
Lecture 5: Image Filtering (final)

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from Bob Woodham, Jim Little and Fred Tung)

Menu for Today
Topics:

—Linear Filtering recap
—Efficient convolution, Fourier aside

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 29th

— Quiz on Jan 20th (today)

— Non-linear Filters:
Median, ReLU, Bilateral Filter

Readings:

— Today’s Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

2

Next: Please get your iClickers —
Quiz 1: 6 questions

3

Menu for Today
Topics:

—Linear Filtering recap
—Efficient convolution, Fourier aside

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 29th

— Quiz on Jan 20th (today)

— Non-linear Filters:
Median, ReLU, Bilateral Filter

Readings:

— Today’s Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

4

5

Efficient Implementation: Separability
4.3

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Efficient Implementation: Separability

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Total: multiplications2m⇥ n2

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

At each pixel, , there are multiplications
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

2m

Naive implementation of 2D Gaussian:

Separable 2D Gaussian:

Efficient Implementation: Separability

Separable Filtering

2D Gaussian blur by horizontal/vertical blur

9

horizontal

vertical horizontal

vertical

Separable Filtering

116 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1
K2

1 1 · · · 1

1 1 · · · 1

...
... 1

...
1 1 · · · 1

1
16

1 2 1

2 4 2

1 2 1

1
256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

1
8

�1 0 1

�2 0 2

�1 0 1

1
4

1 �2 1

�2 4 �2

1 �2 1

1
K

1 1 · · · 1
1
4 1 2 1

1
16 1 4 6 4 1

1
2 �1 0 1

1
2 1 �2 1

(a) box, K = 5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

Figure 3.14 Separable linear filters: For each image (a)–(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2⇥ and 4⇥, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K = vhT (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K =

X

i

�iuiv
T

i
(3.21)

(see Appendix A.1.1 for the definition of the SVD). If only the first singular value �0 is
non-zero, the kernel is separable and

p
�0u0 and

p
�0vT

0 provide the vertical and horizontal

Several useful filters can be applied as independent row and column operations

Low-pass Filtering = “Smoothing”

11

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

Not a separable filter!

Linear Filter Example

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)12

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)13

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)14

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)15

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)16

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)17

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)18

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)19

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

Linear Filter Example
I(X,Y)

F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y)image output

filter

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I 0(X,Y) =
kX

j=�k

kX

i=�k

F (I, J)I(X + i, Y + j)

filter image (signal)output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)20

2

4
x
y
z

3

5 !

2

4
x
y
z0

3

5

P =

2

4
x
y
z

3

5 !

x
y

�

x0 = f 0x

z

height

F (i, j)

1

1. Ignore these locations: Make the computation undefined for the top and
 bottom k rows and the leftmost and rightmost k columns

	2. Pad the image with zeros: Return zero whenever a value of I is required
 at some position outside the defined limits of X and Y

	3. Assume periodicity: The top row wraps around to the bottom row; the
 leftmost column wraps around to the rightmost column

	4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Linear Filters: Boundary Effects
Four standard ways to deal with boundaries:

Lecture 4: Re-cap

Linear filtering (one interpretation):
— new pixels are a weighted sum of original pixel values
— “filter” defines weights

Linear filtering (another interpretation):
— each pixel creates a scaled copy of point spread function in its location
— “filter” specifies the point spread function

22

Low-pass Filtering = “Smoothing”

23

1 1 1
1 1 1
1 1 1

1
9 = −

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Box Filter Pillbox Filter Gaussian Filter

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content
of the image, only low frequencies remain

Example: Separable Filter

24

⌦1 464 1
1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Gaussian Blur

25

=

⇤

2D Gaussian filter can be thought of as an outer product or
convolution of row and column filters

Point Spread Function

26

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3
4 5 6
7 8 9

0 0 0 0 0 0 0 0
0 9 8 7 0 0 0 0
0 6 5 4 0 0 0 0
0 3 2 1 0 0 0 0
0 0 0 0 9 8 7 0
0 0 0 0 6 5 4 0
0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0

⇤ =

Point Spread Function

27

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3
4 5 6
7 8 9

0 0 0 0 0 0 0 0
0 9 8 7 0 0 0 0
0 6 5 4 0 0 0 0
0 3 2 1 0 0 0 0
0 0 0 0 9 8 7 0
0 0 0 0 6 5 4 0
0 0 0 0 3 2 1 0
0 0 0 0 0 0 0 0

