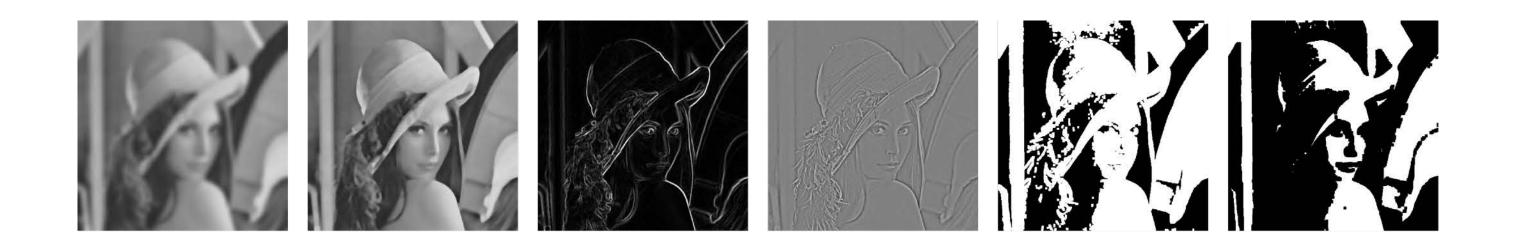


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Lecture 4: Image Filtering (continued)

Menu for Today

Topics:

- Recap L3, more examples - Box, Gaussian, Pillbox filters

Readings:

- Today's Lecture: none
- Next Lecture: Forsyth & Ponce (2nd ed.) 4.4

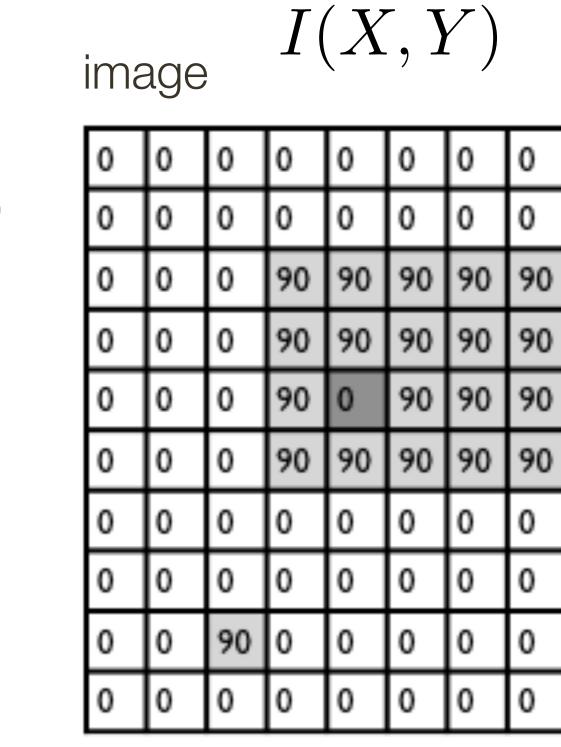
Reminders:

- Assignment 1: Image Filtering and Hybrid Images
- Quiz on Jan 20th

- Low/High Pass Filters - Separability

Please get your **iClickers** – Quiz 0 (Test): **1** question

Linear Filter **Example**



F(X, Y)filter 1 $\overline{9}$

$$I'(X,Y) =$$

output

kkj = -k i = -

)	

I'	(X,	Y)
	()	-)

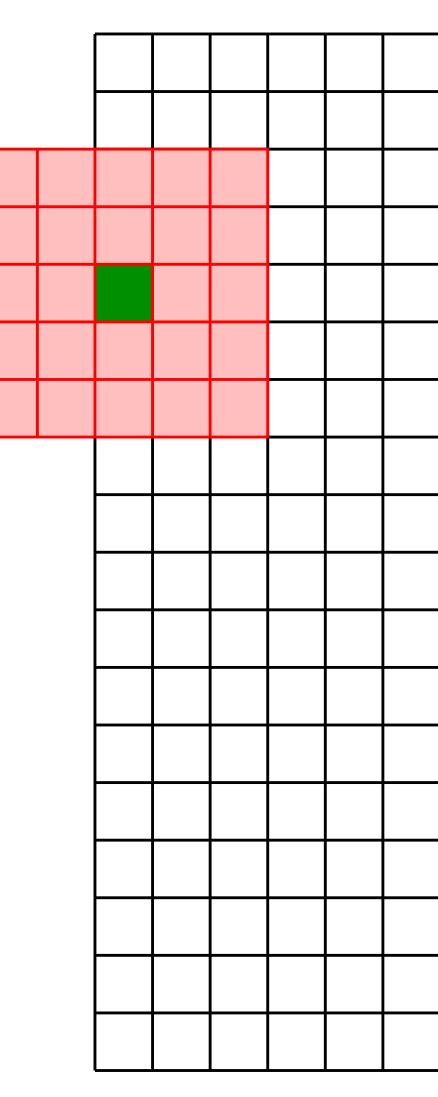
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
0	10	20	30	30	30	20	10	
10	10	10	10	0	0	0	0	
10	10	10	10	0	0	0	0	

$$\sum_{k} F(i,j) I(X+i,Y+j)$$
k filter image (signal)

output

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

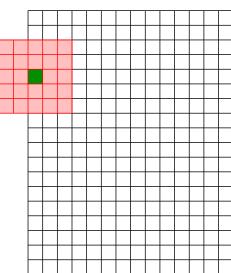
Linear Filters: Boundary Effects



Linear Filters: **Boundary** Effects

Four standard ways to deal with boundaries:

- bottom k rows and the leftmost and rightmost k columns
- at some position outside the defined limits of X and Y
- leftmost column wraps around to the rightmost column



Ignore these locations: Make the computation undefined for the top and

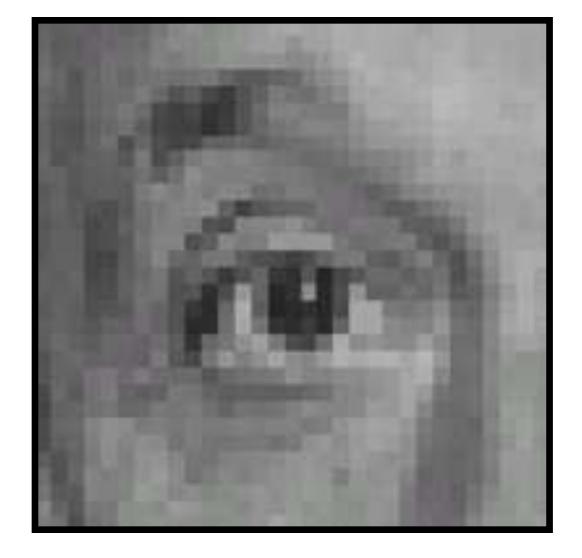
2. Pad the image with zeros: Return zero whenever a value of I is required

3. Assume periodicity: The top row wraps around to the bottom row; the

4. **Reflect boarder**: Copy rows/columns locally by reflecting over the edge

A short exercise ...

Example 1: Warm up



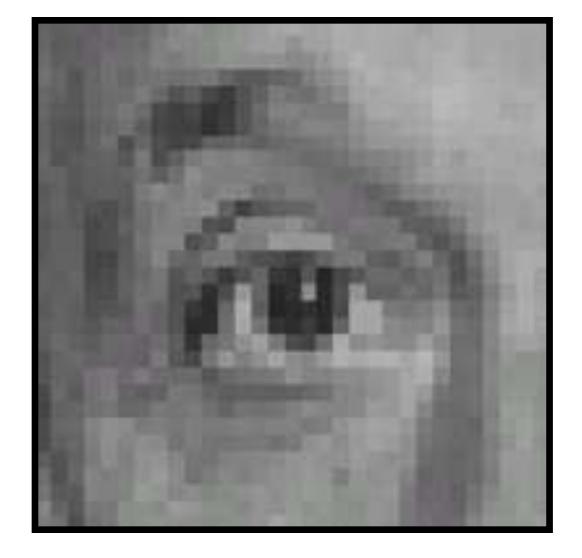
0

Original

0	0
1	0
0	0

Result

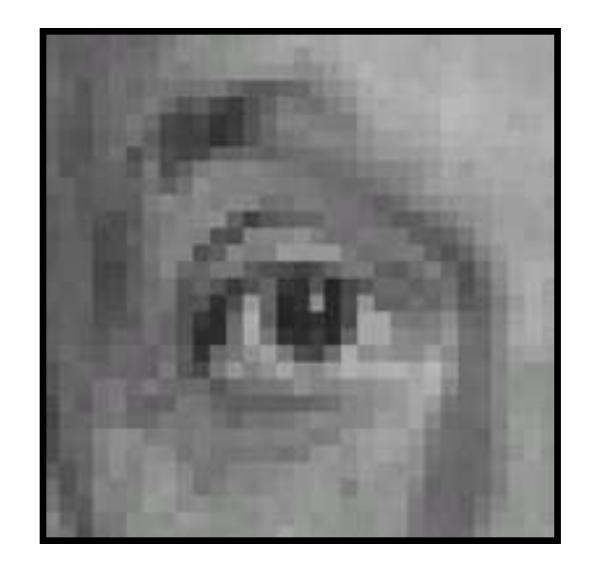
Example 1: Warm up



0

Original

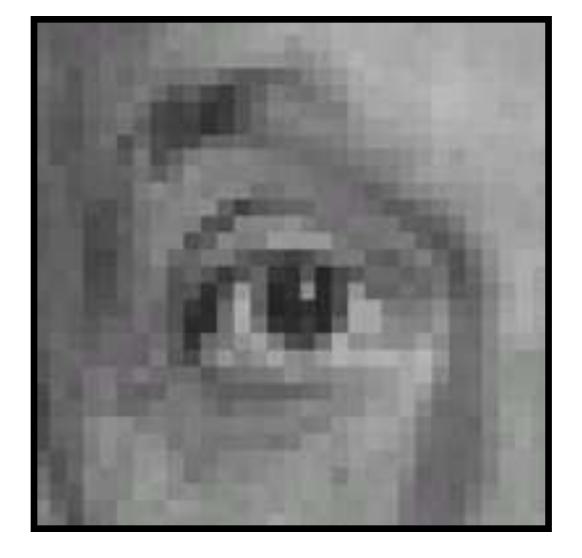
0	0
1	0
0	0



Filter

Result (no change)

Example 2:



0 0 0

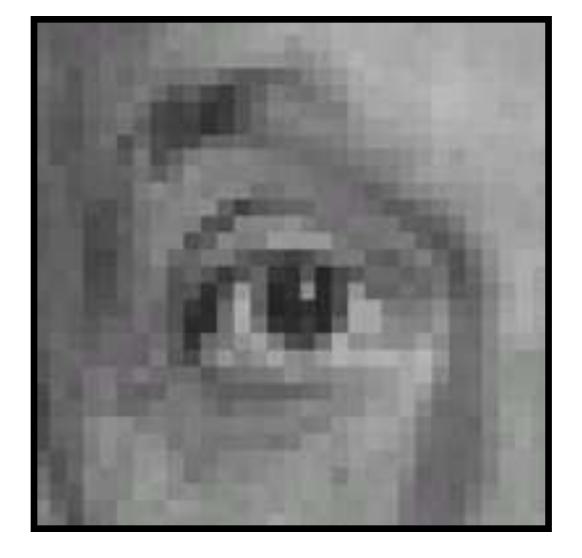
Original

0	0
0	1
0	0

Result

10

Example 2:



0 0 0

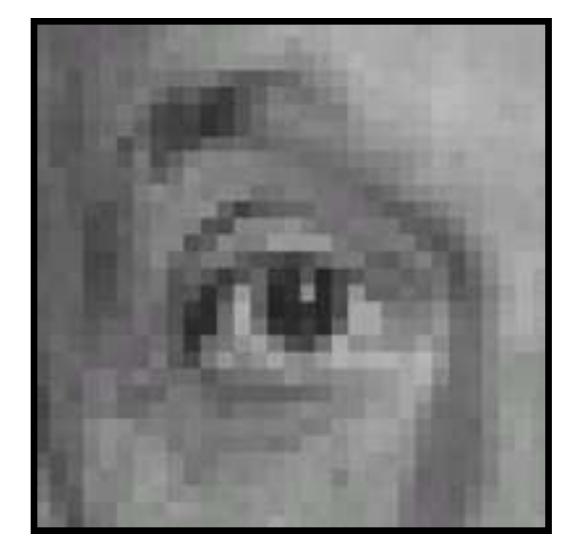
Original

0	0
0	1
0	0

Filter

Result (sift left by 1 pixel)

Example 3:

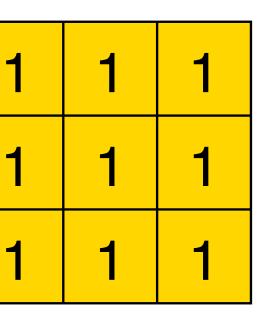


<u>1</u> 9

1

4

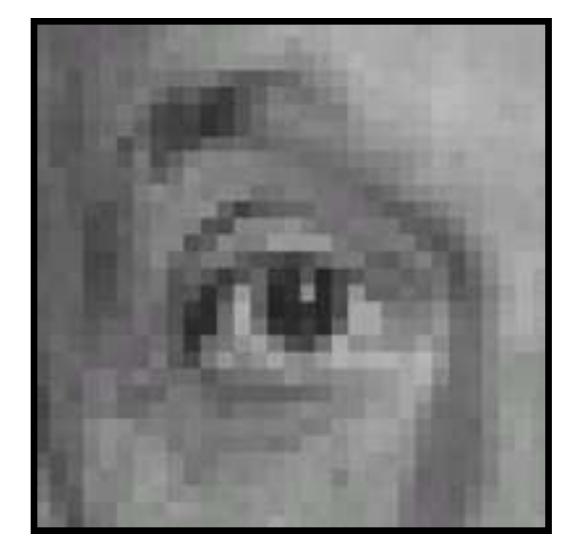
Original



Filter (filter sums to 1)

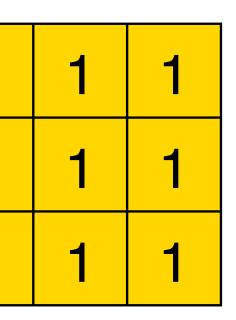
Result

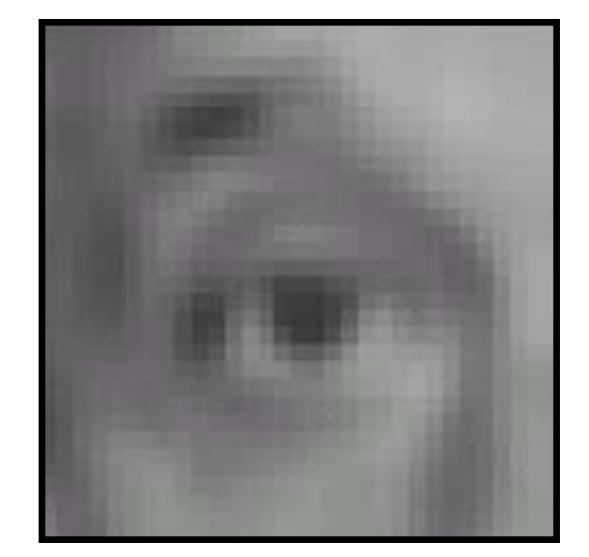
Example 3:



<u>1</u> 9

Original

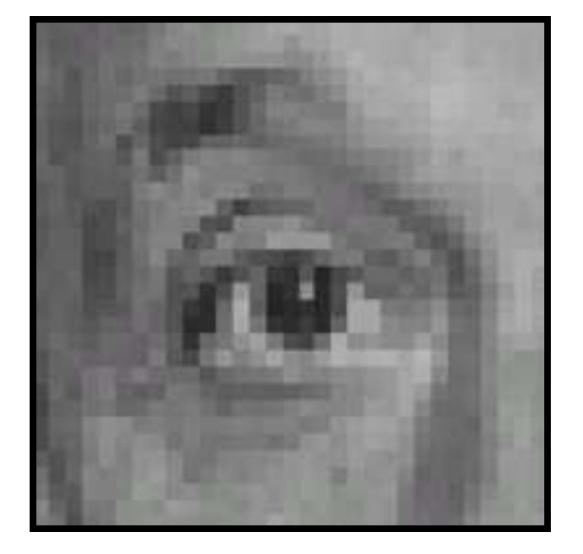




Filter (filter sums to 1)

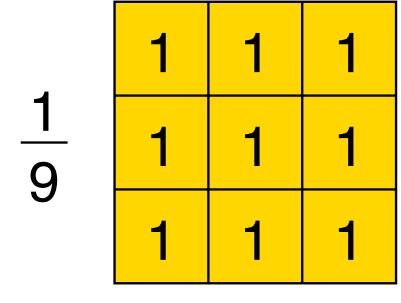
Result (blur with a box filter)

Example 4:



0	0	0
0	2	0
0	0	0

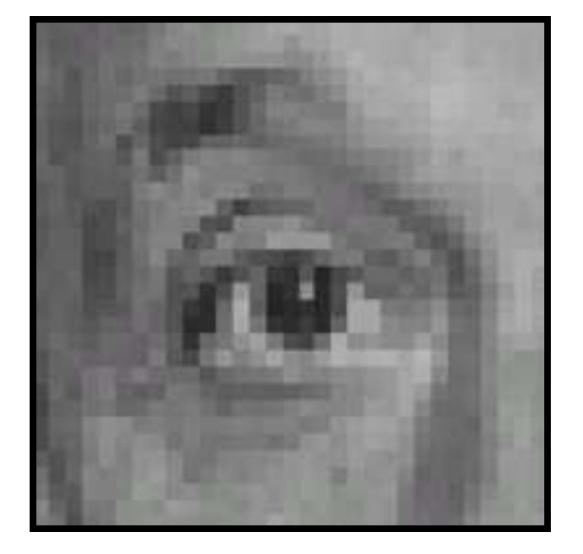
Original



Filter (filter sums to 1)

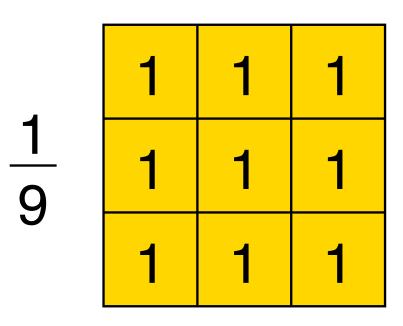
Result

Example 4:



