other 
sounds to a pre-set range. The Quakebot can also sense its 
own state, such as the items it has, its health, its position, 
orientation, speed, etc. 

2. Elaboration, operator proposal, and operator evaluation:  
a) Elaboration: Based on the contents of working memory, 

rules may fire to monotonically elaborate the sensory 
information with task-specific data. For example, rules 
might test current health level and then create a new 
structure in working memory that classifies it as critical, 
low, medium, or high. Additional rules can test for the 
presence of these structures.  

b) Operator Proposal: Based on the contents of working 
memory, rules may fire to propose operators to be 
selected for the current states (the origin of states 
besides the top state is described below). The action of 
these rules is to create special working memory 
elements that signal Soar that the operator should be 
considered for selection for a specific state. You can 
think of these rules as testing the pre-conditions of the 
operators and proposing the operators when it is legal to 
apply them to the current situation. 

c) Operator Evaluation: Additional rules can test which 
operators have been proposed and create preferences for 
them. There is a fixed set of preferences types that can 
specify partial orders among operator, that some 
operators should not be selected, that it doesn’t matter 
which operator is selected, and so on. The rules that 
create the preferences can test other aspects of the state 
for which the operator is proposed, making it easy to 
encode heuristic selection knowledge.  

All three types of rules fire in parallel - there is no separate 
phase for elaboration or proposal or evaluation - the ordering 
of rule firing is completely data driven. Because of data 
dependencies, elaboration rule firings will usually lead to 
proposal and then evaluation rule firings. In addition, these 
rules retract their actions when their conditions no longer 
match working memory so that only elaborations, proposals, 
and evaluations relevant to the current situation are 
maintained in working memory. Soar stays in this phase until 
quiescence is reached and no more rules fire or retract. This 
usually happens in two to three waves of parallel rule firing. 

3. Operator Selection: Based on the created preferences, a fixed 
decision procedure picks the best operator for each state. 
Once an operator is selected, it is installed as the current 
operator for the current state in working memory. In many 
cases, the result of the decision procedure will be to maintain 
the current operator, especially when it takes time for an 
operator to apply. If the preferences are inconsistent (one 
operator is better than another and the second is also better 
than the first), incomplete (the preferences do not distinguish 
between the available operators or there are no operators 
proposed), or do not lead to the selection of a new operator, 
then an impasse is reached, signifying that more knowledge 
is required. Whatever the cause of the impasse, Soar 
automatically creates a new substate in which the goal of the 
problem solving is to resolve the impasse. As problem 
solving progresses, an impasse may arise in the substate, 
leading to a stack of states. Soar continually fires rules and 
attempts to select operators for every state in the stack during 
each loop through the decision cycle. When a different 

operator selection can be made for an impassed state (through 
the creation of results in the substate or through changes in 
perception that in turn lead to changes in which operators are 
proposed), then the impasse is resolved, the substate (and all 
of its substates) is removed from working memory and 
problem solving continues. 

4. Operator Application: Once an operator is selected, rules that 
match it can fire, changing working memory, possibly 
creating commands to the motor system. These commands 
are queued until the Output phase. Because the actions are 
implemented as rules, Soar directly supports conditional 
operators as well as operators whose actions unfold over 
multiple decisions involving feedback from the perceptual 
system. Rules that apply operators do not retract their actions 
when they no longer match, but create persistent data 
structures in working memory that must be explicitly 
removed by another operator application rule. The operator 
application phase continues until no additional rules fire. 

5. Output: All queued output commands, such as turn, move, or 
shoot, are sent to the motor system. 

 
The Soar Quakebot is designed based on the principles developed 
for controlling robots using Soar [4] and then extended in our 
work on simulating military pilots in training simulations [1].  
 
Below is a list of the main tactics the Quakebot uses. These are 
implemented across the top-level operators. Excluding the 
anticipation capability, the current Soar Quakebot has 100 
operators, of which 20 have substates, and 715 rules.  

• Collect-powerups 
• Pick up items based on their spawn locations  
• Pick up weapons based on their quality 
• Abandon collecting items that are missing 
• Remember when missing items will respawn 
• Use shortest paths to get objects 
• Get health and armor if low on them 
• Pickup up other good weapons/ammo if close by  

• Attack  
• Move sideways while continually aiming and shooting 

at the enemy (circle-strafing) 
• Move to best distance for current weapon 

• Retreat 
• Run away if low on health 

• Chase 
• Go after enemy based on sound of running 
• Go where enemy was last seen 

• Ambush  
• Wait in a hidden corner when entering the room 

• Hunt  
• Go to nearest spawn room after killing enemy 
• Go to rooms enemy is often seen in 

Finally, the Soar Quakebot has many numeric parameters that 
determine the details of behavior, such as how long it hides for an 
ambush, how close it will attempt to get to use a certain weapon. 
We have grouped some of these parameters together to create 
different styles of Quakebots that vary in the tactics in terms of 
aggressiveness, reaction time, aiming skill, and overall 
intelligence (where certain tactics are disabled or enabled). 



