Edge Detection

Goal: Identify sudden changes in image
INntensity

This Is where most shape information Is
encoded

Example: artist’s line drawing (but artist
also is using object-level knowledge)




Derivative Approximations: Forward, Backward, Centred
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:

Sigma = 50
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1D Example: smoothing + Derivative

Lets consider a row of pixels In an iImage:
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Sobel Edge Detector

1. Use central differencing to compute gradient image (instead of first

forward differencing). This is more accurate. 10 1
—2 0 2
2. Threshold to obtain edges -1 0L

Thresholds are brittle, we can do better!



Canny Edge Detector

Steps:

1. Apply directional derivatives of Gaussian

2. Compute gradient magnitude and gradient direction

3. Non-maximum suppression
— thin multi-pixel wide “ridges”™ down to single pixel width

4. Linking and thresholding
— Low, high edge-strength thresholds

— Accept all edges over low threshold that are connected to edge over high
threshold



Non-maxima Suppression

Idea: suppress near-by similar detections to obtain one “true” result

Non-maximal suppression (keep points where | V1| is a maximum in directions -

Select the iImage maximum point across the width of the edge

v
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Example: Eadge Detection

fllter
response

)
A h‘ threshold

Question: How many edges are there?

Question: \What is the position of each edge”?
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Canny Edge Detector

Original
lmage

Strong
Edges

courtesy of G. Loy

Strong +
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Weak Edges
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THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: https://en.wikipedia.org/wiki/Corner detection

Lecture 10: Corner Detection

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://en.wikipedia.org/wiki/Corner_detection

Menu for Today

Topics:

— Corner Detection — Harris Corner Detection
— Image Structure

— Today’s Lecture: Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1

Reminders:

— Assignment 2. Scaled Representations, Face Detection and Image Blending
(due Feb 13 23:59)

—Midterm: Feb 24th 12:30 pm In class, 75 minutes, closed book
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| earning Goals

Why corners (blobs)?
What are corners (blobs)?
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orrespondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between Images

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...
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Image Matching Workshop

I Fourth Workshop on Image Matching: Local Features & Beyond

tps://image-matching-workshop.github.io

Image Matching: Local Features & Beyond
CVPR 2024 Workshop

We are happy to announce that the Sixth Workshop on Image Matching: Local Features and Beyond will be held at
CVPR 2024 on June 17-18, 2024 (exact time TBA) in Seattle, US. The workshop will once again feature an open challenge
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Image Matching Challenge

Image Matching Challenge 2023 | Kaggle

B tps://www.kaggle.com/competitions/image-matching-challenge-2023/overview ‘ (S | (D = QR Q o Y4

kaggle Q  Search Sign In

+ Create -
GOOGLE RESEARCH - RESEARCH CODE COMPETITION - 8 MONTHS AGO | f_f%:;;.";;:;".‘, t ome
® Home
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<> Code
Overview Data Code Models Discussion Leaderboard Rules
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Overview Competition Host
v  More Google Research

Start Close Prizes & Awards

Apr 11,2023 Jun 12, 2023 $50,000
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Merger & Entry

Participation

674 Competitors
494 Teams

Description ® A 13,441 Entries

Tags

Goal of the Competition

Kaggle uses cookies from Google to deliver and enhance the quality of its services and to analyze traffic. Learn more. Ok, Got it.



Winning solution of 2023

Rotation Detection
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Feature Detectors

Straight Lines



-eature Descriptors
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What is a Good Feature Detector”

Local: features are local, robust to occlusion and clutter

Accurate: precise localization

Robust: noise, blur, compression, etc. do not have a big impact on the feature.
Distinctive: individual features can be easily matched

Efficient: close to real-time performance
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Corner Detection

e.qg., Harris corners are peaks of a local similarity function




Why are corners distinct”

N

A corner can be localized reliably.
/

Thought experiment:

S —

. . “flat’ region:
— Place a small window over a patch of constant image value. ar TEgen

01 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

N

A corner can be localized reliably.
/

Thought experiment:

| | “flat” region:
— Place a small window over a patch of constant image value. no change in al

f you slide the window In any direction, the image in the directions
window will not change.

29 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

l . 14 d ”:
— Place a small window over a patch of constant image value. =a9e

f you slide the window In any direction, the image in the
window will not change.