0	0	0
0	2	0
0	0	0

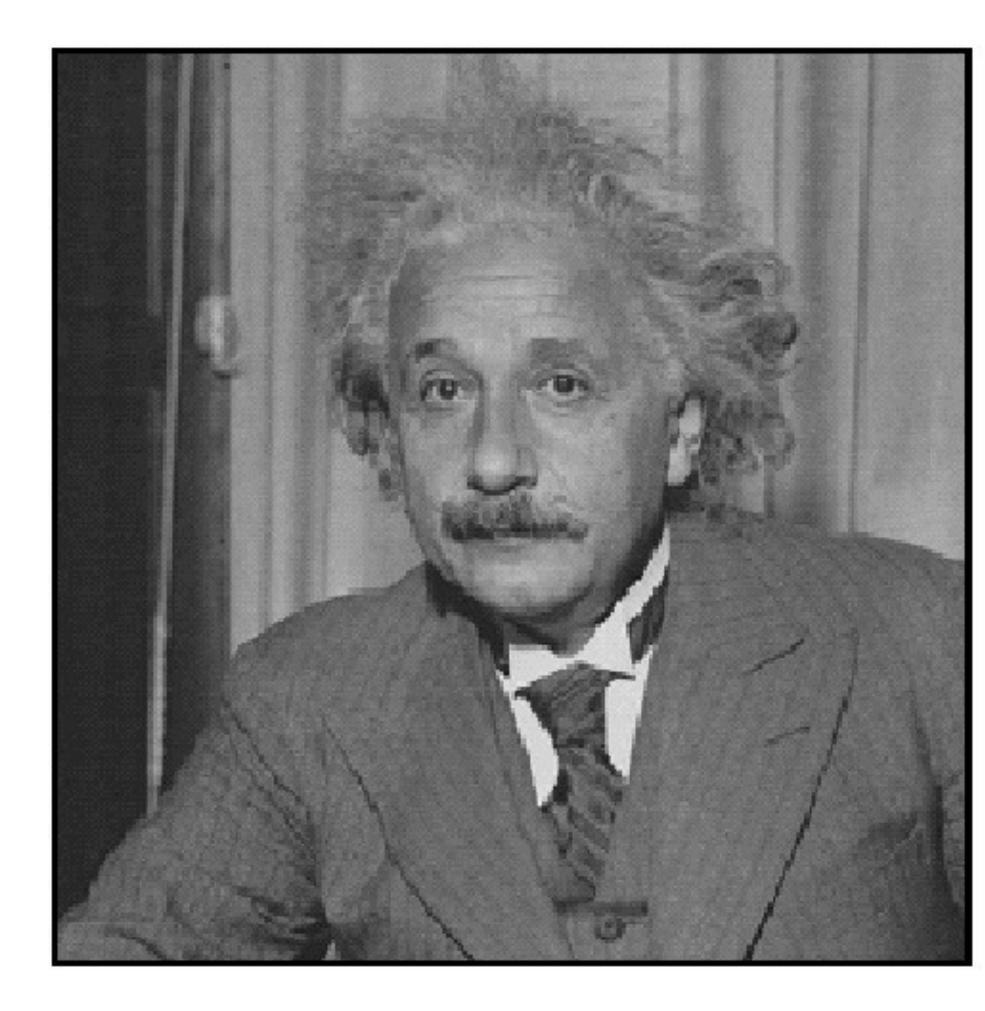
Original

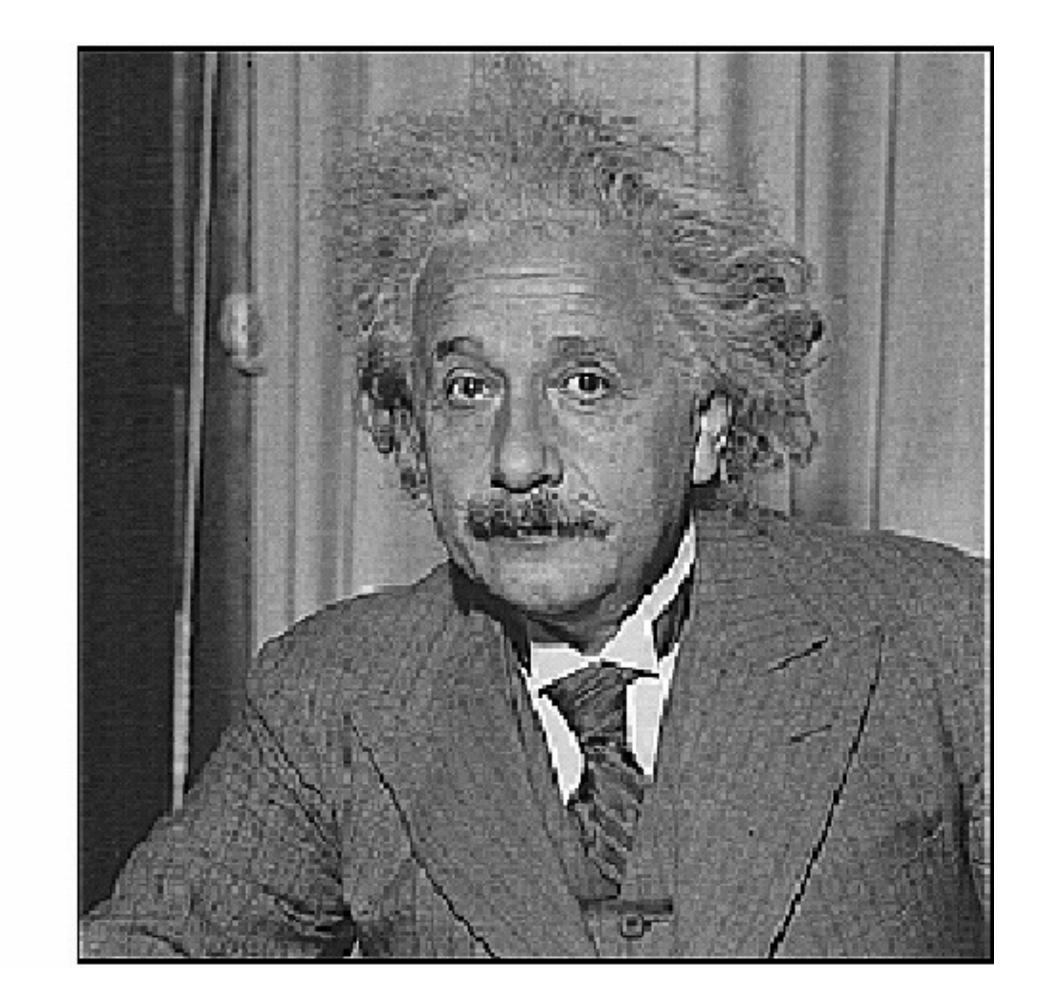


Filter (filter sums to 1) Why? 15

Result (sharpening)

Example 4: Sharpening





After

Example 4: Sharpening

Before



After

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

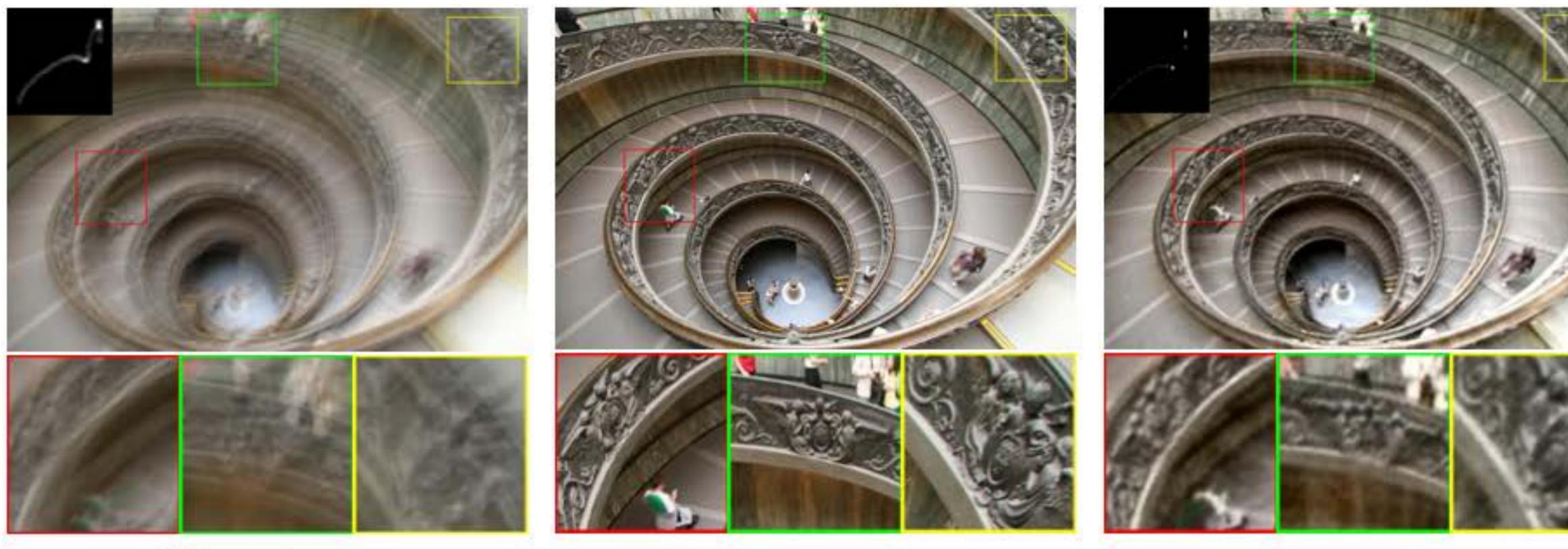
Aside: Blind deconvolution Ren et al., CVPR 2020

Blurry image

Images are from Ren et al., CVPR 2020. Reproduced for educational purposes

SelfDeblur

Aside: Blind deconvolution Ren et al., CVPR 2020



Blurry image

Images are from Ren et al., CVPR 2020. Reproduced for educational purposes

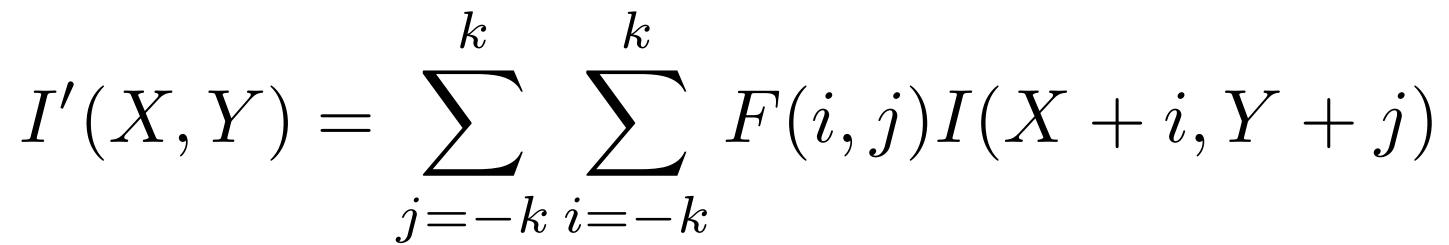
Ground-truth

SelfDeblur

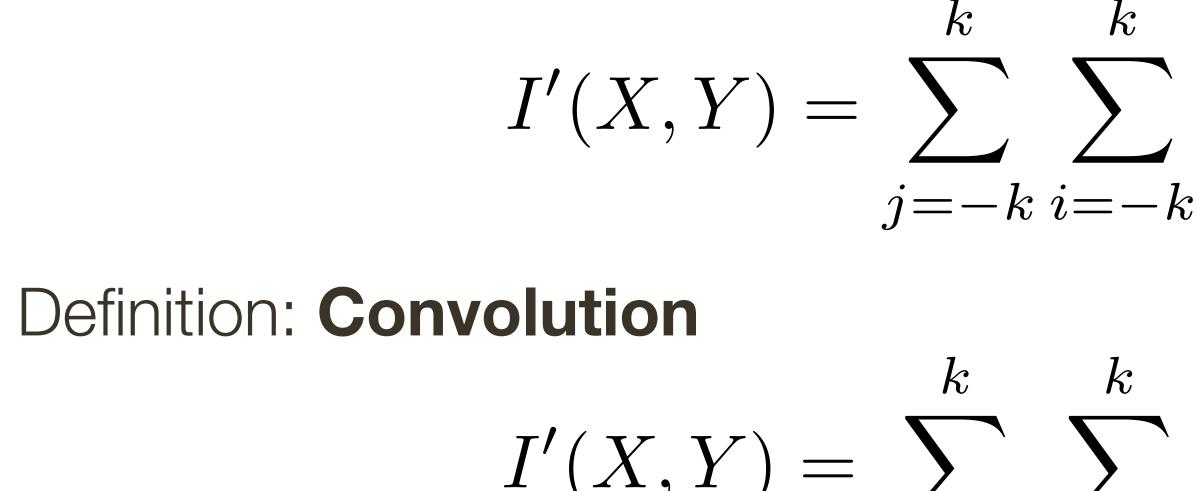
19

Definition: Correlation

k k $j = -k \ i = -k$



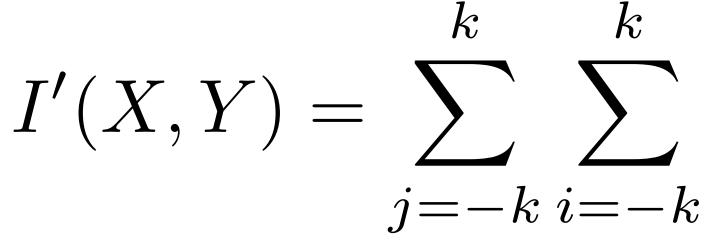
Definition: Correlation



 $I'(X,Y) = \sum F(i,j)I(X+i,Y+j)$

 $I'(X,Y) = \sum F(i,j)I(X-i,Y-j)$ $j = -k \ i = -k$

Definition: Correlation



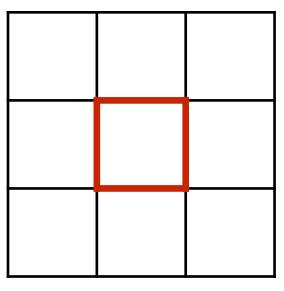
а	b	С
d	е	f
g	h	i

1	2	3
4	5	6
7	8	9

Filter

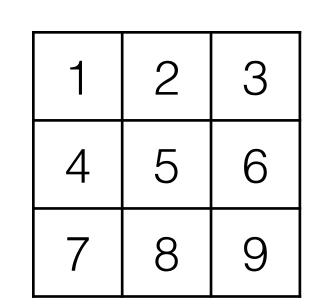
Image

 $I'(X,Y) = \sum F(i,j)I(X+i,Y+j)$



Output

Definition: Correlation



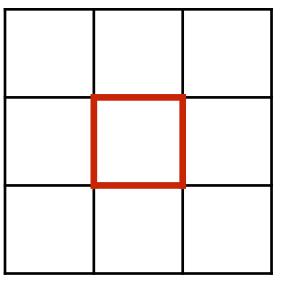
k

Filter

Image

k $I'(X,Y) = \sum \sum F(i,j)I(X+i,Y+j)$ =-k i = -k

 $I'(X,Y) = \sum_{k=1}^{k} \sum_{j=1}^{k} F(i,j)I(X-i,Y-j)$ $j = -k \ i = -k$



= 9a + 8b + 7c+ 6d + 5e + 4f+3g + 2h + 1i

Output

Definition: Correlation

Definition: Convolution

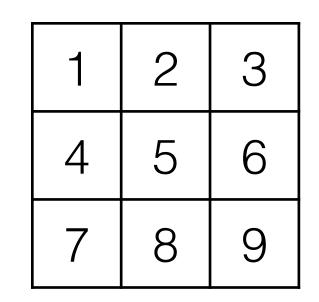
k k $I'(X,Y) = \sum F(i,j)I(X-i,Y-j)$ j = -k i = -k

Filter (rotated by 180)