3.  ANTICIPATION 
Our approach to anticipation is to have the Quakebot create an 
internal representation that mimics what it thinks the enemy’s 
internal state is, based on its own observation of the enemy. It then 
predicts the enemy’s behavior by using its own knowledge of 
tactics to select what it would do if it were the enemy. Using 
simple rules to internally simulate external actions in the 
environment, the bot forward projects until it gets a prediction that 
is useful or reaches a situation where there is uncertainty as to 
what the enemy would do next. The prediction is used to set an 
ambush or deny the enemy a weapon or health item.  
 
A general capability like anticipation should really be general. It 
should be independent of the level that the bot is in. Moreover it 
should be as independent as possible of the specific tactics the bot 
already has. That does not mean it can’t make use of them when 
doing anticipation, but it does mean that we should be able to add 
anticipation with minimal changes to the bot. If only a few 
changes must be made, it gives us some confidence that the 
anticipation capability can be used for other bots that play other 
games. Therefore, in the following sections, we will report on the 
number and character of the rules that were added, modified, or 
deleted, and whether these rules were Quake-dependent. 
 
Anticipation requires knowledge about when to anticipate the 
enemy, how to anticipate, and what to do following anticipation. 
In the Quakebot, these map onto the following: 
1. Proposal and selection for the predict-enemy operator.  
2. Application for the predict-enemy operator. 
3. Proposal for selecting ambush operators. 
 

3.1 Proposal and Selection  
When should the Soar Quakebot attempt to predict the enemy’s 
behavior? It should not be doing it continually, because of the 
computational overhead and the interference with other activities. 
It shouldn’t do it when it has absolutely no idea what the state of 
the other bot is and it also shouldn’t do it when any prediction will 
be ignored because the bot already knows what to do. The Soar 
Quakebot attempts to anticipate an enemy when it senses the 
enemy (so it knows some things about the enemy’s state) and the 
enemy is not facing the bot and is far away (otherwise the bot 
should be attacking). Figure 5 shows an example situation where 
the Quakebot (lower left) sees its enemy (upper center) heading 
north, on its way to get a desirable object (the heart). The 
Quakebot proposes and selects the predict-enemy operator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The predict-enemy operator is selected. 
 

During the prediction process, changes to the world that make 
prediction undesirable, such as if the enemy turns toward the 
Quakebot, cause predict-enemy to be retracted and another 
operator selected so that the Quakebot is not be caught napping.  
 
The proposal and selection rules are not specific to a given level, 
nor are they specific to the game of Quake. However, they do 
restrict anticipation so that it is only used in limited cases. Later 
we will discuss the possibility of an even more general approach 
that extends the use of anticipation. Overall, there are 4 rules used 
to propose and select the predict-enemy operator. 
 

3.2 Application 
Our approach to predicting the enemy’s behavior is 
straightforward. The Quakebot creates an internal representation 
of the enemy's state based on its perception of the enemy and then 
uses its own knowledge of what it would do in the enemy's state to 
predict the enemy's actions. Thus, we assume that the enemy's 
goals and tactics are essentially the same as the Quakebot's. This 
is the same approach that is taken in AI programs that play most 
games, such as chess or checkers.  
 
The first step is to create the internal representation of the enemy's 
situation so that the Quakebot's tactics can apply to them. This is 
easy to do in Soar because Soar already organizes all of its 
information about the current situation in its state structure in 
working memory. When the predict-enemy operator is selected 
and a substate is created, that state is transformed into a state that 
looks like the top-level state of the enemy. This is done using an 
operator (create-enemy-state) that creates structures on the 
substate that corresponds to what the Quakebot thinks the enemy 
is sensing and has in its working memory, such as the map. The 
internal representation of the enemy's state is only approximate 
because the Quakebot can sense only some of it and must 
hypothesize what the enemy would be sensing. Surprisingly, just 
knowing the enemy's position, health, armor level, and current 
weapon are sufficient to make a plausible prediction of high-level 
behavior of players such as the Soar Quakebot. Sixteen rules are 
involved in creating the enemy state, nine that are specific to the 
Quakebot data structures and seven that are general. Three 
existing rules had to be modified to inhibit them from firing 
during the initialization of the prediction, so that the internal 
representation for the enemy's state did not include sensory 
information from the Quakebot itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The Quakebot creates an internal representation of 
enemy’s situation. 
 

