
It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot

John E. Laird

University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110

laird@umich.edu

ABSTRACT
The complexity of AI characters in computer games is
continually improving; however they still fall short of human
players. In this paper we describe an AI bot for the game Quake
II that tries to incorporate some of the missing capabilities. This
bot is distinguished by its ability to build its own map as it
explores a level, use a wide variety of tactics based on its
internal map, and in some cases, anticipate its opponent’s
actions. The bot was developed in the Soar architecture and
uses dynamical hierarchical task decomposition to organize it
knowledge and actions. It also uses internal prediction based on
its own tactics to anticipate its opponent’s actions. This paper
describes the implementation, its strengths and weaknesses, and
discusses future research.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems –
games.

General Terms
Algorithms, Performance, Design

Keywords
Computer Games, Anticipation, Quake, Soar

1. INTRODUCTION
AI bots in first-person shooter (FPS) computer games have
continually gotten more complex and more intelligent. The
original bots in FPSs were completely oblivious to their
environment and used fixed scripts to attack the human player.
Current bots, such as those found in Quake III [2] or Unreal
Tournament, are beginning to approximate the game play of
humans. They collect health and other powerups, and they have a
variety of tactics such as circle-strafing and popping in and out of
doorways. What, if anything, are they missing? Although they can
react to different situations and opponents, as of yet they do not
anticipate or adapt to the behavior of other players.

The following quote from Dennis (Thresh) Fong, the Michael
Jordon of Quake, gives some insight into the importance of
anticipation (Newsweek, November 1999):

Say my opponent walks into a room. I’m visualizing him
walking in, picking up the weapon. On his way out, I’m
waiting at the doorway and I fire a rocket two seconds
before he even rounds the corner. A lot of people rely
strictly on aim, but everybody has their bad aim days. So
even if I’m having a bad day, I can still pull out a win.
That’s why I’ve never lost a tournament.

A related example is when you see an enemy running down a
hallway far away. Because the enemy has only the blaster (an
inferior weapon), you realize he is probably looking for the
hyperblaster (a much better weapon), which is just around the
corner from you. You decide to go get the hyperblaster first and
directly confront the enemy, expecting that your better firepower
will win the day.

Each of these tactics can be added manually for specific locations
in a specific level of a game. We could add tests that if the bot is
ever in a specific location on a specific level and hears a specific
sound (the sound of the enemy picking up a weapon), then it
should set an ambush by a specific door. Unfortunately, this
approach requires a tremendous effort to create a large number of
tactics that work only for the specific level.

Instead of trying to encode behaviors for each of these specific
situations, an alternative is to add a general capability for
anticipating an opponent’s actions. From an AI perspective,
anticipation is a form of planning; a topic that researchers in AI
have studied for 40 years. The power of chess and checkers
programs comes directly from their ability to anticipate their
opponent’s responses to their own moves. Anticipation for bots in
first-person shooters (FPS) has a few twists that differentiate it
from the standard AI techniques such as alpha-beta search. First, a
player in a FPS does not have access to the complete game state as
does a player in chess or checkers. Second, the choices for action
of a player in a FPS unfold continuously as time passes. At any
time, the player can move, turn, shoot, jump, or just stay in one
place. There is a breadth of possible actions that make search
intractable and requires more knowledge about which actions
might be useful.

This paper describes the Soar Quakebot and how anticipation was
added to it. The original Soar Quakebot [5] was designed to be a
human-like expert at playing Quake deathmatches. It did not
incorporate any planning, and was designed to be a reactive
system that incorporated tactics via hierarchical goals based on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

techniques we used to successfully model the behavior of military
pilots [1, 6]. However, as we developed the Quakebot, we found
that improving the behavior of the bot required more and more
specialized tactics. In addition, when we presented our work to
game developers, they invariably asked, "Does it anticipate the
human players actions? If it did, that would be really cool." Given
that the underlying goal of all of our research is to be "really cool"
(which may be hard to believe given that we are nerdy AI
researchers), we finally got around to looking at adding
anticipation, which is the subject of this paper.

The remainder of the paper is as follows. First, we present the
design of the Soar Quakebot sans anticipation. Next we describe
how anticipation was added to the Quakebot and present examples
of its behavior. To our surprise, it was straightforward to add
anticipation to the Soar Quakebot, and it also provided a general
approach to encoding many of the tactics that originally required
specialized knowledge. Finally, we describe future work to extend
the work on anticipation with the main emphasis on learning
opponent-specific models of behavior.