!	Ч	ß
ł	Ð	р
С	q	в

а	b	С
d	е	f
g	h	İ

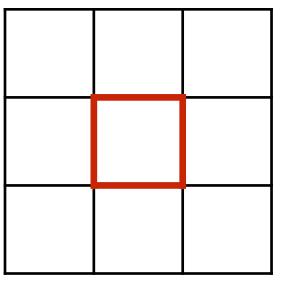
Filter



k

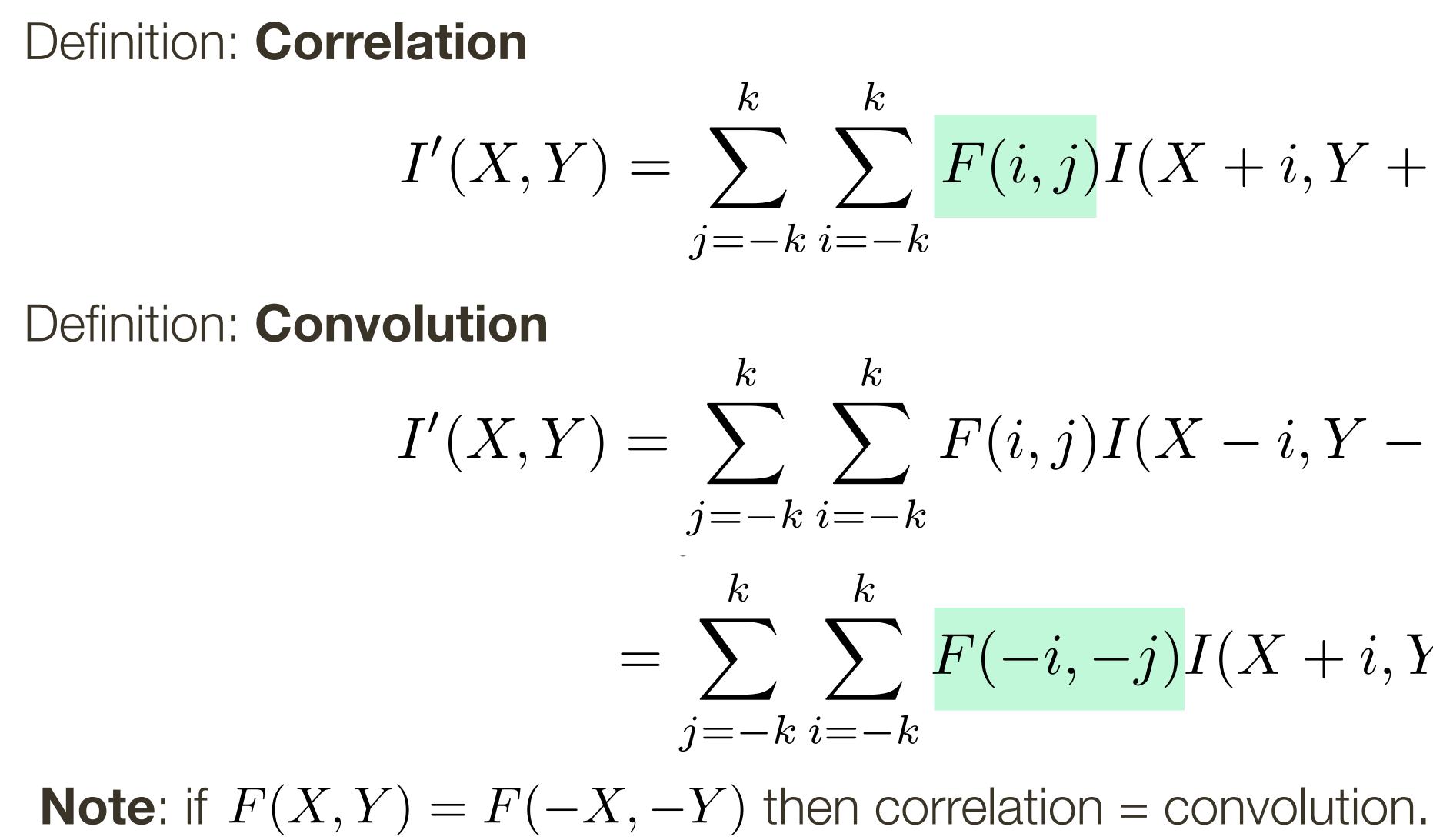
Image

k $I'(X,Y) = \sum F(i,j)I(X+i,Y+j)$ $j = -k \ i = -k$



= 9a + 8b + 7c+ 6d + 5e + 4f+3g + 2h + 1i

Output



 $I'(X,Y) = \sum^{k} \sum^{k} F(i,j)I(X+i,Y+j)$

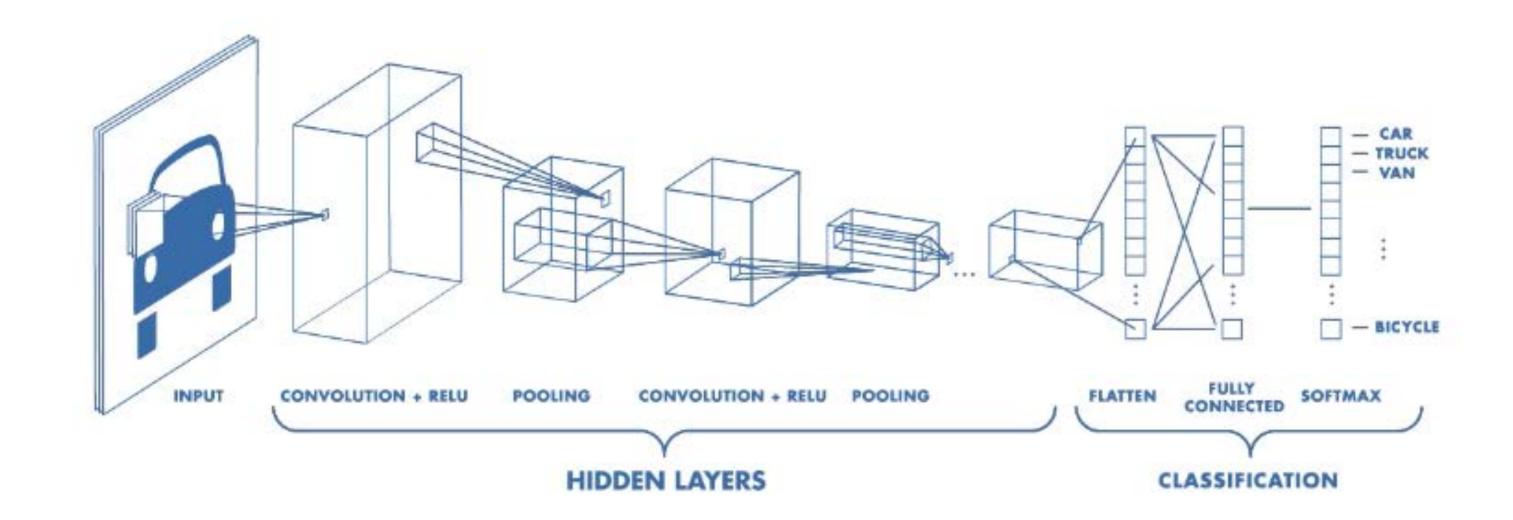
$$\sum_{k=-k}^{k} F(i,j)I(X-i,Y-j)$$

$$\sum_{k=-k}^{k} F(-i,-j)I(X+i,Y+j)$$

25

Preview: Why convolutions are important?

Who has heard of **Convolutional Neural Networks** (CNNs)?



Basic operations in CNNs are convolutions (with learned linear filters) followed by non-linear functions.

Note: This results in non-linear filters.

Linear Filters: **Properties**

Linear Filters: **Properties**

Let \otimes denote convolution. Let I(X, Y) be a digital image

Superposition: Let F_1 and F_2 be digital filters

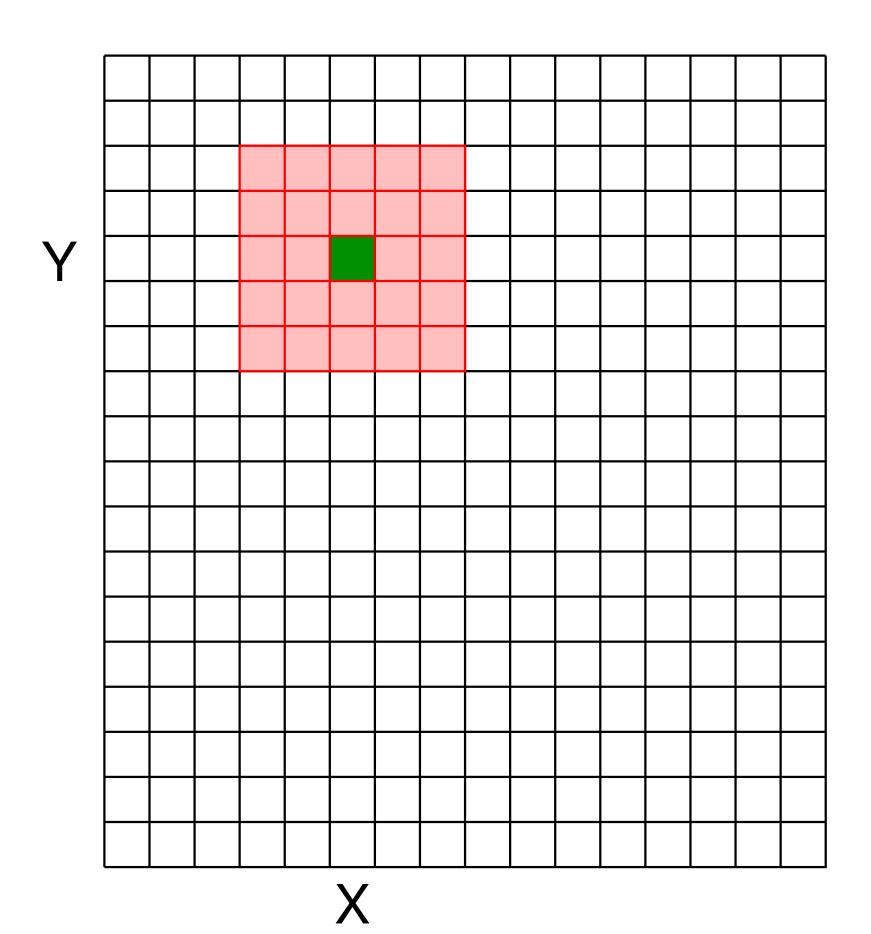
Scaling: Let F be digital filter and let k be a scalar

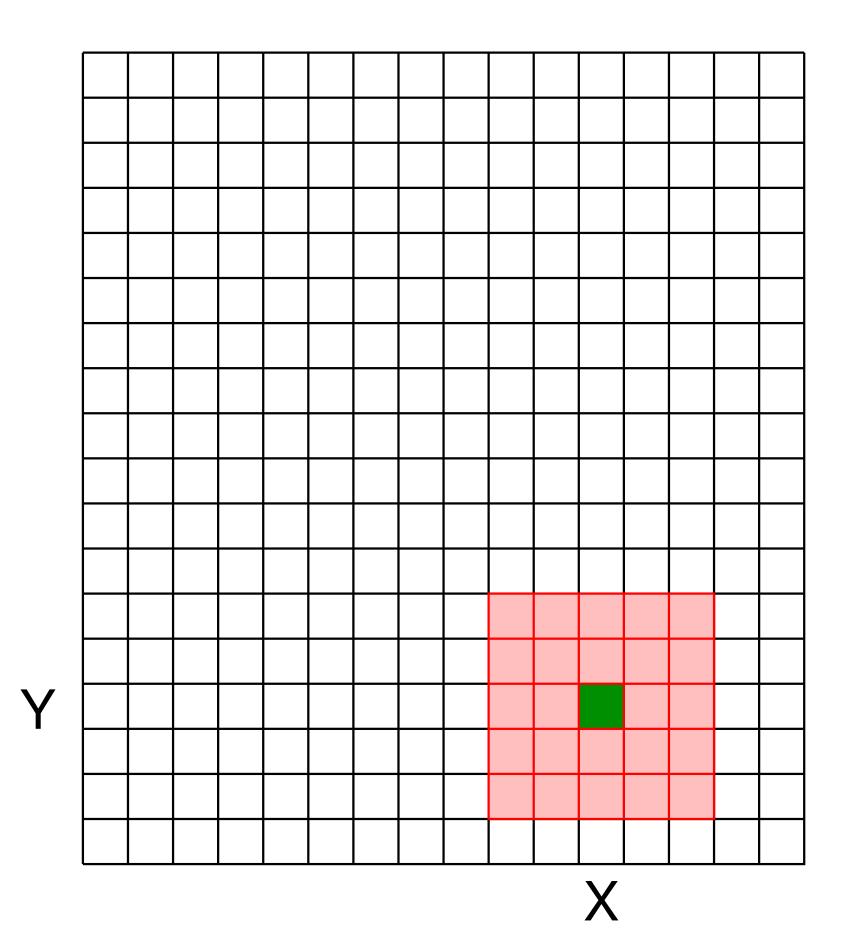
Shift Invariance: Output is local (i.e., no dependence on absolute position)

- $(F_1 + F_2) \otimes I(X, Y) = F_1 \otimes I(X, Y) + F_2 \otimes I(X, Y)$
- $(kF) \otimes I(X,Y) = F \otimes (kI(X,Y)) = k(F \otimes I(X,Y))$

Linear Filters: Shift Invariance

Same linear operation is applied everywhere, no dependence on absolute position





29

Linear Systems: Characterization Theorem

Any linear, shift invariant operation can be expressed as convolution

Up until now...

- The correlation of F(X, Y) and I(X, Y) is:

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$

output filter image (signal)

- Visual interpretation: Superimpose the filter F on the image I at (X, Y), perform an element-wise multiply, and sum up the values

 Convolution is like correlation except filter rotated 180° if F(X,Y) = F(-X,-Y) then correlation = convolution.

Up until now...

Ways to handle **boundaries**

- Ignore/discard. Make the computation undefined for top/bottom k rows and left/right-most k columns
- Pad with zeros. Return zero whenever a value of I is required beyond the image bounds
- Assume periodicity. Top row wraps around to the bottom row; leftmost column wraps around to rightmost column.
- Simple **examples** of filtering:
- copy, shift, smoothing, sharpening
- Linear filter **properties**:
- superposition, scaling, shift invariance

Characterization Theorem: Any linear, shift-invariant operation can be expressed as a convolution

Smoothing

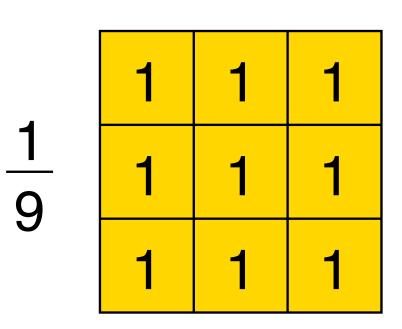
Smoothing (or blurring) is an important operation in a lot of computer vision

- It is important for **re-scaling** of images, to avoid sampling artifacts
- Fake image **defocus** (e.g., depth of field) for artistic effects

(many other uses as well)

- Captured images are naturally **noisy**, smoothing allows removal of noise

Smoothing with a **Box Filter**

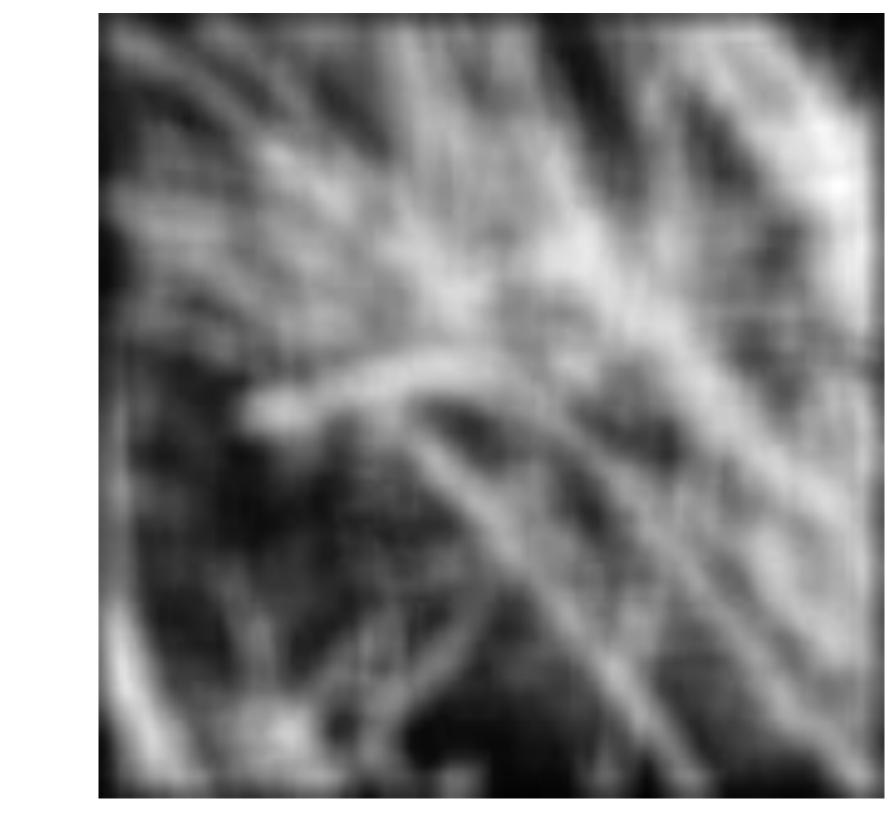


Filter has equal positive values that sum up to 1 Replaces each pixel with the average of itself and its local neighborhood Box filter is also referred to as average filter or mean filter

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Smoothing with a **Box Filter**

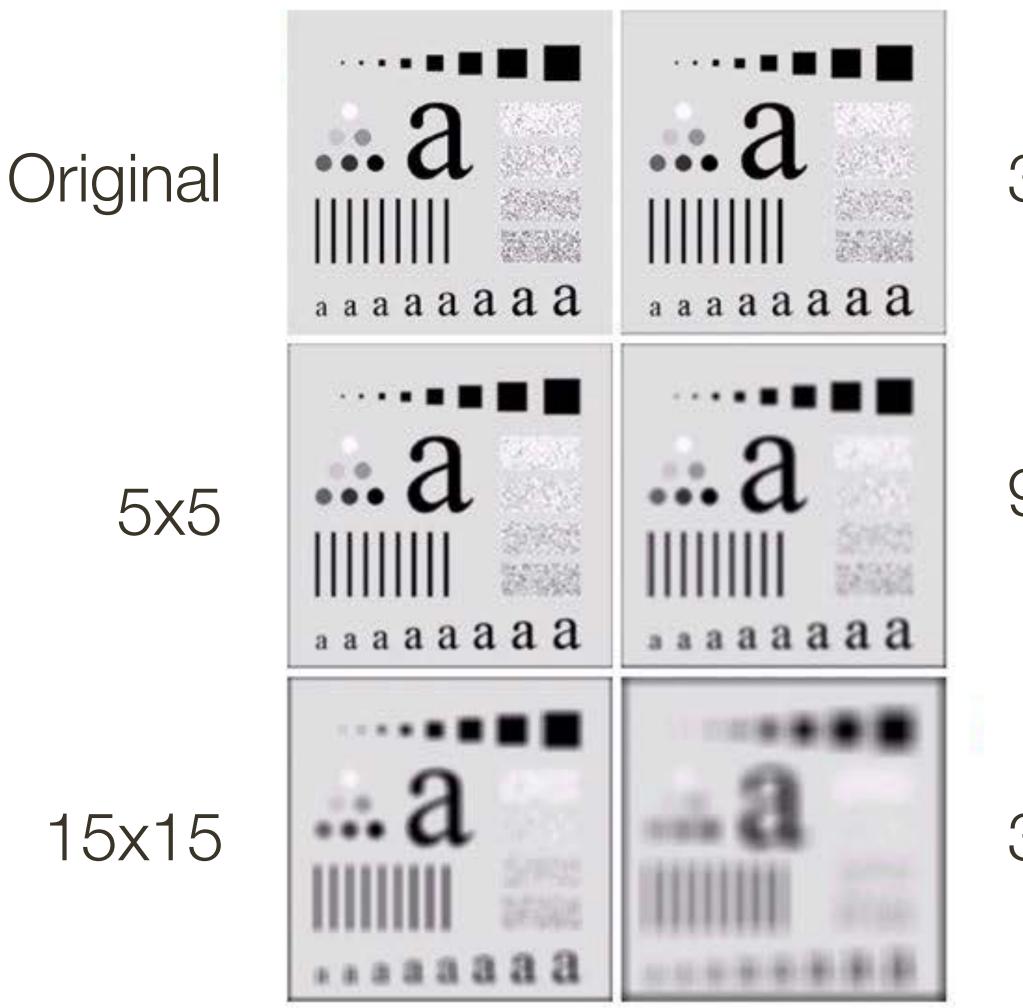
Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)



Smoothing with a **Box Filter**

5x5

15x15



Gonzales & Woods (3rd ed.) Figure 3.3

3x3

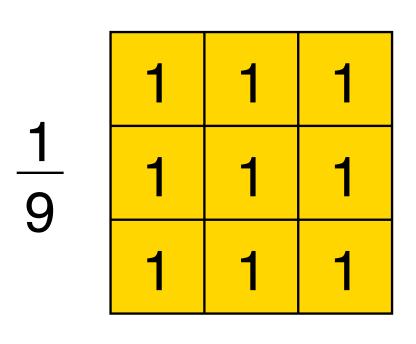
9x9

35x35

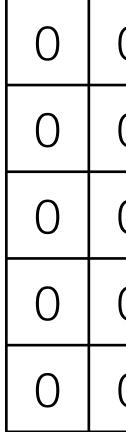
Smoothing with a **Box Filter**

Smoothing with a box **doesn't model lens defocus** well

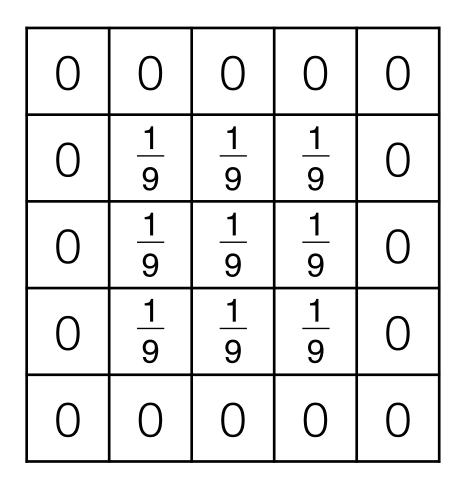
- Smoothing with a box filter depends on direction
- e.g., Image in which the center point is 1 and every other point is 0
- Point spread function is a box



