
G1

G3

G4

L1⊖blur

÷2

L2⊖blur

÷2

L3⊖blur

÷2

Gaussian Pyramid

L4

Laplacian Pyramid

G2



Solution: form a Gaussian Pyramid and 
convolve with the template at each scale

Recap: Multi-Scale Template Matching

= TemplateQ. Why scale the image and not the template?

Correlation with a fixed-sized image only detects faces at specific scales



Lecture 9: Edge Detection

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today
Topics: 

— Edge Detection 
— Canny Edge Detector

Readings: 

— Today’s Lecture:  Szeliski 7.1-7.2, Forsyth & Ponce 5.1 - 5.2 

Reminders: 

— Assignment 2: Scaled Representations, Face Detection and Image Blending 
— Midterm: Feb 24th 12:30 pm in class

— Image Boundaries 

4
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Today’s “fun” Example:
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Today’s “fun” Example:
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Today’s “fun” Example:



Learning Goal

Understand that gradients are useful 
Gradient —> Edges

8



Edge Detection

One of the first algorithms in Computer Vision

9

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.



Edge Detection

Goal: Identify sudden changes in image 
intensity  

This is where most shape information is 
encoded  

Example: artist’s line drawing (but artist 
also is using object-level knowledge)  

10



What Causes Edges?

11

What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance 

discontinuity (i.e., 
change in surface 
material properties)

• Illumination 
discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen

Slide Credit: Christopher Rasmussen



Derivative Definition

12

9.1



Recall, for a 2D (continuous) function, f(x,y) 

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x



Recall, for a 2D (continuous) function, f(x,y) 

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  

A (discrete) approximation is  

Estimating Derivatives

@f
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✏!0

f(x+ ✏, y)� f(x, y)
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Recall, for a 2D (continuous) function, f(x,y) 

Differentiation is linear and shift invariant, and therefore can be implemented as 
a convolution  

A (discrete) approximation is  
<latexit sha1_base64="kktV8oyb6PwXynpDeIcggEH+gLc="></latexit>

@f

@X
⇡ F (X + 1, Y )� F (X,Y )

�X

Estimating Derivatives

@f

@x
= lim

✏!0

f(x+ ✏, y)� f(x, y)

✏

@f

@x
⇡ F (X + 1, y)� F (x, y)

�x

�1 1



A (discrete) approximation is  

�11

“forward difference” implemented as

�1 1

correlation convolution

from left 

Estimating Derivatives
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A (discrete) approximation is  

�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

   correlation convolution

from left from right 

Estimating Derivatives
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A (discrete) approximation is  

�11

“forward difference” implemented as

�1 1

correlation convolution

�11�1 1

“backward difference” implemented as

   correlation convolution

from left from right 

Estimating Derivatives
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“forward difference” implemented as

�1 1

correlation 

�1 1

“backward difference” implemented as

   correlation 

from left from right 

Estimating Derivatives

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1

Introduction 11

Feature extraction

The first stages of most computer vision algorithms
perform feature extraction. The aim is to reduce
the data content of the images while preserving the
useful information they contain.

The most commonly used features are edges, which
are detected along 1-dimensional intensity disconti-
nuities in the image. Automatic edge detection algo-
rithms produce something resembling a line drawing
of the scene.

Corner detection is also
common. Corner features
are particularly useful for
motion analysis.

�1 1



A similar definition (and approximation) holds for  

Image noise tends to result in pixels not looking exactly like their neighbours, 
so simple “finite differences” are sensitive to noise.  

The usual way to deal with this problem is to smooth the image prior to 
derivative estimation.  

@f

@y

Estimating Derivatives



Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Example 1D
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Estimating Derivatives
Derivative in Y (i.e., vertical) direction

Forsyth & Ponce (1st ed.) Figure 7.4

(Note: visualized by adding 0.5/128)
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Estimating Derivatives
Derivative in X (i.e., horizontal) direction (Note: visualized by adding 0.5/128)

Forsyth & Ponce (1st ed.) Figure 7.4



Example: 2D Derivatives
Use the “first forward difference" to compute the image derivatives in X and Y

32

1 1 0.6 0.3 0 0

1 1 0.6 0.3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Compute two arrays, one of         values and one of         values@f

@y
@f

@x
9.2

x
y

1

x
y

1



Estimating Derivatives 

Q: Why should the weights of a filter used for differentiation sum to 0?

