THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 5:

mage Filtering (final)

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today
Topics:
—Linear Filtering recap — Non-linear Filters;:
— Efficient convolution, Fourier aside Median, RelLU, Bilateral Filter

— Today’s Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 29th
— Quiz on Jan 20th (today)




Next: Please get your iClickers —
Quiz 1: 6 questions
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Efficient Implementation: Separability
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Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications
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Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications

Separable 2D Gaussian:

At each pixel, (X,Y), thereare 2m  multiplications

There are n Xmn pixelsin (X ,‘Y)

2

Total. 2m x n“ multiplications



Separable Filtering

2D Gaussian blur by horizontal/vertical blur
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Separable Filtering

Several useful filters can be applied as independent row and column operations
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Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
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Not a separable filter!
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L Inear Filter Example

[(X,Y)
image
| cP PPl [ LI
FX,Y) PPl [ LI L1

I'X,Y) = z:z:szHX+@Y+ﬁ

filter image (signal)

output

10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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L Inear Filter Example

I'X,Y) = Z Z F(i, DI(X +i,Y + j)

1=—k1=—k

output filter image (signal)

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

I'X,Y) = Z Z F(i, DI(X +i,Y + j)

1=—k1=—k

output filter image (signal)
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L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter

10

I(X +1,Y +7)

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter
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I(X +1,Y +7)

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter
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image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



L Inear Filter Example
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20 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



| Inear Filters: Boundary c=ffects

Four standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column

4. Reflect boarder: Copy rows/columns locally by reflecting over the edge



Lecture 4: Re-cap

Linear filtering (one interpretation):
— new pixels are a weighted sum of original pixel values
— “filter” defines weights

Linear filtering (another interpretation):

— each pixel creates a scaled copy of point spread function In its location
— “filter” specifies the point spread function

22



Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
114161141
1 111 1 { 4116124|16| 4
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250
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All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content
of the Image, only low frequencies remain
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Example: Separable Filter
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(Gaussian Blur

2D Gaussian filter can be thought of as an outer product or
convolution of row and column filters
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| -

25



Point Spread Function
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Point Spread Function
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Advanced Convolution Topics

o Multiple filters

e [ourier transforms

28



Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F5 be digital filters

(Fl+ )@ I(X,Y)=F QI(X,Y)+ e I(X,Y)

Scaling: Let F be digital filter and let £ be a scalar
(kF)® I[(X,)Y)=F® (kI(X,Y)) = k(F Q I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling



Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y') be a digital image. Let /and G be
digital filters

— Convolution i1s associative. That Is,
GRIFRIINX,Y)=(GECRF)RI(X,Y)

— Convolution is symmetric. That is,
(GRIF)RIX,Y)=FGRIX,Y)

Convolving I(X,Y) with filter / and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfilter G® F = F Q G

Note: Correlation, in general, is not associative. (think of subtraction)



Symmetricity Example

A= B= A conv B=
[[1 1 6] [[6 6 4] [[ 40 84 105]
(4 1 7] [1 9 5] [ 97 137 130]
[9 0 6]] [3 3 8]] [ 96 107 83]]

A corr B=

[ 34 111 79]
78 159 124]
109 97 102]]

B conv A=
[[ 40 84 105]
[ 97 137 130]
[ 96 107 83]]

B corr A=
[[102 97 109]
[124 159 78]
[ 79 111 34]]

conv(A, B) = conv(B, A)

corr(A, B) # corr(B, A)



Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y') be a digital image. Let /and G be
digital filters

— Convolution i1s associative. That Is,
GRIFRIINX,Y)=(GECRF)RI(X,Y)

— Convolution is symmetric. That is,
(GRIF)RIX,Y)=FGRIX,Y)

Convolving I(X,Y) with filter / and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfilter G® F = F Q G

Note: Correlation, in general, is not associative. (think of subtraction)



Example: Two Box Filters

filter = boxfilter(3)
signal.correlate2d(filter, filter,” full’)

3x3 Box

3x3 Box
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Example: Iwo Box Filters

Note, in this case you have to pac

Treat one filter as padded “image” maximally until two filters no longer overlap
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Iwo Box Filters

Treat one filter as padded “image”
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Example: Two Box Filters

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter,” full’)
signal.correlate2d(filter, temp,” full’)
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Example: Separable Gaussian Filter
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Pre-Convolving Filters

Convolving two filters of size m X m and n X n results in filter of size:
(m+m—1)x (n+m —1)

More broadly for a set of K filters of sizes my X my the resulting filter will
have size:

(ml -+ Z(mk — 1)) X (ml -+ Z(mk — 1))



Gaussian: An Additional Property

L et ® denote convolution. Let G, () and G, (x) be be two 1D Gaussians

Go, (%) @ Gy (1) = Gz (@)

2

Convolution of two Gaussians is another Gaussian

Special case: Convolving with G, (x) twice is equivalent to G5, ()



VVhat follows IS for fun
(you will NOT be tested on this)



Convolution using Fourier Transforms [ Szeliski 3.4 ]

