

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 5: Image Filtering (final)

Menu for Today

Topics:

-Linear Filtering recap -Efficient convolution, Fourier aside

Readings:

- Today's Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images due January 29th
- Quiz on Jan 20th (today)

- **Non-linear** Filters: Median, ReLU, Bilateral Filter

Next: Please get your iClickers — Quiz 1: 6 questions

Menu for Today

Topics:

-Linear Filtering recap -Efficient convolution, Fourier aside

Readings:

- Today's Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

- Assignment 1: Image Filtering and Hybrid Images due January 29th
- Quiz on Jan 20th (today)

- **Non-linear** Filters: Median, ReLU, Bilateral Filter

Naive implementation of 2D Gaussian:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

There are

Total:

Separable 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

There are

Total:

Separable 2D Gaussian:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

At each pixel, (X, Y), there are 2m multiplications $n \times n$ pixels in (X, Y)

 $2m \times n^2$ multiplications

Separable Filtering

2D Gaussian blur by horizontal/vertical blur

horizontal

vertical

horizontal

Separable Filtering

(a) box, K = 5

Several useful filters can be applied as independent row and column operations

Low-pass Filtering = "Smoothing"

Box Filter **Pillbox** Filter

Gaussian Filter

Not a separable filter!

F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{i=k} F(i,j) \frac{F(X+i,Y+j)}{image (signal)}$$

F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{k} F(i,j) \frac{I(X+i,Y+j)}{\text{filter}}$$

F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{i=1}^{k} F(i,j) \frac{I(X+i,Y+j)}{\text{filter}}$$

F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
integration of the second state of t

F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

$$\sum_{k} F(i,j) \frac{F(X+i,Y+j)}{image (signal)}$$

F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

I'	(X,	Y)
----	-----	----

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{i=1}^{k} F(i,j) \frac{F(X+i,Y+j)}{F(X+i,Y+j)}$$

F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

I'(X,Y))
---------	---

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
intermation of the second state of t

F(X, Y)filter $\frac{1}{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

I'(X, Y)	V
----------	---

	0	0	0
	0	0	0
0	90	0	0
0	90	0	0
0	90	0	0
0	90	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
filter
image (signal)

filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

$I(\Lambda, Y)$	Y)	I'(X
-----------------	----	------

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
0	10	20	30	30	30	20	10	
10	10	10	10	0	0	0	0	
10	10	10	10	0	0	0	0	

output

Linear Filters: **Boundary** Effects

Four standard ways to deal with boundaries:

- bottom k rows and the leftmost and rightmost k columns
- at some position outside the defined limits of X and Y
- leftmost column wraps around to the rightmost column

Ignore these locations: Make the computation undefined for the top and

2. Pad the image with zeros: Return zero whenever a value of I is required

3. Assume periodicity: The top row wraps around to the bottom row; the

4. **Reflect boarder**: Copy rows/columns locally by reflecting over the edge

Lecture 4: Re-cap

Linear filtering (one interpretation):

- new pixels are a weighted sum of original pixel values
- "filter" defines weights

Linear filtering (another interpretation): each pixel creates a scaled copy of point spread function in its location — "filter" specifies the point spread function

Low-pass Filtering = "Smoothing"

All of these filters are **Low-pass Filters**

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

Gaussian Filter

Example: Separable Filter

 $\overline{256}$

Gaussian Blur

2D Gaussian filter can be thought of as an outer product or **convolution** of row and column filters

Point Spread Function

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	Ι	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	Ι	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

*

	0	0	0	0	0	0	0	0
	0	9	8	7	0	0	0	0
	0	6	5	4	0	0	0	0
	0	3	2	-	0	0	0	0
	0	0	0	0	9	8	7	0
	0	0	0	0	6	5	4	0
	0	0	0	0	3	2		0
	0	0	0	0	0	0	0	0

Point Spread Function

0	0	0	0	0	0	0	0
0	9	8	7	0	0	0	0
0	6	5	4	0	0	0	0
 0	3	2		0	0	0	0
0	0	0	0	9	8	7	0
0	0	0	0	6	5	4	0
0	0	0	0	3	2		0
0	0	0	0	0	0	0	0

Advanced Convolution Topics

- Multiple filters
- Fourier transforms

Linear Filters: Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

Scaling: Let F be digital filter and let k be a scalar

Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation is **linear** if it satisfies both **superposition** and **scaling**