33



Estimating Derivatives 

34

e.g. a constant image,                         has derivative = 0. Therefore, the 
weights of any filter used for differentiation need to sum to 0. 

I(X,Y ) = k

Q: Why should the weights of a filter used for differentiation sum to 0?

NX

i=1

fi · k = k
NX

i=1

fi = 0 =)
NX

i=1

fi = 0



Edge Detection: 1D Example

35

I(X, 245)

Lets consider a row of pixels in an image:

Where is the edge?
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I(X, 245)

@I(X, 245)

@x

Lets consider a row of pixels in an image:

Where is the edge?

Edge Detection: 1D Example
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1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

I(X, 245)

Lets consider a row of pixels in an image:
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1D Example: Smoothing + Derivative

G

G⌦ I(X,Y )

@G⌦ I(X,Y )

@x

I(X, 245)

Lets consider a row of pixels in an image:
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@G

@x
⌦ I(X,Y )

@G

@x

1D Example: Smoothing + Derivative
Lets consider a row of pixels in an image:

I(X, 245)



Smoothing and Differentiation 

Edge: a location with high gradient (derivative) 

Need smoothing to reduce noise prior to taking derivative  

Need two derivatives, in x and y direction  

We can use derivative of Gaussian filters 
— because differentiation is convolution, and  
— convolution is associative  

Let     denote convolution 

40

D ⌦ (G⌦ I(X,Y )) = (D ⌦G)⌦ I(X,Y )

⌦



Partial Derivatives of Gaussian

41

Derivative of Gaussian

Slide credit: Christopher Rasmussen
Slide Credit: Christopher Rasmussen
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Laplacian of Gaussian 
operator

Zero-crossings of bottom graph

1D Example: Continued

r2G
@G

@x
⌦ I(X,Y )

I(X, 245)

r2G

Lets consider a row of pixels in an image:



Derivative Approximations: Forward, Backward, Centred

43

9.3



Sobel Edge Detector

44

1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Gradient Sobel EdgesOriginal Image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5



2D Image Gradient
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The gradient of an image: 
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The gradient of an image: 

2D Image Gradient
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The gradient of an image: 

2D Image Gradient
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The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

2D Image Gradient



The gradient direction is given by: 

49

The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)

2D Image Gradient



The edge strength is given by the gradient magnitude: 

The gradient direction is given by: 

50

The gradient of an image: 

The gradient points in the direction of most rapid increase of intensity: 

(how is this related to the direction of the edge?)

2D Image Gradient



2D Edge Detection

Smooth image and convolve with [-1 1]

Image Gradient
• Horizontal and vertical gradients

13

12.4

Image Gradient
• Horizontal and vertical gradients

13

12.4

Image Gradient
• Horizontal and vertical gradients

13

12.4

gx gy
rI =


gx
gy

�
2D gradient:



Increased smoothing: 
— eliminates noise edges 
— makes edges smoother and thicker  
— removes fine detail 

52

Gradient Magnitude

Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.

� = 1 � = 2

Forsyth & Ponce (2nd ed.) Figure 5.4



1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

2

4
�1 0 1
�2 0 2
�1 0 1

3

5



1. Use central differencing to compute gradient image (instead of first 
forward differencing). This is more accurate. 

2. Threshold to obtain edges 

Sobel Edge Detector

Sobel Gradient Sobel EdgesOriginal Image

Thresholds are brittle, we can do better! 