Filter



0	0	0	0
0	0	0	0
0	1	0	0
0	0	0	0
0	0	0	0



Image

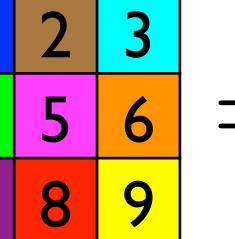
Result

Point Spread Function

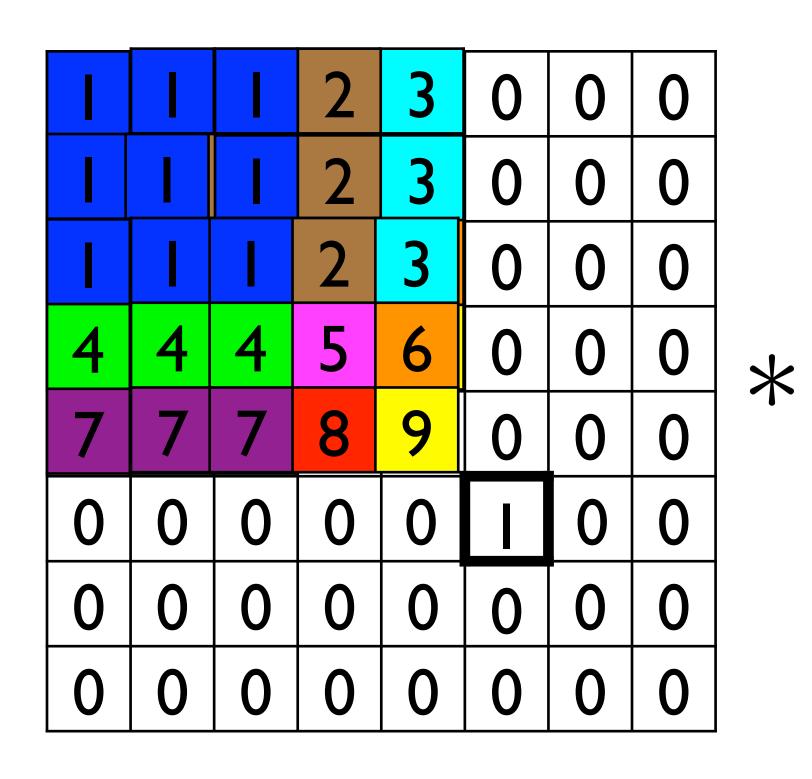
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	Ι	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	Ι	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

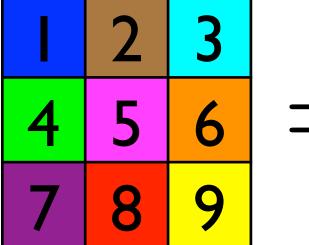
*

	0	0	0	0	0	0	0	0
	0	9	8	7	0	0	0	0
	0	6	5	4	0	0	0	0
2	 0	3	2		0	0	0	0
	 0	0	0	0	9	8	7	0
	0	0	0	0	6	5	4	0
	0	0	0	0	3	2	-	0
	0	0	0	0	0	0	0	0



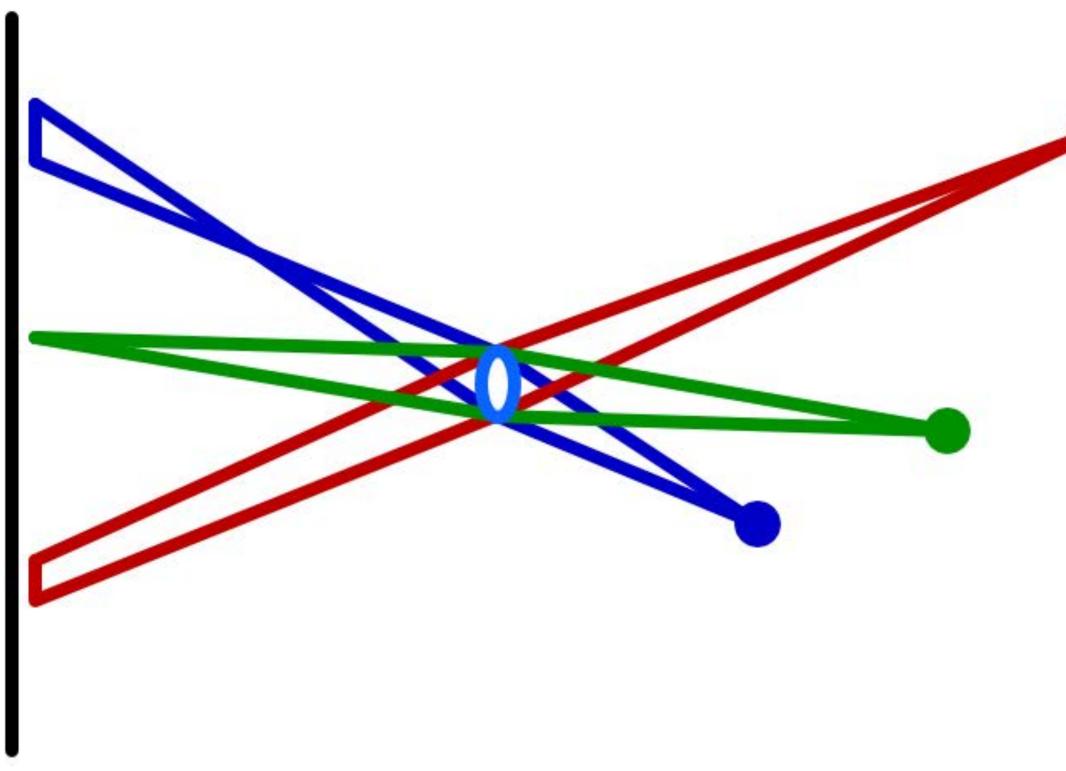
Point Spread Function

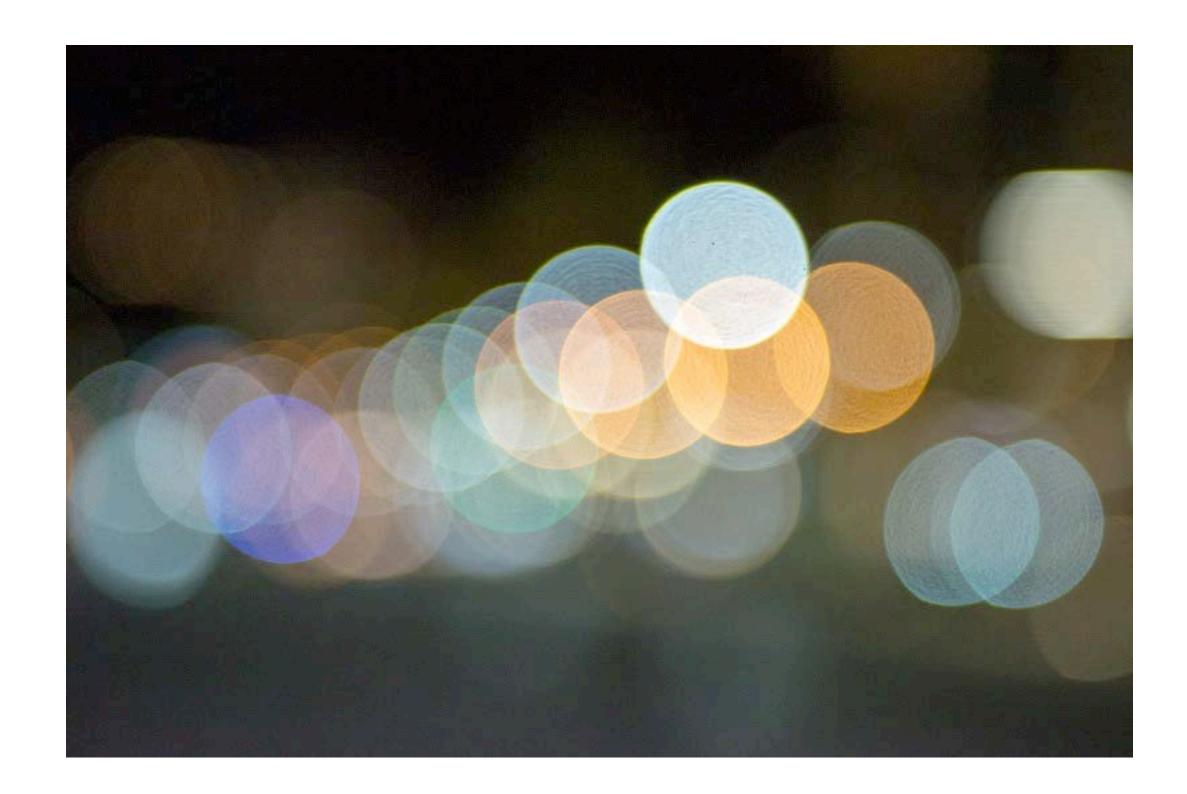




	0	0	0	0	0	0	0	0
	0	9	8	7	0	0	0	0
	0	6	5	4	0	0	0	0
	0	3	2		0	0	0	0
	0	0	0	0	9	8	7	0
	0	0	0	0	6	5	4	0
	0	0	0	0	3	2	-	0
	0	0	0	0	0	0	0	0

Smoothing: Circular Kernel





* image credit: https://catlikecoding.com/unity/tutorials/advanced-rendering/depth-of-field/circle-of-confusion/lens-camera.png

Pillbox Filter

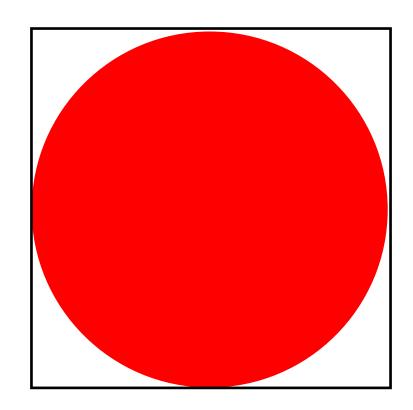
Let the radius (i.e., half diameter) of the filter be r

In a contentious domain, a 2D (circular) pillbox filter, f(x, y), is defined as:

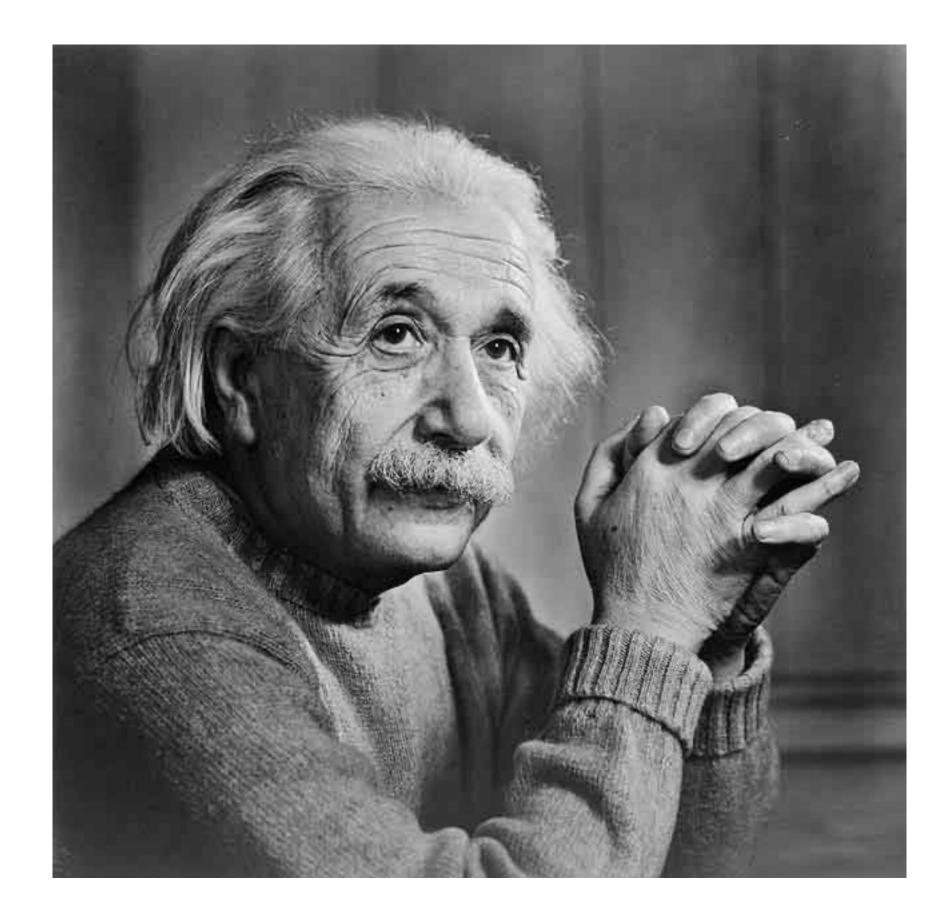
$$f(x,y) = \frac{1}{\pi r^2} \left\{ \right.$$

The scaling constant, $\frac{1}{\pi r^2}$, ensures that the area of the filter is one

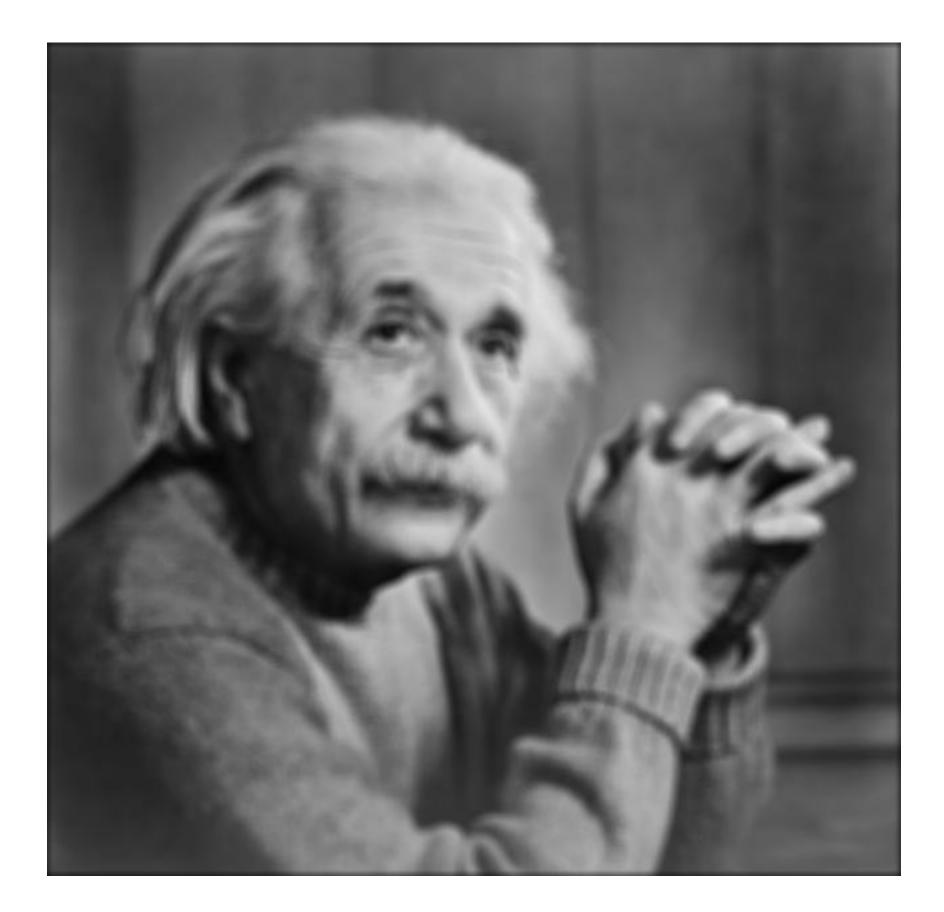
- $\begin{array}{ll} 1 & \text{if} \ x^2 + y^2 \leq r^2 \\ 0 & \text{otherwise} \end{array}$



Pillbox Filter

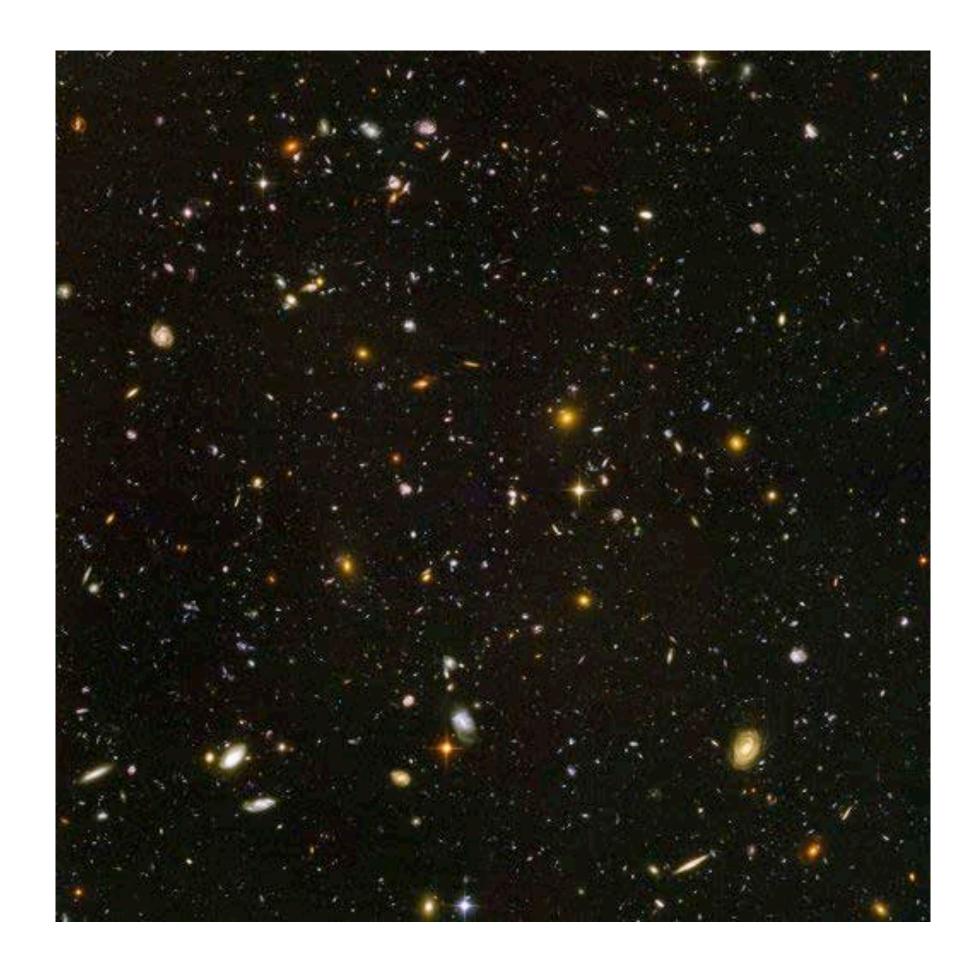


Original



11 x 11 Pillbox

Pillbox Filter



Hubble Deep View

With Circular Blur

Images: yehar.com

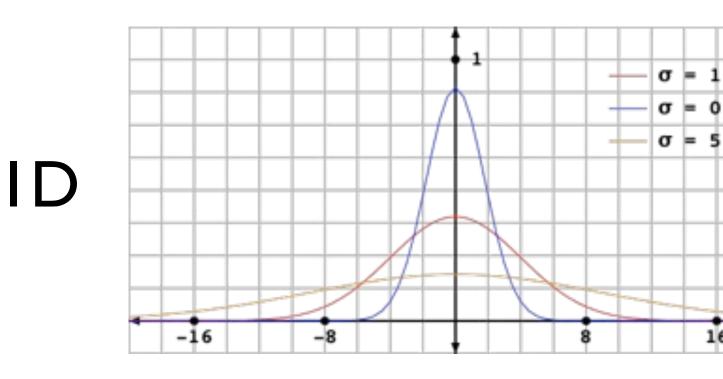
Smoothing

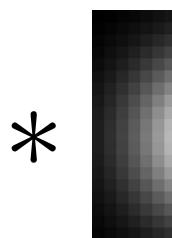
Smoothing with a box doesn't model lens defocus well Smoothing with a box filter depends on direction Image in which the center point is 1 and every other point is 0

