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Lecture 8: Scaled Representations

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )


https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html

Menu for Today

Topics:

— Scaled Representations — Multi-scale Template Matching
— Image Pyramid

— Today’s Lecture: Szeliski 2.3, 3.5, Forsyth & Ponce (2nd ed.) 4.5 - 4.7

Reminders:

— Assignment 2: Scaled Representations, Face Detection and Image Blending
available now



Next: Please get your iClickers —
Quiz 2: 6 questions
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Bilateral Filter
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Bilateral Filter
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Template Matching

Assuming template is all positive, what does this tell us about correlation map”?

Detected template Correlation map
a b o
al |b|

Slide Credit: Kristen Grauman



Template Matching

We can think of convolution/correlation as comparing a template (the filter)
with each local image patch.

— Consider the filter and image patch as vectors.

— Applying a filter at an image location can be interpreted as computing the
dot product between the filter and the local image patch.
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Template Matching

Let @ and b be vectors. Let 8 be the angle between them. We know
a-b a-b a b
allb|  \/(a-a)(b-b) la| |b]

cos ) =

where - is dot product and | | is vector magnitude

1. Normalize the template / filter (b) in the beginning

2. Compute norm of |a| by convolving squared image with a filter of all 1’s of
equal size to the the template and square-rooting the response

3. We can compute the dot product by correlation of image (a) with normalized
filter (b)

4. We can finally compute the normalized correlation by dividing element-wise
result in Step 3 by result In Step 2




ROC Curves

Note that we can easily get 100% true positives (if we are prepared to get
100% false positives as welll)

t IS a tradeoff between true positive rate (TP) and false positive rate (FP)
We can plot a curve of all TP rates vs FP rates by varying the classifier threshold

This is a Receiver Operating Characteristic (ROC) curve

Classify < Classify as Face 100% 1 L Tl
as Non-Face / -
PCTP)| .~
0% P(FP) 100%

red = actual faces, blue = actual non-faces
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Goal

1. Understand the idea behind image pyramids

2. Understand laplacian pyramids



Multi-Scale Template Matching

Problem: Make template matching robust to changes in 2D (spatial) scale.
Key ldea(s): Build a scaled representation: the Gaussian image pyramid

Alternatives:
— use multiple sizes for each given template
— ignore the issue of 2D (spatial) scale

Theory: Sampling theory allows us to build image pyramids in a principled way

“Gotchas:”

— template matching remains sensitive to 2D orientation, 3D pose and
llumination



Multi-Scale Template Matching

Correlation with a fixed-sized template only detects faces at specific scales
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Multi-Scale Template Matching

Solution: form a Gaussian Pyramid and convolve with the template at each scale
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Shrinking the Image

We can’t shrink an image simply by taking every second pixel
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)asing Example

Al

Gaussian Blur 0 = 3.0

No filtering



Recall: Fourier Representation

Any signal can be written as a sum of sinusoidal functions
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recall: Aliasing

Signal has been sampled too infrequently — result = Aliasing
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J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Nyquist Sampling

To avoid aliasing a signal must be sampled at twice the maximum frequency:

For Images: We need to sample the underlying continuous signal at least once
per pixel to avoid aliasing (assuming a correctly sampled image)

undersampling = aliasing



Template Matching: Sub-sample with Gaussian Pre-filtering

Apply a smoothing filter first, then throw away half the
rows and columns

Gaussian filter
delete even rows
delete even
columns

Gaussian filter
delete even rows
delete even
columns

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Gaussian Pre-filtering

Question: How much smoothing is needed to avoid aliasing”?

Answer: Smoothing should be sufficient to ensure that the resulting image
s band limited “enough” to ensure we can sample every other pixel.

Practically: For every image reduction of 0.5, smooth by o =1



Template Matching: Sub-sample with Gaussian Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Template Matching: Sub-sample with NO Pre-filtering

1/4 (2Xx zoom) 1/8 (4x zoom)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Pyramid

“»
i
N

o

.
.

]
>
e

e e
ra=tg L)

A4 ;
'ﬁrv»-h:q-,)w

LA R

1
Y A

An image pyramid is an efficient way to represent an image at multiple scales

In a Gaussian pyramid, each layer is smoothed by a Gaussian filter and
resampled to get the next layer, taking advantage of the fact that
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Gaussian vs Laplacian Pyrami
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Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(z,y) = I(2,y) * go (2, y)

G4

E-
—— Gaussian Pyramid



Blur with a Gaussian
kernel, then select
every 2nd pixel

Is(z,y) = I(2,y) * go (2, y)

Gaussian Pyramid
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G4 -~

Gaussian Pyramid



G4 r -~ L4

Gaussian Pyramid Laplacian Pyramid






Gaussian Pyramid

@@// rorars

512 128

r What happens to the details?

— They get smoothed out as we move
5 to higher levels

What is preserved at the higher levels”

— Mostly large unitform regions in the
original image

‘“n
\w “

g ' > How would you reconstruct the original
ey s image from the image at the upper
3 & level?
’?.

— [hat’'s not possible
Forsyth & Ponce (2nd ed.) Figure 4.17

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Laplacian Pyramid

At each level, retain the residuals
iNnstead of the blurred iImages
themselves.

Can we reconstruct the original image
using the pyramid?
— Yes we can!

What do we need to store to be able
to reconstruct the original image?