2

4
�1 0 1
�2 0 2
�1 0 1

3

5



Two Generic Approaches for Edge Detection

r

r

r

i(r)

d i(r)
 dr

d2i(r)
 dr2

x

y

r

Two generic approaches to edge point detection: 
— (significant) local extrema of a first derivative operator  
— zero crossings of a second derivative operator 



Marr / Hildreth Laplacian of Gaussian
A “zero crossings of a second derivative operator” approach  

Steps:  
1. Gaussian for smoothing  

2. Laplacian (     ) for differentiation where  

3. Locate zero-crossings in the Laplacian of the Gaussian (         ) where  

r2

r2f(x, y) =
@2f(x, y)

@x2
+

@2f(x, y)

@y2

r2G

r2G(x, y) =
�1

2⇡�4


2� x2 + y2

�2

�
exp�

x2+y2

2�2



Here’s a 3D plot of the Laplacian of the Gaussian (         ) 

. . . with its characteristic “Mexican hat” shape

Marr / Hildreth Laplacian of Gaussian

r2G



Laplacian of Gaussian 
operator

Where is the edge?  Zero-crossings of bottom graph

1D Example: Continued

r2G
@G

@x
⌦ I(X,Y )

I(X, 245)

r2G

Lets consider a row of pixels in an image:



Image From: A. Campilho

Marr / Hildreth Laplacian of Gaussian



Marr / Hildreth Laplacian of Gaussian

Image From: A. Campilho



Assignment 1: High Frequency Image

original - smoothed 
(scaled by 4, offset +128)

smoothed  
Gaussian)

original

- =



Assignment 1: High Frequency Image

Gaussian
delta function

Laplacian of Gaussian



Comparing Edge Detectors 



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges 

Good localization: found edges should be as close to true image edge as possible 

Single response: minimize the number of edge pixels around a single edge 



Comparing Edge Detectors 

Good detection: minimize probability of false positives/negatives (spurious/missing) edges 

Good localization: found edges should be as close to true image edge as possible 

Single response: minimize the number of edge pixels around a single edge 

Approach Detection Localization Single Resp Limitations

Sobel Gradient Magnitude 
Threshold Good Poor Poor Results in Thick 

Edges

Marr / Hildreth Zero-crossings of 2nd 
Derivative (LoG) Good Good Good Smooths 

Corners

Canny Local extrema of 1st 
Derivative Best Good Good



Canny Edge Detector
A “local extrema of a first derivative operator” approach  

Design Criteria:  

1. good detection 
       — low error rate for omissions (missed edges)  
       — low error rate for commissions (false positive)  

2. good localization  

3. one (single) response to a given edge 
       — (i.e., eliminate multiple responses to a single edge) 

66



Canny Edge Detector
Steps:  

1. Apply directional derivatives of Gaussian  

2. Compute gradient magnitude and gradient direction  

3. Non-maximum suppression  
    — thin multi-pixel wide “ridges” down to single pixel width  

4. Linking and thresholding 
    — Low, high edge-strength thresholds 
    — Accept all edges over low threshold that are connected to edge over high    
         threshold 

67



2D Edge Detection

Look at the magnitude of the smoothed gradient

68

|rI|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

|rI| =
q
g2x + g2y

[ Canny 1986 ]

|rI|Non-maximal suppression (keep points where         is a maximum in directions           )     ±rI



Non-maxima Suppression

69

Select the image maximum point across the width of the edge

Idea: suppress near-by similar detections to obtain one “true” result

|rI|Non-maximal suppression (keep points where         is a maximum in directions           )     ±rI
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression
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Forsyth & Ponce (2nd ed.) Figure 5.5 left

Value at q must be larger than interpolated values at p and r

Non-maxima Suppression
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14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|

14 Engineering Part IIB: 4F12 Feature Extraction

2D edge detection

The next step is to find the gradient of the smoothed
image S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ
∂x ∗ I

∂Gσ
∂y ∗ I





The following example shows |∇S| for a fruity im-
age:

(a) Original image (b) Edge strength |∇S|



Example: Non-maxima Suppression
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Slide Credit: Christopher Rasmussen

