THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 5:

mage Filtering (final)

(unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung)

Menu for Today
Topics:
—Linear Filtering recap — Non-linear Filters;:
— Efficient convolution, Fourier aside Median, RelLU, Bilateral Filter

— Today’s Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 29th
— Quiz on Jan 20th (today)

Next: Please get your iClickers —
Quiz 1: 6 questions

Menu for Today
Topics:
—Linear Filtering recap — Non-linear Filters;:
— Efficient convolution, Fourier aside Median, RelLU, Bilateral Filter

— Today’s Lecture: Szeliski 3.3-3.4, Forsyth & Ponce (2nd ed.) 4.4

Reminders:

— Assignment 1: Image Filtering and Hybrid Images due January 29th
— Quiz on Jan 20th (today)

Efficient Implementation: Separability

40

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications

Separable 2D Gaussian:

Efficient Implementation: Separability

Naive implementation of 2D Gaussian:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications

Separable 2D Gaussian:

At each pixel, (X,Y), thereare 2m multiplications

There are n Xmn pixelsin (X ,‘Y)

2

Total. 2m x n“ multiplications

Separable Filtering

2D Gaussian blur by horizontal/vertical blur

- -
Norizontal vertica

i
- ..
e

vertical horizontal

Separable Filtering

Several useful filters can be applied as independent row and column operations

T 1 114161 4]1
P : 112711 41162416 4 —1]o0l1 1 [=2 1
1 1 1 1
1 : Llolal2] Llel24a][36|24]6]| Ll —20]2] i[—2]4 |-2
1 11211 41161241614 “1]o0l1 1 =2 1
L1 ! 11416 41
1 1 1 1 1
Ll1]1 1] Lf1]2]1 LiTale]al1 L-1Tol1 LT —2T1

om oOonm
B B

(a) box, K =5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter

11416 |4

16|24]16

24| 36| 24

200

16{24]16

— =~ | O | =

416 |4

— =[O |~ |

\

Not a separable filter!

11

L Inear Filter Example

[(X,Y)
image
| cP PPl [LI
FX,Y) PPl [LI L1

I'X,Y) = z:z:szHX+@Y+ﬁ

filter image (signal)

output

10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

[(X,Y)
image
| cP PPl [LI
FX,Y) Pl [PI L1

I'X,Y) = z:z:szHX+@Y+ﬁ

filter image (signal)

output

13 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

I'X,Y) = Z Z F(i, DI(X +i,Y + j)

1=—k1=—k

output filter image (signal)

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

I'X,Y) = Z Z F(i, DI(X +i,Y + j)

1=—k1=—k

output filter image (signal)

15 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter

10

I(X +1,Y +7)

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter

17

N
3

I(X +1,Y +7)

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter

18

N
J

I(X +1,Y +7)

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

I'X,Y) = Z ZF”

1=—k1=—k

output filter

19

N
J

I(X +1,Y +7)

image (signal)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

L Inear Filter Example

_
805060
80 [50]60.
50|60]40.
30[30]20
o oo
o fo o
_

N
lof
2]
)
)
2|
ol
of
ol
B

50 {80
50 {80
3050
20 [30
10]10
o]0

V(X +14,Y +7)

image (signal)

20 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

| Inear Filters: Boundary c=ffects

Four standard ways to deal with boundaries:

1. lgnore these locations: Make the computation undefined for the top and
bottom & rows and the leftmost and rightmost & columns

2. Pad the image with zeros: Return zero whenever a value of | is required
at some position outside the defined limits of Xand Y

3. Assume periodicity: The top row wraps around to the bottom row; the
leftmost column wraps around to the rightmost column

4. Reflect boarder: Copy rows/columns locally by reflecting over the edge

Lecture 4: Re-cap

Linear filtering (one interpretation):
— new pixels are a weighted sum of original pixel values
— “filter” defines weights

Linear filtering (another interpretation):

— each pixel creates a scaled copy of point spread function In its location
— “filter” specifies the point spread function

