VNF Chain Allocation and Management at Data Center Scale

Nodir Kodirov, Sam Bayless, Fabian Ruffy, Ivan Beschastnikh, Holger Hoos, Alan Hu
Network Functions (NF) are **useful and widespread**

- **Security**
 - Firewall, DDoS protection, DPI
- **Monitoring**
 - QoE monitor, Network Stats
- **Services**
 - Ad insertion, Transcoder
- **Network optimization**
 - NAT, Load-balancer, WAN accelerator

Sherry et al. find **# of middleboxes are ≈ to # of L2/L3 devices** in enterprise

Sherry et al. Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud Service, SIGCOMM’12
Network Functions (NF) are **useful and widespread**

- **Security**
 - Firewall, DDoS protection, DPI
- **Monitoring**
 - QoE monitor, Network Stats
- **Services**
 - Ad insertion, Transcoder
- **Network optimization**
 - NAT, Load-balancer, WAN accelerator

Sherry et al. find # of middleboxes are ≈ to # of L2/L3 devices in enterprise

Sherry et al. Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service, SIGCOMM'12
Benefits of Virtualized Network Functions (VNF)

- **Elasticity**
 - Quick scale up and down NFs

- **Fast upgrades**
 - No need to wait for new hardware

- **Quick configuration, recovery**
 - Failover to the backup NF instance

- **Outsourcing**

Sherry et al. Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service, SIGCOMM’12
Rajagopalan et al., Split/Merge: System Support for Elastic Execution in Virtual Middleboxes, NSDI’13
Martins et al., ClickOS and the Art of Network Function Virtualization, NSDI’14
Outsourcing VNFs to the Cloud
Outsourcing VNFs to the Cloud

Cloud Provider

Internet

DDoS protection
ad insertion
load balancer
session border controller
WAN accelerator
BRAS
carrier-grade NAT
IDS
firewall
QoE monitor
DPI
transcoder

enterprise

Tenants
Outsourcing VNFs to the Cloud
Outsourcing VNF Chains to the Cloud
Outsourcing VNF Chains to the Cloud
Challenges of outsourcing VNF Chains

How can cloud providers achieve high data center utilization?

How can tenants allocate and manage their VNF chains?
Our contributions: API and algorithm

How can cloud providers achieve high data center utilization?

How can tenants allocate and manage their VNF chains?

• API to allocate and manage VNF chains
• Three algorithms
 • implement the API, and
 • achieve high data center utilization
• Evaluation
 • simulate: in data center scale with 1000+ servers
 • Daisy: emulate chain management at rack-scale

Internet

Cloud Provider

Tenants
VNF Chain: six API with use-cases

Initial chain

cid ← allocate-chain(C, bw)
add-link-bandwidth(a, b, bw, cid)
add-node(f, cid)
remove-link-bandwidth(a, b, bw, cid)
remove-node(f, cid)
remove-e2e-bandwidth(cid, bw)

Chain scale-out

Element upgrade
VNF Chain: API is expressive

Initial chain

cid ← allocate-chain(C, bw)
add-link-bandwidth(a, b, bw, cid)
add-node(f, cid)

remove-link-bandwidth(a, b, bw, cid)
remove-node(f, cid)
remove-e2e-bandwidth(cid, bw)

A graph can be transformed arbitrarily by manipulating individual nodes and edges.

Chain scale-out Element upgrade Chain expand ...
Scale-out **beyond** single physical resource capacity

Initial chain

```
cid ← allocate-chain(C, bw)
add-link-bandwidth(a, b, bw, cid)
add-node(f, cid)
```

```
remove-link-bandwidth(a, b, bw, cid)
remove-node(f, cid)
remove-e2e-bandwidth(cid, bw)
```

Chain scale-out
Chain Abstraction: Abstract-Concrete VNF Chains

- **Abstract VNF chain**
 - what tenant requires to allocate and operates on

- **Concrete VNF chain**
 - cloud provider’s implementation of the abstract chain

- **Chains abstraction** advantages
 - facilitates high DC utilization

- **Challenges**
 - low-latency, packet loss, state synchronization, efficiency loss (see the paper and ANCS’18 poster)
Our contributions: API and algorithm

How can cloud providers achieve high data center utilization?

How can tenants allocate and manage their VNF chains?

• API to allocate and manage VNF chains
• Three algorithms
 • implement the API, and
 • achieve high data center utilization
• Evaluation
 • simulate: in data center scale with 1000+ servers
 • Daisy: emulate chain management at rack-scale
Algorithm inputs: DC topology and chain

Expected resource consumption per Gbps of traffic
(see the paper for VNF profile generation)

Palkar et al., E2: A Framework for NFV Applications, SOSP’15
Nam et al., Probius: Automated Approach for VNF and Service Chain Analysis in Software-Defined NFV, SOSR’18
Algorithms for Chain Allocation and Management
Algorithms for Chain Allocation and Management

- Random (baseline)
 - Consider NFs and servers/switches in random order
 - Attempt the above step n times (e.g., $n=100$)
 - Choose the shortest path between chain NFs
Algorithms for Chain Allocation and Management

• Random (baseline)
 • Consider NFs and servers/switches in random order
 • Attempt the above step \(n \) times (e.g., \(n=100 \))
 • Choose the shortest path between chain NFs

• NetPack: Random + 3 simple heuristics
 • Consider the chain NFs in a topological order
 • Re-use the same server when allocating consecutive NFs
 • Gradually increase the network scope: rack, cluster, etc.