Why is it called Laplacian Pyramid®?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Why Laplacian Pyramid®/

red =1 — 21| % g(x; 5.0)
black = g(x; 5.0) — g(x; 4.0)




Why Laplacian Pyramid®/
4

https://www.desmos.com/calculator/a9snuia3la



https://www.desmos.com/calculator/a9snuia3la

Derivatives of a Gaussian filter &.Laplacian
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Why Laplacian Pyramid®/

red =1 — 21| % g(x; 5.0)
black = g(x; 5.0) — g(x; 4.0)




Laplacian is a Bandpass Filter

lower sigma

complex
element-wise
multiplication

E———

FFT (Mag) Low pass filtered image

larger sigma
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FFT (Mag) Low pass filtered image



Laplacian is a Bandpass Filter

lower sigma

complex
element-wise
muiltiplication
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FFT (Mag) Low pass
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FFT (Mag) Low pass



Laplacian Pyramid

Building a Laplacian pyramid:
— Create a Gaussian pyramid
— Take the difference between one Gaussian pyramid level and the next

Properties

— Computes a Laplacian / Difference-of-Gaussian (DoG) function of the image
at multiple scales

— |t Is a band pass filter — each level represents a different band of spatial
frequencies



Constructing a Laplacian Pyramid — Implementation

Algorithm

repeat:
filter

compute residual
subsample

until min resolution reached

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Reconstructing the Original Image — Implementation

UPSAMP
& BLUR

Algorithm

repeat:

upsample

sum with residual

until orig resolution reached

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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graphics / vision
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These images are theoretically the same (Nyquist) but in practice
slightly different due to imperfect filtering/interpolation and edge effects

graphics

Subtle point: Need to downsample + upsample to guarantee
perfect reconstruction of Gaussian from Laplacian Pyramid




Application: Image Blending
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Burt and Adelson, “A multiresolution spline with application to image mosaics,”ACM
Transactions on Graphics, 1983, Vol.2, pp.217-236.



Pyramid Blending

omooth low frequencies, whilst preserving high frequency detall

[ Burt Adelson 1983 ]



Pyramid Blending




Pyramid Blending

Step |:Specify an Image Mask



Step 2: blend lower frequency bands over
larger spatial ranges, high frequency bands
over small spatial ranges




Application: Image Blending

Algorithm:
1. Build Laplacian pyramid LA and LB from images A and B

2. Build a Gaussian pyramid GR from mask image R (the mask defines which
image pixels should be coming from A or B)

3. From a combined (blended) Laplacian pyramid LS, using nodes of GR as
weights: LS(i,j) = GR(,j) * LAG,j) + (1-GR(j) * LB(i,j)

4. Reconstruct the final blended image from LS
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Alpha blend with sharp fall-off

64



Alpha blend with gradual fall-off



Pyramid Blend



Summary: Scaled Representations

Gaussian Pyramid

—Each level represents a low-pass filtered image at a different scale
—Generated by successive Gaussian blurring and downsampling

— Useful for image resizing, sampling

Laplacian Pyramid

—Each level is a band-pass image at a different scale

— Generated by differences between successive levels of a Gaussian Pyramid

—Used for pyramid blending, feature extraction etc.



Recap: Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales

JUDYBATS

= [emplate




Recap: Multi-Scale Template Matching

Correlation with a fixed-sized image only detects faces at specific scales

JUDYBATS JURYBATS 2(oas:
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Solution: form a Gaussian Pyramid and
convolve with the template at each scale

= [emplate

Q. Why scale the image and not the template”?




Improving lemplate Matching

Consider the problem of finding images of an elephant using a template

An elephant looks different from different viewpoints

— from above (as in an aerial photograph or satellite image)
— head on

— sideways (i.e., in profile)

— rear on

What happens if parts of an elephant are obscured from view by trees, rocks,
other elephants”?



Improving lemplate Matching

Find the chair in this image Output of normalized correlation
J i N E B

Slide Credit: Li Fei-Fel, Rob Fergus, and Antonio Torralba



Improving lemplate Matching

Find the chair in this image

Pretty much garbage
Simple template matchingis not going to make it

Slide Credit: Li Fei-Fei, Rob Fergus, and Antonio Torralba



Improving lemplate Matching

Improved detection algorithms make use of image features

These can be hand coded or learned



Template Matching with HOG

Template matching can be improved by using better features, e.qg., Histograms
of Gradients (HOG) [ Dalal Triggs 2005 ]

The authors use a Learning-based approach (Support Vector Machine) to find
an optimally weighted template

SVM weights
+ _

avg grad weighted HOG



Convnet ODbject Detection

Think of each feature vector v__ as
corresponding to a sliding window (anchor).

SoftMax (WSS -v. )

1]

’ Category score

Offset from anchor = W'°C v,

— Convnet based object detectors resemble sliding

LA A window template matching in feature space
/ /
yays /s — Architectures typically involve multiple scales and
Anchor aspect ratios, and regress to a 2D offset in addition to
Receptive Field CategOry scores

[ Images: Jonathan Huang |



Summary

Template matching as (hormalized) correlation. Template matching is not
robust to changes In;

— 2D spatial scale and 2D orientation
— 3D pose and viewing direction
— Illumination

Scaled representations facilitate

— template matching at multiple scales

— efficient search for iImage—-to—-image correspondences
— Image analysis at multiple levels of detall

A Gaussian pyramid reduces artifacts introduced when sub-sampling to
coarser scales