2. THE SOAR QUAKEBOT
The Soar Quakebot plays the death match version of Quake II. In
a death match, players exist in a "level", which contains hallways
and rooms. The players can move through the level, picking up
objects, called powerups, and firing weapons. The object of the
game is to be the first to kill the other players a specified number
of times. Each time a player is shot or is near an explosion, its
health decreases. When a player’s health reaches zero, the player
dies. A dead player is then "spawned" at one of a set of spawning
sites within the level. Powerups, which include weapons, health,
armor, and ammo, are distributed throughout the level in static
locations. When a powerup is picked up, a replacement will
automatically regenerate in 30 seconds. Weapons vary according
to their range, accuracy, spread of damage, time to reload, type of
ammo used, and amount of damage they do. For example, the
shotgun does damage in a wide area if used close to an enemy, but
does no damage if used from a distance. In contrast, the railgun
kills in a single shot at any distance, but requires very precise aim
because it has no spread.

The Soar Quakebot controls a single player in the game. We have
attempted to make the perceptual information and motor
commands that are available to the bot similar to those that a
human has playing the game. For example, a bot can see only
unobstructed objects in their view cone and they can hear only
nearby sounds. One issue is that bots cannot sense the walls in a
level as coherent objects because they consist of many polygons
that are displayed to the user to give the appearance of solid walls,
open doorways, etc. To navigate a level, the Quakebot explores
the level and deliberately builds up a map based on range data to
walls. The Quakebot uses this internally generated map to know

where walls, rooms, hallways, and doors are when it is running
through a level. To simplify the map construction code, we
restricted the Soar Quakebot so that it maps only two-dimensional
levels that consist of rectangular rooms and hallways. Once a map
is built, it can be saved for later use when the Soar Quakebot
replays the same level.

As shown in Figure 1, the Soar Quakebot reasoning code currently
runs on a separate computer and interacts with the game using the
Quake II interface DLL (dynamically linked library). C code,
which implements the Soar Quakebot’s sensors and motor actions,
is embedded in the DLL along with our inter-computer
communication code, called Socket I/O. Socket I/O provides a
platform independent mechanism for communicating all
perception and action information between the Quakebot and the
game and has also been used to interface Soar to Descent 3. The
Quakebot uses Soar [3] as its underlying AI engine. All the
knowledge for playing the game, including constructing and using
the internal map, is encoded in Soar rules. The underlying Quake
II game engine updates the world and calls the DLL ten times a
second (the graphics engine updates more often than the game
engine). On each of these cycles, all changes to the bots sensors
are updated and any requested motor actions are initiated.

In this configuration, Soar runs asynchronously to Quake II and
executes its basic decision cycle anywhere from 30-50 times a
second on a 400MHz Pentium II, allowing it to take multiple
reasoning steps for each change in its sensors.

Soar is an engine for making and executing decisions - selecting
the next thing the system should do and then doing it. In Soar, the
basic objects of decision are call operators. An operator can
consist of primitive actions to be performed in the world (such as
move, turn, or shoot), internal actions (remember the last position
of the enemy), or more abstract goals to be achieved (such as
attack, get-item, go-through-door) that in turn must be
dynamically decomposed into simpler operators that ultimately
bottom out in operators with primitive actions. These primitive
actions are implemented by if-then rules, with multiple rules firing
in parallel and sequence to implement a single operator.

The basic operation of Soar is to continually propose, select, and
apply operators to the current state via rules that match against the
current state. When an abstract operator is selected that cannot be
applied immediately, such as get-item, then a substate is
generated. For this substate, additional operators are then
proposed, selected and applied until the original operator is
completed, or the world changes in such a way as to lead to the
selection of another operator. Figure 2 shows a typical trace of
operators being selected. Indentation indicates that a substate has
been created and that operators are then selected to pursue the
operator that led to the substate.