22

Low-pass Filtering = “Smoothing”

Box Filter Pillbox Filter Gaussian Filter
114161141
1 111 1 { 4116124|16| 4
9 111 1 01(24|30|24| 6
250
111 1 4116|2416 4
1141614 |1

All of these filters are Low-pass Filters

Low-pass filter: Low pass filter filters out all of the high frequency content
of the Image, only low frequencies remain

23

Example: Separable Filter

|r—\p-|>®»-|>i—‘

24

16

24

16

200

24

510

24

16

24

16

IS e I I I

— >0 [+

(Gaussian Blur

2D Gaussian filter can be thought of as an outer product or
convolution of row and column filters

E— -
| -

25

Point Spread Function

9
6

3

0/0{0{0]0|0|0]|0

0
0
0

0/0/0]|0]9
0/0/0]|0]|6
0/0{0]0]3

0/0{0]0/0(0]0]0

*

0|0

0

0/{0(0]|0|O0

0

0/0/0/0|0|0|0(O0O

0|0

o/o[i]olo[o]o]0

0/0/{0/0/0]|0|0]|0
0/0/0[0]|0

ololololo]i]o]o

0/0/0/0|0|0|0|O

0/0/0{0|0|0|0(O0

20

Point Spread Function

9
6

3

0/0{0{0]0|0|0]|0

0
0
0

0/0/0]|0]9
0/0/0]|0]|6
0/0/0]0]|3

0/0{0]0/0(0]0]0

M| O O

3/0/0|0
3/0/0]0
3/0/0/0

6000*

o O

0

000

0/0/0/0|0|0|0|O

0/0/0{0|0|0|0(O0

27

Advanced Convolution Topics

o Multiple filters

e [ourier transforms

28

Linear Filters: Properties

Let ® denote convolution. Let I(X,Y) be a digital image

Superposition: Let F; and F5 be digital filters

(Fl+)@ I(X,Y)=F QI(X,Y)+ e I(X,Y)

Scaling: Let F be digital filter and let £ be a scalar
(kF)® I[(X,)Y)=F® (kI(X,Y)) = k(F Q I(X,Y))
Shift Invariance: Output is local (i.e., no dependence on absolute position)

An operation Is linear If it satisfies both superposition and scaling

Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y') be a digital image. Let /and G be
digital filters

— Convolution i1s associative. That Is,
GRIFRIINX,Y)=(GECRF)RI(X,Y)

— Convolution is symmetric. That is,
(GRIF)RIX,Y)=FGRIX,Y)

Convolving I(X,Y) with filter / and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfilter G® F = F Q G

Note: Correlation, in general, is not associative. (think of subtraction)

Symmetricity Example

A= B= A conv B=
[[1 1 6] [[6 6 4] [[40 84 105]
(4 1 7] [1 9 5] [97 137 130]
[9 0 6]] [3 3 8]] [96 107 83]]

A corr B=

[34 111 79]
78 159 124]
109 97 102]]

B conv A=
[[40 84 105]
[97 137 130]
[96 107 83]]

B corr A=
[[102 97 109]
[124 159 78]
[79 111 34]]

conv(A, B) = conv(B, A)

corr(A, B) # corr(B, A)

Linear Filters: Additional Properties

Let ® denote convolution. Let I(X,Y') be a digital image. Let /and G be
digital filters

— Convolution i1s associative. That Is,
GRIFRIINX,Y)=(GECRF)RI(X,Y)

— Convolution is symmetric. That is,
(GRIF)RIX,Y)=FGRIX,Y)

Convolving I(X,Y) with filter / and then convolving the result with filter G can
be achieved in single step, namely convolving I(X,Y) withfilter G® F = F Q G

Note: Correlation, in general, is not associative. (think of subtraction)

Example: Two Box Filters

filter = boxfilter(3)
signal.correlate2d(filter, filter,” full’)