Convolution Theorem:

| et ' (z,y) = f(z,y) ®i(z,y)

then Z'(wg,w,) = F(wz, wy) L(wg, w,)

where ' (w,, wy,), F(wg,w,), and Z(w,,w,) are Fourier transforms of i'(z,y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

49



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®
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51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®
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59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

f(x) = sin(27x) +

1s'n
— Sl
3

(273x)

sin(2mx)

53
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®
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54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®
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55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®
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56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

square wave
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®
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58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Fourier Transform (you will NOT be tested on this)

How would you generate this function®

I B B B B B P DA B D B O

AZ : sin(2mkx)
k=1

INfinite sum of sine waves
square wave

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Low-Pass Filtering in 1D

¢ (44
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Fourier Transform (you will NOT be tested on this)
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Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images



Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency




Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)




Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

Observation: low frequencies close

to the center




Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency
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Fourier Transform (you will NOT be tested on this)

Spatial frequency

What are “frequencies” in an image”?
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2D Fourier Transforms: Images

Wy

Flwz, wy)

% Image Fourier Transform

o



2D Fourier Transforms: Images

/@



2D Fourier Transforms: Images

09



Aside: You will not be tested on this ...

Image

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
70



Aside: You will not be tested on this ...

First (lowest) frequency, a.k.a. average

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
71



Aside: You will not be tested on this ...

Second frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
72




Aside: You will not be tested on this ...

Third frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/3




Aside: You will not be tested on this ...

50% of frequencies

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
74



Aside: You will not be tested on this ...

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/5



2D Fourier Transforms: Kernels

F<w$,wy> . - . .
N~——"

Compress power 0.5
to exaggerate lobes
76 (just for visualization)



Convolution using Fourier Transforms

Convolution Theorem: i’(% y) = flz,y) ®i(z,y)

T (wyywy) = F(we, wy) L(wg, w,)

Convolve

Image e
Multiply Inverse FFT
FET — > —

[



VWhat preceded was for fun
(you will NOT be tested on it)



Assignment 1: Low/High Pass Filtering

Original Low-Pass Filter High-Pass Filter

[(z,y) [(z,y)* g(z,y) [(z,y) — I(z,y) x g(x,y)

79



Gala Contemplating the Mediterranean
Sea Which at Twenty Meters Becomes
the Portrait of Abraham Lincoln
(Homage to Rothko)

Salvador Dali, 1976

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Low-pass filtered version

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



High-pass filtered version

89 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: You will not be tested on this ...

A—..
*H

= - element-wise | _
o S a multiplication Low pass filtered image
image FFT (Mag)
—>
High pass filtered image

83



Convolution using Fourier Transforms

General implementation of convolution:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n®logn)
Cost of FFT/IFFT for filter: O(m*logm)

Worthwhile if image and kernel are both large

34



Non-linear rilters

We’'ve seen that linear filters can perform a variety of image transtormations
— shifting

— smoothing

— sharpening

In some applications, better performance can be obtained by using non-linear
filters.

For example, the median filter selects the median value from each pixel’s
neighlborhood.

35



Non-linear Filtering

gaussian blurred

“shot” noise median filtered

86



Median Filter

Take the median value of the pixels under the filter:

5 | 221

34

34 | 23

123

25

or

12

Image
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Output




Median Filter

Image credit: https://en.wikipedia.org/wiki/Median filter#/media/File:Medianfilterp.png
88

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and

Depper’ Noise or 'shot’ noise)
The median filter forces points with distinct values to be more like their neighbors


https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

Bilateral Filter

Suppose we want to smooth a noisy step function

A Gaussian kernel performs a weighted average of points over a spatial
neighbourhood..

But this averages points both at the top and bottom of the step — blurring
Bilateral Filter idea: look at distances in range (value) as well as space X,y
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Bilateral Filter

An edge-preserving non-linear filter

Like a Gaussian filter:

— The filter weights depend on spatial distance from the center pixel
— Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

— The filter weights also depend on range distance from the center pixel
— Pixels with similar brightness value should have greater influence than pixels
with dissimilar brightness value
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Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZI?, y) — ) 2 exXp 207

(with appropriate normalization)
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Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZI?, y) — ) 2 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

r2 g2 (I(X+:U,Y-|—y)2—I(XvY))2
“d  exp i

(with appropriate normalization)
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Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZE, y) — ) 2 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

domain x? 4 y? (I(X+z,Y+y)—I(X,Y))2 range
o 252
kernel CXP CXP " kernel

(with appropriate normalization)
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Bilateral Filter
mage J(X,Y) mage [(X,Y)

Domain Kernel

o5 | 0 | 25 |255|255| 255 L

008!|0.12 (008
0 255 1

0.1210.20(0.12
0 255 1

0.08/0.120.08
0 255 1
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Bilateral Filter
mage J(X,Y)

Normalised

mage [(X,Y)