 Interface
DLL

Quake II
Soar Quakebot

Rules
Perception

Action

Socket
I/O

Socket

I/O

Figure 1. Interface between Quake II and the Soar Quakebot

10: O: O11 (collect-powerups)
11: ==>S: S14
12: O: O12 (get-item)
13: ==>S: S16
14: O: O19 (goto-item)
15: ==>S: S17
16: O: O23 (face-item)
17: ==>S: S20
18: ==>S: S21
22: O: O25 (wait)
23: O: O24 (wait)
24: O: O28 (move-to-item)
25: ==>S: S23
26: ==>S: S24
27: O: O29 (wait)
28: O: O30 (wait)
29: O: O31 (wait)

Figure 2. Trace of operator selections

The trace starts with the selection of the collect-powerups operator
(O11). This operator immediately becomes a goal, as it is not
possible to apply it immediately. In the resulting substate (S14),
many rules can fire (not shown) to propose getting specific items
that the bot needs. Additional rules fire (also not shown) that
create preferences for the operators based on the worth of the item,
its distance, etc. At decision 12, one instance is selected, which in
this case is to get the supershotgun in the current room. Get-item
is further decomposed into suboperators go-through-door, when
the item is not in the current room, and goto-item, when the item
is in the current room. The supershotgun is in the room, so goto-
item is selected, which is then implemented in a substate by face-
item and move-to-item. The proposal for face-item tests that if the
bot is not facing the item being picked up, then the bot should turn
toward it. Facing an item is not instantaneous, and decisions 17-23
show how the bot just waits until the turning is complete. Once the
bot is facing the item, the proposal for move-to-item fires, and
move-to-item is selected, which also takes time to complete.

Figure 3 shows the underlying organization of operators that gave
rise to the trace in Figure 2. This is just a small part of the overall
hierarchy, but includes some of the top-level-operators, such as
wander, explore, attack, and those that are used in the substate that
can arise to apply the collect-powerups operator.

Figure 3. Partial operator hierarchy

Soar does not use any pre-defined ordering to determine which
operators to select and apply. As mentioned earlier, the knowledge
in Soar to propose, select, and apply operators is encoded as if-
then rules. The rules are Soar’s long-term procedural knowledge,
and they are matched against the states stored in Soar’s global
declarative working memory. Working memory holds all of the
bot’s information about the current situation, including perception,
elaborations of perception, data structures representing the map of
the game, etc. All rules that successfully match working memory
fire in parallel to change working memory by either adding or
deleting declarative structures. There is no underlying program
counter that inexorably moves execution from one statement to the
next, independent of changes to the situation, possibly performing
an action that has become obsolete. Instead, each action is selected
by rules that continually test the current situation.

Soar’s underlying processing cycle that selects and applies
operators consists of five phases as shown in Figure 4. The
following paragraphs describe the processing cycle to a level of
detail that can be skipped for those only interested in anticipation.
1. Sensing: Updating the available perceptual information in the

top state. The creation and updating of perceptual
information is done automatically by C routines in the

attack wander explore collect-powerups

get-item

go-through-door goto-item

face-item move-to-item stop-moving notice-item-missing

Sensing

Elaboration

Proposal

Evaluation

Operator
Selection

Operator
Application

Output

Figure 4. The Soar Decision Cycle

Quake DLL that simulate the sensing of a human. For
example, the Quakebot can "see" unobstructed objects in a
forward facing view cone out to a pre-set range. The
Quakebot can "hear" movement, explosions, and other
sounds to a pre-set range. The Quakebot can also sense its
own state, such as the items it has, its health, its position,
orientation, speed, etc.

2. Elaboration, operator proposal, and operator evaluation:
a) Elaboration: Based on the contents of working memory,

rules may fire to monotonically elaborate the sensory
information with task-specific data. For example, rules
might test current health level and then create a new
structure in working memory that classifies it as critical,
low, medium, or high. Additional rules can test for the
presence of these structures.

b) Operator Proposal: Based on the contents of working
memory, rules may fire to propose operators to be
selected for the current states (the origin of states
besides the top state is described below). The action of
these rules is to create special working memory
elements that signal Soar that the operator should be
considered for selection for a specific state. You can
think of these rules as testing the pre-conditions of the
operators and proposing the operators when it is legal to
apply them to the current situation.

c) Operator Evaluation: Additional rules can test which
operators have been proposed and create preferences for
them. There is a fixed set of preferences types that can
specify partial orders among operator, that some
operators should not be selected, that it doesn’t matter
which operator is selected, and so on. The rules that
create the preferences can test other aspects of the state
for which the operator is proposed, making it easy to
encode heuristic selection knowledge.