⇤ =

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

Advanced Convolution Topics

• Multiple filters
• Fourier transforms

28

Linear Filters: Properties

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Let denote convolution. Let be a digital image

Superposition: Let and be digital filters

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Scaling: Let be digital filter and let be a scalar

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is linear if it satisfies both superposition and scaling

— Convolution is symmetric. That is,

Linear Filters: Additional Properties
Let denote convolution. Let be a digital image. Let F and G be
digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G⌦ (F ⌦ I(X,Y)) = (G⌦ F)⌦ I(X,Y)

(G⌦ F)⌦ I(X,Y) = (F ⌦G)⌦ I(X,Y)

— Convolution is associative. That is,

Convolving with filter F and then convolving the result with filter G can
be achieved in single step, namely convolving with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Note: Correlation, in general, is not associative. (think of subtraction)

Symmetricity Example

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

A conv B = B conv A
A corr B = B0 corr A0

conv(A,B) = conv(B,A)

corr(A,B) = corr(B0, A0)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

A conv B = B conv A
A corr B = B0 corr A0

conv(A,B) = conv(B,A)

corr(A,B) 6= corr(B,A)
corr(A,B) = corr(B0, A0)

A0(x, y) = A(�x,�y)

1

— Convolution is symmetric. That is,

Linear Filters: Additional Properties
Let denote convolution. Let be a digital image. Let F and G be
digital filters
⌦ k F1 F2 F I(X,Y)

(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G⌦ (F ⌦ I(X,Y)) = (G⌦ F)⌦ I(X,Y)

(G⌦ F)⌦ I(X,Y) = (F ⌦G)⌦ I(X,Y)

— Convolution is associative. That is,

Convolving with filter F and then convolving the result with filter G can
be achieved in single step, namely convolving with filter G⌦ F = F ⌦G

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Note: Correlation, in general, is not associative. (think of subtraction)

(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)(G⌦ F)⌦ I(X,Y) = (G⌦ F)⌦ I(X,Y)

Example: Two Box Filters

3x3 Box 3x3 Box

filter = boxfilter(3)
signal.correlate2d(filter, filter,′ full′)

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

Treat one filter as padded “image”

3x3 Box

3x3 Box

Output

=
1

81
⌦

1

1

9
1

9

Note, in this case you have to pad
maximally until two filters no longer overlap

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

Treat one filter as padded “image”

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3

Treat one filter as padded “image”

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6

Treat one filter as padded “image”

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

Example: Two Box Filters

1 1 1
1 1 1
1 1 1

1
9

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

0 0

0 0

0 0

0 0

0 0

0 0

3x3 Box

3x3 Box

Output

=
1

81
⌦

1 2

1

9
1

9

3 2 1

2 4 6 4 2

Treat one filter as padded “image”

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

3x3 Box 3x3 Box 3x3 Box

Example: Two Box Filters
filter = boxfilter(3)
temp = signal.correlate2d(filter, filter,′ full′)
signal.correlate2d(filter, temp,′ full′)

5.1

Example: Separable Gaussian Filter

⌦1 464 1
1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1

=
1

256

Example: Separable Gaussian Filter

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

4 16

Example: Separable Gaussian Filter

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Example: Separable Gaussian Filter

0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0
⌦1 464 1

0 0

0

0 0 0 0 0
0 0 0 0 0

1

16

1

4

6

4

1

1

16

1 464 1

=
1

256

1 464 1

4 16 24 16 4

4 16 24 16 4

6 24 36 24 6

Pre-Convolving Filters
Convolving two filters of size and results in filter of size:m⇥m n⇥ n

More broadly for a set of filters of sizes the resulting filter will
have size:

mk ⇥mkK

<latexit sha1_base64="9tlGDXwciwOBPKDWXvTitJ7m4xQ=">AAAB/3icbVDLSgMxFL1TX7W+RgU3boJFaBHLjIi6LLjRXQX7gHYomTTThmYyQ5IRyljQX3HjQhG3/oY7/8ZM24VWDwTOPede7s3xY86UdpwvK7ewuLS8kl8trK1vbG7Z2zsNFSWS0DqJeCRbPlaUM0HrmmlOW7GkOPQ5bfrDy8xv3lGpWCRu9SimXoj7ggWMYG2krr1XEkfhsVtGHc1CqtCs7NpFp+JMgP4Sd0aK1fIDZKh17c9OLyJJSIUmHCvVdp1YeymWmhFOx4VOomiMyRD3adtQgc0yL53cP0aHRumhIJLmCY0m6s+JFIdKjULfdIZYD9S8l4n/ee1EBxdeykScaCrIdFGQcKQjlIWBekxSovnIEEwkM7ciMsASE20iK5gQ3Pkv/yWNk4p7Vjm9MWlcwxR52IcDKIEL51CFK6hBHQjcwxO8wKv1aD1bb9b7tDVnzWZ24Resj2+HdpSk</latexit>