3x3 Box

3x3 Box

= DO =

NN

WO O O | W

NN

NI =

Example: Iwo Box Filters

Note, in this case you have to pac

Treat one filter as padded “image” maximally until two filters no longer overlap
00000010
0{01010]0[0|O0
001 1]1|1([010 10111
1 1 1
5 OO0l 11111010 &® 5 1111 — g
00| 1]1]1]01]0 1111
0[(0|0[0|0]01O0
3X3 Box
010/0[0]0]|01]0

Example: Iwo Box Filters

Treat one filter as padded “image”

O |
O | =
Q0
(S—

OO | R|I=]lI=|OO O

SICOC|IR|IRk |~ [

0
0
1
1
1
0
0

o|lolo|lo|lo|o|lo

o|lo|lo|lo|lo|o|lo

o|lo|lo|lo|lo|o|lo

o|lo|lo|lo|lo|lolo
X

3x3 Box Output

Example: Iwo Box Filters

Treat one filter as padded “image”

O |
O | =
Q0
(S—

OO | R(I=]lI=|OO O

0
0
1
1
1
0
0

el penh i N el Ll k=) e

o|lolo|lo|lo|o|lo

o|lo|lo|lo|lo|olo

o|lo|lo|lo|lo|o|lo

o|lo|lo|lo|lo|lolo
X

3x3 Box Output

Example: Iwo Box Filters

Treat one filter as padded “image”

O0]010[0]10]010

O[01O[O]OJO1]O 11213 2

001 1]1]1(0]0 1111 214
1 1 1 E
9 00 1[1]1]0]0 ®§ 111 1 = 57

Ol0|1(1]1[01]0 1111

O0(0]10[0]101]1010

3x3 Box
O010[0]O0[O0101(0

3x3 Box Output

Example: Iwo Box Filters

Treat one filter as padded “image”

==
AN | O <F|
N O[O | O
AN | IO | <F| e
— | AN | | O | —
— |5
|
-] %
00
i N R e
== &
— | O)
02y
OO DO | O O
OO | OO | OO O
OO~ —]l— || O
SIS || || O
OO ||| O
O | O OO | O O
OO | | O OO O
— | O

Output

3x3 Box

Example: Iwo Box Filters

Treat one filter as padded “image”

112(3]2]1

21416142
3/6[916|3
2141642

112(3]2]1

1
9

3x3 Box

01010[0[0{0]|O0
010101010100
0(0|1{1]1]0|O0

0001|1100 &®
0{0(1|1[1[0]O0
010101010 1]010

0(0[0]0]0]0]|0

1
9

Output

3x3 Box

Example: Two Box Filters

filter = boxfilter(3)
temp = signal.correlate2d(filter, filter,” full’)
signal.correlate2d(filter, temp,” full’)

© |—=
O |—=

3x3 Box 3x3 Box 3x3 Box

/29

18

21

18

36

42

36

42

49

42

36

42

36

18

21

18

- WO N[O (W |—

- WO N (W -

Example: Separable Gaussian Filter

|r—\p-|>®»-|>i—‘

16

24

16

200

24

30

24

16

24

16

IS e I I I

— >0 [+

Example: Separable Gaussian Filter

O

— [LD

&\

|

14641_

O

1,1

X
evl Nenll Nenl el R N Nes ll Neoll Nan) e
IO | O FH IO | OO O
OO O | Oo|O | O O O O
OO OO T ol O O O
OO O OO OO O

1
16

Example: Separable Gaussian Filter

1
200

O

1,1

X
evl Nenll Nenl el R N Nes ll Neoll Nan) e
IO | O|IFH| OO O O
OO O | Oo|O | O O O O
OO OO T | o]l O O] O
OO O OO —H || O OO

176

Example: Separable Gaussian Filter

=[=[=[H]
<"
<+ | S QL]
<t | O | <H
Ol ©
O | <t | ©
DA I N N el B
— | <H| O | | —
O
— |
Y
|
14641_
O
,I;l
0%
evl Neol Nenl Nenl § N Nes ll Neoll Nan) Ha»
o|lo|lo|lolF | olo|lolo
OoO|lOoO|IC|olololo| o O
Olololo|Flololo|l o
OO | O Ol ~O|1 O OO
N