All three types of rules fire in parallel - there is no separate
phase for elaboration or proposal or evaluation - the ordering
of rule firing is completely data driven. Because of data
dependencies, elaboration rule firings will usually lead to
proposal and then evaluation rule firings. In addition, these
rules retract their actions when their conditions no longer
match working memory so that only elaborations, proposals,
and evaluations relevant to the current situation are
maintained in working memory. Soar stays in this phase until
quiescence is reached and no more rules fire or retract. This
usually happens in two to three waves of parallel rule firing.

3. Operator Selection: Based on the created preferences, a fixed
decision procedure picks the best operator for each state.
Once an operator is selected, it is installed as the current
operator for the current state in working memory. In many
cases, the result of the decision procedure will be to maintain
the current operator, especially when it takes time for an
operator to apply. If the preferences are inconsistent (one
operator is better than another and the second is also better
than the first), incomplete (the preferences do not distinguish
between the available operators or there are no operators
proposed), or do not lead to the selection of a new operator,
then an impasse is reached, signifying that more knowledge
is required. Whatever the cause of the impasse, Soar
automatically creates a new substate in which the goal of the
problem solving is to resolve the impasse. As problem
solving progresses, an impasse may arise in the substate,
leading to a stack of states. Soar continually fires rules and
attempts to select operators for every state in the stack during
each loop through the decision cycle. When a different

operator selection can be made for an impassed state (through
the creation of results in the substate or through changes in
perception that in turn lead to changes in which operators are
proposed), then the impasse is resolved, the substate (and all
of its substates) is removed from working memory and
problem solving continues.

4. Operator Application: Once an operator is selected, rules that
match it can fire, changing working memory, possibly
creating commands to the motor system. These commands
are queued until the Output phase. Because the actions are
implemented as rules, Soar directly supports conditional
operators as well as operators whose actions unfold over
multiple decisions involving feedback from the perceptual
system. Rules that apply operators do not retract their actions
when they no longer match, but create persistent data
structures in working memory that must be explicitly
removed by another operator application rule. The operator
application phase continues until no additional rules fire.

5. Output: All queued output commands, such as turn, move, or
shoot, are sent to the motor system.

The Soar Quakebot is designed based on the principles developed
for controlling robots using Soar [4] and then extended in our
work on simulating military pilots in training simulations [1].

Below is a list of the main tactics the Quakebot uses. These are
implemented across the top-level operators. Excluding the
anticipation capability, the current Soar Quakebot has 100
operators, of which 20 have substates, and 715 rules.

• Collect-powerups
• Pick up items based on their spawn locations
• Pick up weapons based on their quality
• Abandon collecting items that are missing
• Remember when missing items will respawn
• Use shortest paths to get objects
• Get health and armor if low on them
• Pickup up other good weapons/ammo if close by

• Attack
• Move sideways while continually aiming and shooting

at the enemy (circle-strafing)
• Move to best distance for current weapon

• Retreat
• Run away if low on health

• Chase
• Go after enemy based on sound of running
• Go where enemy was last seen

• Ambush
• Wait in a hidden corner when entering the room

• Hunt
• Go to nearest spawn room after killing enemy
• Go to rooms enemy is often seen in

Finally, the Soar Quakebot has many numeric parameters that
determine the details of behavior, such as how long it hides for an
ambush, how close it will attempt to get to use a certain weapon.
We have grouped some of these parameters together to create
different styles of Quakebots that vary in the tactics in terms of
aggressiveness, reaction time, aiming skill, and overall
intelligence (where certain tactics are disabled or enabled).

3. ANTICIPATION
Our approach to anticipation is to have the Quakebot create an
internal representation that mimics what it thinks the enemy’s
internal state is, based on its own observation of the enemy. It then
predicts the enemy’s behavior by using its own knowledge of
tactics to select what it would do if it were the enemy. Using
simple rules to internally simulate external actions in the
environment, the bot forward projects until it gets a prediction that
is useful or reaches a situation where there is uncertainty as to
what the enemy would do next. The prediction is used to set an
ambush or deny the enemy a weapon or health item.

A general capability like anticipation should really be general. It
should be independent of the level that the bot is in. Moreover it
should be as independent as possible of the specific tactics the bot
already has. That does not mean it can’t make use of them when
doing anticipation, but it does mean that we should be able to add
anticipation with minimal changes to the bot. If only a few
changes must be made, it gives us some confidence that the
anticipation capability can be used for other bots that play other
games. Therefore, in the following sections, we will report on the
number and character of the rules that were added, modified, or
deleted, and whether these rules were Quake-dependent.

