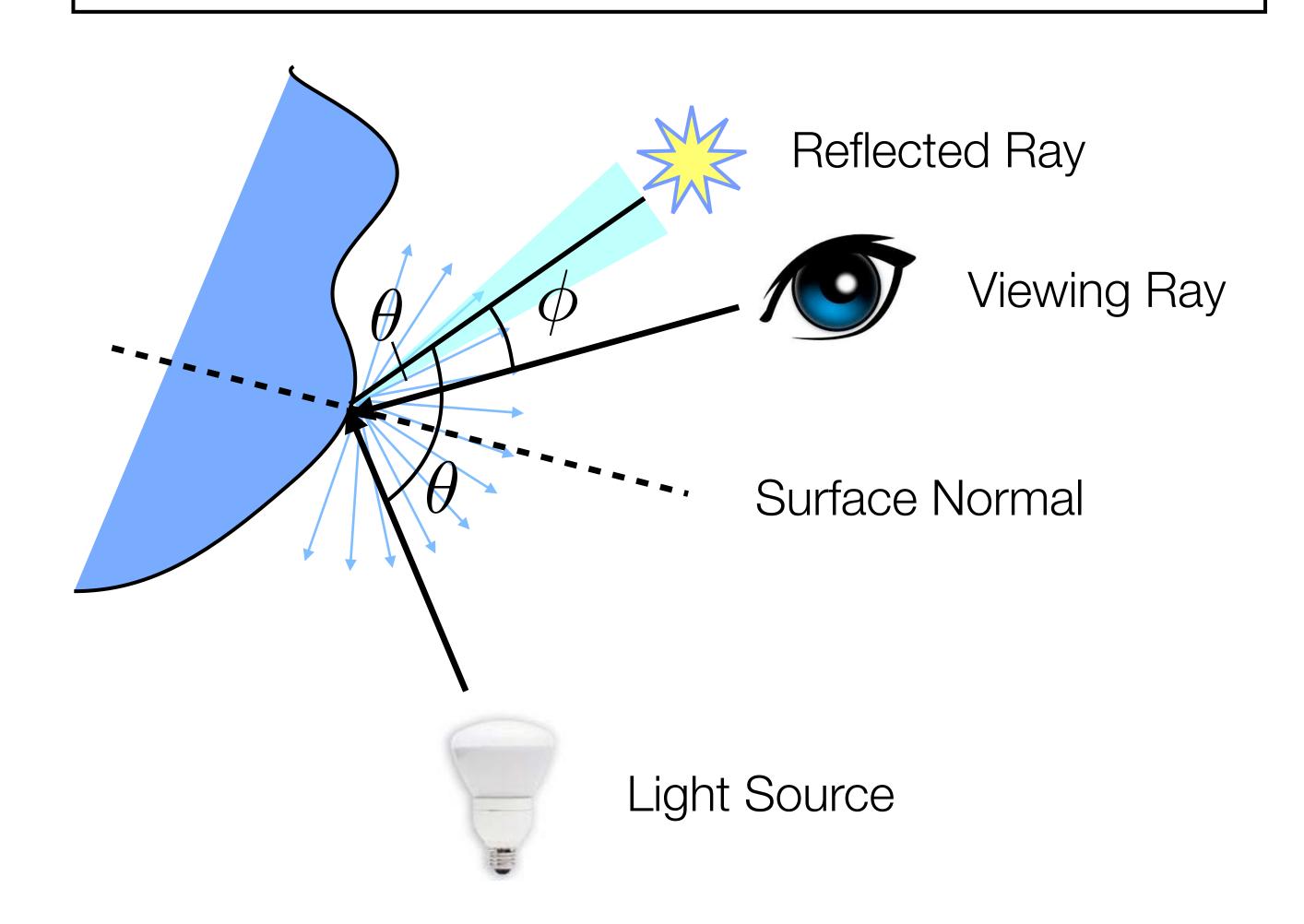
Lecture 1 Recap

Phong Illumination Model