— Place a small window over an edge.

03 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

| , “‘edge”:
— Place a small window over a patch of constant image value. no change along

f you slide the window In any direction, the image in the the edge direction
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

o4 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

— Place a small window over a patch of constant image value. orner

f you slide the window In any direction, the image in the
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner.

o5 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Why are corners distinct”

A corner can be localized reliably.

Thought experiment:

—_ - —

| . ‘corner”:
— Place a small window over a patch of constant image value. significant change

f you slide the window In any direction, the image in the in all directions
window will not change.

— Place a small window over an edge. If you slide the window in the direction of
the edge, the image in the window will not change

— Cannot estimate location along an edge (a.k.a., aperture problem)

— Place a small window over a corner. If you slide the window in any direction,
the Image in the window changes.

26 Image Credit: loannis (Yannis) Gkioulekas (CMU)



lmage Structure

What kind of structures are present in the image locally®?

OD Structure: not useful for matching

1D Structure: edge, can be localised in one
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be
localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or

Interest point detectors find points with 2D structure.
20



How do you find a corner??

[Moravec 1980]

N

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls oft

slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.



Autocorrelation

Szeliski, Figure 4.5



Autocorrelation

Szeliski, Figure 4.5



Autocorrelation

Szeliski, Figure 4.5



Autocorrelation

Szeliski, Figure 4.5



Autocorrelation

Szeliski, Figure 4.5



Autocorrelation

Szeliski, Figure 4.5



Autocorrelation

Autocorrelation is the correlation of the image with itself.

— Windows centered on an edge point will have autocorrelation that falls oft

slowly in the direction along the edge and rapidly in the direction across
(perpendicular to) the edge.

— Windows centered on a corner point will have autocorrelation that falls of
rapidly in all directions.



| ocal SSD Function

Consider the sum squared difference (SSD) of a patch with its local
neighbournood

37



| ocal SSD Function

Consider the local SSD function for different patches

- =7 0%  High similarity locally

High similarity along the edge

= * Clear peak in similarity function
T s




Harris Corners

Harris corners are peaks of a local similarity function




Harris Corners

We will use a first order approximation to the local SSD function

40



Harris Corners

We will use a first order approximation to the local SSD function

41



Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

42



Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner
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Compute the covariance matrix (a.k.a. 2nd moment matrix)

Sum over small region
around the corner

array of x gradients array of y gradients

44



Harris Corners

SSD function must be large for all shifts Ax for a corner/ 2D structure
This implies that both eigenvalues of H must be large

Note that H is a 2x2 matrix

45



Recap: Computing Eigenvalues and Eigenvectors

/@

A6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recap: Computing Eigenvalues and Eigenvectors

/@

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

47



Recap: Computing Eigenvalues and Eigenvectors

/@

A8 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Distribution of Ix and ly

Slide Credit: Kris Kitani (CMU)



Distribution of Ix and ly

Slide Credit: Kris Kitani (CMU)



Distribution of Ix and ly

Slide Credit: Kris Kitani (CMU)



Interpreting Eigenvalues

Ao,

Al

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

: - ‘horizontal’ edge

Ay >> Ny

corner

B

A~ A

A >> A,

el tical’ ed
‘vertical’ edge
g )

573 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Interpreting Eigenvalues

- ‘horizontal’ edge

Ay >> N

o 8 &8 8 8 8

10

7\'1N7\‘2

100 .

Al'\'O
A2 ~ 0

54

corner

_ B

A >> A,

‘vertical’ edge J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

oy

Al

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Harris Corner Detection

2.Compute the covariance matrix

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

560

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

oy

Al

57 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Threshold on Eigenvalues to Detect Corners
(a function of )

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)
min()\l, )\2)

Nobel (1998)
det(C)
trace(C') + ¢

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example 1: Wagon Wheel (Harris Results
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Example 2: Crash Test Dummy (Harris Result)

corner response image oc=1 (175 points)

Original Image Credit: John Shakespeare, Sydney Morning Herald
60



Harris Corner Detection Review

— Filter image with Gaussian
— Compute magnitude of the x and y gradients at each pixel

— Construct C in a window around each pixel
— Harris uses a Gaussian window

— Compute Harris corner strength function det(C ) — /itracez (C )