- $(F_1 + F_2) \otimes I(X, Y) = F_1 \otimes I(X, Y) + F_2 \otimes I(X, Y)$
- $(kF) \otimes I(X,Y) = F \otimes (kI(X,Y)) = k(F \otimes I(X,Y))$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image. Let F and G be digital filters

— Convolution is **associative**. That is,

- Convolution is **symmetric**. That is,

Convolving I(X, Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X, Y) with filter $G \otimes F = F \otimes G$

Note: Correlation, in general, is **not associative**. (think of subtraction)

$G \otimes (F \otimes I(X, Y)) = (G \otimes F) \otimes I(X, Y)$

$(G \otimes F) \otimes I(X, Y) = (F \otimes G) \otimes I(X, Y)$

Symmetricity Example

A= B= [[1 1 6] [[6 6 4] [4 1 7] [1 9 5] [9 0 6]] [3 3 8]]	A conv B= [[40 84 105] [97 137 130] [96 107 83]]	B co [[[9
	A corr B= [[34 111 79] [78 159 124] [109 97 102]]	B co [[1 [12 [7

```
onv A=
40 84 105]
97 137 130]
96 107 83]]
```

conv(A, B) = conv(B, A)

orr A= 102 97 109] 24 159 78] 79 111 34]]

 $corr(A, B) \neq corr(B, A)$

Linear Filters: Additional Properties

Let \otimes denote convolution. Let I(X, Y) be a digital image. Let F and G be digital filters

— Convolution is **associative**. That is,

- Convolution is **symmetric**. That is,

Convolving I(X, Y) with filter F and then convolving the result with filter G can be achieved in single step, namely convolving I(X, Y) with filter $G \otimes F = F \otimes G$

Note: Correlation, in general, is **not associative**. (think of subtraction)

$G \otimes (F \otimes I(X, Y)) = (G \otimes F) \otimes I(X, Y)$

$(G \otimes F) \otimes I(X, Y) = (F \otimes G) \otimes I(X, Y)$

filter = boxfilter(3)
signal.correlate2d(filter, filter, ' full')

3x3 Box

3x3 **Box**

1	1
1	1
1	1

=

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

Treat one filter as padded "image"

3x3 **Box**

Note, in this case you have to pad maximally until two filters no longer overlap

Output

Treat one filter as padded "image"

3x3 **Box**

Output

3x3 **Box**

$$=\frac{1}{81}$$

Treat one filter as padded "image"

3x3 **Box**

Output

3x3 **Box**

Treat one filter as padded "image"

3x3 **Box**

Output

3x3 **Box**

$$=\frac{1}{81}$$

	1	2	3	2	1	
	2	4	6			

Treat one filter as padded "image"

3x3 **Box**

Output

1	1	1	
1	1	1	
1	1	1	

3x3 **Box**

$$\frac{1}{81} \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix}$$

Treat one filter as padded "image"

3x3 **Box**

Output

3x3 **Box**

1

1

1

1

1

$=\frac{1}{81}$

1	2	3	2	1
2	4	6	4	2
3	6	9	6	3
2	4	6	4	2
1	2	3	2	1

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter, ' full')
signal.correlate2d(filter, temp, ' full')

3x3 **Box**

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 $\left(\right)$

 $\left(\right)$

 $\frac{1}{16}$

 \bigotimes

 $\overline{256}$

 $\frac{1}{16}$

 \bigotimes

 $=\frac{1}{256}$

1	4	6	4	1
4	16			

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

 $\frac{1}{16}$

 \bigotimes

 $\frac{1}{256}$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

Pre-Convolving Filters

Convolving two filters of size $m \times m$ and $n \times n$ results in filter of size:

 $(n+m-1) \times$

More broadly for a set of K filters of sizes $m_k \times m_k$ the resulting filter will have size:

$$\left(m_1 + \sum_{k=2}^{K} (m_k - 1)\right)$$

$$\langle (n+m-1) \rangle$$

$$\times \left(m_1 + \sum_{k=2}^{K} (m_k - 1) \right)$$

Gaussian: An Additional Property

Let \otimes denote convolution. Let $G_{\sigma_1}(x)$ and $G_{\sigma_2}(x)$ be be two 1D Gaussians

 $G_{\sigma_1}(x) \otimes G_{\sigma_2}(x)$

Convolution of two Gaussians is another Gaussian

Special case: Convolving with $G_{\sigma}(x)$ twice is equivalent to $G_{\sqrt{2}\sigma}(x)$

$$x) = G_{\sqrt{\sigma_1^2 + \sigma_2^2}}(x)$$

What follows is for fun (you will **NOT** be tested on this)