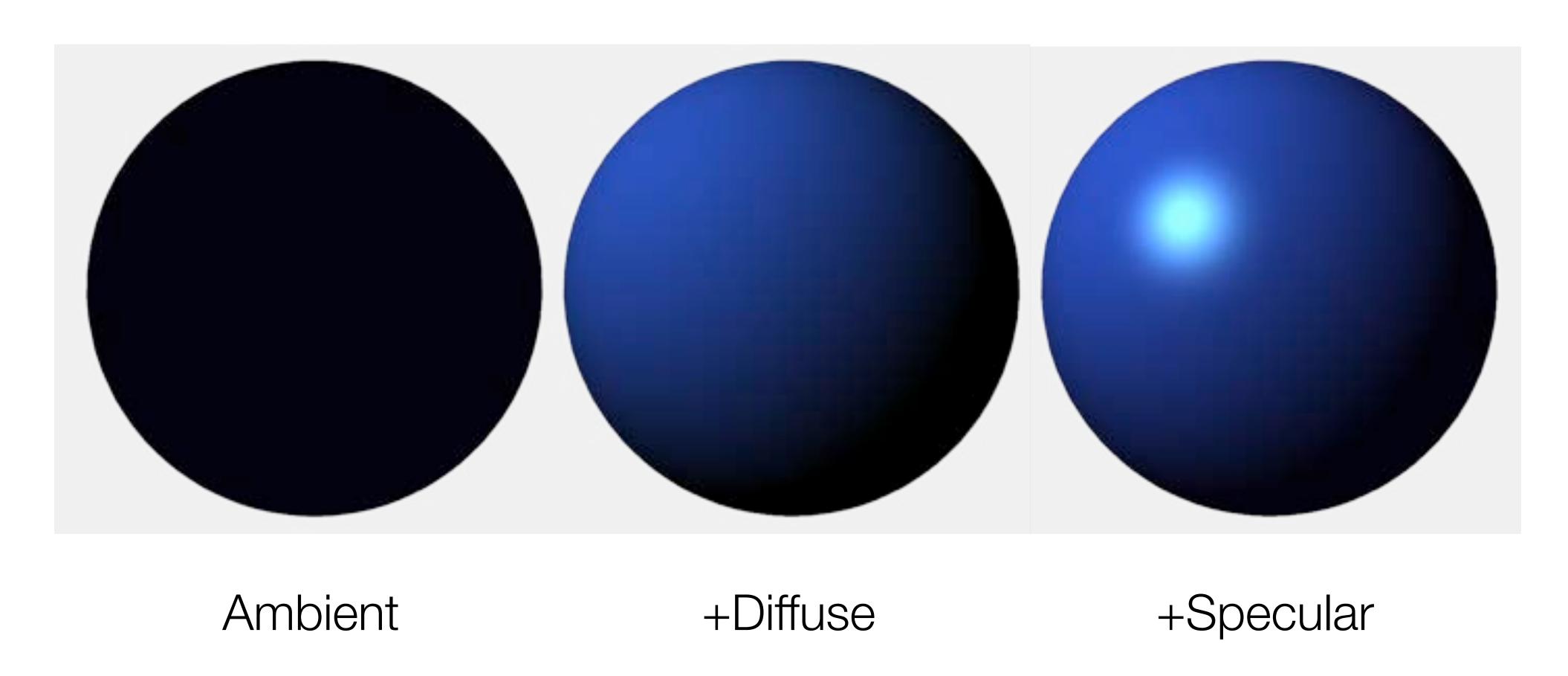
Includes ambient, diffuse and specular reflection

