

Different Audiences but Similar Engagement Goals:
In-Progress Work on Two Course Transformations

 Donald Acton and Edwin M. Knorr
{acton,knorr}@cs.ubc.ca

Department of Computer Science
The University of British Columbia

ABSTRACT

This paper reports our experience in transforming two

undergraduate Computer Science courses at the University of

British Columbia (UBC). In particular, we are applying an

assortment of best practices from educational research known to

increase student engagement. The two courses are being

transformed in different ways because their learning goals and

audiences vary greatly. For example, the courses use different

programming languages; they differ with respect to the number,

type and frequency of labs, tutorials, and class time; and one is an

elective for computer scientists, whereas the other is a required

course for non-specialists. Despite these differences, both courses

have a greater active learning component compared to a

“traditional” lecture, with one of them adopting a flipped

classroom approach. To judge the success of these efforts, we

conducted numerous surveys to determine changes in student

attitudes and to identify what works—and what doesn’t—for these

courses.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education – Computer Science Education, Curriculum.

General Terms

Classroom pedagogy, active learning.

Keywords

Computer networking, C programming, data structures, teaching,

learning, course transformation, student engagement, flipped

classroom

1. INTRODUCTION AND BACKGROUND
Evidence from educational research on student learning in science

strongly suggests that only a small fraction of the information

presented in a traditional lecture is retained by a student at the end

of the lecture [10]. (By “traditional”, we mean an instructor:

lectures for most of the class; writes notes on a blackboard,

whiteboard, or PowerPoint slides; and has minimal student

participation. Essentially the instructor is “a sage on a stage.”)

Based on the research for active learning [5][3] there has been a

call to more actively engage students in the classroom.

Unfortunately, research also shows that few science courses

employ active learning. The challenge then becomes how to

proceed.

In this paper we report on the approaches we used to incorporate

active learning strategies in a major revision of one course (CPSC

317: computer networking), and in a new course (CPSC 259: data

structures in C). These two courses can be viewed as “sandboxes”

for developing implementation and active learning deployment

strategies for our other courses. For example, because CPSC 259

is a fairly new course, and is a terminal computing course (i.e., it

has no CPSC successor courses), we have more flexibility in the

breadth and depth of course components from offering to offering.

(e.g., responding dynamically to difficulties in the class and lab,

and spending more time on important topics that students are

struggling with). The rest of this paper is organized as follows:

 Sections 2 and 3 highlight the content of these courses. For

each course we provide a basic course description, and the

strategies and techniques being used to increase student

engagement.

 In Section 4 we summarize our successes and failures, and

provide guidance on what to watch for.

 In Section 5 we highlight how we are using our experiences

from these courses to guide revisions in other courses.

 Finally in Section 6 we summarize our results and provide

suggestions for future work.

2. CPSC 317: INTERNET COMPUTING
CPSC 317 is an elective course in computer networking open to

anyone who has completed all five computer science courses

comprising the first two years of our degree programs. The course

explores the implementation details and issues associated with the

design of the link, network, transport, and application layers of the

TCP/IP protocol suite, while trying to provide insight into how the

Internet works.

Variations of this course have been taught at our institution since

the early 1990s. The original target audience was students

interested in how computer networks worked—and were

implemented. As a by-product, students learned the UNIX

networking API and developed applications that used a computer

network. That course was not specifically targeted at students

whose primary interest was writing programs that use networks.

2.1 Course Content and Structure
Prior to the course’s revision, it was a fairly standard course with

two 80-minute lectures per week, a weekly one-hour tutorial

session, 3-4 large programming assignments, and the requisite

midterms and final exam.

Part of the motivation behind changing the course was the

observation of a marked shift in the number and types of network-

based applications and how these applications are developed. This

shift has been spurred by increased data speeds and capacities in

both the wired and wireless networking domains combined with

the emergence of hardware like the iPhone, iPad and Android-

based devices that thrive in these new networks. At the same time,

cloud-based data sharing services like Dropbox, Wuala, YouTube,

and Google Docs have been deployed. These services encourage

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WCCCE ‘13, May, 2013, North Vancouver, Canada.

Copyright © 2013 ACM XXX-1-4503-0098-8/10/05... $10.00

users to push their content to the Internet thereby making it

available to any place that has network connectivity.