1

Example: Separable Gaussian Filter

— | O |
<+ | L L|
olQ| R Q| ©
MEINE
— | | O | < | —
— s
QN
|
14641_
— |
0
OO O H | O O O
evl jenl Nenll N abl I Wl Neo il Hepl Nan) e
e}l en) jell len) Mol Nenll el N av) e
OO Ol oI T (ol o O
OIQC|I | O ||| OO
O

Pre-Convolving Filters

Convolving two filters of size m X m and n X n results in filter of size:
(m+m—1)x (n+m —1)

More broadly for a set of K filters of sizes my X my the resulting filter will
have size:

(ml -+ Z(mk — 1)) X (ml -+ Z(mk — 1))

Gaussian: An Additional Property

L et ® denote convolution. Let G, () and G, (x) be be two 1D Gaussians

Go, (%) @ Gy (1) = Gz (@)

2

Convolution of two Gaussians is another Gaussian

Special case: Convolving with G, (x) twice is equivalent to G5, ()

VVhat follows IS for fun
(you will NOT be tested on this)

Convolution using Fourier Transforms [Szeliski 3.4]

Convolution Theorem:

| et ' (z,y) = f(z,y) ®i(z,y)

then Z'(wg,w,) = F(wz, wy) L(wg, w,)

where ' (w,, wy,), F(wg,w,), and Z(w,,w,) are Fourier transforms of i'(z,y),
f(z,y) and i(z,y)

At the expense of two Fourier transforms and one inverse Fourier transform,
convolution can be reduced to (complex) multiplication

49

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

50 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

""-\ /‘,-' ,“\‘ : \\‘\ '/ 7 \
'l | ' \ / ‘u‘ / \
' |‘ |‘ : | / \\ J \
| | \ ' \ | \
" \ ‘ E— \ J X ?
| \ / f
“'\ l“ l“ “'\ ‘/ \ i
J \ \i } \‘\ /,'
sin(2mx)

51 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

o" \ '-\\ p. . / / \‘\, { \

'I '|| " / f \ f | | f

'f" | f \i | / \\ s, “\\ + ‘{\ f‘ ‘\ !' \'n }{, \\I X | \\ "{ \\| |
\ | | — \ z \ e B F—t———
‘| f‘ ‘\ ,', N \\ HX \ f \' " \\ :} \ l" \. " & v‘ '\ a’
\\ - n' “ .“ \ [f \‘v"l J \/ V J \/
\ / \\Ju‘ \ / \.\‘ // \ ;

sin(27x) L
7 Sin (273x)

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

f(x) = sin(27x) +

1s'n
— Sl
3

(273x)

sin(2mx)

53

v J \/ v
Iy
2 sin(273x)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

- s B et B B Bt S —— T E— S —— S — =Y

U

~O
4
~O

square wave

54 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

& @ ..
\ / ANNNAN N
"y / \\ }' \\\ _I_ 'f \}I | ,,‘ q| { \‘ K I\)‘u \‘. |
~ \ / , \x’\,’\f\,’\;.f
\ { \ | \ | \ |] , \
\ [| / \v' \/ V V \/ /
\\ : / \ | /
square wave
':"'\-. "-\'\‘ "l" ‘ “‘.‘
"l !|| " \q l
— | \ | | i"
— I | |)
| ; \ |
\ 7 ‘; |‘ ’ll
\ .‘/ \'\J“ “_.-" \ /

55 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

U
|

/ ’\1. }A' / \ .‘f\ ,'/ M\ "ﬁ\ ,!" ‘\'n‘ ,‘h‘\ {
\J" \\‘) “'u"' \."/ /' \\ ,JJ‘ \'J.' \J{ \.,o \V/

square wave

p——
R —
——E—

56 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

square wave

U

r AWAWAWAYWAWAN A
I \‘-J{ﬁﬁvf\"\f\ vﬂ‘- .’/\\ / \'\/' \‘J{ V U \-", U \

of

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

I\ "'\,-/'|' 'fﬂ'\/ \/ l'
F
~ !| | _I_ VWVVWYWYWWWWWVWWWY
| \ |'
| / \ | l'.o/\"’\ \ |l
square wave
Mana) AV
How would you
— express this
mathematically’?
Py !