 



The second step involves using the Quakebot’s tactics on its 
representation of the enemy’s state. In the current example, rules 
propose collect-powerups to get the heart powerup. The Quakebot 
knows that the powerup is in the room to the north from prior 
explorations and attributes that knowledge to the enemy. Once 
collect-powerups is selected, a substate will be created, and then 
get-item, which in turn will have a substate, followed by go-
through-door. Further decompositions would arise if the bot were 
attempting to get the powerup in its world. However, for internal 
simulations, the Quakebot can skip the decompositions if we add a 
rule that simulates the abstract actions of the operator. The rule 
directly changes the internal representation so that the Quakebot 
(thinking it is the enemy) thinks it has moved into the hall. Similar 
rules are added to short-circuit other operator decompositions. 
Additional rules (frame axioms) update data structures that would 
change via perception such as health improving if a health item 
were picked up. One rule is added to keep track of how far the 
enemy would travel during these actions. This information will be 
used to decide when to terminate the prediction. Altogether, nine 
rules are added to simulate the effects of abstract operators. These 
rules are specific to the operators used in Quake, but independent 
of the details of the specific level. Figure 7 shows the updated 
internal representation of the Quakebot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The Quakebot projects that the enemy will move 
into hallway in pursuit of powerup. 
 
The internal simulation continues until the Quakebot thinks that 
the enemy would pick up the powerup. At that point, the enemy is 
predicted to change top-level operators and choose wander. 
Because there is only one exit, wander leads to selecting an 
operator to go to the hallway and finally back into the room where 
the enemy started (and where the Quakebot is). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The Quakebot projects that enemy will return to the 
current room. 

3.3 Predicting 
Throughout this process, the Quakebot is predicting the behavior 
of the enemy. That prediction is only useful if the Quakebot can 
get into a tactical position that takes advantage of the prediction. 
Up until the enemy returns to the room, the prediction does not 
help the Quakebot. However, if the Quakebot hides by the 
hallway, it can get off a shot into the back or side of the enemy as 
it comes into the room. Thus, following the prediction, the 
Quakebot can set an ambush. 
 
What are the general conditions for using the prediction: that is, 
what advantage might you get from knowing what the enemy is 
going to do? For Quake II, we’ve concentrated on the case where 
the bot can predict that it can get to a room before the enemy, and 
either set an ambush or deny the enemy some important powerup. 
This is done by continually comparing the distance that the enemy 
would take to get to its predicted location to the distance it would 
take for the Quakebot to get to the same location. For the current 
system, the number of rooms entered is used as a rough distance 
measure. In the example above, the Quakebot predicts that it will 
take the enemy four moves to get back to the current room, and it 
knows it is already in that room. Why doesn’t the Quakebot stop 
predicting when the enemy would be coming down the hallway, 
which is three moves for it vs. one for the bot? The reason is that 
the Quakebot knows that it cannot set an ambush in a hallway, and 
thus waits until the predicted location is a room. 
 
A prediction can also terminate when the Quakebot (thinking as 
the enemy) comes across a situation in which there are multiple 
possible actions for which it does not have a strong preference. 
This would have arisen in the previous example if there had be 
three doors in the northern-most room - with only two doors, the 
prediction would have gone forward because of the preference to 
avoid going back where you came from. When this type of 
uncertainty arises, the Quakebot abandons the prediction. A total 
of five rules are used to detect that a relevant prediction has been 
created. These are specific to the approaches of using distance or 
uncertainty to decide when to terminate the prediction. 
 
One possible extension to our approach is to have the bot maintain 
explicit estimates or probabilities of the different alternatives and 
search forward, predicting all possible outcomes and their 
probabilities. There are two reasons this is not done. First, the 
Quakebot does not need the probability estimates in order to make 
its own decision. Second, the added time to do such an extensive 
prediction could make the prediction meaningless as the enemy 
will have already moved through the environment by the time the 
prediction completes. 
  