— Threshold corner strength function, optionally apply non-maximal
suppression

o1



Example: Harris Corner Detection

62



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

O O O O O O il
O O O O O O il

03



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

O O O O O O il
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O
41 0 0 -1 1
40 0 0 1 0
4.0 0 0 1 0
0 -1 0 0 1 O
0 -1 0 0 1 O
0 -1 0 0 1 O
=% 10 40 0 1 0

05



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

0 0 0 0 0 O 0 -1 0 0 0 -1 0

41 0 0 -1 1 0 0 -1 -1 -1 1 0

40 0 0 1 0 0 0 0 0 0 0 O

410 0 0 1 0 0 1, 0 0 0 0 O

0 1 0 0 1 0 0 0 0 0 0 0 O

0 1 0 0 1 0 0 0 0 0 0 0 O

0 -1 0 0 1 0 0 0 0 0 0 0 O
=% 10 40 0 1 0 =%
Ox oy

o6




Example: Harris Corner Detection
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C_ 3 2
_ 2 4 _
0 0 0 0 | -1 0
4.1 0 0 0 0
1.0 0 0 0 0 O 0
1.0 0 0 0 0 1 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=% 10 40 0 1 0 I, - o1
ox oy
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = ;’ i —> Ay = 1.4384: Ay = 5.5616
0 0 0 0 | -1 0
41 0 0 0 0
4.0 0 0 0 0 0 0
1.0 0 O 0 0 1 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 O 0 0 0 0 0 0 O
0 -1 0 0 1 0 0 0 0 0 0 0 O
=% 10 40 0 1 0 =%
Ox oy
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

g
' ' det(C) — 0.04trace?(C) = 6.04

0 0 O 0 -1 0

1.1 0 0 0 0

1.0 0]0 1 0 0 0 O 0

1.0 0 0 1 0 0 1,0 0 0 0 O

0 -1, 0 0 1 0 0 0 0 0 0 0 O

0 -1, 0 0 1 0 0 0 0 0 0 0 O

0 -1, 0 0 1 0 0 0 0 0 0 0 O
oI 1o -1 0 0 1 0 ol
— - |
= oz Y Oy

70



Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = g 8 => A\ =3; X =0

det(C) — 0.04trace*(C) = —0.36

O 0|0 0 00 O/ -1]0 0 0 |-10

-1 1,100 -1] 1 o 0o /-1 -1/-1]1 0

-1 0, 0 0] 10 O 0|0 0 000
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O -1 010 0 O 0|01 0 007160
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Example: Harris Corner Detection

Lets compute a measure of “corner-ness” for the green pixel.

C = (?; (2) => A1 = 3; Ay =2
_ _ det(C) — 0.04trace*(C) = 5

O 0010 0 O O/ -1 0100 -1]0

-1 1010 -1 1 o 0 -11-1 -1 1 0

-1, 0010110 O 0 0100 00

-110 0 0 10 O 1, 00 00 0

O/ -170 0 1 0 O 0 000 00

O -170 0 1 0 O 0 000 00

O/ -170 0 1 0 O 0 000 00
=% 10 40 0 1 0 =%
oz oy
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Difference of Gaussian

DoG = centre-surround filter

Non-maximal suppression:
These points are maxima in —»
a 10 pixel radius

73



Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)

Note: DOG = Laplacian of Gaussian
red =[1 —2 1] % g(x; 5.0)
black = g(x; 5.0) — g(x; 4.0)




Scale Invariant Interest Point Detection

Find local maxima in both position and scale

75 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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76 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Characteristic Scale

characteristic scale - the scale that produces peak filter response

2000
1500 - - - - - SR LN G 2 BN e

| 1000} - ---- — ST, U SO WP Te—

characteristic scale

we need to search over characteristic scales
77 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17
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78 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1

79 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=4.2

80 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

31 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Scales

Applying Laplacian Filter at Different

sigma=9.8

89 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5

% Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17

" 00

84 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

2.1 4.2 0.0
9.8 15.5 17.0
85




Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale
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octave) /’9
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(first
octave)
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Detections are local
maxima in a 3x3x3
scale-space window



Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

[ T. Lindeberg ]
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Difference of Gaussian blobs in 2020
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Multi-Scale Harris Corners

For each level of the Gaussian pyramid

compute Harris feature response

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(xgy;s)

39



Multi-Scale Harris Corners

90



Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
oINS
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