58 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Fourier Transform (you will NOT be tested on this)

How would you generate this function®

I B B B B B P DA B D B O

AZ : sin(2mkx)
k=1

INfinite sum of sine waves
square wave

59 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Low-Pass Filtering in 1D

¢ (44

60

Fourier Transform (you will NOT be tested on this)

250 |
A
200 - V L\
150 |- 4
B (] T‘
100
NJHL[‘“V | kL'\f
o[(‘ A J\\ ! “Jk AP
A A’ ! |
00 l 510 | 1(110 . 1;0 | 2(110

I'ixel point

Image from: Numerical Simulation and Fractal Analysis of Mesoscopic Scale Failure in Shale Using Digital Images

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

Amplitude (magnitude) of Fourier transform (phase does not show desirable
correlations with image structure)

Observation: low frequencies close

to the center

Fourier Transform (you will NOT be tested on this)

What are “frequencies” in an image” Spatial frequency

W
N\ BN

©=150

Fourier Transform (you will NOT be tested on this)

Spatial frequency

What are “frequencies” in an image”?

\

\
\
\

-
- - 3
—‘ - - - - - - R - - .. . - - - - -
- e e - e L LRt el el
\ ™ e - ‘ad - ™
o _— P L P B I L LIS =
o o o PRI N T ™
1 ™ o™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ -~ - o "
: - - " o ™ - T » - - - - .- "
™l ™ ™ - e el ™ ™
- =i ™ il al™ T ™ el
o ™

M\“WM\
W ———

\

W
\

\
i
\

N

e

WY
A

2D Fourier Transforms: Images

Wy

Flwz, wy)

% Image Fourier Transform

o

2D Fourier Transforms: Images

/@

2D Fourier Transforms: Images

09

Aside: You will not be tested on this ...

Image

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
70

Aside: You will not be tested on this ...

First (lowest) frequency, a.k.a. average

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
71

Aside: You will not be tested on this ...

Second frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
72

Aside: You will not be tested on this ...

Third frequency

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/3

Aside: You will not be tested on this ...

50% of frequencies

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
74

Aside: You will not be tested on this ...

https://photo.stackexchange.com/questions/40401/what-does-frequency-mean-in-an-image/40410#40410
/5

2D Fourier Transforms: Kernels

F<w$,wy> . - . .
N~——"

Compress power 0.5
to exaggerate lobes
76 (just for visualization)

Convolution using Fourier Transforms

Convolution Theorem: i’(% y) = flz,y) ®i(z,y)

T (wyywy) = F(we, wy) L(wg, w,)

Convolve

Image e
Multiply Inverse FFT
FET — > —

[

VWhat preceded was for fun
(you will NOT be tested on it)

Assignment 1: Low/High Pass Filtering

Original Low-Pass Filter High-Pass Filter

[(z,y) [(z,y)* g(z,y) [(z,y) — I(z,y) x g(x,y)

79

Gala Contemplating the Mediterranean
Sea Which at Twenty Meters Becomes
the Portrait of Abraham Lincoln
(Homage to Rothko)

Salvador Dali, 1976

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Low-pass filtered version

Slide Credit: loannis (Yannis) Gkioulekas (CMU)

High-pass filtered version

89 Slide Credit: loannis (Yannis) Gkioulekas (CMU)

Aside: You will not be tested on this ...

A—..
*H

= - element-wise | _
o S a multiplication Low pass filtered image
image FFT (Mag)
—>
High pass filtered image

83

Convolution using Fourier Transforms

General implementation of convolution:

At each pixel, (X,Y), there are m x m multiplications

There are n Xmn pixelsin (X QY)

Total: m* x n® multiplications

Convolution if FFT space:

Cost of FFT/IFFT for image: O(n®logn)
Cost of FFT/IFFT for filter: O(m*logm)

Worthwhile if image and kernel are both large

34

Non-linear rilters

We’'ve seen that linear filters can perform a variety of image transtormations
— shifting

— smoothing

— sharpening

In some applications, better performance can be obtained by using non-linear
filters.