In this new networking space, third parties provide APIs that

abstract away the details surrounding the implementation,

maintenance, and usage of a network connection between

programs. As a result, the effort and detailed knowledge about

computer networks required to implement and deploy a network-

based application is rapidly decreasing. Consequently, more

people are interested in developing network-based applications,

using these APIs. The result is an increased interest in computer

networking but not at the low-level detail that the previous version

of our course provided. Collectively, these observations provided

the impetus to consider a major revision, akin to developing a new

course, and repositioning it.

Although we had a number of goals in mind when revising the

course, the key ones with respect to this paper are:

 Employ active pedagogical techniques to improve

student learning and produce more expert-like thinking.

 Ensure that assignments had real-world components.

 Create a course more relevant to the broader computer

science population.

To provide focus and guidance to this effort we asked a very

simple question: “If students take only one computer networking

course, what do we want them to learn?” In answering this

question, we followed the best practices approach of developing a

set of course-level learning goals, or themes, to provide the

overall framework for the course content [8]. We then

supplemented those with finer-grained goals to inform the detailed

development of the course content. The resulting five overall

course themes were:

1. Achieving data privacy and isolation

2. Dealing with out-of-order or lost data

3. Maximizing performance via various techniques and

approaches

4. Naming and locating entities

5. Using layering and abstraction to build complex

systems that can be reasoned about

Although many of these themes were covered in the existing

course, they were met by focusing on the internal layers of the

TCP/IP protocol stack. Unfortunately, these layers are typically

implemented within the operating system and are for all practical

purposes inaccessible to the students. The result is a disconnect

between the ideas being taught and what we actually expose the

students to through exercises and activities. To address this

concern we decided to “push” the illustration of as many of these

ideas and concepts as possible to the application area, thereby

giving students opportunities to explore these themes in a more

active way. A simplified version of the course syllabus is shown

in Table 1.

2.2 What We Measured
One of the challenges when working with new or different

pedagogical approaches is evaluating their success. One

dimension of success is standard measures of academic

achievement on formal assessment instruments such as final

exams. Since this isn’t a completely new course, we were able to

reuse exam questions or produce isomorphic exam questions to

evaluate common material between the new and old courses.

A second dimension is more attitudinal in nature where we are

interested in evaluating how successful we were at improving

student engagement and their confidence with respect to the

learning goals. To that end, we did voluntary pre- and post-

surveys that focused on the efficacy of our engagement strategies

to provide feedback for future course modifications. For example

we asked students to rank assignments with respect to both the

level of engagement and how useful they were at helping them to

learn the material. The effectiveness of the tutorials and the

usefulness of the textbook would also fall into this category. On a

third dimension we also surveyed students about their confidence

with respect to performing certain tasks. For example, we asked

about how comfortable they were in using networking APIs, and

in working with and developing certain types of applications.

2.3 Student Engagement
Using the revised syllabus and learning goals we attacked the

problem of increasing student engagement in the classroom.

Based on success in other domains, we decided to adopt the

pedagogical approach often referred to as a flipped classroom [2].

With the flipped classroom, students acquire basic foundational

knowledge outside the class through assigned readings, videos, or

a combination of both. A “lecture” then consists of student-

centered active learning activities. For example, in an introductory

programming course, students might practice producing

flowcharts, writing fragments of code, or solving problems that

other students have had trouble with in the past. By doing these in

the class, students can get immediate help from either the

instructor or their peers.