3.4 Using the Prediction 
In the Soar Quakebot, three operators make use of the predictions 
created by predict-enemy: hunt, ambush, and deny-powerups. 
When a prediction is created that the enemy will be in another 
room that the Quakebot can get to sooner, hunt is proposed and it 
sends the bot to the correct room. Once in the same room that the 
enemy is predicted to be in, ambush takes over and moves the bot 
to an open location next to the door that the enemy is predicted to 
come through. In general, the bot will try to shoot the enemy in 
the back or side as it enters the room (shown below in the figure). 
But if the bot has the rocket launcher, it will take a pre-emptive 
shot when it hears the enemy getting close (a la Dennis Fong). 
Both of these ambush strategies have time limits associated with 
them so that the bot waits only a bit more time than it thinks the 

 

 



enemy will take to get to the room in which the bot has set the 
ambush. Deny-powerups is selected when the enemy is predicted 
to attempt to pick up a powerup that the bot can get first.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. The Quakebot executes an ambush based on the 
results of its prediction. 

 
3.5 Learning predictions 
Inherent to Soar is a learning mechanism, called chunking, that 
automatically creates rules that summarize the processing within 
impasses as rules. Chunking creates rules that test the aspects of 
the situation that were relevant during the generation of a result. 
The action of the chunk creates the result. Chunking can speed up 
problem solving by compiling complex reasoning into a single 
rule that bypasses the problem solving in the future. Chunking is 
not used with the standard Quakebot because there is little internal 
reasoning to compile out; however, with anticipation, there can be 
a long chain of internal reasoning that takes significant time (a few 
seconds) for the Quakebot to generate. In that case chunking is 
perfect for learning rules that eliminate the need for the Quakebot 
to regenerate the same prediction. The learned rules are specific to 
the exact rooms, but that is appropriate because the predictions are 
only valid under special circumstances.  

Below is an English version of a rule learned by the Quakebot. 
If predict-enemy is the current operator and 
    there is an enemy with health 100,  
    using the blaster, in room #11 and 
    I am distance 2 from room #3 
then 
    predict that the enemy will go to room #3  
    through door #7. 

Compiled into the prediction is that the bot can get to room #3 
before the enemy.  
 
Once this rule is learned, the bot no longer needs to go through 
any internal modeling and will immediately predict the enemy’s 
behavior when it sees the enemy under the tested situations. The 
impact is that as the bot plays the game, it will build up a set of 
prediction rules, and it will make fast predictions in more 
situations. In fact, it might turn out that originally when it does 
prediction, the time to do the prediction sometimes gets in the way 
of setting an ambush or denying a powerup, but with experience 
that time cost will be eliminated. One possibility to create more 
challenging opponents is to pre-train Quakebots so that they 
already have an extensive set of prediction rules. 

4.  LIMITATIONS AND EXTENSIONS 
In this section we discuss various limitations and possible 
extensions to the anticipation capabilities of the Soar Quakebot. 
 

4.1 Generality of Anticipation Capability 
Our goal was to create a general anticipation capability that could 
be used by a Quakebot for different game levels. In that we’ve 
succeeded. None of the knowledge that was added to support 
anticipation must be customized for a specific level. The power 
comes from reusing the bot’s tactics and knowledge of a level 
(which it gains by mapping the level on its own). 
 
A more general goal is for the anticipation capability to be useful 
by other bots in completely different games. Many parts of the 
capability are completely independent of Quake. However, some 
are not. Below is a recap of the different parts of the anticipation 
capability and the types of game-specific or game-independent 
knowledge they require. 
 
• Deciding when to predict an enemy’s behavior. 

General across games but restricted to a set of situations. 
• Predicting the enemy’s behavior. 

• Creating the internal representation of the enemy’s state. 
Specific to the structure of the perceptual data and 
important internal state features. 

• Proposing and selecting operators for the enemy. 
General: uses existing bot knowledge. 

• Simulating the execution of operators. 
Specific to the operators, but part of the planning 
knowledge that would be available if bot planned some 
of its own actions. 

• Deciding that a prediction is useful. 
Specific to the situations that the bot expects to be 
useful: places the bot can get to first. 

• Using the prediction to select other tactics/operators. 
Specific to those tactics. 

The minor weaknesses are in terms of adding knowledge about the 
perceptual data and the abstract execution of operators. They are 
usually easy to add and in no way restrict the use of anticipation. 
 