$$I = k_a i_a + k_d i_d \cos \theta + k_s i_s \cos^\alpha \phi$$



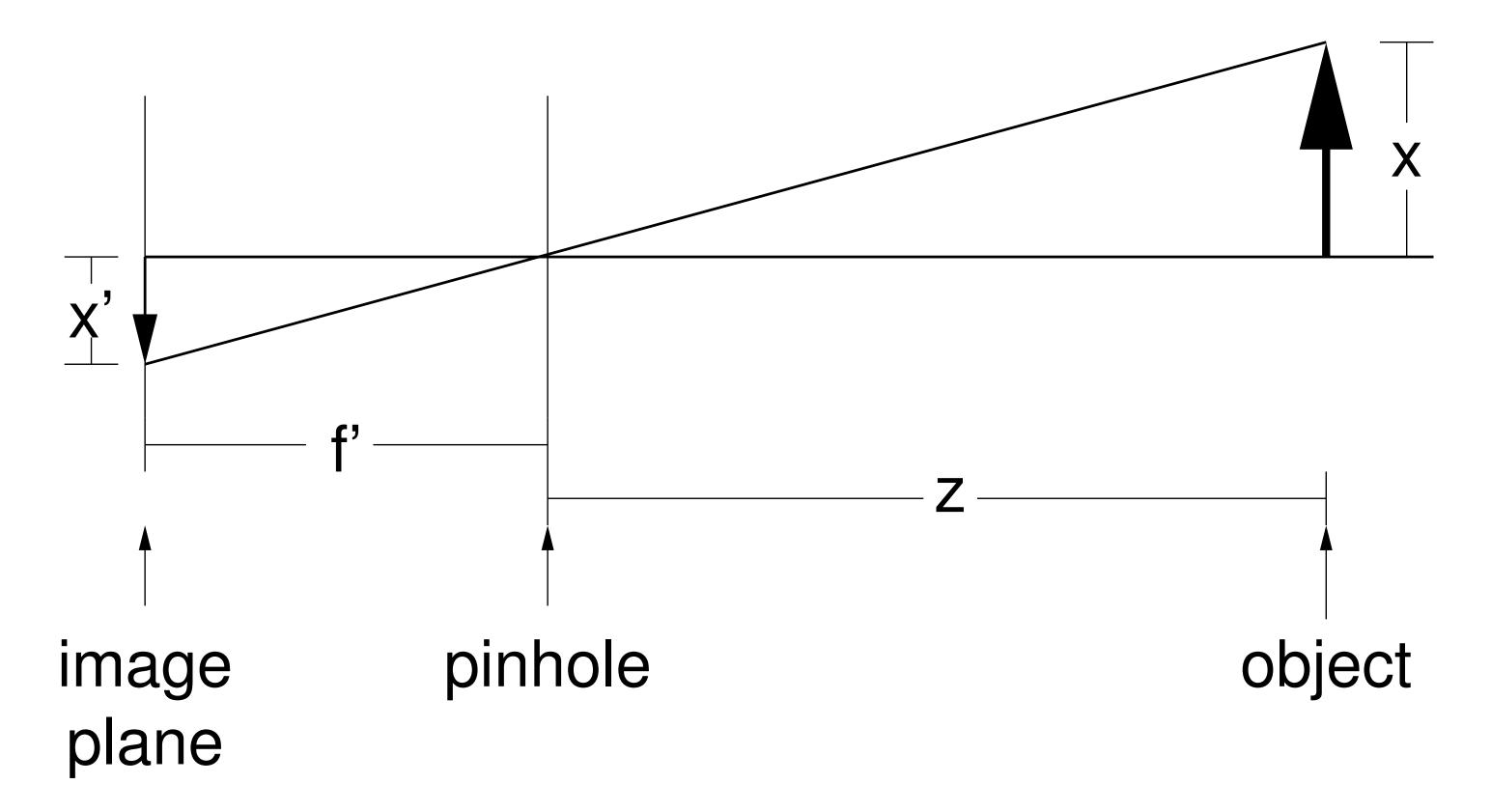
Diffuse and Specular Reflection

• A sphere lit with ambient, +diffuse, +specular reflectance



Pinhole Camera

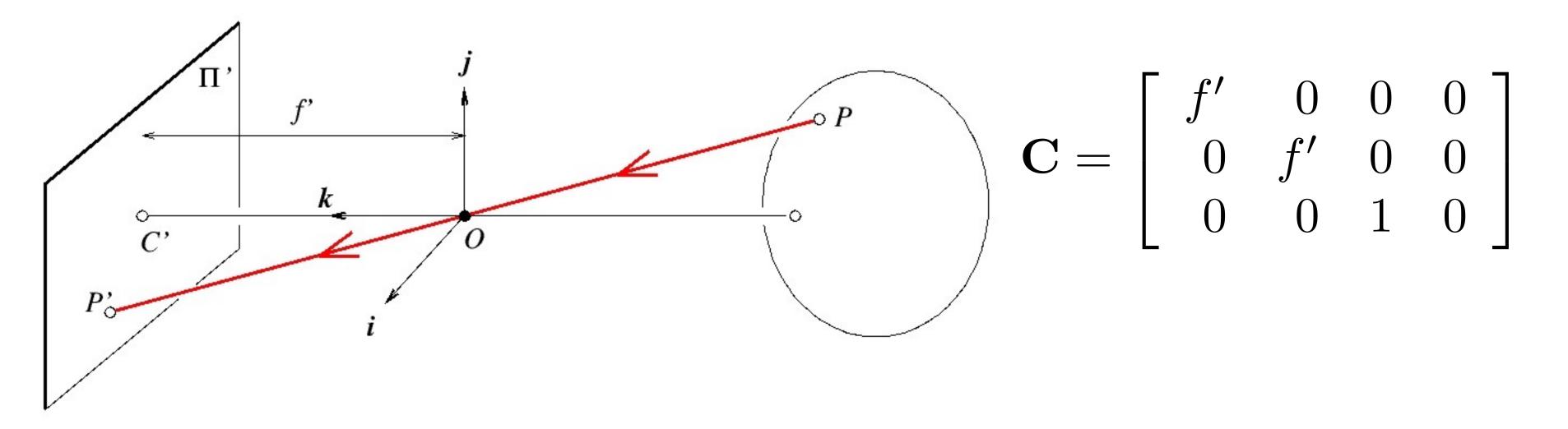
f' is the focal length of the camera



Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