Most of the work with the flipped classroom has concentrated on

lower-level courses where the focus is typically on how to do

something. In upper-level courses the material tends to be more

abstract and conceptual, which can present challenges for activity

design; therefore, a flipped classroom in an upper-level computer

science course is uncommon. In our revised course, a typical class

consists of one or two activities combined with class-wide

discussions and mini-lectures to bridge and consolidate course

topics. A typical activity consists of a problem introduction, the

active component (when students work on the problem, usually in

small groups to take advantage of peer instruction), and a group

discussion to review the issues and discuss what was discovered

and its relationship to other course topics. During the active

component the instructional team circulates throughout the class

to keep students on task and to provide guidance and insight if

Basic Tools

Protocol state machines, networking APIs

Measurement and analysis, bandwidth, latency,

throughput, jitter

Application Protocol Case Studies

Client Server, P2P

HTTP, SMTP, FTP, POP

Reliable Data Delivery and Performance

Sequence numbers, timeouts

Lost data handling, error correction

Naming, Routing, Network Organization

DNS, DHCP, IP Addressing

Subnets, Autonomous systems and routing

Privacy and Security

Public Private key encryption

Data security and verification

Table 1: Revised Networking Syllabus

they are struggling. During the first offering of the course, 36

activities were used. This is nearly two activities per lecture after

accounting for five quizzes and other in-class administrative time.

The activities ranged in length from 10 minutes for a simple

bandwidth calculation, to a whole class for an invention activity

focusing on strategies for data retransmission when creating a

reliable delivery channel out of an unreliable channel. Just as the

activities vary in length, they also vary in approach. For example

when learning about HTTP and FTP, students emulate clients by

using telnet and following a prescribed set of instructions on what

to do and what to look for. When learning about network

organization, they use traceroute and ping to map out parts of

the Internet. When learning about privacy and security, they have

to invent a way of exchanging a message using a box, locks, and

keys that mimic what happens in an encryption system. To take

advantage of peer instruction all of the activities have a group

component. On average a given lecture now comprises about 20

minutes of “lecturing” and 60 minutes of student-focused

activities.

Yet another way to improve student engagement is to remove

distractions, of which laptops can be a major one. To address

that, we’ve tried to incorporate and encourage laptop usage into

many of the activities, and created “laptop-free zones” in the

classroom for those times when laptops aren’t needed.

3. CPSC 259: DATA STRUCTURES AND

ALGORITHMS IN C
CPSC 259 is a core course for Electrical Engineering students

who are not in the Computer Engineering option. The majority of

our students are in the power systems stream, with smaller

numbers in nanotechnology or biomedical engineering. It is a

course in C programming, basic algorithms, and data structures—

with a small Matlab component. Most of the students do not

intend to take further computing courses.

3.1 Course Content and Structure
In the prerequisite course, which also uses C, a flipped classroom

was used. The class used short online screencasts (built using

Camtasia) with voiceovers and interaction (e.g., simulations) for

the “lecture” content. Lecture time was then used for problem

solving, with students handing in their work at the end of class for

participation points. For homework (ungraded), students were

given sample programming assignments with full solutions. The

homework was designed to prepare them for their weekly

programming test. Specifically, they had to take an in-lab

programming test, isomorphic to the homework, to demonstrate

mastery of the programming concepts. Students who did not do

the homework would be very unlikely to complete the lab test

successfully. Furthermore, plagiarism was greatly reduced.

In CPSC 259, we are using lectures with PowerPoint slides;

Microsoft Visual Studio’s C/C++ compiler for in-class demos;

and Blackboard’s “Connect” course management system to host a

large number of course files, including lecture notes (both fill-in-

the-blank and (later) annotated slides), copies of programs used in

class, and lots of sample exam questions with full solutions. And,

of course, we created detailed learning goals for the course, along

with a set of programming assignments to support those learning

goals.

A key focus of our course was how to engage the students, both in

the lectures and in the labs. During the inaugural offering, we had

demos in the class, and lots of fill-in-the-blank slides, but we did

not use clickers or outside-of-the-class participatory activities.

This changed during the second offering.

For the labs, we adopted a pair programming model [10] for a

number of reasons. First, we know that many students in the

course are not really “into” programming, and it made sense to

have them work in pairs, so that partners could help each other

using peer instruction. Second, research has shown that pair

programming is very effective for learning programming. It has

been successfully applied in many introductory and sophomore

computer courses [1]. Third, students get the opportunity to gain

team-building skills, which is a useful asset in an engineering

career. Fourth, large class sizes (e.g., 200) make it difficult for

TAs and the instructor to help students individually. Fifth,

marking is much more manageable with half as many assignments

to assess. We gave each pair of students detailed feedback using a

marking rubric. Budget considerations would prohibit the

detailed marking of 200 students’ assignments.