Anticipation requires knowledge about when to anticipate the
enemy, how to anticipate, and what to do following anticipation.
In the Quakebot, these map onto the following:
1. Proposal and selection for the predict-enemy operator.
2. Application for the predict-enemy operator.
3. Proposal for selecting ambush operators.

3.1 Proposal and Selection
When should the Soar Quakebot attempt to predict the enemy’s
behavior? It should not be doing it continually, because of the
computational overhead and the interference with other activities.
It shouldn’t do it when it has absolutely no idea what the state of
the other bot is and it also shouldn’t do it when any prediction will
be ignored because the bot already knows what to do. The Soar
Quakebot attempts to anticipate an enemy when it senses the
enemy (so it knows some things about the enemy’s state) and the
enemy is not facing the bot and is far away (otherwise the bot
should be attacking). Figure 5 shows an example situation where
the Quakebot (lower left) sees its enemy (upper center) heading
north, on its way to get a desirable object (the heart). The
Quakebot proposes and selects the predict-enemy operator.

Figure 5. The predict-enemy operator is selected.

During the prediction process, changes to the world that make
prediction undesirable, such as if the enemy turns toward the
Quakebot, cause predict-enemy to be retracted and another
operator selected so that the Quakebot is not be caught napping.

The proposal and selection rules are not specific to a given level,
nor are they specific to the game of Quake. However, they do
restrict anticipation so that it is only used in limited cases. Later
we will discuss the possibility of an even more general approach
that extends the use of anticipation. Overall, there are 4 rules used
to propose and select the predict-enemy operator.

3.2 Application
Our approach to predicting the enemy’s behavior is
straightforward. The Quakebot creates an internal representation
of the enemy's state based on its perception of the enemy and then
uses its own knowledge of what it would do in the enemy's state to
predict the enemy's actions. Thus, we assume that the enemy's
goals and tactics are essentially the same as the Quakebot's. This
is the same approach that is taken in AI programs that play most
games, such as chess or checkers.

The first step is to create the internal representation of the enemy's
situation so that the Quakebot's tactics can apply to them. This is
easy to do in Soar because Soar already organizes all of its
information about the current situation in its state structure in
working memory. When the predict-enemy operator is selected
and a substate is created, that state is transformed into a state that
looks like the top-level state of the enemy. This is done using an
operator (create-enemy-state) that creates structures on the
substate that corresponds to what the Quakebot thinks the enemy
is sensing and has in its working memory, such as the map. The
internal representation of the enemy's state is only approximate
because the Quakebot can sense only some of it and must
hypothesize what the enemy would be sensing. Surprisingly, just
knowing the enemy's position, health, armor level, and current
weapon are sufficient to make a plausible prediction of high-level
behavior of players such as the Soar Quakebot. Sixteen rules are
involved in creating the enemy state, nine that are specific to the
Quakebot data structures and seven that are general. Three
existing rules had to be modified to inhibit them from firing
during the initialization of the prediction, so that the internal
representation for the enemy's state did not include sensory
information from the Quakebot itself.

Figure 6. The Quakebot creates an internal representation of
enemy’s situation.

The second step involves using the Quakebot’s tactics on its
representation of the enemy’s state. In the current example, rules
propose collect-powerups to get the heart powerup. The Quakebot
knows that the powerup is in the room to the north from prior
explorations and attributes that knowledge to the enemy. Once
collect-powerups is selected, a substate will be created, and then
get-item, which in turn will have a substate, followed by go-
through-door. Further decompositions would arise if the bot were
attempting to get the powerup in its world. However, for internal
simulations, the Quakebot can skip the decompositions if we add a
rule that simulates the abstract actions of the operator. The rule
directly changes the internal representation so that the Quakebot
(thinking it is the enemy) thinks it has moved into the hall. Similar
rules are added to short-circuit other operator decompositions.
Additional rules (frame axioms) update data structures that would
change via perception such as health improving if a health item
were picked up. One rule is added to keep track of how far the
enemy would travel during these actions. This information will be
used to decide when to terminate the prediction. Altogether, nine
rules are added to simulate the effects of abstract operators. These
rules are specific to the operators used in Quake, but independent
of the details of the specific level. Figure 7 shows the updated
internal representation of the Quakebot.

