
Lecture 5: Image Filtering (final)

CPSC 425: Computer Vision 

( unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung )



Menu for Today
Topics: 

—Linear Filtering recap 
—Efficient convolution, Fourier aside 

Reminders: 

— Assignment 1: Image Filtering and Hybrid Images due January 29th 

— Quiz on Jan 20th (today) 

— Non-linear Filters:  
Median, ReLU, Bilateral Filter 

Readings: 

— Today’s Lecture:  Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4  
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Next: Please get your iClickers —  
Quiz 1: 6 questions
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Efficient Implementation: Separability
4.3
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Separable Filtering

2D Gaussian blur by horizontal/vertical blur
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Separable Filtering 
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Figure 3.14 Separable linear filters: For each image (a)–(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2⇥ and 4⇥, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K = vhT (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K =

X

i

�iuiv
T

i
(3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value �0 is
non-zero, the kernel is separable and

p
�0u0 and

p
�0vT

0 provide the vertical and horizontal

Several useful filters can be applied as independent row and column operations



Low-pass Filtering = “Smoothing”
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1.  Ignore these locations: Make the computation undefined for the top and  
     bottom k rows and the leftmost and rightmost k columns  

	2.  Pad the image with zeros: Return zero whenever a value of I is required    
      at some position outside the defined limits of X and Y  

	3.  Assume periodicity: The top row wraps around to the bottom row; the  
      leftmost column wraps around to the rightmost column  

	4.  Reflect boarder: Copy rows/columns locally by reflecting over the edge

Linear Filters: Boundary Effects 
Four standard ways to deal with boundaries: 



Lecture 4: Re-cap

Linear filtering (one interpretation): 
— new pixels are a weighted sum of original pixel values  
— “filter” defines weights  

Linear filtering (another interpretation): 
— each pixel creates a scaled copy of point spread function in its location   
— “filter” specifies the point spread function  
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Low-pass Filtering = “Smoothing”
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All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content 
of the image, only low frequencies remain



Example: Separable Filter

24

⌦1 464 1
1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6



Gaussian Blur
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=

⇤

2D Gaussian filter can be thought of as an outer product or 
convolution of row and column filters



Point Spread Function
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Point Spread Function

27

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3
4 5 6
7 8 9

0 0 0 0 0 0 0 0
0 9 8 7 0 0 0 0
0 6 5 4 0 0 0 0
0 3 2 1 0 0 0 0
0 0 0 0 9 8 7 0
0 0 0 0 6 5 4 0
0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0

⇤ =

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9



Advanced Convolution Topics

• Multiple filters 
• Fourier transforms

28



Linear Filters: Properties 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Let     denote convolution. Let              be a digital image 

Superposition: Let      and      be digital filters 

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Scaling: Let     be digital filter and let     be a scalar  

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling 



— Convolution is symmetric. That is,

Linear Filters: Additional Properties
Let     denote convolution. Let              be a digital image. Let F and G be  
digital filters
⌦ k F1 F2 F I(X,Y )

(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G⌦ (F ⌦ I(X,Y )) = (G⌦ F )⌦ I(X,Y )

(G⌦ F )⌦ I(X,Y ) = (F ⌦G)⌦ I(X,Y )

— Convolution is associative. That is,

Convolving              with filter F and then convolving the result with filter G can 
be achieved in single step, namely convolving              with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )(G⌦ F )⌦ I(X,Y ) = (G⌦ F )⌦ I(X,Y )

Note: Correlation, in general, is not associative. (think of subtraction) 



Symmetricity Example

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

A conv B = B conv A
A corr B = B0 corr A0

conv(A,B) = conv(B,A)

corr(A,B) = corr(B0, A0)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

A conv B = B conv A
A corr B = B0 corr A0

conv(A,B) = conv(B,A)

corr(A,B) 6= corr(B,A)
corr(A,B) = corr(B0, A0)

A0(x, y) = A(�x,�y)

1
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Example: Two Box Filters

3x3 Box 3x3 Box

filter = boxfilter(3) 
signal.correlate2d(filter, filter,′ full′) 



Example: Two Box Filters
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Note, in this case you have to pad 
maximally until two filters no longer overlap
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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Example: Two Box Filters
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3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3) 
temp = signal.correlate2d(filter, filter,′ full′)  
signal.correlate2d(filter, temp,′ full′) 