Furthermore, our goals included getting students to read well-

written, robust code based on industry best-practices. Students

provided additional functionality in the code by filling in missing

pieces and creating new functions. We had five bi-weekly

assignments, divided into two components, each with multiple

deliverables. There was an in-lab component during week 1

(much of which would have been checked off during their initial

lab), and a take-home component during weeks 1 and 2. The in-

lab TA support and TA office hours gave students many

opportunities to get help.

3.2 What We Measured
Since this is a new course, we decided to implement best practices

right from the start by using learning goals, assessment, pair

programming, and classroom engagement.

Every unit of the course had a full set of learning goals. We told

the students that these learning goals were a useful checklist for

studying for exams. Indeed, some of them made good exam

questions on their own.

Our first assessment instrument was a diagnostic test.

Specifically, we administered a 30-minute pre-test on the first day

of class to all students to determine their strengths and

weaknesses. The pre-test was not for marks, but was based on the

prerequisite course: APSC 160, which uses C. We used feedback

from the test to help tweak in-class content in the first few

lectures, and to develop some programming assignment questions

for the labs. In particular, we chose questions that students had

the most difficulty with, and we worked them into clicker

questions or a deliverable for Lab 1. For example, only 22.8% of

the class got the following question correct on the pre-test; so we

addressed it with an isomorphic clicker question during a lecture,

followed by peer discussion.

Q5. Consider the following poorly indented

code segment:

int r;

int a = -5;

int b = 6;

if (a < 0 || b > 0)

 r = 1;

else

 r = 2;

 a = 0;

What are the values of a, b, and r after

this code segment has executed?

We also administered voluntary beginning-of-term and end-of-

term surveys to capture student attitudes and opinions, especially

to reveal what worked, and what didn’t. We are particularly

interested in seeing how students responded to pair programming.

Student attitudes are important because research shows that well-

motivated students tend to learn a subject better [4]. Also, we

hope that students’ confidence in programming will improve.

Confidence is related to—but different from—their actual scores.

Finally, and most importantly, we are measuring and analyzing

midterm exam, in-lab assignment, take-home assignment, and

final exam scores. This will allow us to compare the inaugural

version with the second (current) version which has more

interactive and engaging content.

3.3 Student Engagement
In the second offering, to free up lecture time and give the

students more practice, we decided to promote more interactive

activities inside and outside the classroom. For example, we are

using clickers with peer instruction in the classroom [2],[6]; and

for additional participation points, we have moderately

challenging online tests administered via our course management

system. Students can take the tests multiple times; but the

software only counts their last attempt at a given test.

Furthermore, we have developed a tutorial and simulation about

data, data types, pointers, addresses, and structures. For example,

students can see what the different data types (representations)

look like for the same 32 bits in memory; they can assign and

play around with addresses and pointers; and so on.

For the labs, students were required to read the lab in its entirety

before coming to the lab. This was to maximize their productivity,

and not to slow down their partner. The pair programming model

called for students changing positions (one on the keyboard for

15-20 minutes while the other watched for errors, helped, and

offered feedback; and then the roles reversed). Apart from the

deliverables, students were given both a pair programming and

participation grade for each lab; thus, attendance at the labs was

usually excellent. Both students in a pair were required to answer

TA questions. We provided generous in-lab (e.g., 3 TAs for about

30 students) and out-of-lab TA assistance (e.g., 8 hours per week).

In the second offering, because students were relatively weak in

debugging C code, we forced students to actually use a debugger

from Lab 1 on, and to demonstrate it to the TAs during the lab.

Similar to the first offering, TAs asked questions to both partners

about various snippets of code, and to show the TA that they

could use the debugger properly. We had checkpoints throughout

the lab time so that students frequently interacted with a TA. All

of these activities, checkpoints, and deliverables kept students

busy during the lab time.

4. SUCCESSES AND FAILURES
A full formal analysis of student performance has not yet been

done for either course. However, with respect to the revised

networking course, preliminary analysis suggests that students

performed as well as—if not better (marginally)—on the formal

assessments. On the attitudinal side, students appear to be much

more confident in their abilities even when their exposure to

material relevant to performing a specified task was much less

than in the original version of the course. We conjecture that the

constant barrage of new activities in the flipped classroom better

prepares students for problem solving in unfamiliar areas.