(n+m� 1)⇥ (n+m� 1)

<latexit sha1_base64="qw89m2zjKtu52PaePZJvpyNWqtc=">AAACR3iclVDLSgMxFM3UV62vqks3QREqYpkpom6EghvFTQVrC506ZNJMG5rMDMkdoQz9Fn/GjVt3/oCLblwo4tL0sdDqxgMhh3PuITfHjwXXYNvPVmZmdm5+IbuYW1peWV3Lr2/c6ChRlFVpJCJV94lmgoesChwEq8eKEekLVvO7Z0O/dseU5lF4Db2YNSVphzzglICRvPytK1gABSw9B+9jVyfSS7unpf7tJS5Ir4sPsLOHXcXbHTA3cMk0/kfEy+/YRXsE/Js4E7JTrtRf7ucGuxUv/+S2IppIFgIVROuGY8fQTIkCTgXr59xEs5jQLmmzhqEhMQs101EPfbxrlBYOImVOCHikfk+kRGrdk76ZlAQ6etobin95jQSCk2bKwzgBFtLxQ0EiMER4WCpuccUoiJ4hhCpudsW0QxShYKrPmRKc6S//JjelonNUPLwybVygMbJoC22jAnLQMSqjc1RBVUTRAxqgN/RuPVqv1of1OR7NWJPMJvqBjPUFyaWwOQ==</latexit>
m1 +

KX

k=2

(mk � 1)

!
⇥

m1 +

KX

k=2

(mk � 1)

!

Gaussian: An Additional Property

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)

G�(x) Gp
2�(x)

Let denote convolution. Let and be be two 1D Gaussians⌦ k F1 F2 F I(X,Y)
(F1 + F2)⌦ I(X,Y) = F1 ⌦ I(X,Y) + F2 ⌦ I(X,Y)
(kF)⌦ I(X,Y) = F ⌦ (kI(X,Y)) = k(F ⌦ I(X,Y))

G�1(x)⌦G�2(x) = Gp
�2
1+�2

2
(x)G�1(x)⌦G�2(x) = Gp

�2
1+�2

2
(x)

Convolution of two Gaussians is another Gaussian

Special case: Convolving with twice is equivalent to

What follows is for fun
(you will NOT be tested on this)

48

49

Convolution using Fourier Transforms

Convolution Theorem:

Let

then

where , , and are Fourier transforms of ,

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)
i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

and

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

[Szeliski 3.4]

??

50

How would you generate this function?

= +

Fourier Transform (you will NOT be tested on this)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

?

51

How would you generate this function?

?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

52

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

53

How would you generate this function?

? ?

Fourier Transform (you will NOT be tested on this)

= +

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

54

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

??

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

55

=

+? ?

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

56

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

57

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

58

=

+

square wave

≈

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

How would you
express this

mathematically?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

59

=

square wave

Fourier Transform (you will NOT be tested on this)
How would you generate this function?

infinite sum of sine waves

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Low-Pass Filtering in 1D

60

4.4

Fourier Transform (you will NOT be tested on this)

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

What are “frequencies” in an image?

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

f = 5f = 4 f = 6 f = 7 f = 8 f = 9 f = 10

Spatial frequency

Observation: low frequencies close
to the center

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image?