Convolution using **Fourier Transforms**

Convolution **Theorem**:

 $i'(x,y) = f(x,y) \otimes i(x,y)$ Let

then $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \mathcal{I}(w_x, w_y)$

f(x,y) and i(x,y)

convolution can be reduced to (complex) multiplication

[Szeliski 3.4]

- where $\mathcal{I}'(w_x, w_y)$, $\mathcal{F}(w_x, w_y)$, and $\mathcal{I}(w_x, w_y)$ are Fourier transforms of i'(x, y),

At the expense of two **Fourier** transforms and one inverse Fourier transform,

How would you generate this function?

How would you generate this function?

 $\sin(2\pi x)$

How would you generate this function?

How would you generate this function?

How would you generate this function?

square wave

How would you generate this function?

How would you generate this function?

How would you generate this function?

How would you generate this function?

How would you express this mathematically?

How would you generate this function?

- $= A \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$
 - infinite sum of sine waves

Low-Pass Filtering in 1D

60

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

What are "frequencies" in an image?

Spatial frequency

What are "frequencies" in an image?

Amplitude (magnitude) of Fourier transform (phase does not show desirable correlations with image structure)

Spatial frequency

What are "frequencies" in an image?

Amplitude (magnitude) of Fourier transform (phase does not show desirable) correlations with image structure)

Spatial frequency

Observation: low frequencies close to the center

What are "frequencies" in an image?

Θ=150°

Spatial frequency

Θ=30°

What are "frequencies" in an image?

Spatial frequency

2D Fourier Transforms: Images

f(x, y)

Image

 ω_y A DECEMBER OF • ω_x

 $F(\omega_x, \omega_y)$

Fourier Transform

2D Fourier Transforms: Images

2D Fourier Transforms: Images

Aside: You will not be tested on this ...

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Image

Aside: You will not be tested on this ...

First (lowest) frequency, a.k.a. average

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

Aside: You will not be tested on this ...

+ Second frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

+ **Third** frequency

+ 50% of frequencies

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410

2D Fourier Transforms: Kernels

f(x, y)

 $F(\omega_x, \omega_y)$

Compress power 0.5 to exaggerate lobes (just for visualization)

Convolution using Fourier Transforms

Convolution **Theorem**: i'(x, y) = f(

 $\mathcal{I}'(w_x, w_y) = \mathcal{F}(w_x, w_y) \ \mathcal{I}(w_x, w_y)$

Image

FFT

 $i'(x,y) = f(x,y) \otimes i(x,y)$

What preceded was for fun (you will **NOT** be tested on it)

Assignment 1: Low/High Pass Filtering

Original

I(x, y)

I(x, y) * g(x, y)

Low-Pass Filter

High-Pass Filter

I(x, y) - I(x, y) * g(x, y)

Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

Salvador Dali, 1976

 \sim \sim

Low-pass filtered version

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

High-pass filtered version

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

complex element-wise multiplication

image

FFT (Mag)

High pass

filtered image

filtered image

Convolution using **Fourier Transforms**

General implementation of **convolution**:

There are

Total:

Convolution if FFT space:

Worthwhile if image and kernel are **both** large

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Cost of FFT/IFFT for image: $\mathcal{O}(n^2 \log n)$ Cost of FFT/IFFT for filter: $\mathcal{O}(m^2 \log m)$

Non-linear Filters

- shifting
- smoothing
- sharpening

filters.

For example, the median filter selects the **median** value from each pixel's neighborhood.

We've seen that **linear filters** can perform a variety of image transformations

In some applications, better performance can be obtained by using **non-linear**

Non-linear Filtering

"shot" noise

gaussian blurred

median filtered

86

Median Filter

Take the median value of the pixels under the filter:

5	13	5	221
4	16	7	34
24	54	34	23
23	75	89	123
54	25	67	12

4	5	5
---	---	---

Image

13	

Output

Median Filter

pepper' noise or 'shot' noise)

Image credit: <u>https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png</u>

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a 'salt and

The median filter forces points with distinct values to be more like their neighbors

Suppose we want to smooth a noisy step function A Gaussian kernel performs a weighted average of points over a spatial neighbourhood.