The Gaussian is a good general smoothing model — for phenomena (that are the sum of other small effects) — whenever the Central Limit Theorem applies

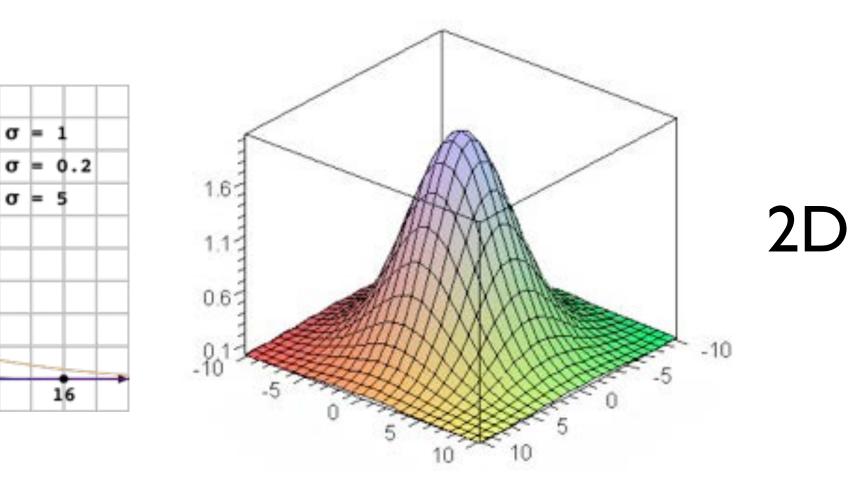
- Smoothing with a (circular) **pillbox** is a better model for defocus (in geometric optics)

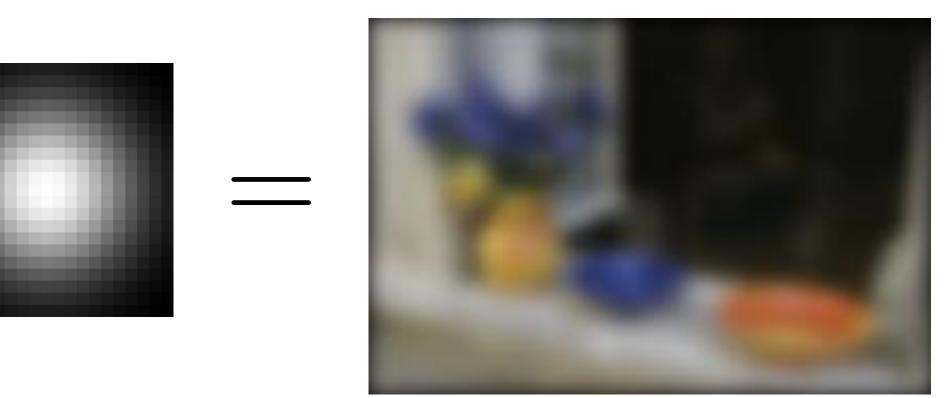
Gaussian Blur Gaussian Blur





Gaussian kernels are often used for smoothing and resizing images





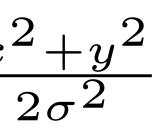
Smoothing with a Gaussian

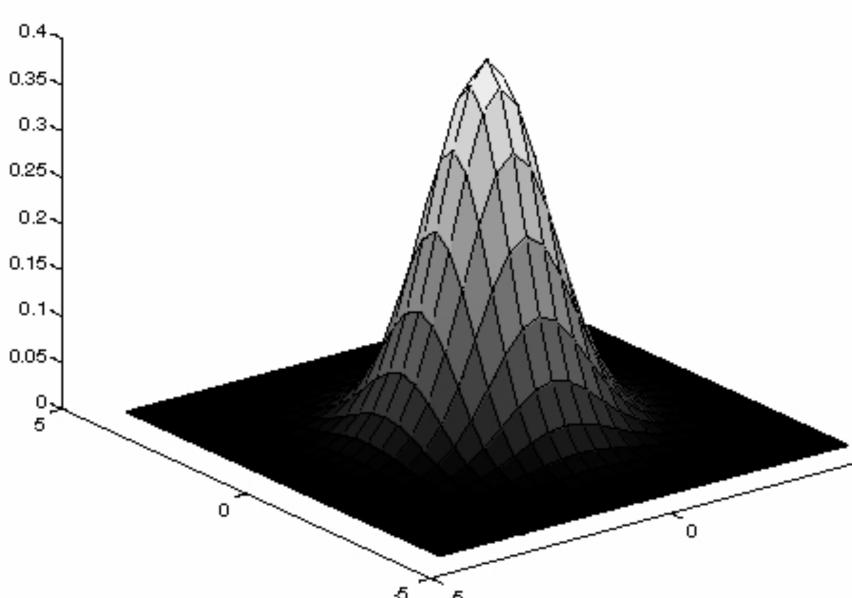
Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

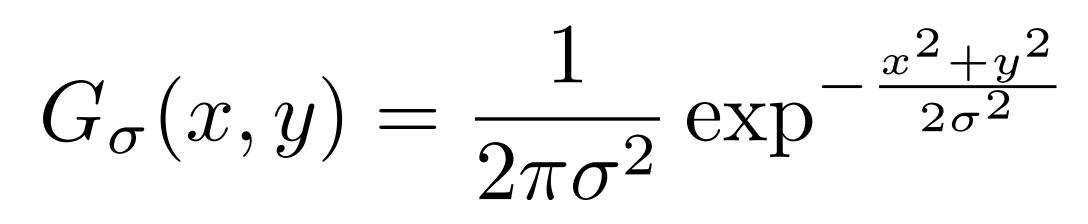
 $G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$







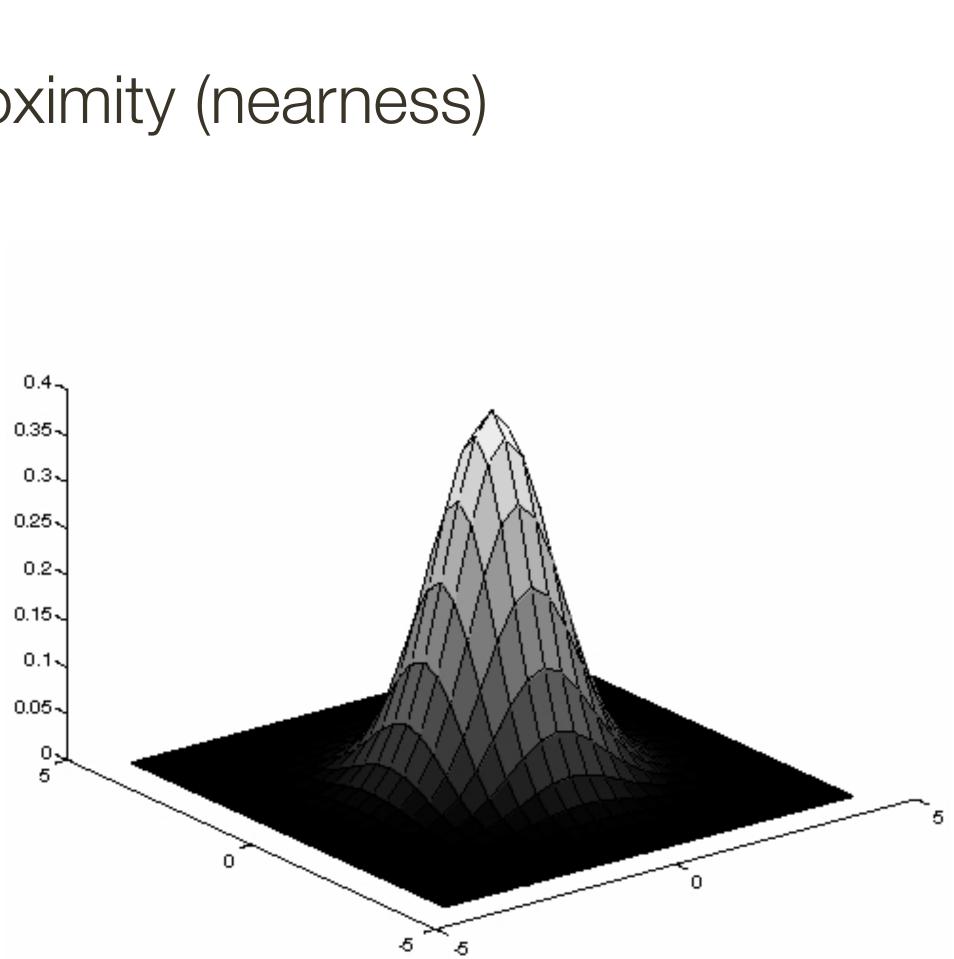
Forsyth & Ponce (2nd ed.) Figure 4.2



Idea: Weight contributions of pixels by spatial proximity (nearness)

2D Gaussian (continuous case):

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x}{2}}$$
Standard Deviation



Forsyth & Ponce (2nd ed.) Figure 4.2

Smoothing with a Gaussian

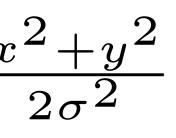
Idea: Weight contributions of pixels by spatial proximity (nearness)

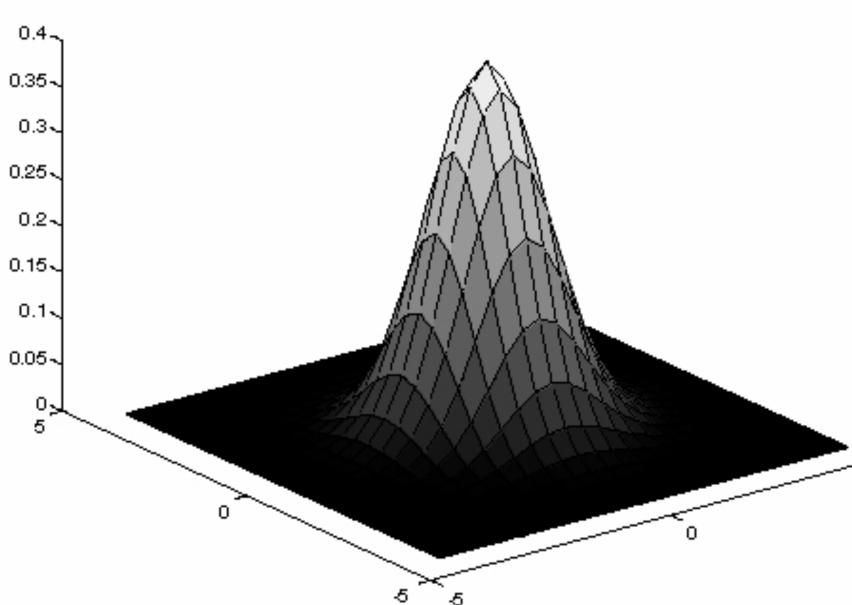
2D Gaussian (continuous case):

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x}{2}}$$

1. Define a continuous **2D function**

2. **Discretize it** by evaluating this function on the discrete pixel positions to obtain a filter





Forsyth & Ponce (2nd ed.) Figure 4.2

Quantized an truncated 3x3 Gaussian filter:

$G_{\sigma}(-1,1)$	$G_{\sigma}(0,1)$	$G_{\sigma}(1,1)$
$G_{\sigma}(-1,0)$	$G_{\sigma}(0,0)$	$G_{\sigma}(1,0)$
$G_{\sigma}(-1,-1)$	$G_{\sigma}(0,-1)$	$G_{\sigma}(1,-1)$

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2$$

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{1}{2\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \exp^{-\frac{2}{2\sigma^{2}}} = \frac{$$

With $\sigma = 1$:

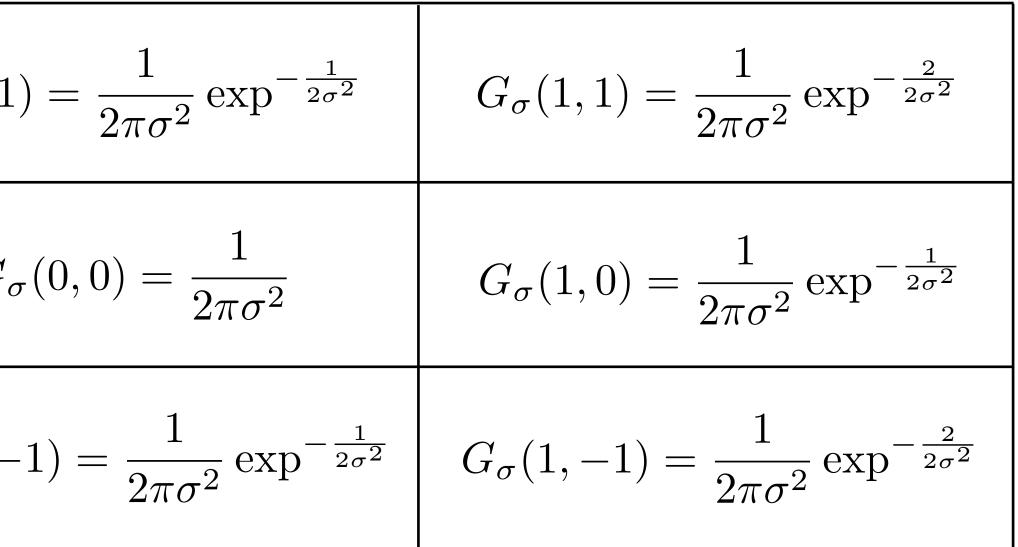
0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Quantized an truncated 3x3 Gaussian filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

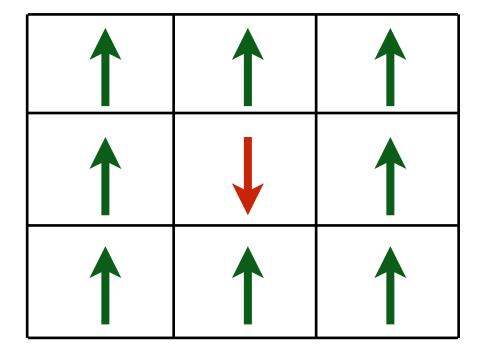


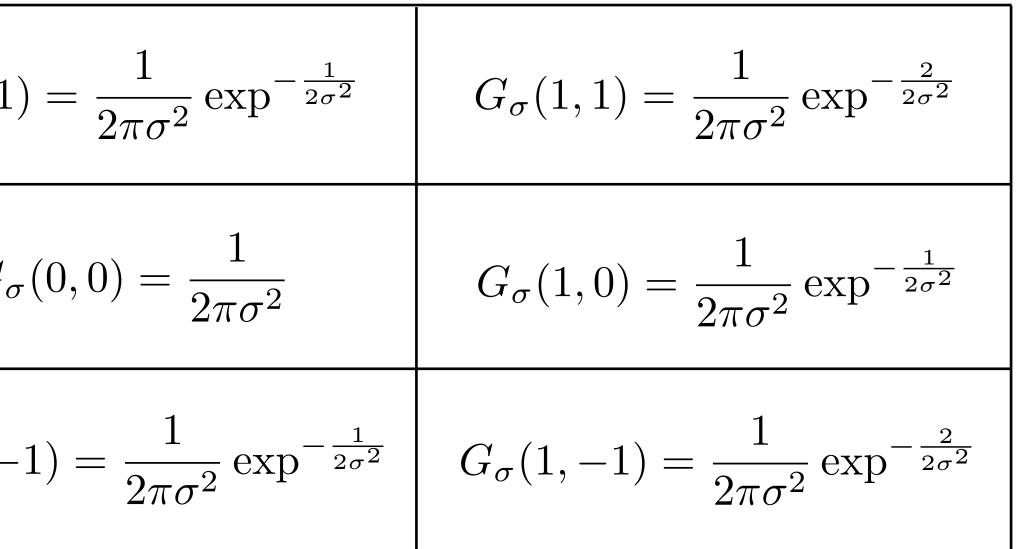
What happens if σ is larger?

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:





What happens if σ is larger?

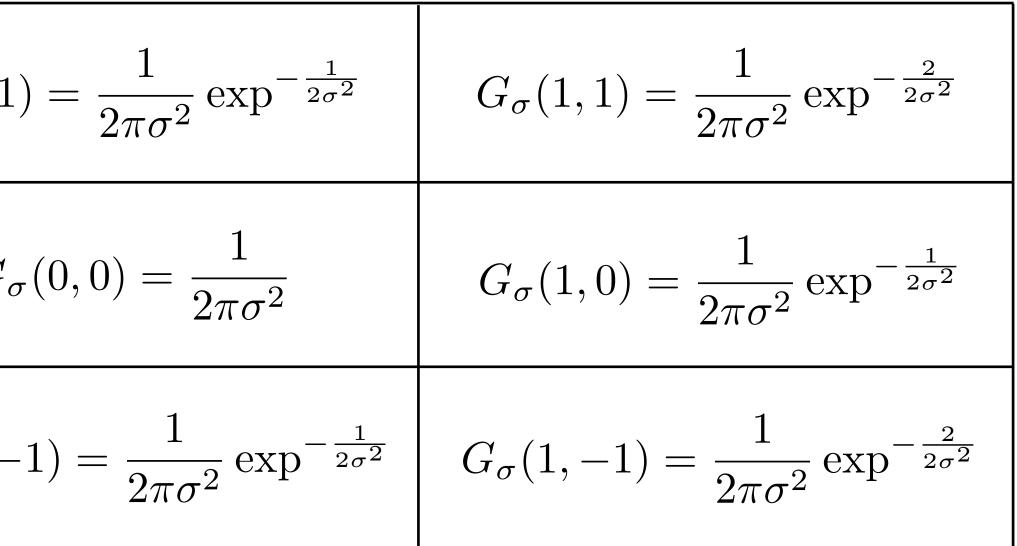
- More blur

Quantized an truncated 3x3 Gaussian filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059



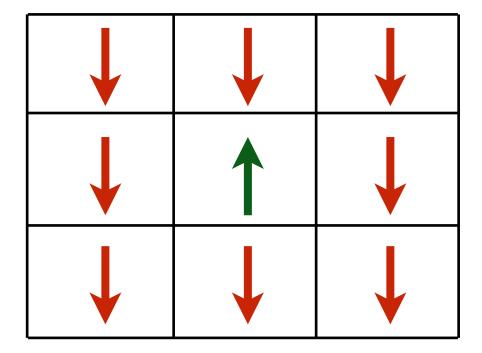
What happens if σ is larger?