Perspective Projection: Matrix Form

Camera Matrix



3D object point

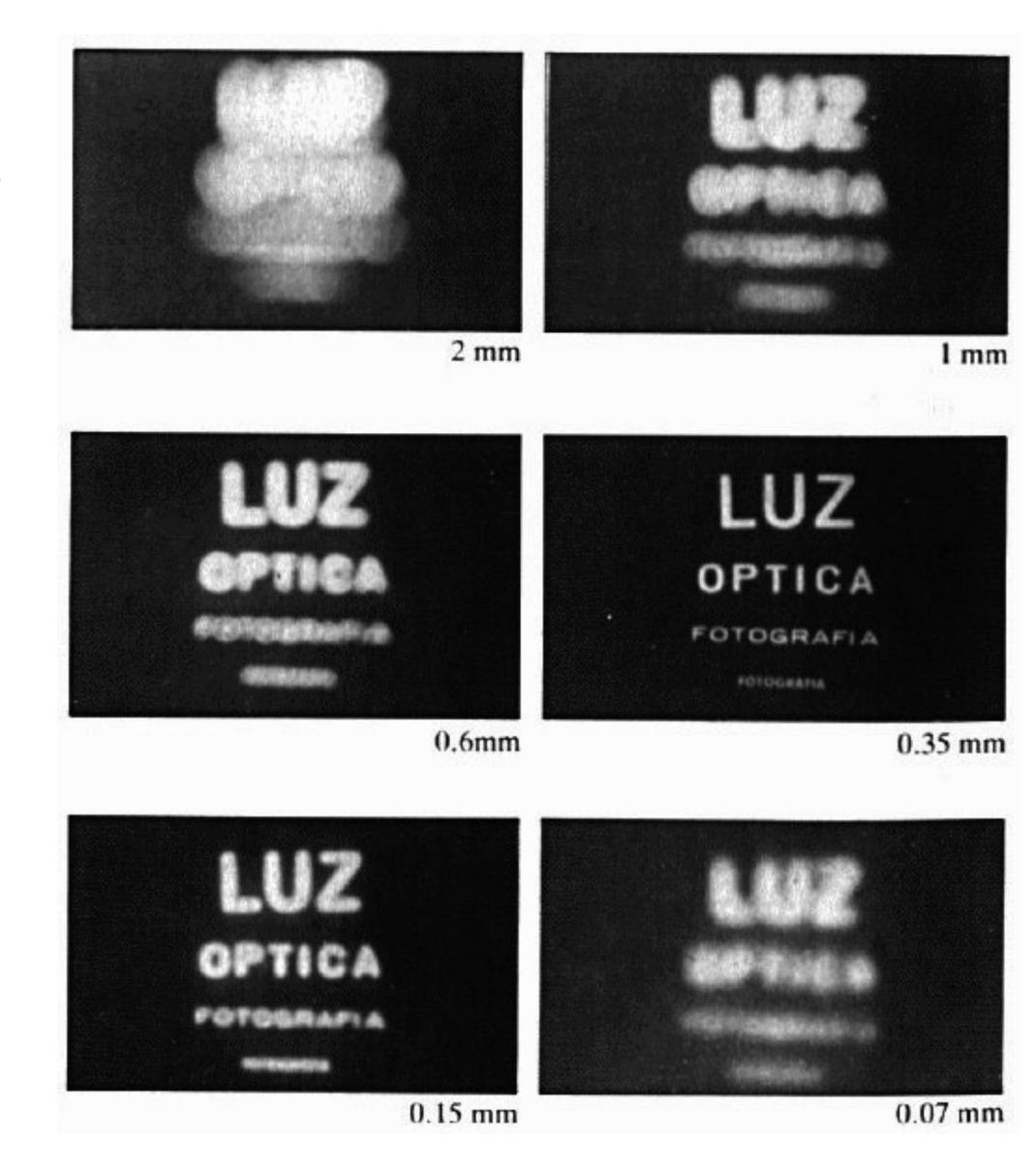
Forsyth & Ponce (1st ed.) Figure 1.4

$$P = \left[egin{array}{c} x \\ y \\ z \\ 1 \end{array}
ight]$$
 projects to 2D image point $P' = \left[egin{array}{c} x' \\ y' \\ 1 \end{array}
ight]$ where $\mathbb{C}P$