Figure 7. The Quakebot projects that the enemy will move
into hallway in pursuit of powerup.

The internal simulation continues until the Quakebot thinks that
the enemy would pick up the powerup. At that point, the enemy is
predicted to change top-level operators and choose wander.
Because there is only one exit, wander leads to selecting an
operator to go to the hallway and finally back into the room where
the enemy started (and where the Quakebot is).

Figure 8. The Quakebot projects that enemy will return to the
current room.

3.3 Predicting
Throughout this process, the Quakebot is predicting the behavior
of the enemy. That prediction is only useful if the Quakebot can
get into a tactical position that takes advantage of the prediction.
Up until the enemy returns to the room, the prediction does not
help the Quakebot. However, if the Quakebot hides by the
hallway, it can get off a shot into the back or side of the enemy as
it comes into the room. Thus, following the prediction, the
Quakebot can set an ambush.

What are the general conditions for using the prediction: that is,
what advantage might you get from knowing what the enemy is
going to do? For Quake II, we’ve concentrated on the case where
the bot can predict that it can get to a room before the enemy, and
either set an ambush or deny the enemy some important powerup.
This is done by continually comparing the distance that the enemy
would take to get to its predicted location to the distance it would
take for the Quakebot to get to the same location. For the current
system, the number of rooms entered is used as a rough distance
measure. In the example above, the Quakebot predicts that it will
take the enemy four moves to get back to the current room, and it
knows it is already in that room. Why doesn’t the Quakebot stop
predicting when the enemy would be coming down the hallway,
which is three moves for it vs. one for the bot? The reason is that
the Quakebot knows that it cannot set an ambush in a hallway, and
thus waits until the predicted location is a room.

A prediction can also terminate when the Quakebot (thinking as
the enemy) comes across a situation in which there are multiple
possible actions for which it does not have a strong preference.
This would have arisen in the previous example if there had be
three doors in the northern-most room - with only two doors, the
prediction would have gone forward because of the preference to
avoid going back where you came from. When this type of
uncertainty arises, the Quakebot abandons the prediction. A total
of five rules are used to detect that a relevant prediction has been
created. These are specific to the approaches of using distance or
uncertainty to decide when to terminate the prediction.

One possible extension to our approach is to have the bot maintain
explicit estimates or probabilities of the different alternatives and
search forward, predicting all possible outcomes and their
probabilities. There are two reasons this is not done. First, the
Quakebot does not need the probability estimates in order to make
its own decision. Second, the added time to do such an extensive
prediction could make the prediction meaningless as the enemy
will have already moved through the environment by the time the
prediction completes.

3.4 Using the Prediction
In the Soar Quakebot, three operators make use of the predictions
created by predict-enemy: hunt, ambush, and deny-powerups.
When a prediction is created that the enemy will be in another
room that the Quakebot can get to sooner, hunt is proposed and it
sends the bot to the correct room. Once in the same room that the
enemy is predicted to be in, ambush takes over and moves the bot
to an open location next to the door that the enemy is predicted to
come through. In general, the bot will try to shoot the enemy in
the back or side as it enters the room (shown below in the figure).
But if the bot has the rocket launcher, it will take a pre-emptive
shot when it hears the enemy getting close (a la Dennis Fong).
Both of these ambush strategies have time limits associated with
them so that the bot waits only a bit more time than it thinks the

enemy will take to get to the room in which the bot has set the
ambush. Deny-powerups is selected when the enemy is predicted
to attempt to pick up a powerup that the bot can get first.

Figure 9. The Quakebot executes an ambush based on the
results of its prediction.

3.5 Learning predictions
Inherent to Soar is a learning mechanism, called chunking, that
automatically creates rules that summarize the processing within
impasses as rules. Chunking creates rules that test the aspects of
the situation that were relevant during the generation of a result.
The action of the chunk creates the result. Chunking can speed up
problem solving by compiling complex reasoning into a single
rule that bypasses the problem solving in the future. Chunking is
not used with the standard Quakebot because there is little internal
reasoning to compile out; however, with anticipation, there can be
a long chain of internal reasoning that takes significant time (a few
seconds) for the Quakebot to generate. In that case chunking is
perfect for learning rules that eliminate the need for the Quakebot
to regenerate the same prediction. The learned rules are specific to
the exact rooms, but that is appropriate because the predictions are
only valid under special circumstances.