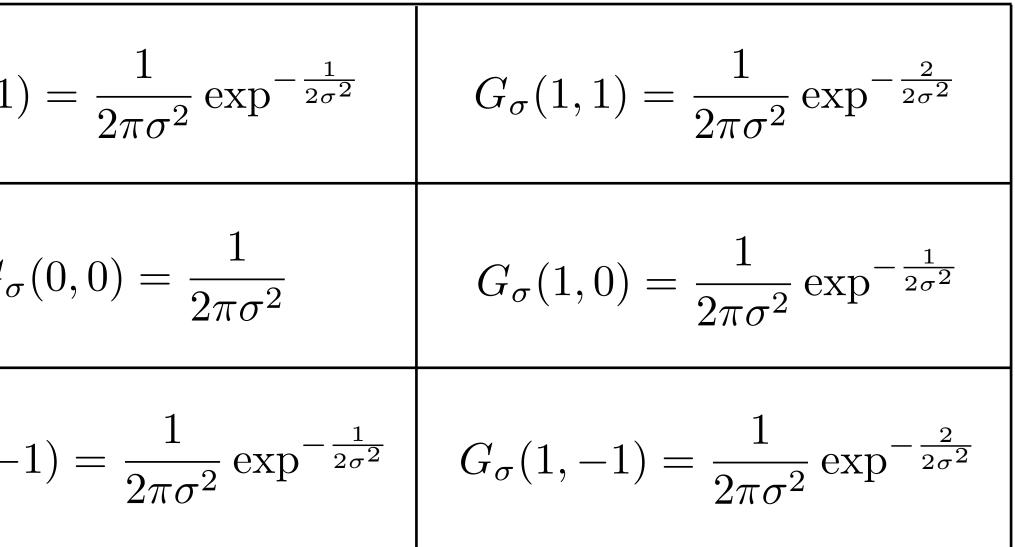
What happens if σ is smaller?

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:





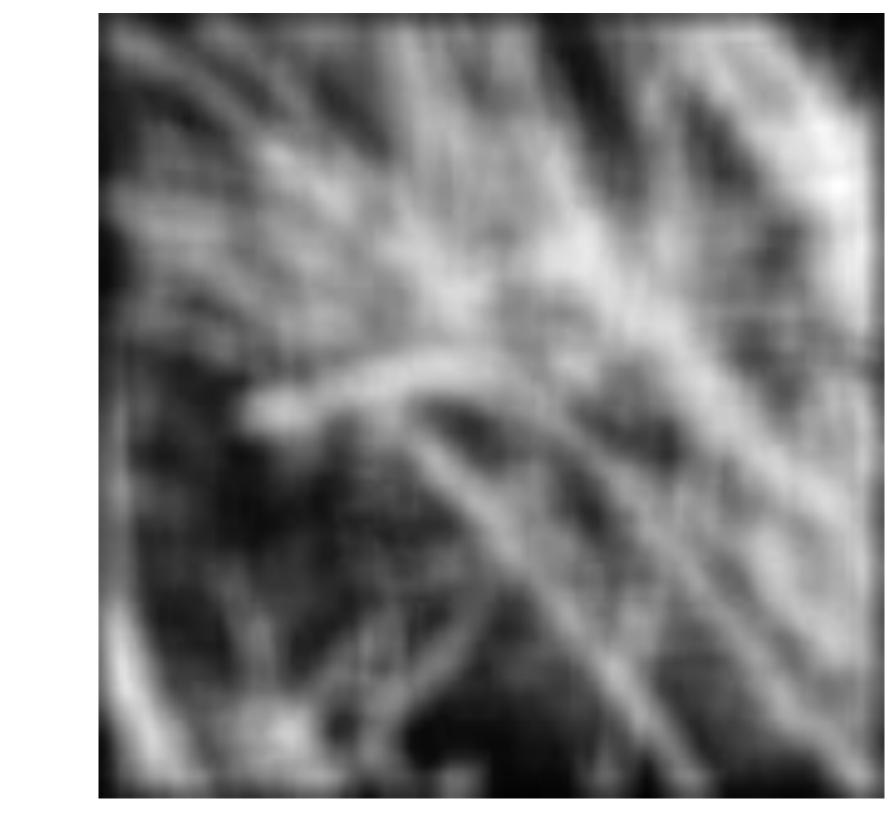
What happens if σ is larger?

What happens if σ is smaller?

Less blur _____

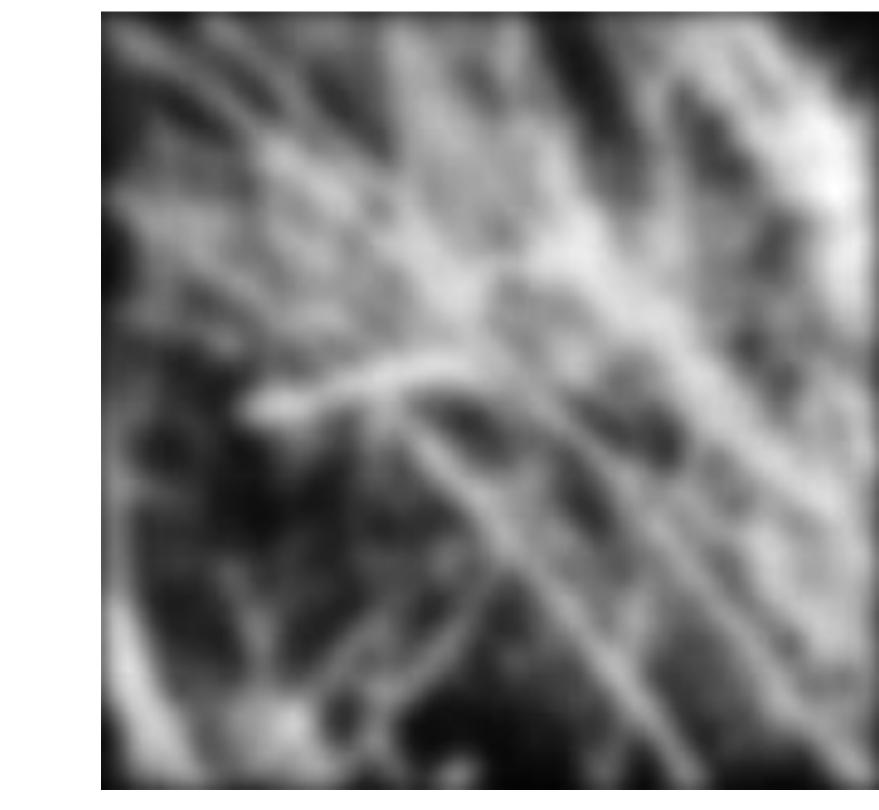
Smoothing with a **Box Filter**

Forsyth & Ponce (2nd ed.) Figure 4.1 (left and middle)

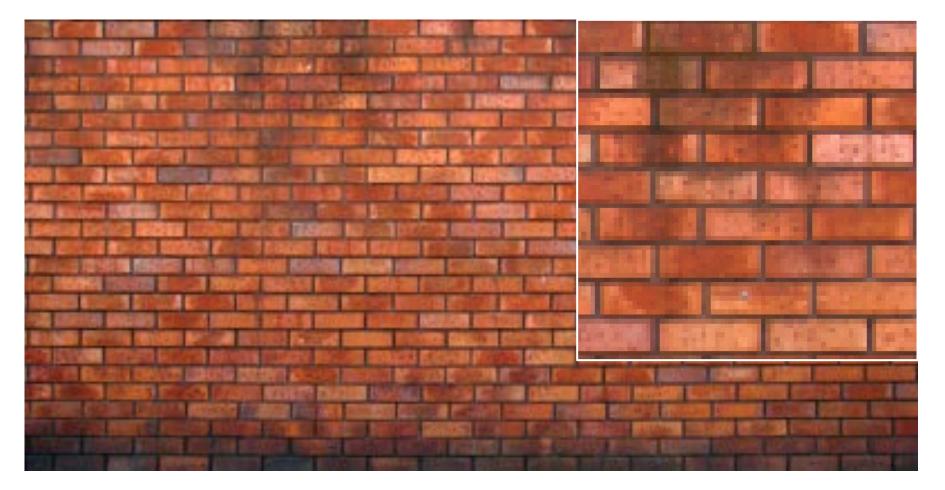


Smoothing with a Gaussian

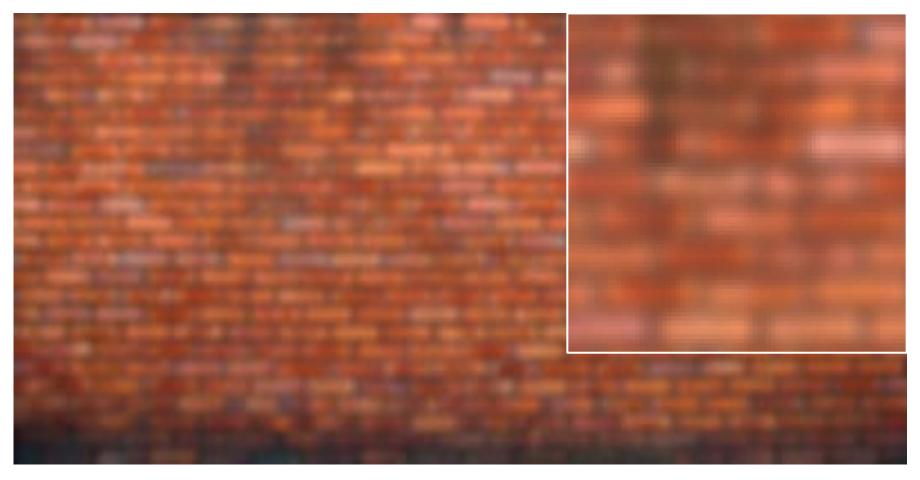
Forsyth & Ponce (2nd ed.) Figure 4.1 (left and right)



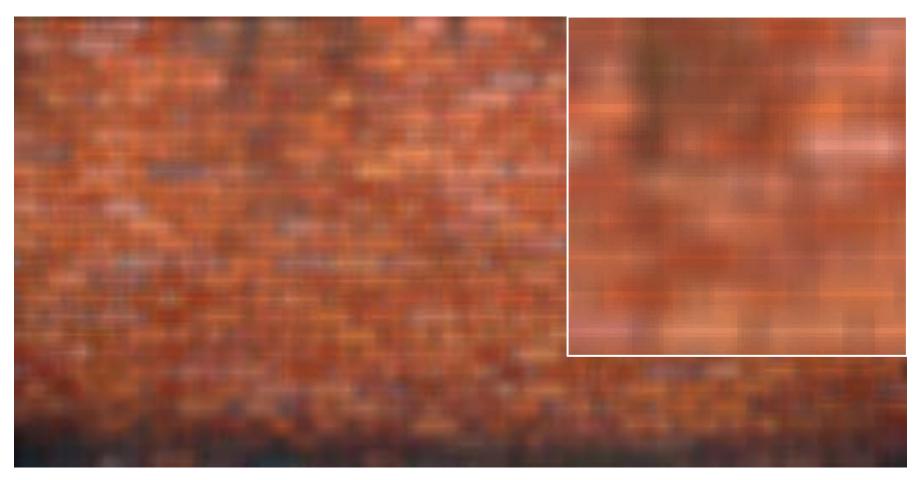
Box vs. Gaussian Filter



original



7x7 Gaussian



7x7 box

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

University of British Columbia

Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Fun: How to get shadow effect?

Blur with a Gaussian kernel, then compose the blurred image with the original (with some offset)

University of British Columbia

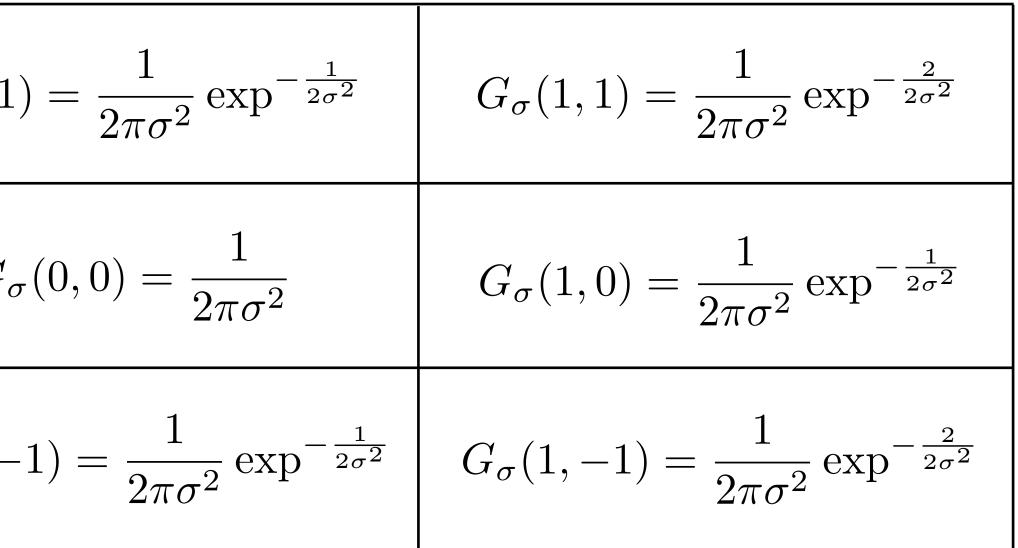
Adopted from: Ioannis (Yannis) Gkioulekas (CMU)

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059



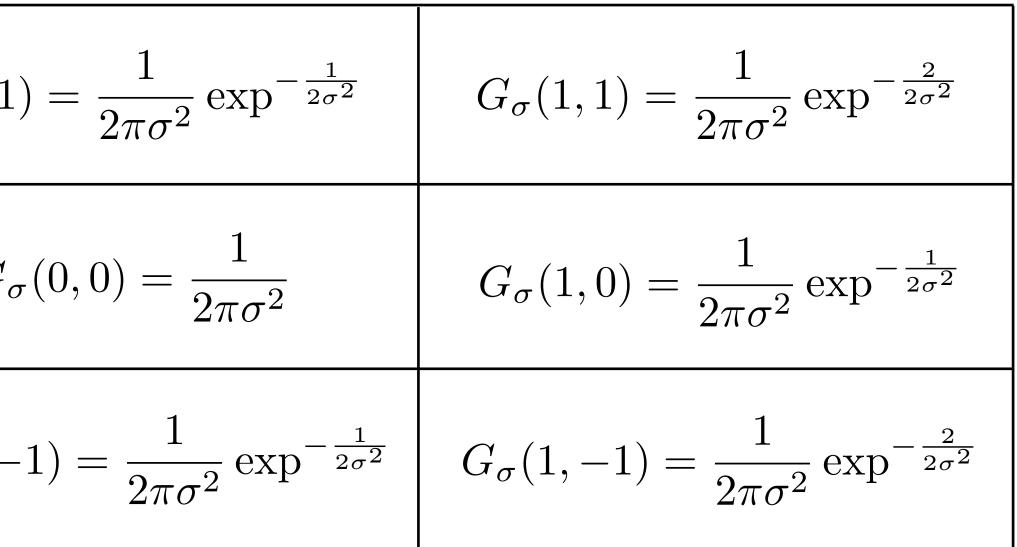
What is the problem with this filter?

Quantized an truncated **3x3 Gaussian** filter:

$$G_{\sigma}(-1,1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,1)$$
$$G_{\sigma}(-1,0) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{1}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$
$$G_{\sigma}(-1,-1) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{2}{2\sigma^{2}}} \qquad G_{\sigma}(0,-1)$$

With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

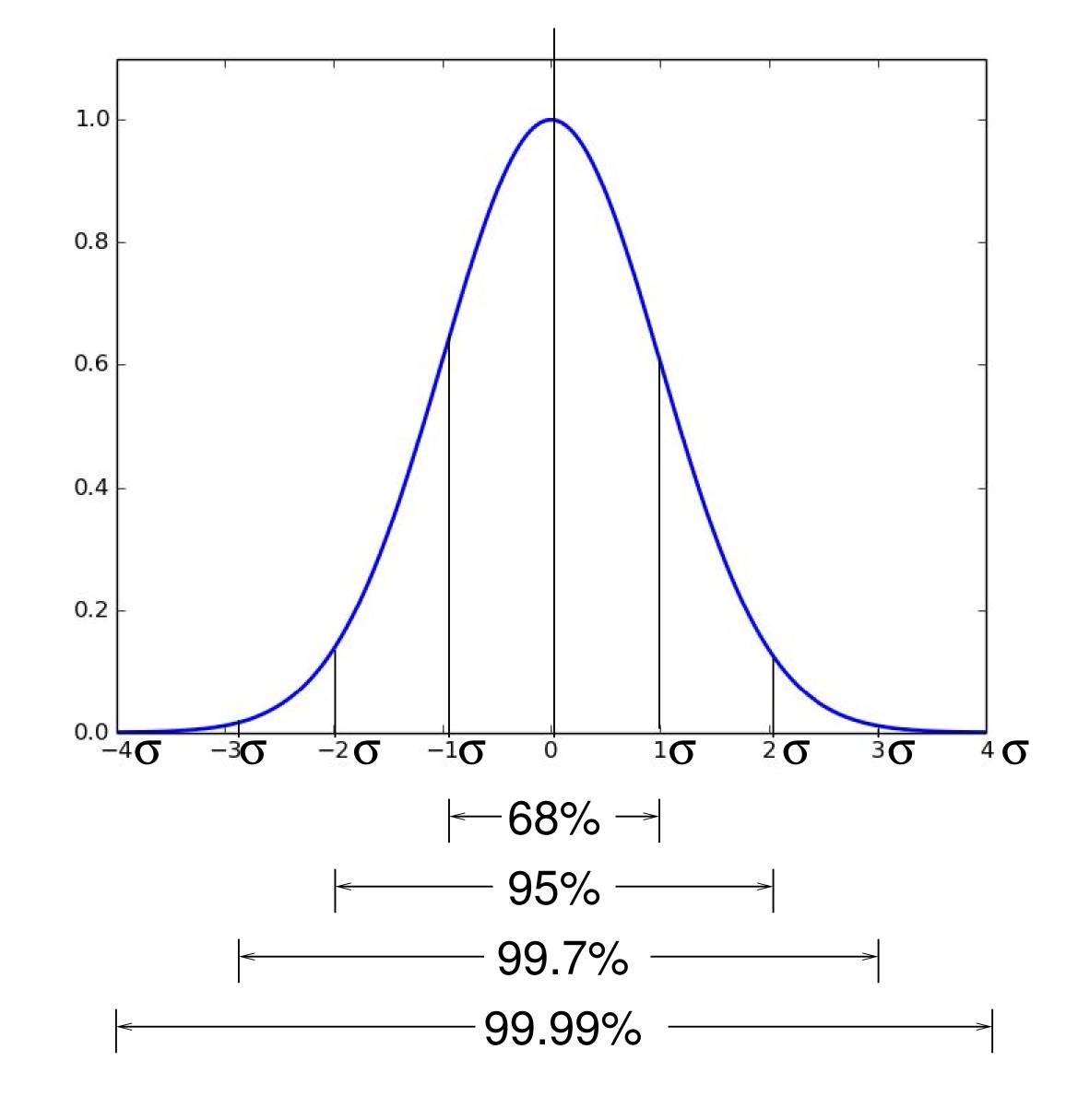


What is the problem with this filter?

does not sum to 1

truncated too much

Gaussian: Area Under the Curve



With $\sigma = 1$:

0.059	0.097	0.059
0.097	0.159	0.097
0.059	0.097	0.059

Better version of the Gaussian filter:

- sums to 1 (normalized)
- captures $\pm 2\sigma$

A good guideline for the Gaussian filter is to capture $\pm 3\sigma$, for $\sigma = 1 => 7$ x7 filter

	1	4	7	4	
	4	16	26	16	4
1 273	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Smoothing Summary

Smoothing with a box **doesn't model lens defocus** well Smoothing with a box filter depends on direction Point spread function is a box

Smoothing with a (circular) **pillbox** is a better model for defocus (in geometric optics)

The Gaussian is a good general smoothing model — for phenomena (that are the sum of other small effects) — whenever the Central Limit Theorem applies (avg of many independent rvs → normal dist)

Lets talk about efficiency

Efficient Implementation: Separability

A 2D function of x and y is **separable** if it can be written as the product of two functions, one a function only of x and the other a function only of y

Both the 2D box filter and the 2D Gaussian filter are separable

Both can be implemented as two 1D convolutions:

- First, convolve each row with a 1D filter
- Then, convolve each column with a 1D filter
- Aside: or vice versa

The **2D** Gaussian is the only (non trivial) 2D function that is both separable and rotationally invariant.