Palkar et al., E2: A Framework for NFV Applications, SOSP’15
Bayless et al., SAT Modulo Monotonic Theories, AAAI'15
Algorithms for Chain Allocation and Management

• Random (baseline)
 • Consider NFs and serversswitches in random order
 • Attempt the above step \(n \) times (e.g., \(n=100 \))
 • Choose the shortest path between chain NFs

• NetPack: Random + 3 simple heuristics
 • Consider the chain NFs in a topological order
 • Re-use the same server when allocating consecutive NFs
 • Gradually increase the network scope: rack, cluster, etc.

• VNFSolver: how optimal is NetPack?
 • Constraint-solver based chain allocation algorithm
 • Slow, but complete: finds a solution when one exists

Palkar et al., E2: A Framework for NFV Applications, SOSP’15
Bayless et al., SAT Modulo Monotonic Theories, AAAI’15
Our contributions: API and algorithm

How can cloud providers achieve high data center utilization?

- API to allocate and manage VNF chains
- Three algorithms
 - implement the API, and
 - achieve high data center utilization

How can tenants allocate and manage their VNF chains?

- Evaluation
 - simulate: in data center scale with 1000+ servers
 - Daisy: emulate chain management at rack-scale
Evaluation: Objectives

• How good is the data center utilization?
 • Evaluate Random, NetPack, and VNFSolver
 • Consider three different data center topologies
 • Use five different VNF chains with varying length (2-10)

• How fast is chain allocation?
 • Measure time it takes to saturate the data center

• Does API reliably implement the use-cases?
 • Prototype scale-out and chain upgrade in Daisy
 • Use two different racks, two sources of packet traces
Data center utilization evaluation

Palkar et al., E2: A Framework for NFV Applications, SOSP'15
Data center utilization evaluation

NetPack achieves at least 96% of VNFSolver allocations.

Chain allocation time: Random ≲ NetPack ≪ VNFSolver.

Palkar et al., E2: A Framework for NFV Applications, SOSP'15
NetPack **Utilization and Speed**

NetPack achieves at least 96% of VNFSolver allocations while being 82x faster than VNFSolver (optimal) and only up to 54% slower (per chain) than Random (baseline) on average.

Qualitatively similar results with Facebook and Commercial DC topologies with chains of up to 10 nodes. (see the paper for details)
Feasibility check: can API be implemented?

- Daisy builds on Sonata framework
 - Mininet to build DC topology
 - OVS for switches, and Dockers for NFs
- Runs on a single Azure VM
 - 64 cores, 432 GB RAM
- Emulates use-cases and chain arrivals
 - scale-out and upgrade use-cases
 - continuous arrival of tenant chains in rack-scale

Peuster et al., Sonata NFV SDK, github.com/sonata-nfv/son-emu, 2017
VNF Chain use-cases are feasible with narrow API

Daisy implements scale-out with no packet drops.
Daisy Contributions

Daisy implements scale-out with **no packet drops** and element **upgrade with 1s** packet drop at most. We also emulated **continuous chain arrival** case where different tenants make chain allocation requests one-by-one.
Contributions

• API with six primitives
 • Implements wide-range of chain operations
 • Chain abstraction facilitates full DC utilization

• NetPack algorithm
 • Handles DC-scale allocation with 1000+ servers
 • Achieves at least 96% allocations of VNFSolver (optimal) while being 82x faster on average

• Daisy prototype
 • Demonstrates feasibility of API and algorithms

Thank you!
Backup Slides
Topological sort of VNF chain

An example using Kahn’s algorithm
(VPN, NAT, LB, FW3, FW1, FW2, WC, DPI, IPS, GW)

VNF Chains we consider

Legend:
- **GFW**: gateway firewall
- **DFW**: department firewall
- **WC**: web-cache
- **LB**: load-balancer
- **ED**: exfiltration detector

Chains (a) and (b) are from **OpenBox**, (c) and (e) are from **E2**, and (d) is from **Embark**.

Bremler-Barr et al., **OpenBox**: A Software-Defined Framework for Developing, Deploying, and Managing Network Functions, SIGCOMM’16
Palkar et al., **E2**: A Framework for NFV Applications, SOSP’15
Chang et al., **Embark**: Securely Outsourcing Middleboxes to the Cloud, NSDI’16
NetPack: Contribution of each Optimization

- 100% baseline with top. sort, net. locality, and server locality
- 99% baseline with top. sort and network locality
- 3% loss with topo. sort
- 4-node
- 10-node
- e2-32rack
- us-west (1200 servers)
- Facebook-1pod

Normalized against VNFSolver
VNF Chain use-cases are feasible with narrow API

add-link-bandwidth() → NAT → FW → IDS → VPN → 1

Chain scale-out

add-node() → NAT → FW → IDS → VPN → 2

Element upgrade

Daisy implements scale-out with no packet drops and element upgrade with 1s packet drop at most (not shown).
Daisy: continuous chain arrival

VNFSolver allocated 75 concrete chains (687 Mbps)
NetPack allocated 67 concrete chains (633 Mbps)
Random allocated 61 concrete chains (561 Mbps)

(throughput with iperf generated packets is precise)
Utilization and Speed on E2 racks

NetPack achieves at least 96% of VNFSolver allocations while being 82x faster than VNFSolver on average.

Palkar et al., E2: A Framework for NFV Applications, SOSP’15
Utilization and Speed on Commercial Topologies

Gives qualitatively similar results, but also reveals a corner case for VNFSolver (-3.65%).
A corner case for VNFSolver

Gives qualitatively similar results, but also reveals a corner case for VNFSolver (-3.65%).

Variance across 10 runs:
- Random < 10.4%
- NetPack < 0.7%
- VNFSolver < 3.7%