Below is an English version of a rule learned by the Quakebot.
If predict-enemy is the current operator and
 there is an enemy with health 100,
 using the blaster, in room #11 and
 I am distance 2 from room #3
then
 predict that the enemy will go to room #3
 through door #7.

Compiled into the prediction is that the bot can get to room #3
before the enemy.

Once this rule is learned, the bot no longer needs to go through
any internal modeling and will immediately predict the enemy’s
behavior when it sees the enemy under the tested situations. The
impact is that as the bot plays the game, it will build up a set of
prediction rules, and it will make fast predictions in more
situations. In fact, it might turn out that originally when it does
prediction, the time to do the prediction sometimes gets in the way
of setting an ambush or denying a powerup, but with experience
that time cost will be eliminated. One possibility to create more
challenging opponents is to pre-train Quakebots so that they
already have an extensive set of prediction rules.

4. LIMITATIONS AND EXTENSIONS
In this section we discuss various limitations and possible
extensions to the anticipation capabilities of the Soar Quakebot.

4.1 Generality of Anticipation Capability
Our goal was to create a general anticipation capability that could
be used by a Quakebot for different game levels. In that we’ve
succeeded. None of the knowledge that was added to support
anticipation must be customized for a specific level. The power
comes from reusing the bot’s tactics and knowledge of a level
(which it gains by mapping the level on its own).

A more general goal is for the anticipation capability to be useful
by other bots in completely different games. Many parts of the
capability are completely independent of Quake. However, some
are not. Below is a recap of the different parts of the anticipation
capability and the types of game-specific or game-independent
knowledge they require.

• Deciding when to predict an enemy’s behavior.

General across games but restricted to a set of situations.
• Predicting the enemy’s behavior.

• Creating the internal representation of the enemy’s state.
Specific to the structure of the perceptual data and
important internal state features.

• Proposing and selecting operators for the enemy.
General: uses existing bot knowledge.

• Simulating the execution of operators.
Specific to the operators, but part of the planning
knowledge that would be available if bot planned some
of its own actions.

• Deciding that a prediction is useful.
Specific to the situations that the bot expects to be
useful: places the bot can get to first.

• Using the prediction to select other tactics/operators.
Specific to those tactics.

The minor weaknesses are in terms of adding knowledge about the
perceptual data and the abstract execution of operators. They are
usually easy to add and in no way restrict the use of anticipation.

The more troubling issue arises from the need for knowledge that
determines when the enemy’s behavior should be predicted and
how will the predictions be useful. This restricts anticipation to
being used only under situations that the designer has deemed
worthwhile. This is important because anticipation could be used
as the generator for many of the tactics that would otherwise be
coded by hand. For example, during a fight the bot could predict
that an injured enemy would attempt to pick up a nearby health.
The bot could use this to either get the health first, or direct its
weapon toward the health, making it more likely that the enemy
will be hit. Another example is where the bot uses its knowledge
about the expected path of the enemy to avoid the enemy when the
bot is low on health or has inferior weapons. Similarly, when the
bot kills an enemy, it could predict that the enemy will be
recreated at a spawn location with only a mediocre weapon. It
could use that prediction to move toward the closest spawn point
in hope of engaging the enemy before it gets a better weapon. This
tactic is currently hard coded in the Soar Quakebot, but could arise
from the appropriate use of anticipation.

The obvious approach would be to always predict the enemy’s
action and then plan actions that the bot could perform that would
get it to a preferred state (such as the enemy being dead, or having
full health and a good weapon). This has the potential of
simplifying the bot by replacing tactics with a general planning
mechanism. However, there is the cost of planning and the fact
that the planning would interfere with the bot's ability to react
quickly to its environment. Unfortunately, forward planning in
these environments in intractable because of the huge space of
possible moves the bot can take at each moment, with the most
obvious culprit being which direction it should face. The more
subtle cost is that of developing the planning knowledge that is
used to generate the tactics, which in practice can be very difficult.

