
Edge Detection

Goal: Identify sudden changes in image 
intensity  

This is where most shape information is 
encoded  

Example: artist’s line drawing (but artist 
also is using object-level knowledge)  

1



Derivative Approximations: Forward, Backward, Centred
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1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

@G⌦ I(X,Y )

@x

I(X, 245)

Lets consider a row of pixels in an image:
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1D Example: Smoothing + Derivative
Lets consider a row of pixels in an image:

I(X, 245)



1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 
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Canny Edge Detector
Steps:  

1. Apply directional derivatives of Gaussian  

2. Compute gradient magnitude and gradient direction  

3. Non-maximum suppression  
    — thin multi-pixel wide “ridges” down to single pixel width  

4. Linking and thresholding 
    — Low, high edge-strength thresholds 
    — Accept all edges over low threshold that are connected to edge over high    
         threshold 

6



Non-maxima Suppression
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Select the image maximum point across the width of the edge

Idea: suppress near-by similar detections to obtain one “true” result

|rI|Non-maximal suppression (keep points where         is a maximum in directions           )     ±rI
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filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection



Canny Edge Detector
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Original  
Image

Strong  
Edges

Weak  
Edges

Strong +  
connected  
Weak Edges



Lecture 10: Corner Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )

Image Credit: https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection


Menu for Today
Topics: 

— Corner Detection 
— Image Structure

Readings: 

— Today’s Lecture:  Szeliski 7.1-7.2, Forsyth & Ponce 5.3.0 - 5.3.1 

Reminders: 

— Assignment 2: Scaled Representations, Face Detection and Image Blending 
(due Feb 13 23:59) 
—Midterm: Feb 24th 12:30 pm in class, 75 minutes, closed book 

— Harris Corner Detection 
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Learning Goals

Why corners (blobs)? 
What are corners (blobs)?
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Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences) 
between images 

This has many applications: rigid/non-rigid tracking, object recognition, image 
registration, structure from motion, stereo...

13

? ??



Image Matching Workshop



Image Matching Challenge



Winning solution of 2023

https://www.kaggle.com/competitions/image-matching-challenge-2023/discussion/417407



Feature Detectors
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206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(c) (d)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) c� 2008 ACM.
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Feature Descriptors
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Preprocessing

Conv0

Pool0

Conv1

Pool1
Metric network

Cross-Entropy Loss

Sampling

Conv2

Conv3

Conv4

Bottleneck

Pool4 FC2

FC1

FC3 + Softmax

A: Feature network B: Metric network

C: MatchNet in training

Figure 1. The MatchNet architecture. A: The feature network used
for feature encoding, with an optional bottleneck layer to reduce
feature dimension. B: The metric network used for feature com-
parison. C: In training, the feature net is applied as two “towers”
on pairs of patches with shared parameters. Output from the two
towers are concatenated as the metric network’s input. The entire
network is jointly trained on labeled patch-pairs generated from
the sampler to minimize the cross-entropy loss. In prediction, the
two sub-networks (A and B) are conveniently used in a two-stage
pipeline (See Section 4.2).

[0, 1] from the two units of FC3, These are non-negative,
sum up to one, and can be interpreted as the network’s es-
timate of probability that the two patches match and do not
match, respectively.

Two-tower structure with tied parameters: The patch-
based matching task usually assumes that patches go
through the same feature encoding before computing a sim-
ilarity. Therefore we need just one feature network. During
training, this can be realized by employing two feature net-
works (or “towers”) that connect to a comparison network,
with the constraint that the two towers share the same pa-
rameters. Updates for either tower will be applied to the
shared coefficients.