The more troubling issue arises from the need for knowledge that 
determines when the enemy’s behavior should be predicted and 
how will the predictions be useful. This restricts anticipation to 
being used only under situations that the designer has deemed 
worthwhile. This is important because anticipation could be used 
as the generator for many of the tactics that would otherwise be 
coded by hand. For example, during a fight the bot could predict 
that an injured enemy would attempt to pick up a nearby health. 
The bot could use this to either get the health first, or direct its 
weapon toward the health, making it more likely that the enemy 
will be hit. Another example is where the bot uses its knowledge 
about the expected path of the enemy to avoid the enemy when the 
bot is low on health or has inferior weapons. Similarly, when the 
bot kills an enemy, it could predict that the enemy will be 
recreated at a spawn location with only a mediocre weapon. It 
could use that prediction to move toward the closest spawn point 
in hope of engaging the enemy before it gets a better weapon. This 
tactic is currently hard coded in the Soar Quakebot, but could arise 
from the appropriate use of anticipation. 
 



The obvious approach would be to always predict the enemy’s 
action and then plan actions that the bot could perform that would 
get it to a preferred state (such as the enemy being dead, or having 
full health and a good weapon). This has the potential of 
simplifying the bot by replacing tactics with a general planning 
mechanism. However, there is the cost of planning and the fact 
that the planning would interfere with the bot's ability to react 
quickly to its environment. Unfortunately, forward planning in 
these environments in intractable because of the huge space of 
possible moves the bot can take at each moment, with the most 
obvious culprit being which direction it should face. The more 
subtle cost is that of developing the planning knowledge that is 
used to generate the tactics, which in practice can be very difficult. 
 
4.2 Recursive Anticipation 
The Quakebot anticipates what the enemy does next. An obvious 
extension is for the Quakebot to anticipate the enemy anticipating 
its own actions. This recursion can go on to arbitrary depths, but 
the usefulness of it is probably limited to only a few levels. 
Recursive anticipation could lead the Quakebot to actions that are 
deceptive and confusing to the enemy. Although this might be 
useful in principle and for non-real-time computer games, such as 
real-time strategy games where there is more global sensing and a 
less frantic pace, it might be of only limited use for the Quakebot. 
The reason is that the bot must sense the enemy in order to have 
some idea of what the enemy's state is, and the enemy must sense 
the bot in order to have some idea of what the bot's state is. In 
Quake, there are only rare cases where the bot and the enemy can 
sense each other and one will not start attacking the other. 
However, we plan to do some limited investigation of recursive 
anticipation to find out how useful it is. 

 
4.3 Enemy-Specific Anticipation 
The current anticipation scheme assumes that the enemy uses 
exactly the same tactics as the Quakebot. However, there may be 
cases where you know beforehand that an opponent has different 
tactics, such as preferring different weapons. By incorporating 
more accurate models of an enemies weapon preferences, the 
Quakebot can decide to ambush an enemy in completely different 
(and more appropriate) rooms. This is easily handled by adding 
enemy-specific rules that encode the given tactics.  
 
Unfortunately, an enemy's tactics and preference are rarely known 
beforehand. We have extended the Quake bot so that it gathers 
weapon preference data for its enemies. This approach is simple to 
implement, has low computational overhead, but has limitations in 
that the bot can only learn about specific enemy preferences. 
Although this limitation is of concern to us as researchers, it may 
be completely sufficient for computer games. Similar approaches 
have already been successfully used in football games to track and 
adjust to the play-calling behavior of human players [8]. 
 
A more general, but more difficult approach is to have the bot 
modify its knowledge each time the enemy does something 
unpredictable. The bot would continually try to build up its 
knowledge so that it can successfully predict the enemy. One final 
complexity is that the enemy will not be static, but will be 
adapting to the bot's tactics, and even to the bot's use of 
anticipation and it adaptation to the enemy. For example, after the 
first time an enemy is ambushed after getting the powerup from a  
 

dead-end room, it will probably anticipate the ambush and modify 
its own behavior.  

 
5.  SUMMARY AND PERSPECTIVE 
The goal of our research is to create synthetic characters for 
computer games with human-level intelligence. Incorporating 
anticipation is a critical part of human-level intelligence and we 
have demonstrated how it can be added to an existing bot.  
 
From our perspective, this has been a success because it was 
added with only minimal changes to our existing bot, it added 
significantly new capabilities and behavior, and it points the way 
to many additional research issues. Most important, it makes the 
Quakebot more interesting to play against – you never know what 
might be around the next corner.  From an AI perspective, our 
work is a bit of a rehash of research on opponent modeling and 
tracking [7], planning, and reactive planning. Its contribution to AI 
is that it pursues these topics within the context of a complex, 
dynamic, and competitive environment, where planning and 
execution efficiency are of utmost importance as well as ease of 
implementation. From a computer games perspective, our work 
points the way for where commercial bots could be in a few years, 
not just "thinking" on their own, but predicting what you are 
thinking. 
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