5.1



Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Pre-Convolving Filters 
Convolving two filters of size              and             results in filter of size:m⇥m n⇥ n

More broadly for a set of      filters of sizes                 the resulting filter will 
have size:

mk ⇥mkK

<latexit sha1_base64="9tlGDXwciwOBPKDWXvTitJ7m4xQ=">AAAB/3icbVDLSgMxFL1TX7W+RgU3boJFaBHLjIi6LLjRXQX7gHYomTTThmYyQ5IRyljQX3HjQhG3/oY7/8ZM24VWDwTOPede7s3xY86UdpwvK7ewuLS8kl8trK1vbG7Z2zsNFSWS0DqJeCRbPlaUM0HrmmlOW7GkOPQ5bfrDy8xv3lGpWCRu9SimXoj7ggWMYG2krr1XEkfhsVtGHc1CqtCs7NpFp+JMgP4Sd0aK1fIDZKh17c9OLyJJSIUmHCvVdp1YeymWmhFOx4VOomiMyRD3adtQgc0yL53cP0aHRumhIJLmCY0m6s+JFIdKjULfdIZYD9S8l4n/ee1EBxdeykScaCrIdFGQcKQjlIWBekxSovnIEEwkM7ciMsASE20iK5gQ3Pkv/yWNk4p7Vjm9MWlcwxR52IcDKIEL51CFK6hBHQjcwxO8wKv1aD1bb9b7tDVnzWZ24Resj2+HdpSk</latexit>

(n+m� 1)⇥ (n+m� 1)

<latexit sha1_base64="qw89m2zjKtu52PaePZJvpyNWqtc="></latexit> 
m1 +

KX

k=2

(mk � 1)

!
⇥
 
m1 +

KX

k=2

(mk � 1)

!



Gaussian: An Additional Property

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)

G�(x) Gp
2�(x)

Let     denote convolution. Let              and              be be two 1D Gaussians⌦ k F1 F2 F I(X,Y )
(F1 + F2)⌦ I(X,Y ) = F1 ⌦ I(X,Y ) + F2 ⌦ I(X,Y )
(kF )⌦ I(X,Y ) = F ⌦ (kI(X,Y )) = k(F ⌦ I(X,Y ))

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = Gp

�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian 

Special case: Convolving with             twice is equivalent to 



What follows is for fun 
(you will NOT be tested on this)

48
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Convolution using Fourier Transforms

Convolution Theorem:

Let 

then

where                  ,                 , and                  are Fourier transforms of            ,

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)
i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

and

At the expense of two Fourier transforms and one inverse Fourier transform, 
convolution can be reduced to (complex) multiplication

[ Szeliski 3.4 ]



??
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How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you 
express this 

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Low-Pass Filtering in 1D

60

4.4



Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images



What are “frequencies” in an image? 

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)



Amplitude (magnitude) of Fourier transform (phase does not show desirable 
correlations with image structure) 

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Amplitude (magnitude) of Fourier transform (phase does not show desirable 
correlations with image structure) 

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Observation: low frequencies close 
to the center

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image? 



2D Fourier Transforms: Images
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Image Fourier Transform5.2



2D Fourier Transforms: Images
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Image Fourier Transform5.2



2D Fourier Transforms: Images
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Aside: You will not be tested on this …

Image
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
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First (lowest) frequency, a.k.a. average

Aside: You will not be tested on this …

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
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+ Second frequency

Aside: You will not be tested on this …

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
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Aside: You will not be tested on this …

+ Third frequency
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
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Aside: You will not be tested on this …

+ 50% of frequencies
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
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Aside: You will not be tested on this …

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410



2D Fourier Transforms: Kernels
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f (x, y)

F (!x,!y)

x
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omegay

1

f (x, y)

F (!x,!y)

x
y
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omegay

1

Compress power 0.5 
to exaggerate lobes 
(just for visualization)
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Convolution using Fourier Transforms
Convolution Theorem: i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

Convolve

Multiply

Image

FFT
Inverse FFT



What preceded was for fun 
(you will NOT be tested on it)
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Assignment 1: Low/High Pass Filtering

79

Original Low-Pass Filter High-Pass Filter

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1



80 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



81 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



82 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Aside: You will not be tested on this …

image FFT (Mag) 

Low pass

High pass

filtered image

complex  
element-wise 
multiplication 

filtered image



Cost of FFT/IFFT for image: 
Cost of FFT/IFFT for filter:  

84

At each pixel,           , there are              multiplications

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

There are                                               pixels in 

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

I(X,Y )
F (X,Y )
n⇥ n
m⇥m
m = 5

Total:                                                     multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2 logm)

O(n2 log n)

Convolution if FFT space:

Convolution using Fourier Transforms

Worthwhile if image and kernel are both large



Non-linear Filters 

We’ve seen that linear filters can perform a variety of image transformations 
— shifting 
— smoothing  
— sharpening  

In some applications, better performance can be obtained by using non-linear 
filters.  