Separability: Box Filter Example

 $\frac{1}{9}$

1

Standard (3x3)

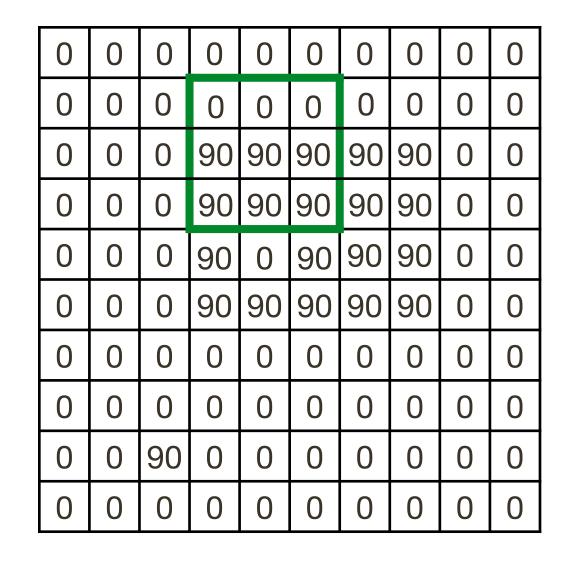
_										
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

F(X,Y) = F(X)F(Y)
filter
1 1 1

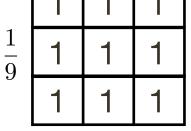
0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
0	10	20	30	30	30	20	10
10	10	10	10	0	0	0	0
10	30	10	10	0	0	0	0

Separability: Box Filter Example

Standard (3x3)



F(X,Y) = F(X)F(Y)filter $1 \quad 1 \quad 1$



parable

				I (X	~ ·	\overline{V})				
image $I(X, Y)$												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

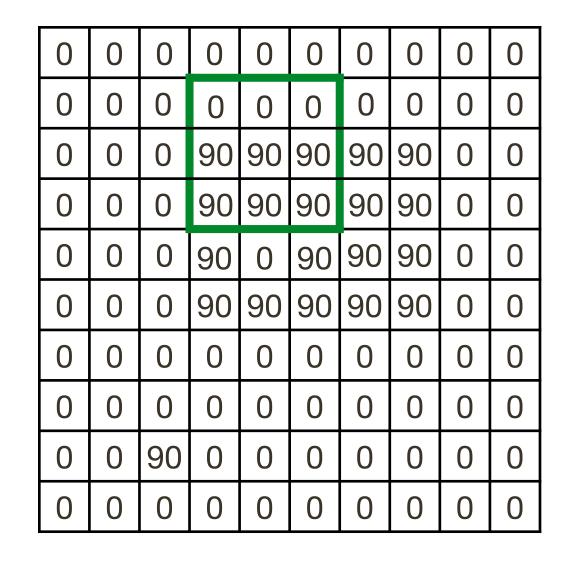
F(X) filter

0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	30	60	90	90	90	60	30	
0	30	60	90	90	90	60	30	
0	30	30	60	60	90	60	30	
0	30	60	90	90	90	60	30	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
30	30	30	30	0	0	0	0	
0	0	0	0	0	0	0	0	

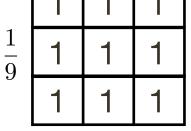
0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
0	10	20	30	30	30	20	10
10	10	10	10	0	0	0	0
10	30	10	10	0	0	0	0

Separability: Box Filter Example

Standard (3x3)



F(X,Y) = F(X)F(Y)filter $1 \quad 1 \quad 1$



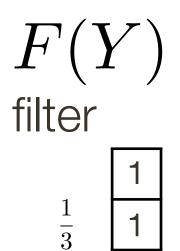
parable

image $I(X, Y)$													
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

F(X) filter

0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	30	60	90	90	90	60	30	
0	30	60	90	90	90	60	30	
0	30	30	60	60	90	60	30	
0	30	60	90	90	90	60	30	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
30	30	30	30	0	0	0	0	
0	0	0	0	0	0	0	0	

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
0	10	20	30	30	30	20	10
10	10	10	10	0	0	0	0
10	30	10	10	0	0	0	0

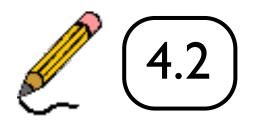


output I'(X,Y)

0	10	20	30	30	30	20	10
0	20	40	60	60	60	40	20
0	30	50	80	80	90	60	30
0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20
0	10	20	30	30	30	20	10
10	10	10	10	0	0	0	0
10	30	10	10	0	0	0	0

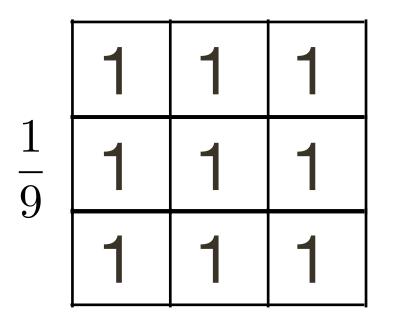
Separability: Proof

Convolution with F(X, Y) = F(X)F(Y) can be performed as 2 x 1D convolutions

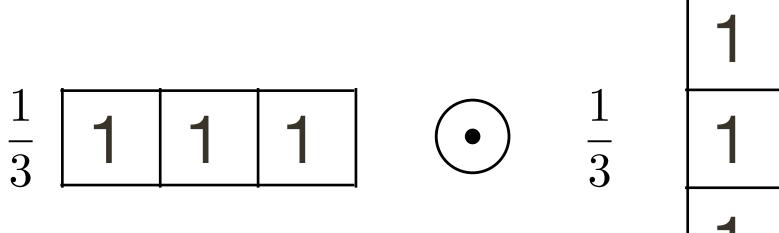


Separability: How do you know if filter is separable?

If a 2D filter can be expressed as an outer product of two 1D filters



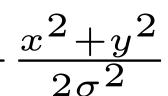
=



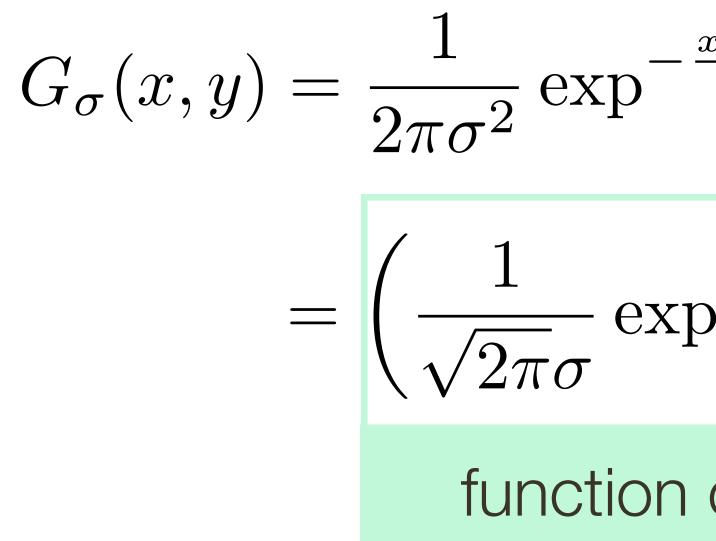
For example, recall the 2D Gaussian:

 $G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y



For example, recall the 2D Gaussian



The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

$$\frac{x^2 + y^2}{2\sigma^2}$$

$$p^{-\frac{x^2}{2\sigma^2}} \int \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

n of x function of y

For example, recall the 2D Gaussian

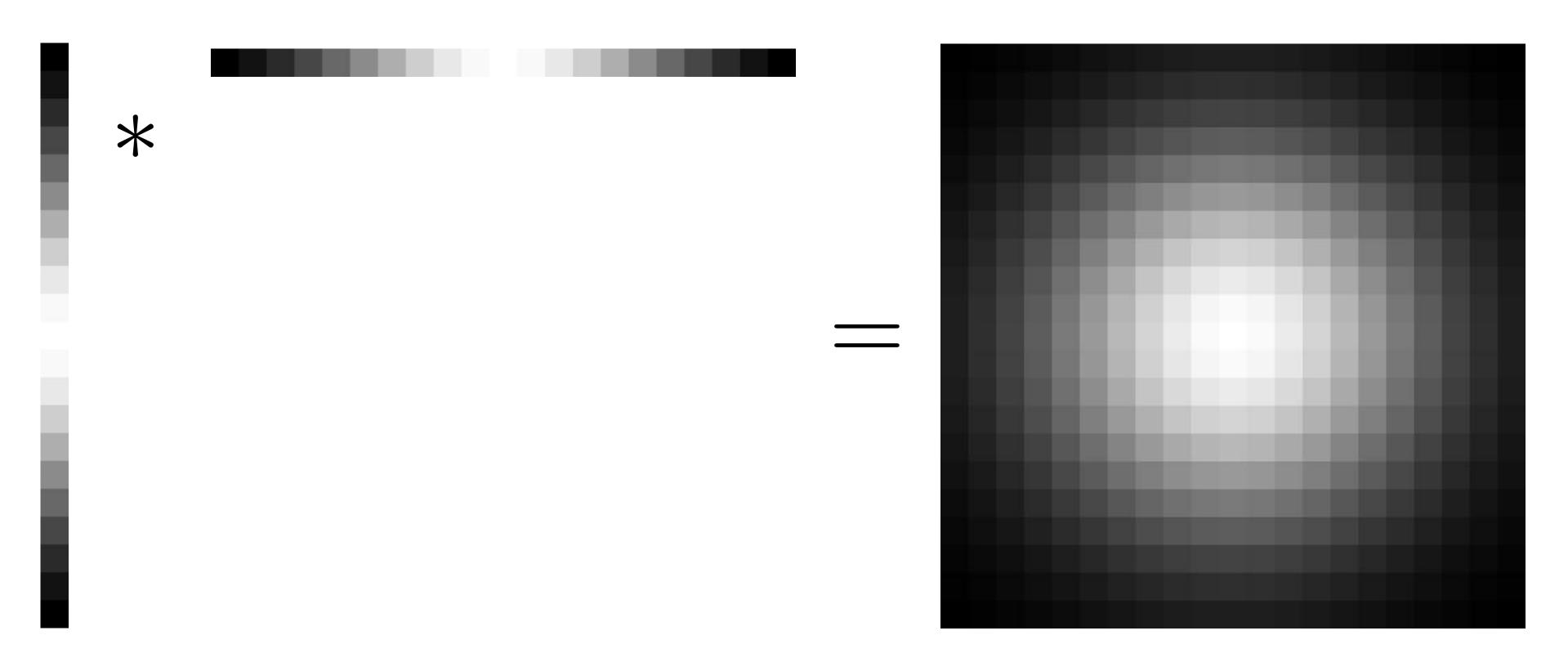
$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$
function of x function of y

The 2D Gaussian can be expressed as a product of two functions, one a function of x and another a function of y

In this case the two functions are (identical) 1D Gaussians

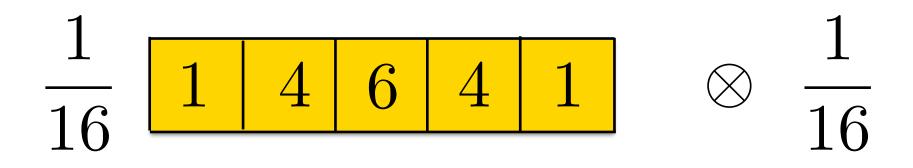
Gaussian Blur

2D Gaussian filter can be thought of a row and column filters



2D Gaussian filter can be thought of as an outer product or convolution of

Example: Separable Gaussian Filter



 $1 \\
 4 \\
 6 \\
 4 \\
 1$

 $\overline{256}$

Naive implementation of 2D Gaussian:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

There are

Total:

Separable 2D Gaussian:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

$m^2 \times n^2$ multiplications

Naive implementation of 2D Gaussian:

There are

Total:

Separable 2D Gaussian:

There are

Total:

At each pixel, (X, Y), there are $m \times m$ multiplications

 $n \times n$ pixels in (X, Y)

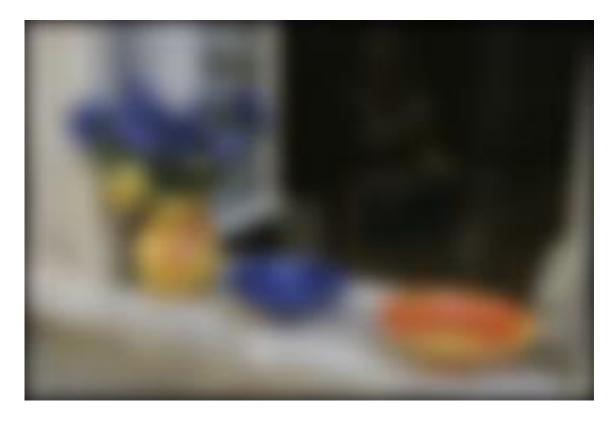
$m^2 \times n^2$ multiplications

At each pixel, (X, Y), there are 2m multiplications $n \times n$ pixels in (X, Y)