Domain Kernel

o5 | 0 | 25 |255]|255]|255 1

0.0810.1210.08
0 255 1

0.1210.20|0.12
0 255 1

0.0810.1210.08
0 255 1

Range Kernel

o, = 0.45
098] 0.98]| 0.2
1 1 0.1
0.98| 1 0.1

(differences lbased on
centre pixel)
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Bilateral Filter

Normalised
. . Domain Kernel
mage J(X,Y) mage J(X,Y) o = 1
299 1 0.0810.1210.08
255 1
0.1210.2010.12
255 1
0.0810.1210.08
255 1

Range Kernel Range * Domain Kernel
o, = 0.45
0.98( 0.98| 0.2 , 0.08] 0.12( 0.02
multiply
1 1 0.1 _) 0.12] 0.20] 0.01
0.98| 1 0.1 0.08( 0.12] 0.01

(differences lbased on
centre pixel)
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Bilateral Filter

Normalised 5 L |
. . omain Kerne
image ](X Y) Image ](X Y)
y ) 04 — ]
255 1 0.0810.120.08
255 1
0.12]10.20(0.12
255 1
0.0810.12|0.08
255 1
Range Kernel Range * Domain Kernel
o, = 0.45
0.98( 0.98| 0.2 0.08] 0.12]0.02 0.11( 0.16] 0.03

multiply sum to 1
1 1 0.1 _) 0.12] 0.20] 0.01 _) 0.16] 0.26] 0.01

0.98( 1 | 0.1 0.08] 0.12( 0.01 0.11] 0.16( 0.01

(differences lbased on
centre pixel)
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Bilateral Filter

0.1

Normalised 5 K I
. . omain Kerne
mage [(X,Y) mage J(X,Y)
9 9 04 — ]
295 1 0.0810.120.08
255 1
0.12]10.20(0.12
255 1
0.0810.12|0.08
255 1
Range Kernel Range * Domain Kernel
o, = 0.45
0.98( 0.98| 0.2 , 0.08] 0.12]0.02 0.11( 0.16] 0.03
multiply
1 1 0.1 _) 0.12] 0.20] 0.01 E 0.16] 0.26| 0.01
0.98| 1 0.1 0.08( 0.12] 0.01 0.11| 0.16] 0.01
(differences based on Bilateral Filter

centre pixel)

93

0.1




Bilateral Filter
mage J(X,Y)

Normalised

mage [(X,Y)

Domain Kernel

o4 — 1
255 1 0.08|0.12[0.08 0 [0.9
255 E
0.12]0.20|0.12 0.1
255
0.08]0.12|0.08 0.1
255 1
Gaussian Filter (only)
Range Kernel Range * Domain Kernel
o, = 0.45
0.98| 0.98 0.2 , 0.08| 0.12 0.02 0.11] 0.16{0.03 0 |09
multiply
1] 1 |01 ey | 0.12] 0.20] 0.01 E 0.16] 0.26| 0.01 0111 =0.1
0.98[ 1 | 0.1 0.08| 0.12] 0.01 0.11] 0.16] 0.01 0.1] 1

(differences lbased on
centre pixel)

Bilateral Filter
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Bilateral Filter

This example:
welights for point
on top of edge

Domain Kernel

Input

Bilateral Filter Output
domain * range

Range Kernel Influence
Images from: Durand and Dorsey, 2002
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Bilateral Filter Application: Denoising

Noisy Image Gaussian Filter Bilateral Filter

101 Slide Credit: Alexander Wong



Bilateral Filter Application: Cartooning

Original Image After 5 iterations of Bilateral Filter

102 Slide Credit: Alexander Wong



Bilateral Filter Application: Flash Photography

Non-flash images taken under low lignht conditions often suffer from excessive
noise and blur

But there are problems with flash images:
— colour Is often unnatural
— there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and
colour balance, and to reduce noise
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Bilateral Filter Application: Flash Photography

System using ‘joint’ or ‘cross’ bilateral filtering:

Flash No-Flash Detail Transfer with Denoising

‘Joint’ or ‘Cross’ bilateral: Range kernel is computed using a separate

guidance image instead of the input image

Figure Credit: Petschnigg et al., 2004
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Bilateral Filter: “Modern” take

https://neuralbf.github.io/



Morphology

2 B A O

original dilate erode  majority  open close

Threshold function
— N local structuring
element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2




Aside: Linear Filter with RelLU

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Dog (0)
Cat (0)
Boat (1)
Bird (0)

K J \ )
| |

Feature Extraction from Image Classification

' 9 3 5 0
0 & |8 | 4
—> 13|41
' 3 | 0 | 5 | 1
Result of; Linear Image Filtering After Non-linear RelLU
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Summary

We covered two three non-linear filters: Median, Bilateral, RelLU

The median filter i1s a non-linear filter that selects the median in the
neighibournood

The bilateral filter is a non-linear filter that considers both spatial distance
and range (intensity) distance, and has edge-preserving properties

Speeding-up Convolution can be achieved using separable filters or Fourier
Transforms if the filter and image are both large

Fourier Transforms give us a way to think about iImage processing
operations in Frequency Space, e.g., low pass filter = removing high
frequency components
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