2D Fourier Transforms: Images

67

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x
!y

1

Image Fourier Transform5.2

2D Fourier Transforms: Images

68

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x
!y

1

Image Fourier Transform5.2

2D Fourier Transforms: Images

69

70

Aside: You will not be tested on this …

Image
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

71

First (lowest) frequency, a.k.a. average

Aside: You will not be tested on this …

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

72

+ Second frequency

Aside: You will not be tested on this …

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

73

Aside: You will not be tested on this …

+ Third frequency
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

74

Aside: You will not be tested on this …

+ 50% of frequencies
https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

75

Aside: You will not be tested on this …

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

2D Fourier Transforms: Kernels

76

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

f (x, y)

F (!x,!y)

x
y
!x

omegay

1

Compress power 0.5
to exaggerate lobes
(just for visualization)

77

Convolution using Fourier Transforms
Convolution Theorem: i0(x, y) = f(x, y)⌦ i(x, y)

I 0(wx, wy) = F(wx, wy) I(wx, wy)

Convolve

Multiply

Image

FFT
Inverse FFT

What preceded was for fun
(you will NOT be tested on it)

78

Assignment 1: Low/High Pass Filtering

79

Original Low-Pass Filter High-Pass Filter

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

I(x, y)

I(x, y) ⇤ g(x, y)

I(x, y)� I(x, y) ⇤ g(x, y)

1

80 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

81 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

82 Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

83

Aside: You will not be tested on this …

image FFT (Mag)

Low pass

High pass

filtered image

complex
element-wise
multiplication

filtered image

Cost of FFT/IFFT for image:
Cost of FFT/IFFT for filter:

84

At each pixel, , there are multiplications

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

There are pixels in

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

Total: multiplicationsm2 ⇥ n2

General implementation of convolution:

O(m2 logm)

O(n2 log n)

Convolution if FFT space:

Convolution using Fourier Transforms

Worthwhile if image and kernel are both large

Non-linear Filters

We’ve seen that linear filters can perform a variety of image transformations
— shifting
— smoothing
— sharpening

In some applications, better performance can be obtained by using non-linear
filters.

For example, the median filter selects the median value from each pixel’s
neighborhood.

85

Non-linear Filtering

86

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

3.3 More neighborhood operators 123

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

. 2 1 0 1 2

1 2 1 2 4 1 2 1 2 4 2 0.1 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.2

2 1 3 5 8 2 1 3 5 8 1 0.3 0.6 0.8 0.6 0.3 0.0 0.0 0.0 0.4 0.8

1 3 7 6 9 1 3 7 6 9 0 0.4 0.8 1.0 0.8 0.4 0.0 0.0 1.0 0.8 0.4

3 4 8 6 7 3 4 8 6 7 1 0.3 0.6 0.8 0.6 0.3 0.0 0.2 0.8 0.8 1.0

4 5 7 8 9 4 5 7 8 9 2 0.1 0.3 0.4 0.3 0.1 0.2 0.4 1.0 0.8 0.4

(a) median = 4 (b) Į-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected ↵-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

“shot” noise

gaussian blurred

median filtered

Median Filter

Take the median value of the pixels under the filter:

87

5 13 5 221

4 16 7 34

24 54 34 23

23 75 89 123

54 25 67 12

Image

4 5 5 7 13 16 24 34 54

13

Output

Median Filter

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and
pepper’ noise or ’shot’ noise)

The median filter forces points with distinct values to be more like their neighbors

88

Image credit: https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

Bilateral Filter

89

126 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) c� 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k� i|+ |l�
j|  1 in (3.34). Observe that

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
(3.38)

=

(
1, |k � i| + |l � j| = 0,

� = e�1/2�
2
d , |k � i| + |l � j| = 1.

(3.39)

126 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) c� 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k� i|+ |l�
j|  1 in (3.34). Observe that

d(i, j, k, l) = exp

✓
� (i� k)

2
+ (j � l)2

2�2
d

◆
(3.38)

=

(
1, |k � i| + |l � j| = 0,

� = e�1/2�
2
d , |k � i| + |l � j| = 1.

(3.39)

Suppose we want to smooth a noisy step function
A Gaussian kernel performs a weighted average of points over a spatial
neighbourhood..
But this averages points both at the top and bottom of the step — blurring
Bilateral Filter idea: look at distances in range (value) as well as space x,y

Bilateral Filter

An edge-preserving non-linear filter

Like a Gaussian filter:
— The filter weights depend on spatial distance from the center pixel
— Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:
— The filter weights also depend on range distance from the center pixel
— Pixels with similar brightness value should have greater influence than pixels
with dissimilar brightness value

90

91

Gaussian filter: weights of neighbor at a spatial offset away from the
center pixel given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y)

(x, y)

(with appropriate normalization)

Bilateral Filter

92

Gaussian filter: weights of neighbor at a spatial offset away from the
center pixel given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y)

(x, y)

Bilateral filter: weights of neighbor at a spatial offset away from the center
pixel given by a product:

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y))2

2�2
r

(x, y)