For example, the median filter selects the median value from each pixel’s
neighlborhood.

35

Non-linear Filtering

gaussian blurred

“shot” noise median filtered

86

Median Filter

Take the median value of the pixels under the filter:

5 | 221

34

34 | 23

123

25

or

12

Image

37

Output

Median Filter

Image credit: https://en.wikipedia.org/wiki/Median filter#/media/File:Medianfilterp.png
88

Effective at reducing certain kinds of noise, such as impulse noise (a.k.a ‘salt and

Depper’ Noise or 'shot’ noise)
The median filter forces points with distinct values to be more like their neighbors

https://en.wikipedia.org/wiki/Median_filter#/media/File:Medianfilterp.png

Bilateral Filter

Suppose we want to smooth a noisy step function

A Gaussian kernel performs a weighted average of points over a spatial
neighbourhood..

But this averages points both at the top and bottom of the step — blurring
Bilateral Filter idea: look at distances in range (value) as well as space X,y

89

Bilateral Filter

An edge-preserving non-linear filter

Like a Gaussian filter:

— The filter weights depend on spatial distance from the center pixel
— Pixels nearby (in space) should have greater influence than pixels far away

Unlike a Gaussian filter:

— The filter weights also depend on range distance from the center pixel
— Pixels with similar brightness value should have greater influence than pixels
with dissimilar brightness value

90

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZI?, y) —) 2 exXp 207

(with appropriate normalization)

91

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZI?, y) —) 2 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

r2 g2 (I(X+:U,Y-|—y)2—I(XvY))2
“d exp i

(with appropriate normalization)
92

Bilateral Filter

Gaussian filter: weights of neighbor at a spatial offset (z,y) away from the
center pixel I(X,Y') given by:
1 z2 fy?

GO‘ (ZE, y) —) 2 CXP 207

(with appropriate normalization)

Bilateral filter: weights of neighbor at a spatial offset (z,y) away from the center
pixel I(X,Y) given by a product:

domain x? 4 y? (I(X+z,Y+y)—I(X,Y))2 range
o 252
kernel CXP CXP " kernel

(with appropriate normalization)
93

Bilateral Filter
mage J(X,Y) mage [(X,Y)

Domain Kernel

o5 | 0 | 25 |255|255| 255 L

008!|0.12 (008
0 255 1

0.1210.20(0.12
0 255 1

0.08/0.120.08
0 255 1

94

Bilateral Filter
mage J(X,Y)

Normalised

mage [(X,Y)

Domain Kernel

o5 | 0 | 25 |255]|255]|255 1

0.0810.1210.08
0 255 1

0.1210.20|0.12
0 255 1

0.0810.1210.08
0 255 1

Range Kernel

o, = 0.45
098] 0.98]| 0.2
1 1 0.1
0.98| 1 0.1

(differences lbased on
centre pixel)

95

Bilateral Filter

Normalised
. . Domain Kernel
mage J(X,Y) mage J(X,Y) o = 1
299 1 0.0810.1210.08
255 1
0.1210.2010.12
255 1
0.0810.1210.08
255 1

Range Kernel Range * Domain Kernel
o, = 0.45
0.98(0.98| 0.2 , 0.08] 0.12(0.02
multiply
1 1 0.1 _) 0.12] 0.20] 0.01
0.98| 1 0.1 0.08(0.12] 0.01

(differences lbased on
centre pixel)

960

Bilateral Filter

Normalised 5 L |
. . omain Kerne
image](X Y) Image](X Y)
y) 04 —]
255 1 0.0810.120.08
255 1
0.12]10.20(0.12
255 1
0.0810.12|0.08
255 1
Range Kernel Range * Domain Kernel
o, = 0.45
0.98(0.98| 0.2 0.08] 0.12]0.02 0.11(0.16] 0.03

multiply sum to 1
1 1 0.1 _) 0.12] 0.20] 0.01 _) 0.16] 0.26] 0.01

0.98(1 | 0.1 0.08] 0.12(0.01 0.11] 0.16(0.01

(differences lbased on
centre pixel)