For example, the median filter selects the median value from each pixel’s 
neighborhood.  

85



Non-linear Filtering
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3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.
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(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.
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“shot” noise

gaussian blurred

median filtered



Median Filter

Take the median value of the pixels under the filter:

87

5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image

4 5 5 7 13 16 24 34 54

13

Output



Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and 
pepper’ noise or ’shot’ noise) 

The median filter forces points with distinct values to be more like their neighbors 

88

Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png


Bilateral Filter

89

126 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) c� 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k� i|+ |l�
j|  1 in (3.34). Observe that

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
(3.38)

=

(
1, |k � i| + |l � j| = 0,

� = e�1/2�
2
d , |k � i| + |l � j| = 1.

(3.39)
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Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) c� 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k� i|+ |l�
j|  1 in (3.34). Observe that

d(i, j, k, l) = exp
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(3.39)

Suppose we want to smooth a noisy step function 
A Gaussian kernel performs a weighted average of points over a spatial 
neighbourhood.. 
But this averages points both at the top and bottom of the step — blurring 
Bilateral Filter idea: look at distances in range (value) as well as space x,y



Bilateral Filter

An edge-preserving non-linear filter  

Like a Gaussian filter:  
— The filter weights depend on spatial distance from the center pixel 
— Pixels nearby (in space) should have greater influence than pixels far away  

Unlike a Gaussian filter:  
— The filter weights also depend on range distance from the center pixel 
— Pixels with similar brightness value should have greater influence than pixels 
with dissimilar brightness value 
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y )

(x, y)

(with appropriate normalization)

Bilateral Filter
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y )

(x, y)

Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

Bilateral Filter
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Gaussian filter: weights of neighbor at a spatial offset         away from the 
center pixel             given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y )

(x, y)

Bilateral filter: weights of neighbor at a spatial offset         away from the center 
pixel             given by a product:

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y ))2

2�2
r

(x, y)

I(X,Y )

(with appropriate normalization)

(with appropriate normalization)

domain  
kernel

range  
kernel

Bilateral Filter
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Bilateral Filter

Input

Domain Kernel

Range Kernel Influence

Bilateral Filter 
(domain * range)

Output

Images from: Durand and Dorsey, 2002  

This example: 
weights for point 
on top of edge



Bilateral Filter Application: Denoising
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Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong 



102 Slide Credit: Alexander Wong 

Original Image After 5 iterations of Bilateral Filter 

Bilateral Filter Application: Cartooning
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Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive 
noise and blur  

But there are problems with flash images: 
— colour is often unnatural 
— there may be strong shadows or specularities  

Idea: Combine flash and non-flash images to achieve better exposure and 
colour balance, and to reduce noise  
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Bilateral Filter Application: Flash Photography
System using ‘joint’ or ‘cross’ bilateral filtering: 

‘Joint’ or ‘Cross’ bilateral: Range kernel is computed using a separate 
guidance image instead of the input image 

Figure Credit: Petschnigg et al., 2004 



Bilateral Filter: “Modern” take

https://neuralbf.github.io/



Morphology128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

original dilate erode open closemajority

Threshold function  
in local structuring 

element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2



Aside: Linear Filter with ReLU 
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Result of:       Linear Image Filtering After Non-linear ReLU



Summary

We covered two three non-linear filters: Median, Bilateral, ReLU  

The median filter is a non-linear filter that selects the median in the 
neighbourhood  

The bilateral filter is a non-linear filter that considers both spatial distance 
and range (intensity) distance, and has edge-preserving properties 

Speeding-up Convolution can be achieved using separable filters or Fourier 
Transforms if the filter and image are both large  

Fourier Transforms give us a way to think about image processing 
operations in Frequency Space, e.g., low pass filter = removing high 
frequency components
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