This approach is related to the Siamese network [2, 5],
which also uses two towers, but with carefully designed
loss functions instead of a learned metric network. A re-
cent preprint on learning a network for stereo matching has
also used the two-tower-plus-fully-connected comparison-
network approach [37]. In contrast, MatchNet includes
max-pooling layers to deal with scale changes that are not
present in stereo reconstruction problems, and it also has

Table 1. Layer parameters of MatchNet. The output dimension
is given by (height ⇥ width ⇥ depth). PS: patch size for con-
volution and pooling layers; S: stride. Layer types: C: convo-
lution, MP: max-pooling, FC: fully-connected. We always pad
the convolution and pooling layers so the output height and width
are those of the input divided by the stride. For FC layers,
their size B and F are chosen from: B 2 {64, 128, 256, 512},
F 2 {128, 256, 512, 1024}. All convolution and FC layers use
ReLU activation except for FC3, whose output is normalized with
Softmax (Equation 2).

Name Type Output Dim. PS S

Conv0 C 64⇥ 64⇥ 24 7⇥ 7 1
Pool0 MP 32⇥ 32⇥ 24 3⇥ 3 2
Conv1 C 32⇥ 32⇥ 64 5⇥ 5 1
Pool1 MP 16⇥ 16⇥ 64 3⇥ 3 2
Conv2 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv3 C 16⇥ 16⇥ 96 3⇥ 3 1
Conv4 C 16⇥ 16⇥ 64 3⇥ 3 1
Pool4 MP 8⇥ 8⇥ 64 3⇥ 3 2
Bottleneck FC B - -

FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

more convolutional layers compared to [37].
In other settings, where similarity is defined over patches

from two significantly different domains, the MatchNet
framework can be generalized to have two towers that share
fewer layers or towers with different structures.

The bottleneck layer: The bottleneck layer can be used
to reduce the dimension of the feature representation and to
control overfitting of the network. It is a fully-connected
layer of size B, between the 4096 (8 ⇥ 8 ⇥ 64) nodes in
the output of Pool4 and the final output of the feature net-
work. We evaluate how B affects matching performance in
Section 5 and plot results in Figure 4.

The preprocessing layer: Following a previous conven-
tion, for each pixel in the input grayscale patch we normal-
ize its intensity value x (in [0, 255]) to (x� 128)/160.

4. Training and prediction
The feature and metric networks are trained jointly in a

supervised setting using a two-tower structure illustrated in
Figure 1-C. We minimize the cross-entropy error

E = � 1

n

nX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (1)

over a training set of n patch pairs using stochastic gradient
descent (SGD) with a batch size of 32. Here yi is the 0/1
label for input pair xi. 1 indicates match. ŷi and 1� ŷi are
the Softmax activations computed on the values of the two

Image Patch

SIFT

Shape Context

 Learned Descriptors



What is a Good Feature Detector?

Local: features are local, robust to occlusion and clutter 

Accurate: precise localization  

Robust: noise, blur, compression, etc. do not have a big impact on the feature.  

Distinctive: individual features can be easily matched 

Efficient: close to real-time performance 
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Corner Detection

e.g., Harris corners are peaks of a local similarity function

20



Why are corners distinct?

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 

21

“flat” region: 
no change in all 

directions

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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“flat” region: 
no change in all 

directions

A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“edge”: 
no change along 

the edge direction

— Place a small window over an edge.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“edge”: 
no change along 

the edge direction

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner.

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Why are corners distinct?
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A corner can be localized reliably.  

Thought experiment:  

— Place a small window over a patch of constant image value. 
If you slide the window in any direction, the image in the 
window will not change.  

“corner”: 
significant change 

in all directions

— Place a small window over an edge. If you slide the window in the direction of 
the edge, the image in the window will not change 
     → Cannot estimate location along an edge (a.k.a., aperture problem) 

— Place a small window over a corner. If you slide the window in any direction, 
the image in the window changes. 

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Image Structure

What kind of structures are present in the image locally?

27

0D Structure: not useful for matching

1D Structure: edge, can be localised in one 
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be 
localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or 
Interest point detectors find points with 2D structure.



How do you find a corner? 

Easily recognized by looking through a small window 

Shifting the window should give large change in intensity

[Moravec 1980]

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  



Autocorrelation

Szeliski, Figure 4.5
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Autocorrelation

Autocorrelation is the correlation of the image with itself.  