Original Image Gradient Magnitude Non-maxima  
Suppression



Linking Edge Points
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Assume the marked point is an edge point. Take the normal to the gradient at 
that point and use this to predict continuation points (either r or s) 

Forsyth & Ponce (2nd ed.) Figure 5.5 right



Edge Hysteresis

One way to deal with broken edge chains is to use hysteresis  

Hysteresis: A lag or momentum factor  

Idea: Maintain two thresholds          and  
— Use khigh to find strong edges to start edge chain 
— Use klow to find weak edges which continue edge chain  

Typical ratio of thresholds is (roughly):  

75

khigh

klow
= 2

khigh klow



Example: Edge Detection
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filter
response

Question: How many edges are there?  

Question: What is the position of each edge? 
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filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection
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filter
response

threshold

Question: How many edges are there?  

Question: What is the position of each edge? 

Example: Edge Detection



Canny Edge Detector
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Original  
Image

Strong  
Edges

Weak  
Edges

Strong +  
connected  
Weak Edges



Optional subtitle
2D Edge Detection

Threshold the gradient magnitude with two thresholds: Thigh and Tlow 
Edges start at edge locations with gradient magnitude > Thigh 

Continue tracing edge until gradient magnitude falls below Tlow
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Feature Extraction 15

2D edge detection

The next stage of the edge detection algorithm
is non-maximal suppression. Edge elements,
or edgels, are placed at locations where |∇S| is
greater than local values of |∇S| in the directions
±∇S. This aims to ensure that all edgels are lo-
cated at ridge-points of the surface |∇S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only
those with |∇S| above a certain value are retained.

(d) Thresholding

Feature Extraction 15

2D edge detection

The next stage of the edge detection algorithm
is non-maximal suppression. Edge elements,
or edgels, are placed at locations where |∇S| is
greater than local values of |∇S| in the directions
±∇S. This aims to ensure that all edgels are lo-
cated at ridge-points of the surface |∇S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only
those with |∇S| above a certain value are retained.

(d) ThresholdingThresholdedNon-MS

[ Canny 1986 ]



Example
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Forsyth & Ponce (1st ed.) Figure 8.13 top
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Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom left 
Fine scale (          ), high threshold

Example

� = 1
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Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom middle 
Fine scale (          ), high threshold� = 4
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Example

Forsyth & Ponce (1st ed.) Figure 8.13 top Figure 8.13 bottom right 
Fine scale (          ), low threshold  � = 4



How do humans perceive boundaries? 

Edges are a property of the 2D image.  

It is interesting to ask: How closely do image edges correspond to 
boundaries that humans perceive to be salient or significant?  
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"Divide the image into some number of segments, where the segments 
represent ’things’ or ’parts of things’ in the scene. The number of segments is 
up to you, as it depends on the image. Something between 2 and 30 is likely to 
be appropriate. It is important that all of the segments have approximately equal 
importance."  

(Martin et al. 2004) 

How do humans perceive boundaries? 
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Figure Credit: Martin et al. 2001

How do humans perceive boundaries? 
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How do humans perceive boundaries? 

Figure Credit: Martin et al. 2001
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Figure Credit: Szeliski Fig. 4.31. Original: Martin et al. 2004

Each image shows multiple (4-8) human-marked boundaries. Pixels are darker 
where more humans marked a boundary. 

How do humans perceive boundaries? 



Boundary Detection

We can formulate boundary detection as a high-level recognition task  
— Try to learn, from sample human-annotated images, which visual features or 
cues are predictive of a salient/significant boundary  

Many boundary detectors output a probability or confidence that a pixel is 
on a boundary  
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Summary
Physical properties of a 3D scene cause “edges” in an image:  
— depth discontinuity 
— surface orientation discontinuity 
— reflectance discontinuity  
— illumination boundaries  

Basic approaches to edge detection: 
—Smooth image to a desired scale and extract image gradients  
—local extrema of a first derivative operator → Canny 

Many algorithms consider “boundary detection” as a high-level 
recognition task and output a probability or confidence that a pixel is on a 
human-perceived boundary 
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