(s is a scale factor)

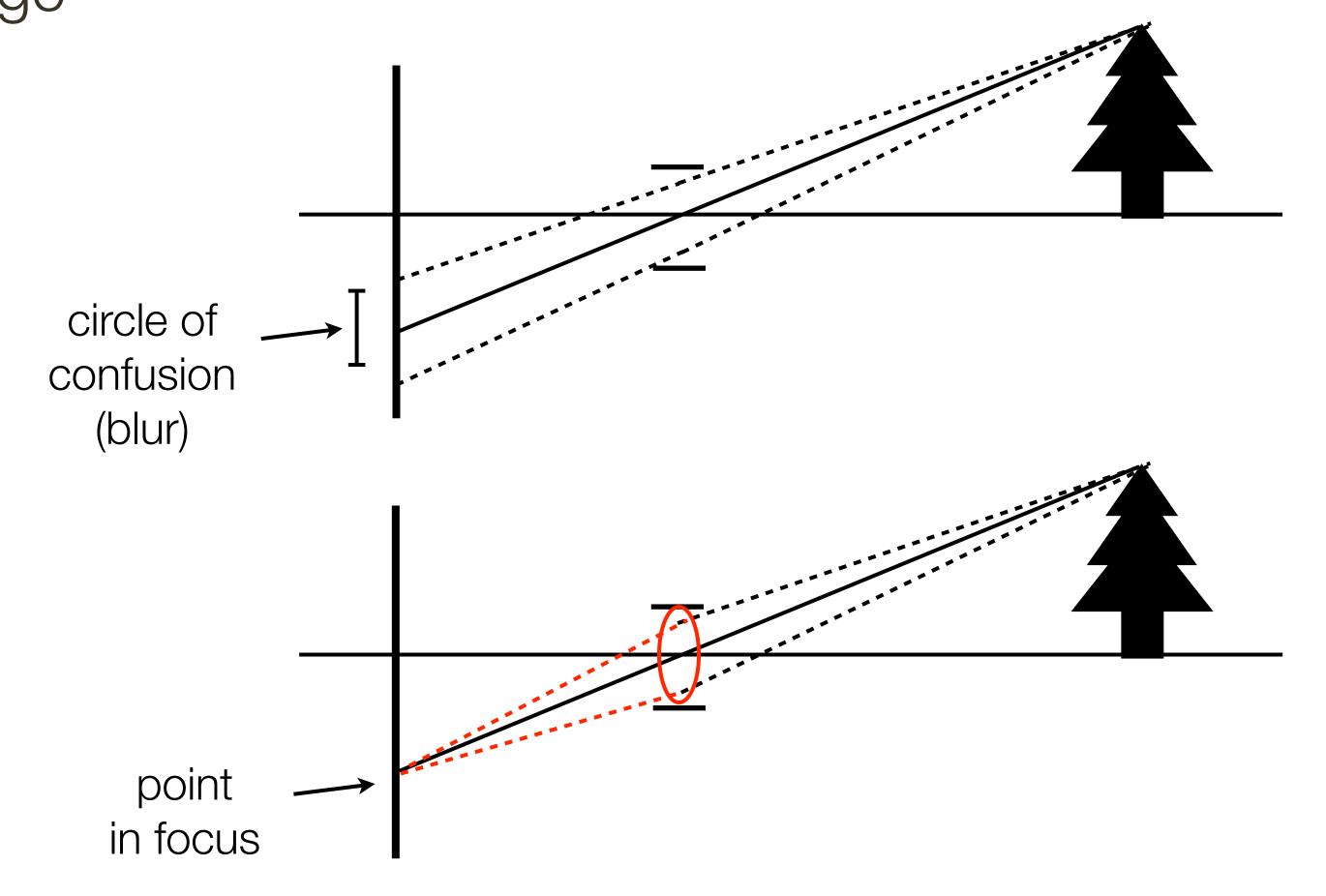
Why Not a Pinhole Camera?