It was noted that flipped classrooms for upper-level courses were

not the norm, but because of what was observed in the networking

course, these results suggest that a flipped classroom model may

be beneficial for other upper-level courses.

More frequent testing in the form of quizzes also seems to bear

results because: (a) students claim that it keeps them on top of

their work, and (b) the workload for both the instructor and

teaching assistants becomes more uniform throughout the term.

Educational research states that frequent and cumulative testing is

highly effective [7], even though it is not necessarily liked by

students. We need to determine the optimal balance between

frequency and length of tests, and whether they should be

cumulative or not. We are exploring this for several courses.

With respect to what worked and what didn’t, one of the most

important things to do is to keep a detailed activity and reflection

log. In this log record what was done in the lecture (including the

time and duration of activities) along with post-lecture reflections

about the class and a sense of how the activities were received.

After the lecture, we record thoughts about what worked, what

didn’t, why something didn’t work, and any suggestions for

changes. Such information can be used for guiding subsequent

changes to the courses, or as a reference for someone else

delivering the course, or when combined with formal assessments,

it is a way of evaluating which activities were the most successful

with respect to achieving the desired learning goals.

With in-class activities, we have to be prepared for an activity that

goes too slowly or too fast. We encountered this frequently in our

networking, data structures, and other courses—especially as

more in-class activities are included. The instructor has—to some

degree—given up control of the classroom, and has to be prepared

to use a dynamic approach to teaching (i.e., “winging it”). This is

not necessarily a bad thing because students will raise topics and

issues that they are interested in. Basically, when they are curious

about something they are receptive to learning. The challenge is

making appropriate connections to the desired learning goals—

and still fitting in the rest of the curriculum. A perfect example of

this revolved around student questions concerning the relationship

between multicasting and streaming video. This resulted in a

discussion on multicast, Ethernet, MAC addresses, switches, hubs,

and even how a home router works, which was all part of the

course—even though those topics would have been covered later.

What about attendance? During the first offering of the data

structures course a sufficiently large number of students

sometimes didn’t attend class. At the time of writing, attendance

and as well as attentiveness appears to be up for the second

offering. We conjecture that this is at least partly due to the use of

active learning (e.g., clickers with peer instruction). Many of our

clicker questions are not answered correctly at first by a sufficient

number of students, so we often go to a round of discussion,

whereby students try to convince their peers why their own

answer is correct, but their peers’ is wrong. A downside to this is

that it can be time-consuming; however, it can be argued that

most learning takes place outside of class, and therefore using this

extra time shouldn’t be a constraint overall.

One observation about the online tests mentioned above is that 25-

35% of the class is not even trying most of the quizzes, even

though there are participation points. We conjecture that the

number of participation marks is not sufficient to motivate some

students. We can tweak this parameter and see what effect more

marks would have in future offerings. It is a delicate balance

between giving enough marks to motivate students, but not so

many that students resort to plagiarism.

Most students responded positively to pair programming in the

first offering of CPSC 259; however, we are also aware of a

number of students that did not do well. For example, we had a

fair bit of plagiarism despite partnerships, lots of extra help, and

new labs. Although we assumed that there would be a reasonable

division of work between partners this did not always happen

(e.g., 0% contribution). Consequently, we now provide explicit

guidelines as to how partnerships should work, and what the

warning signs are that a partnership isn’t working out. We are

collecting more data on contribution levels, and are considering

alternative approaches, such as short, in-lab programming tests

(for each student) to encourage them to actually do the work.

5. APPLYING OUR RESULTS
We have greatly improved the quality of the survey questions

we’ve given compared to those of just a few years ago, in our

classes. We created some beginning-of-term and end-of-term

survey questions that ask for student opinions about very specific

criteria. In particular, we have introduced confidence questions

about specific tasks to reduce the misinterpretation of a question,

and to gather more targeted data. For example, instead of asking

students whether or not they can write a 5-page program in C, we

might ask them, “How confident are you that you can write a 5-

page program in C that uses pointers, and has functions that take

pointers as parameters?” Based on the answers to the latter type

of question, and combined with questions that rank the

effectiveness/usefulness of the course bulletin board, clickers, pre-

readings, in-class exercises, pair programming, etc., we can get a

better picture of which changes are improving student outcomes.