97

Bilateral Filter

0.1

Normalised 5 K I
. . omain Kerne
mage [(X,Y) mage J(X,Y)
9 9 04 —]
295 1 0.0810.120.08
255 1
0.12]10.20(0.12
255 1
0.0810.12|0.08
255 1
Range Kernel Range * Domain Kernel
o, = 0.45
0.98(0.98| 0.2 , 0.08] 0.12]0.02 0.11(0.16] 0.03
multiply
1 1 0.1 _) 0.12] 0.20] 0.01 E 0.16] 0.26| 0.01
0.98| 1 0.1 0.08(0.12] 0.01 0.11| 0.16] 0.01
(differences based on Bilateral Filter

centre pixel)

93

0.1

Bilateral Filter
mage J(X,Y)

Normalised

mage [(X,Y)

Domain Kernel

o4 — 1
255 1 0.08|0.12[0.08 0 [0.9
255 E
0.12]0.20|0.12 0.1
255
0.08]0.12|0.08 0.1
255 1
Gaussian Filter (only)
Range Kernel Range * Domain Kernel
o, = 0.45
0.98| 0.98 0.2 , 0.08| 0.12 0.02 0.11] 0.16{0.03 0 |09
multiply
1] 1 |01 ey | 0.12] 0.20] 0.01 E 0.16] 0.26| 0.01 0111 =0.1
0.98[1 | 0.1 0.08| 0.12] 0.01 0.11] 0.16] 0.01 0.1] 1

(differences lbased on
centre pixel)

Bilateral Filter

99

Bilateral Filter

This example:
welights for point
on top of edge

Domain Kernel

Input

Bilateral Filter Output
domain * range

Range Kernel Influence
Images from: Durand and Dorsey, 2002

100

Bilateral Filter Application: Denoising

Noisy Image Gaussian Filter Bilateral Filter

101 Slide Credit: Alexander Wong

Bilateral Filter Application: Cartooning

Original Image After 5 iterations of Bilateral Filter

102 Slide Credit: Alexander Wong

Bilateral Filter Application: Flash Photography

Non-flash images taken under low lignht conditions often suffer from excessive
noise and blur

But there are problems with flash images:
— colour Is often unnatural
— there may be strong shadows or specularities

Idea: Combine flash and non-flash images to achieve better exposure and
colour balance, and to reduce noise

103

Bilateral Filter Application: Flash Photography

System using ‘joint’ or ‘cross’ bilateral filtering:

Flash No-Flash Detail Transfer with Denoising

‘Joint’ or ‘Cross’ bilateral: Range kernel is computed using a separate

guidance image instead of the input image

Figure Credit: Petschnigg et al., 2004
104

Bilateral Filter: “Modern” take

https://neuralbf.github.io/

Morphology

2 B A O

original dilate erode majority open close

Threshold function
— N local structuring
element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Aside: Linear Filter with RelLU

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

Dog (0)
Cat (0)
Boat (1)
Bird (0)

K J \)
| |

Feature Extraction from Image Classification

' 9 3 5 0
0 & |8 | 4
—> 13|41
' 3 | 0 | 5 | 1
Result of; Linear Image Filtering After Non-linear RelLU

107

Summary

We covered two three non-linear filters: Median, Bilateral, RelLU

The median filter i1s a non-linear filter that selects the median in the
neighibournood

The bilateral filter is a non-linear filter that considers both spatial distance
and range (intensity) distance, and has edge-preserving properties

Speeding-up Convolution can be achieved using separable filters or Fourier
Transforms if the filter and image are both large

Fourier Transforms give us a way to think about iImage processing
operations in Frequency Space, e.g., low pass filter = removing high
frequency components

1038