— Windows centered on an edge point will have autocorrelation that falls off 
slowly in the direction along the edge and rapidly in the direction across 
(perpendicular to) the edge.  

— Windows centered on a corner point will have autocorrelation that falls of 
rapidly in all directions.  



Local SSD Function

Consider the sum squared difference (SSD) of a patch with its local 
neighbourhood
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�x1

�x2

x =


x1

x2

�

SSD =
X

R
|I(x)� I(x+�x)|2



Local SSD Function

Consider the local SSD function for different patches
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4.1 Points and patches 211

(a)

(b) (c) (d)

Figure 4.5 Three auto-correlation surfaces EAC(�u) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b–d is one value of
�u.
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Clear peak in similarity function

High similarity along the edge

High similarity locally



Harris Corners

Harris corners are peaks of a local similarity function



Harris Corners

We will use a first order approximation to the local SSD function
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�x1

�x2 SSD =
X

R
|I(x)� I(x+�x)|2

10.1



Harris Corners

We will use a first order approximation to the local SSD function
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�x1

�x2 SSD =
X
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Compute the covariance matrix (a.k.a. 2nd moment matrix)

42

Sum over small region  
around the corner

C =



Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =



Compute the covariance matrix (a.k.a. 2nd moment matrix)
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Sum over small region  
around the corner

Gradient with respect to x, times 
gradient with respect to y

C =

array of x gradients array of y gradients

.*=sum( )



Harris Corners
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SSD function must be large for all shifts            for a corner / 2D structure 

This implies that both eigenvalues of          must be large 

Note that         is a 2x2 matrix 
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Recap: Computing Eigenvalues and Eigenvectors

46 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Recap: Computing Eigenvalues and Eigenvectors
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10.2

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors



Recap: Computing Eigenvalues and Eigenvectors

48 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

10.2



Distribution of Ix and Iy

Slide Credit: Kris Kitani (CMU)



Distribution of Ix and Iy

Slide Credit: Kris Kitani (CMU)



Distribution of Ix and Iy

Slide Credit: Kris Kitani (CMU)



Interpreting Eigenvalues
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λ2 >> λ1

λ1 >> λ2

What kind of image patch 
does each region represent?

�1

�2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



‘vertical’ edge

‘horizontal’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

53 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues



‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

54 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues



Harris Corner Detection
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1.Compute image gradients over 
small region

2.Compute the covariance matrix

3.Compute eigenvectors and     
eigenvalues

4.Use threshold on eigenvalues to 
detect corners

Slide Adopted: Ioannis (Yannis) Gkioulekas (CMU)
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‘horizontal’ edge

‘vertical’ edge

flat

corner

λ2 >> λ1

λ1 >> λ2

 λ1 ~ λ2

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

�1

�2

Interpreting Eigenvalues
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Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)

det(C)� trace2(C)

det(C)

trace(C) + ✏

Threshold on Eigenvalues to Detect Corners
(a function of )

^

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Example 1: Wagon Wheel (Harris Results)

59

� = 1 (219 points) � = 2 (155 points) � = 3 (110 points) � = 4 (87 points)



Example 2: Crash Test Dummy (Harris Result)
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� = 1 (175 points)corner response image
Original Image Credit: John Shakespeare, Sydney Morning Herald 



Harris Corner Detection Review

— Filter image with Gaussian 

— Compute magnitude of the x and y gradients at each pixel  

— Construct C in a window around each pixel  
      — Harris uses a Gaussian window  

— Compute Harris corner strength function 

— Threshold corner strength function, optionally apply non-maximal 
suppression  

61

det(C)� trace2(C)



Example: Harris Corner Detection
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1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

X
2

4
0 0 0
0 �1 1
0 1 0

3

5�

2

4
0 0 0
0 �1 1
0 1 0

3

5 = 3
1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Example: Harris Corner Detection
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