 $2m \times n^2$ multiplications

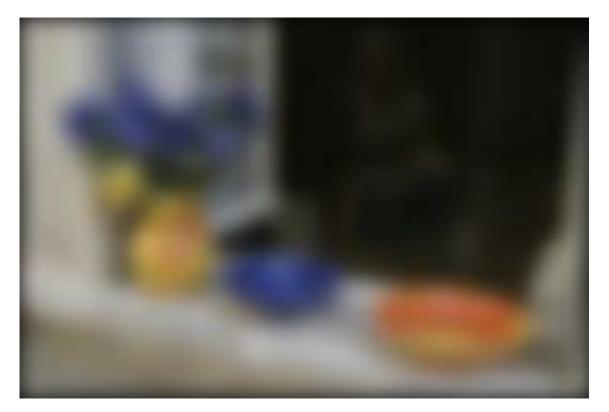
Separable Filtering

2D Gaussian blur by horizontal/vertical blur



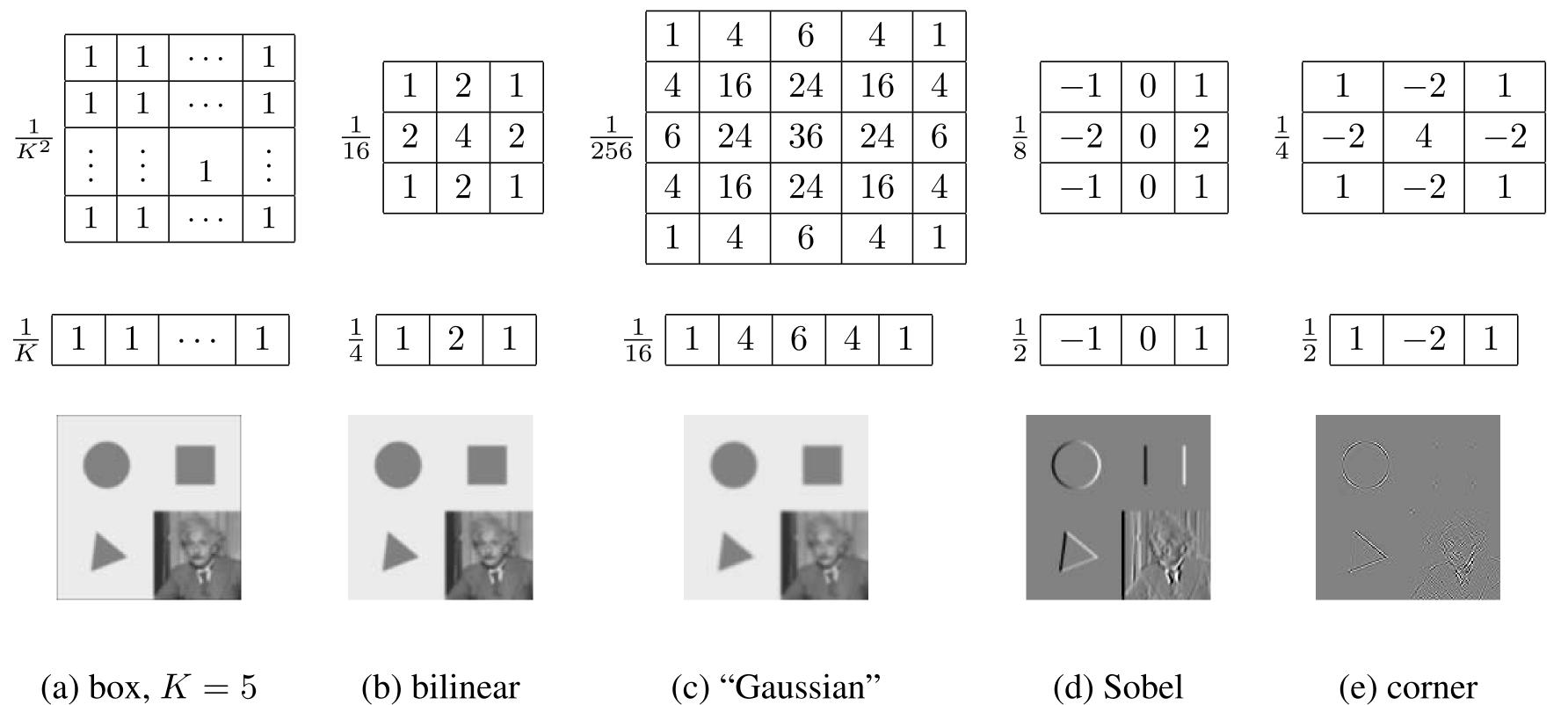
horizontal

vertical



horizontal

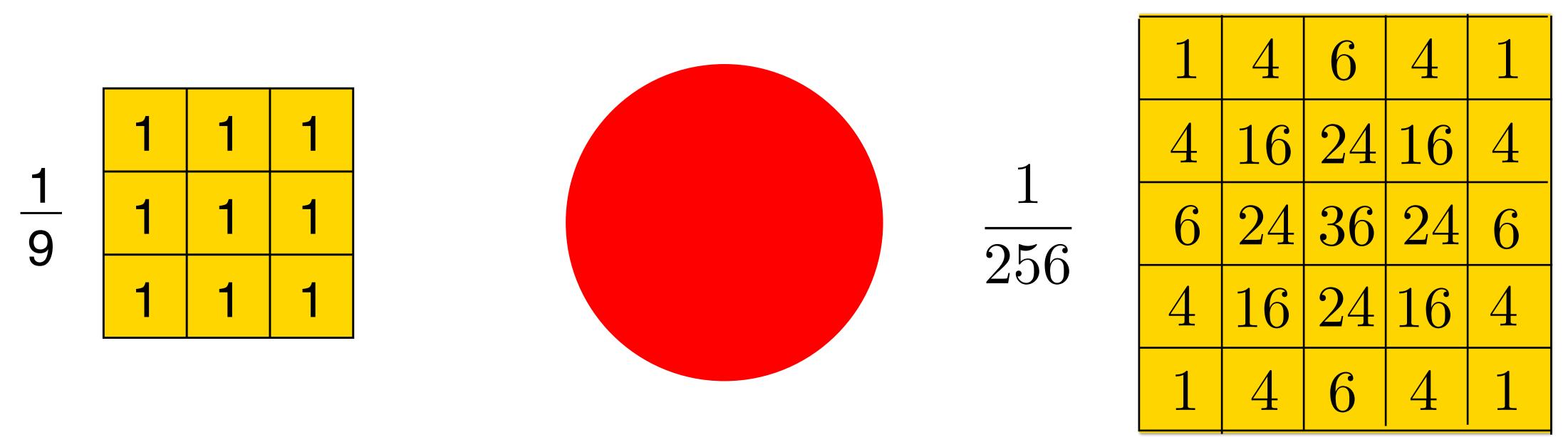
Separable Filtering



(a) box, K = 5

Several useful filters can be applied as independent row and column operations

Low-pass Filtering = "Smoothing"

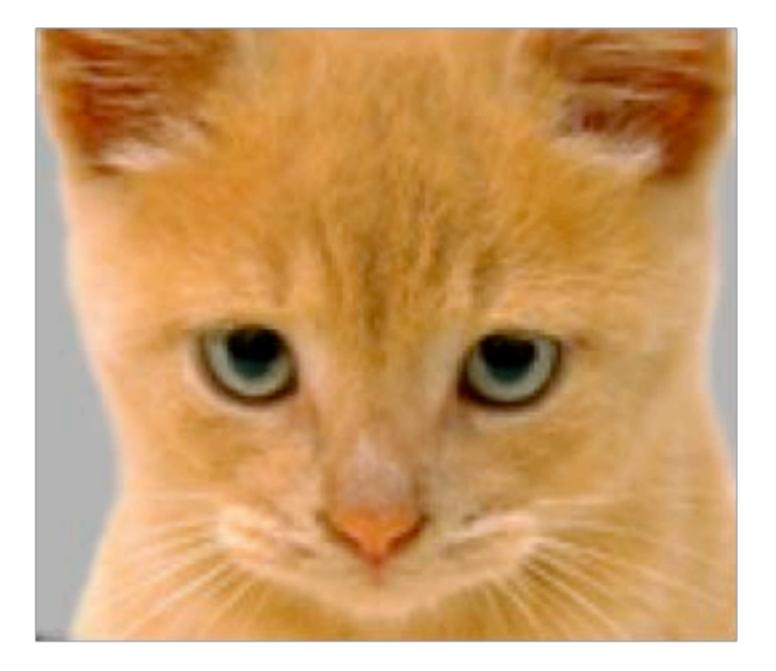


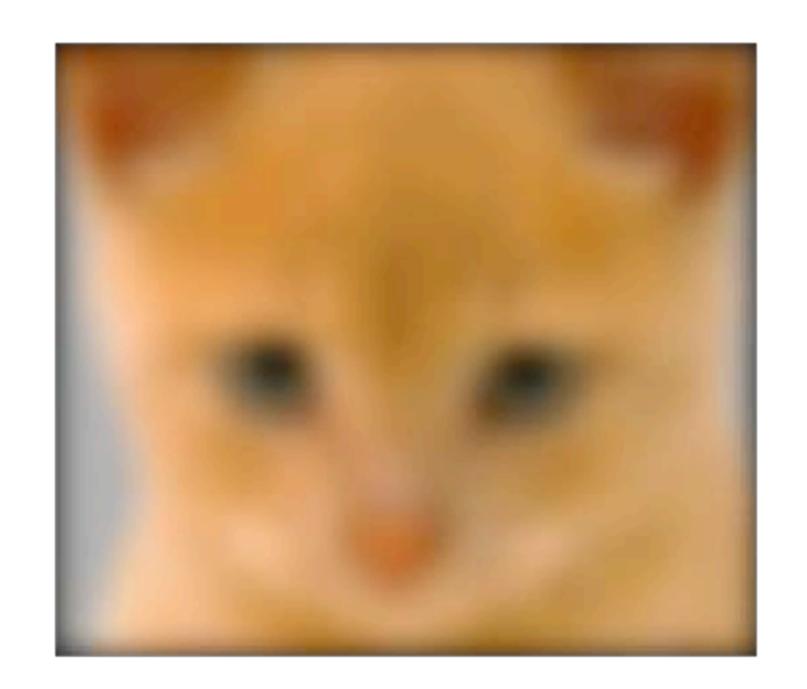
All of these filters are **Low-pass Filters**

Low-pass filter: Low pass filter filters out all of the high frequency content of the image, only low frequencies remain

Gaussian Filter

Assignment 1: Low/High Pass Filtering





Original

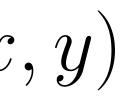
I(x, y)

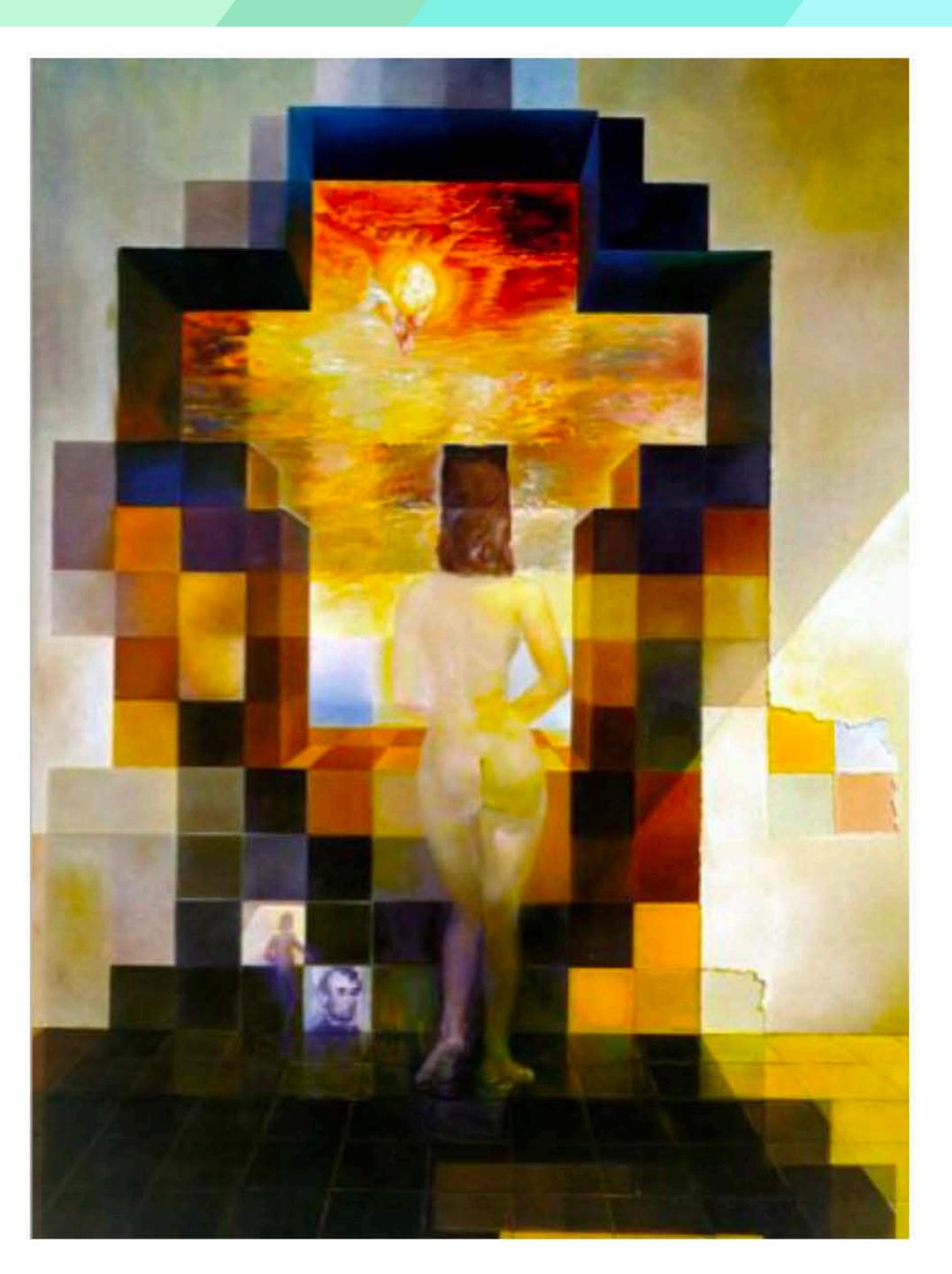
I(x, y) * g(x, y)

Low-Pass Filter

High-Pass Filter

I(x, y) - I(x, y) * g(x, y)

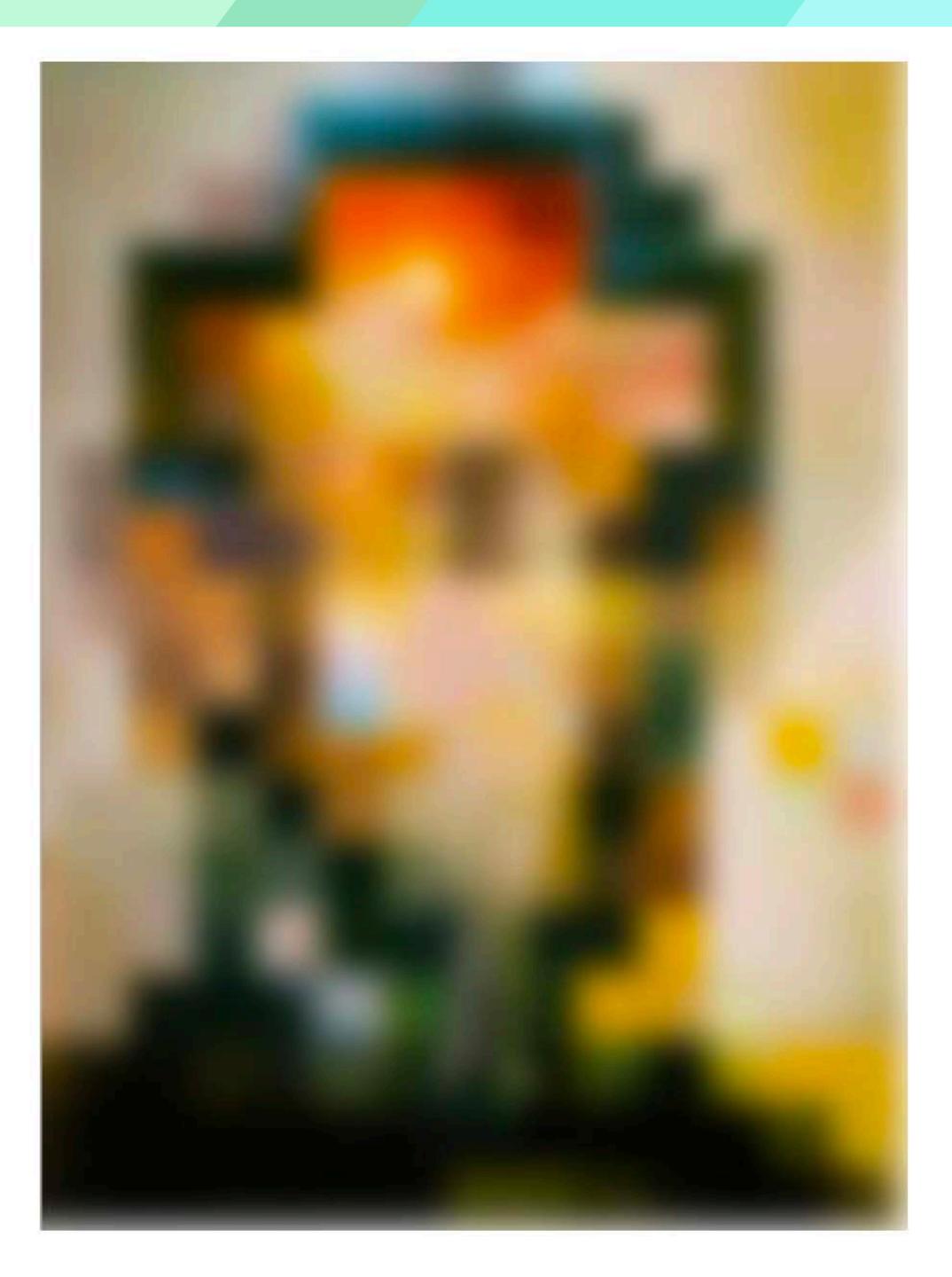




Gala Contemplating the Mediterranean Sea Which at Twenty Meters Becomes the Portrait of Abraham Lincoln (Homage to Rothko)

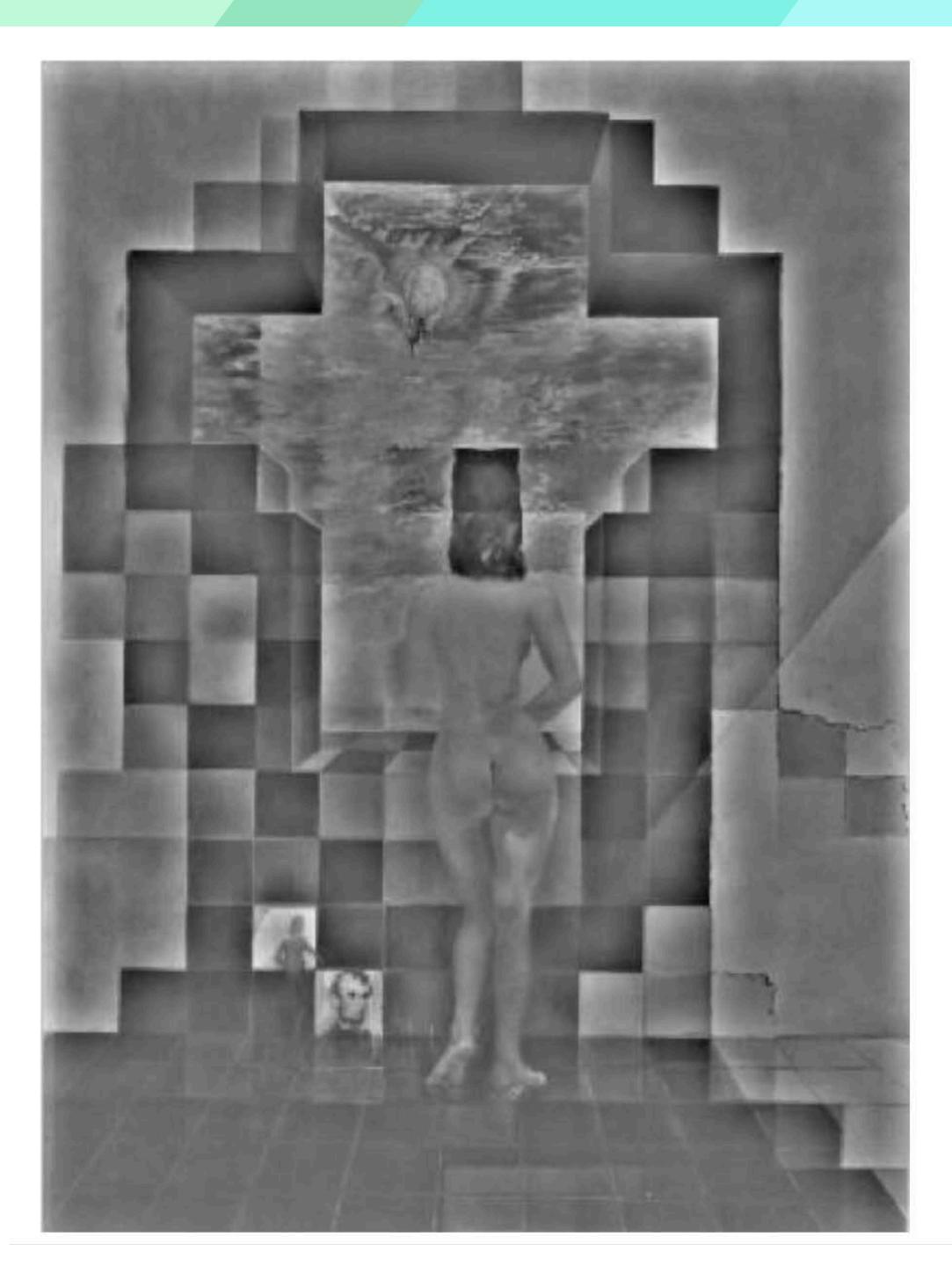
Salvador Dali, 1976

 \sim



Low-pass filtered version

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



High-pass filtered version

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)