I(X,Y)

(with appropriate normalization)

(with appropriate normalization)

Bilateral Filter

93

Gaussian filter: weights of neighbor at a spatial offset away from the
center pixel given by:

G�(x, y) =
1

2⇡�2
exp�

x2+y2

2�2

=

✓
1p
2⇡�

exp�
x2

2�2

◆✓
1p
2⇡�

exp�
y2

2�2

◆

I(X,Y)

(x, y)

Bilateral filter: weights of neighbor at a spatial offset away from the center
pixel given by a product:

exp
� x2+y2

2�2
d exp

� (I(X+x,Y +y)�I(X,Y))2

2�2
r

(x, y)

I(X,Y)

(with appropriate normalization)

(with appropriate normalization)

domain
kernel

range
kernel

Bilateral Filter

94

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Bilateral Filter
Normalised

�d = 0.451

95

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

Range Kernel
�r = 0.45

Bilateral Filter

(differences based on
 centre pixel)

Normalised

�d = 0.451

96

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

Bilateral Filter

multiply0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

97

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

multiply sum to 10.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

98

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥
X

= 0.1
multiply

Bilateral Filter

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

99

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image Domain Kernel

0.08 0.08

0.08 0.08

0.12

0.12

0.12

0.12 0.20

25 0 25 255 255 255

0 0 0 230 255 255

0 25 25 255 230 255

0 0 25 255 255 255

I(X,Y)
F (X,Y)
n⇥ n
m⇥m
m = 5

image

Range Kernel
�r = 0.45

0.08 0.02

0.08 0.01

0.01

0.12

0.12

0.12 0.20

Range * Domain Kernel

0.11 0.03

0.11 0.01

0.01

0.16

0.16

0.16 0.26

Bilateral Filter

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥
X

= 0.1

0.1 0 0.1 1 1 1

0 0 0 0.9 1 1

0 0.1 0.1 1 0.9 1

0 0 0.1 1 1 1

⇥ = 0.3

X

multiply

Gaussian Filter (only)

Bilateral Filter

0.98 0.2

0.98 0.1

0.1

1

0.98

1 1

(differences based on
 centre pixel)

Normalised

�d = 0.451

100

Bilateral Filter

Input

Domain Kernel

Range Kernel Influence

Bilateral Filter
(domain * range)

Output

Images from: Durand and Dorsey, 2002

This example:
weights for point
on top of edge

Bilateral Filter Application: Denoising

101

Noisy Image Gaussian Filter Bilateral Filter

Slide Credit: Alexander Wong

102 Slide Credit: Alexander Wong

Original Image After 5 iterations of Bilateral Filter

Bilateral Filter Application: Cartooning

103

Bilateral Filter Application: Flash Photography

Non-flash images taken under low light conditions often suffer from excessive
noise and blur

But there are problems with flash images:
— colour is often unnatural
— there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and
colour balance, and to reduce noise

104

Bilateral Filter Application: Flash Photography
System using ‘joint’ or ‘cross’ bilateral filtering:

‘Joint’ or ‘Cross’ bilateral: Range kernel is computed using a separate
guidance image instead of the input image

Figure Credit: Petschnigg et al., 2004

Bilateral Filter: “Modern” take

https://neuralbf.github.io/

Morphology128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d) (e) (f)

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5⇥ 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

✓(f, t) =

(
1 if f � t,

0 else,
(3.41)

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 ⇥ 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 ⇥ 3 struc-
turing element s and the resulting images for the operations described below. Let

c = f ⌦ s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

• dilation: dilate(f, s) = ✓(c, 1);

• erosion: erode(f, s) = ✓(c, S);

• majority: maj(f, s) = ✓(c, S/2);

• opening: open(f, s) = dilate(erode(f, s), s);

original dilate erode open closemajority

Threshold function
in local structuring

element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Aside: Linear Filter with ReLU

107

Result of: Linear Image Filtering After Non-linear ReLU

Summary

We covered two three non-linear filters: Median, Bilateral, ReLU

The median filter is a non-linear filter that selects the median in the
neighbourhood

The bilateral filter is a non-linear filter that considers both spatial distance
and range (intensity) distance, and has edge-preserving properties

Speeding-up Convolution can be achieved using separable filters or Fourier
Transforms if the filter and image are both large

Fourier Transforms give us a way to think about image processing
operations in Frequency Space, e.g., low pass filter = removing high
frequency components

108