But this averages points both at the top and bottom of the step — blurring Bilateral Filter idea: look at distances in range (value) as well as space x,y

An edge-preserving non-linear filter

Like a Gaussian filter:

- The filter weights depend on spatial distance from the center pixel
- **Unlike** a Gaussian filter:

- The filter weights also depend on range distance from the center pixel - Pixels with similar brightness value should have greater influence than pixels with dissimilar brightness value

- Pixels nearby (in space) should have greater influence than pixels far away

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

(with appropriate normalization)

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

$$\exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{y^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}} \exp^{-\frac{x^2+y^2}{2\sigma_d^2}}$$

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$

Gaussian filter: weights of neighbor at a spatial offset (x, y) away from the center pixel I(X, Y) given by:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

(with appropriate normalization)

pixel I(X, Y) given by a product:

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (x, y) away from the center

$$\frac{(I(X+x,Y+y)-I(X,Y))^2}{2\sigma_r^2}$$
 range
kernel

image I(X, Y)

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Normalised

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08


```
image I(X, Y)
```

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Normalised

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range Kernel $\sigma_r = 0.45$

0.98	0.98 0.98	
1	1	0.1
0.98	1	0.1

(differences based on **centre pixel**)

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08


```
image I(X, Y)
```

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Range Kernel

Normalised

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range * Domain Kernel

(σ_r =	= 0	.45	
	0.98	0.98	0.2	multiply
	1	1	0.1	
	0.98	1	0.1	

0.08	0.12	0.02
0.12	0.20	0.01
0.08	0.12	0.01

(differences based on centre pixel)

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08


```
image I(X, Y)
```

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Range Kernel

1

Normalised

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range * Domain Kernel

0.08	0.12	0.02
0.12	0.20	0.01
0.08	0.12	0.01

(differences based on centre pixel)

$$\sigma_d = 1$$

0.08	0.12	0.08
0.12	0.20	0.12
0.08	0.12	0.08

0.11	0.16	0.03
0.16	0.26	0.01
0.11	0.16	0.01

```
image I(X, Y)
```

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Range Kernel

Normalised

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range * Domain Kernel

(σ_r =	= 0	.45	
	0.98	0.98	0.2	multiply
	1	1	0.1	
	0.98	1	0.1	

0.08	0.12	0.02
0.12	0.20	0.01
0.08	0.12	0.01

(differences based on centre pixel)

$$\sigma_d = 1$$

	0.08	0.12	0.08
	0.12	0.20	0.12
4	0.08	0.12	0.08


```
image I(X, Y)
```

25	0	25	255	255	255
0	0	0	230	255	255
0	25	25	255	230	255
0	0	25	255	255	255

Range Kernel

1

Normalised

image I(X, Y)

0.1	0	0.1	1	1	
0	0	0	0.9	1	
0	0.1	0.1	1	0.9	
0	0	0.1	1	1	

Range * Domain Kernel

0.08	0.12	0.02
0.12	0.20	0.01
0.08	0.12	0.01

(differences based on centre pixel)

Input

Domain Kernel

Range Kernel Influence

Bilateral Filter (domain * range)

Output

Images from: Durand and Dorsey, 2002

Bilateral Filter Application: Denoising

Noisy Image

Gaussian Filter

Bilateral Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Cartooning

Original Image

After 5 iterations of **Bilateral** Filter

Slide Credit: Alexander Wong

Bilateral Filter Application: Flash Photography

noise and blur

But there are problems with **flash images**: — colour is often unnatural

- there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and colour balance, and to reduce noise

Non-flash images taken under low light conditions often suffer from excessive

103

Bilateral Filter Application: Flash Photography

System using 'joint' or 'cross' bilateral filtering:

Flash

guidance image instead of the input image

No-Flash

Detail Transfer with Denoising

'Joint' or 'Cross' bilateral: Range kernel is computed using a separate

Figure Credit: Petschnigg et al., 2004

104

Bilateral Filter: "Modern" take

https://neuralbf.github.io/

Morphology

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Threshold function in local structuring element

Aside: Linear Filter with ReLU

Feature Extraction from Image

Linear Image Filtering

Result of:

9	3	5	0
0	2	0	1
1	3	4	1
3	0	5	1

After Non-linear ReLU

Summary

We covered two three **non-linear filters**: Median, Bilateral, ReLU

The **median filter** is a non-linear filter that selects the median in the neighbourhood

and range (intensity) distance, and has edge-preserving properties

Transforms if the filter and image are both large

Fourier Transforms give us a way to think about image processing operations in Frequency Space, e.g., low pass filter = removing high frequency components

- The **bilateral filter** is a non-linear filter that considers both spatial distance
- **Speeding-up Convolution** can be achieved using separable filters or Fourier