A lot of the focus on the two courses described in this paper is on

how to improve student engagement. As part of our evaluation,

we informally observed attendance and attentiveness levels in

these courses; however, these are very imprecise observations. To

that end, we started using a classroom observation protocol (COP)

to determine which elements of the lectures are most engaging,

and which are not. Specifically, another instructor or TA observes

the class over several lectures. With the COP, the level of student

engagement, coupled with the current lecture activity, is recorded

every two minutes. As a result, we can make changes to the

course, re-do the COP, and evaluate the effectiveness of these

changes with respect to student engagement. Additionally, the

COP allows us to see where time is “wasted” during a lecture, so

that we can recover it. Every delay or distraction has a magnifying

effect on disengagement with the rest of the class.

Based upon our results in CPSC 259 and other studies, clickers

are one way to engage students. An instructor needs to decide

whether or not clicker questions should count for participation

points only, for getting the right answer, both, or none. An

instructor also needs to decide whether or not to distribute the

clicker questions to students for studying purposes, and risk them

being made available to students who have yet to take the course.

It is important for students to make mistakes in order to learn from

them, and to encourage reflection and peer discussion.

Earlier we said that we wanted to make CPSC 317 a course that

appeals to more just a systems-oriented crowd. To that end,

enrolment in the second offering of the revised course has resulted

in a doubling of the number of students. This increase cannot be

attributed to program enrolment increases alone.

6. FUTURE WORK / CONCLUSIONS
We have two very different courses with different audiences, yet

share similar goals with respect to improving student engagement.

In this paper, we outlined several different strategies to achieve

this. Clearly, it takes substantial effort to modify an existing

course or to develop a new course. We still need to do a better job

of measuring unproductive lecture time in our courses, and

adapting accordingly.

A final thought: With the introduction of Massive Open Online

Courses (MOOCs), how can we leverage this new online content

to improve engagement in our classrooms? For example, could

we use MOOCs to offload some of the lecture content, to more

productively engage our students during class?

Acknowledgements

We would like to gratefully acknowledge the contributions of our

colleagues: Bill Aiello, Norm Hutchinson, Mahdi Tayarani

Najaran, Jonatan Schroeder, Chris Thompson, and Alan

Wagner—as well as the support from the Carl Wieman Science

Education Initiative at the University of British Columbia.

7. REFERENCES
[1] Braught, G., Wahls, T., and Eby, L.M. (2011) “The Case for

Pair Programming in the Computer Science Classroom”,

ACM Trans. On Computing Education, 11(1).

[2] Crouch, C., Watkins, J., Fagen, A., and Mazur, E. (2007).

“Peer Instruction: Engaging Students One-on-One, All at

Once”. Research Based Reform of University Physics, 1(1).

[3] Gibbs, G. (1981) “Twenty terrible reasons for lecturing”.

Retrieved on April 11, 2013 from

www.brookes.ac.uk/services/ocsld/resources/20reasons.html

[4] Pintrich, P.R. (2003)“A Motivational Science Perspective on

the Role of Student Motivation in Learning and Teaching

Contexts”. J. Educational Psychology, 95(4), pp. 667-686.

[5] Prince, M. (2004) “Does Active Learning Work? A Review

of the Research”. J. Engr. Education, 93(3), pp. 223-231.

[6] Ribbens, E. (2007). “Why I Like Clicker Personal Response

Systems”. Journal of College Science Teaching, November

2007, pp. 60+.

[7] Roediger III, H., Agarwal, P., Kang, S., and Marsh, E. (2010)

“Benefits of Testing Memory: Best Practices and Boundary

Conditions”, in Davies, G. and Wright, D. (eds.) Current

Issues in Applied Memory Research, Brighton, UK:

Psychology Press.

[8] Simon, B. and Hanks, B. (2007). “What Value are Course-

Specific Learning Goals?” Proc. ICER’07, pp. 73-85.

[9] Wieman, C. (2008). “How People Learn—Implications for

Teachers and Students”. Retrieved on October 7, 2009 from

www.cwsei.ubc.ca.

[10] Williams, L. and Kessler, R. (2002). Pair Programming

Illuminated. Addison-Wesley.