4.2 Recursive Anticipation
The Quakebot anticipates what the enemy does next. An obvious
extension is for the Quakebot to anticipate the enemy anticipating
its own actions. This recursion can go on to arbitrary depths, but
the usefulness of it is probably limited to only a few levels.
Recursive anticipation could lead the Quakebot to actions that are
deceptive and confusing to the enemy. Although this might be
useful in principle and for non-real-time computer games, such as
real-time strategy games where there is more global sensing and a
less frantic pace, it might be of only limited use for the Quakebot.
The reason is that the bot must sense the enemy in order to have
some idea of what the enemy's state is, and the enemy must sense
the bot in order to have some idea of what the bot's state is. In
Quake, there are only rare cases where the bot and the enemy can
sense each other and one will not start attacking the other.
However, we plan to do some limited investigation of recursive
anticipation to find out how useful it is.

4.3 Enemy-Specific Anticipation
The current anticipation scheme assumes that the enemy uses
exactly the same tactics as the Quakebot. However, there may be
cases where you know beforehand that an opponent has different
tactics, such as preferring different weapons. By incorporating
more accurate models of an enemies weapon preferences, the
Quakebot can decide to ambush an enemy in completely different
(and more appropriate) rooms. This is easily handled by adding
enemy-specific rules that encode the given tactics.

Unfortunately, an enemy's tactics and preference are rarely known
beforehand. We have extended the Quake bot so that it gathers
weapon preference data for its enemies. This approach is simple to
implement, has low computational overhead, but has limitations in
that the bot can only learn about specific enemy preferences.
Although this limitation is of concern to us as researchers, it may
be completely sufficient for computer games. Similar approaches
have already been successfully used in football games to track and
adjust to the play-calling behavior of human players [8].

A more general, but more difficult approach is to have the bot
modify its knowledge each time the enemy does something
unpredictable. The bot would continually try to build up its
knowledge so that it can successfully predict the enemy. One final
complexity is that the enemy will not be static, but will be
adapting to the bot's tactics, and even to the bot's use of
anticipation and it adaptation to the enemy. For example, after the
first time an enemy is ambushed after getting the powerup from a

dead-end room, it will probably anticipate the ambush and modify
its own behavior.

5. SUMMARY AND PERSPECTIVE
The goal of our research is to create synthetic characters for
computer games with human-level intelligence. Incorporating
anticipation is a critical part of human-level intelligence and we
have demonstrated how it can be added to an existing bot.

From our perspective, this has been a success because it was
added with only minimal changes to our existing bot, it added
significantly new capabilities and behavior, and it points the way
to many additional research issues. Most important, it makes the
Quakebot more interesting to play against – you never know what
might be around the next corner. From an AI perspective, our
work is a bit of a rehash of research on opponent modeling and
tracking [7], planning, and reactive planning. Its contribution to AI
is that it pursues these topics within the context of a complex,
dynamic, and competitive environment, where planning and
execution efficiency are of utmost importance as well as ease of
implementation. From a computer games perspective, our work
points the way for where commercial bots could be in a few years,
not just "thinking" on their own, but predicting what you are
thinking.

6. REFERENCES
[1] Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny,
P.G., and Koss, F.V. (1999) Automated Intelligent Pilots for
Combat Flight Simulation, AI Magazine, 20(1), 27-42.

[2] Keighley, G. (1999) The Final Hours of Quake III Arena:
Behind Closed Doors at id Software, GameSpot,
http://www.gamespot.com/features/btg-q3/index.html.

[3] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987), Soar:
An architecture for general intelligence. Artificial Intelligence,
33(3), 1-64.

[4] Laird, J. E. and Rosenbloom, P. S. (1990) Integrating
Execution, Planning, and Learning in Soar for External
Environments. In Proceedings of National Conference of Artificial
Intelligence, Boston, MA, 1022-1029.

[5] Laird, J. E. and van Lent, M. (1999) Developing an Artificial
Intelligence Engine. In Proceedings of the Game Developers’
Conference, San Jose, CA, 577-588.

[6] Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird, J.
E., Rosenbloom, P. S., and Schwamb, K. (1995), Intelligent
Agents for Interactive Simulation Environments, AI Magazine, 16
(1), 15-39.

[7] Tambe, M. and Rosenbloom, P. S. (1995) RESC: An
approach for real-time, dynamic agent tracking. In Proceedings of
the International Joint Conference on Artificial Intelligence.

[8] Whatley, D. (1999) Designing Around Pitfalls of Game AI. In
Proceedings of the Game Developers’ Conference, San Jose, CA,
991-999.