C =


3 2
2 4

�
=> �1 = 1.4384;�2 = 5.5616

det(C)� 0.04trace2(C) = 6.04

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

C =


3 0
0 0

�
=> �1 = 3;�2 = 0

det(C)� 0.04trace2(C) = �0.36

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1
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Lets compute a measure of “corner-ness” for the green pixel: 

0 0 0 0 0 0

-1 1 0 0 -1 1

-1 0 0 0 1 0

-1 0 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 1 0

0 -1 0 0 0 -1 0

0 0 -1 -1 -1 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

C =


3 0
0 2

�
=> �1 = 3;�2 = 2

det(C)� 0.04trace2(C) = 5

1 1 1 1 1 1 1

1 0 1 1 1 0 1

1 0 0 0 0 1 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1



Difference of Gaussian

DoG = centre-surround filter
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=⇤

• Find local-maxima of the centre surround response 

Non-maximal suppression: 
These points are maxima in 

a 10 pixel radius



Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)

0 5 10 15 20 25 30 35 40 45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

red = [1 � 2 1] ⇤ g(x; 5.0)
black = g(x; 5.0)� g(x; 4.0)

Note: DOG ≈ Laplacian of Gaussian



Scale Invariant Interest Point Detection
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Find local maxima in both position and scale

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



76 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Characteristic Scale 
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characteristic scale - the scale that produces peak filter response

characteristic scale
we need to search over characteristic scales

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales 
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Full size 3/4 size

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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peak!

Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Applying Laplacian Filter at Different Scales 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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2.1 4.2 6.0

9.8 15.5 17.0

peak!

Applying Laplacian Filter at Different Scales 



Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve
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Detections are local
maxima in a 3x3x3
scale-space window
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant

6

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, �2r2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor �2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of �2r2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and �2r2G can be understood from the heat diffusion equa-
tion (parameterized in terms of � rather than the more usual t = �2):

@G

@�
= �r2G.

From this, we see that r2G can be computed from the fi nite difference approximation to
@G/@�, using the difference of nearby scales at k� and �:

�r2G =
@G

@�
⇡ G(x, y, k�) �G(x, y,�)

k� � �

and therefore,

G(x, y, k�) �G(x, y,�) ⇡ (k � 1)�2r2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the �2 scale normalization required for the scale-invariant
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Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k � 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

p
2.

An effi cient approach to construction of D(x, y,�) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of �) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of � (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to � is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,�), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) c� 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.



Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

87

12 Lindeberg

original image scale-space maxima of (∇2
normL)2

(traceHnormL)2 (detHnormL)2

Figure 3: Normalized scale-space maxima computed from an image of a sunflower field: (top
left): Original image. (top right): Circles representing the 250 normalized scale-space maxima
of (traceHnormL)2 having the strongest normalized response. (bottom left): Circles represent-
ing scale-space maxima of (traceHnormL)2 superimposed onto a bright copy of the original
image. (bottom right): Corresponding results for scale-space maxima of (detHnormL)2.

(traceHnormL)2 (detHnormL)2

Figure 4: The 250 most significant normalized scale-space extrema detected from the per-
spective projection of a sine wave of the form (with 10% added Gaussian noise).

[ T. Lindeberg ]



Difference of Gaussian blobs in 2020
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Multi-Scale Harris Corners
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For each level of the Gaussian pyramid

compute Harris feature response

For each level of the Gaussian pyramid

if local maximum and cross-scale

save scale and location of feature



Multi-Scale Harris Corners
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Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σdPl(x, y)∇σdPl(x, y)T ∗ gσi(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3 × 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j

|xi − xj |, s.t. f(xi) < crobustf(xj), xj ε I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly



Summary

Edges are useful image features for many applications, but suffer from the 
aperture problem 

Canny Edge detector combines edge filtering with linking and hysteresis steps 

Corners / Interest Points have 2D structure and are useful for 
correspondence 

Harris corners are minima of a local SSD function 
DoG maxima can be reliably located in scale-space and are useful as interest 
points
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