- If pinhole is **too big** then many directions are averaged, blurring the image
- If pinhole is **too small** then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time



Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image



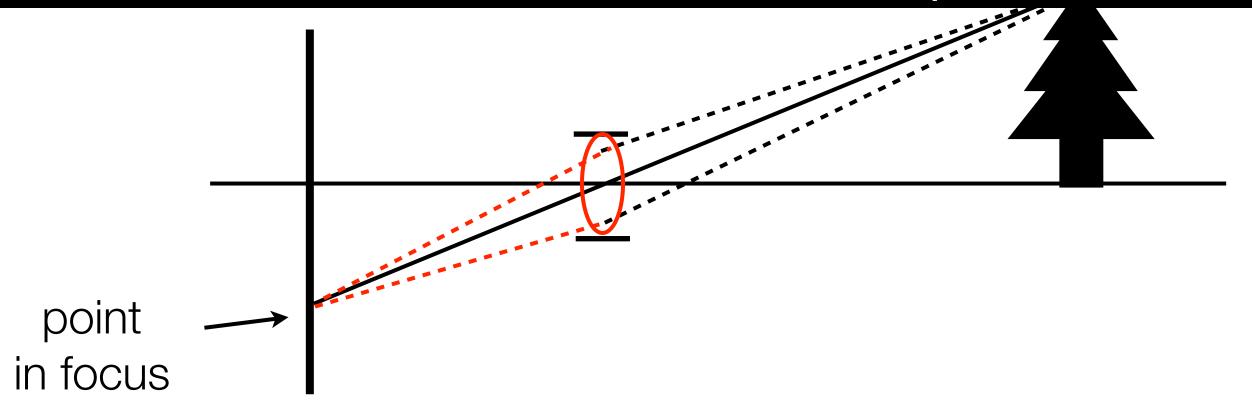
Solution: use a lens to focus light onto the image plane

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

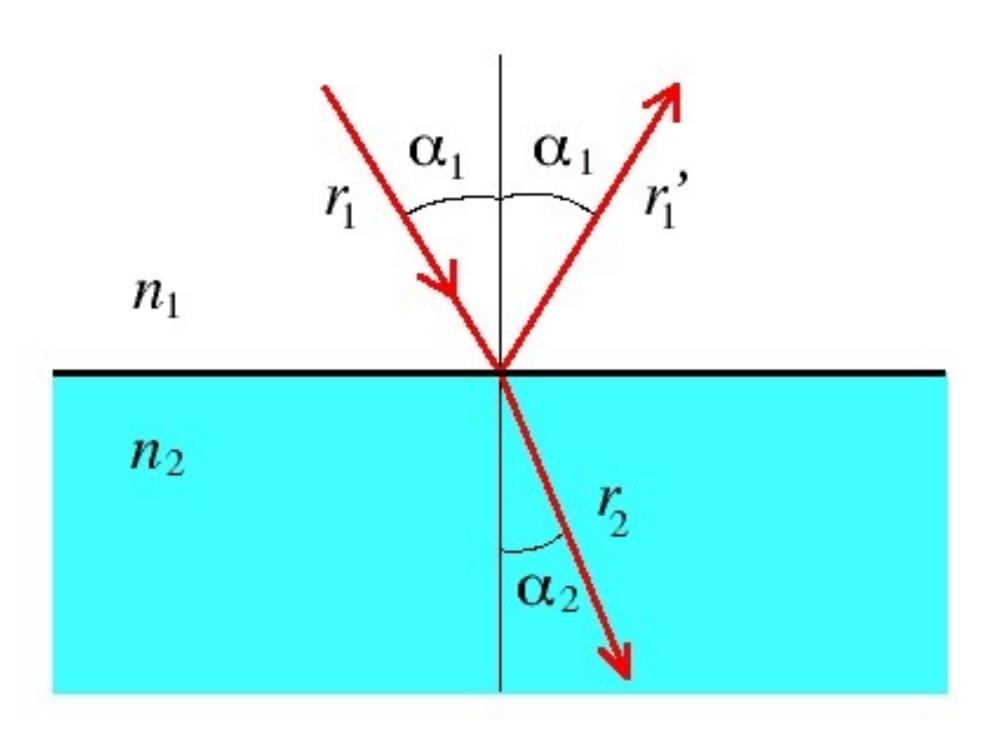
oirolo of T

The role of a lens is to **capture more light** while preserving, as much as possible, the abstraction of an ideal pinhole camera.



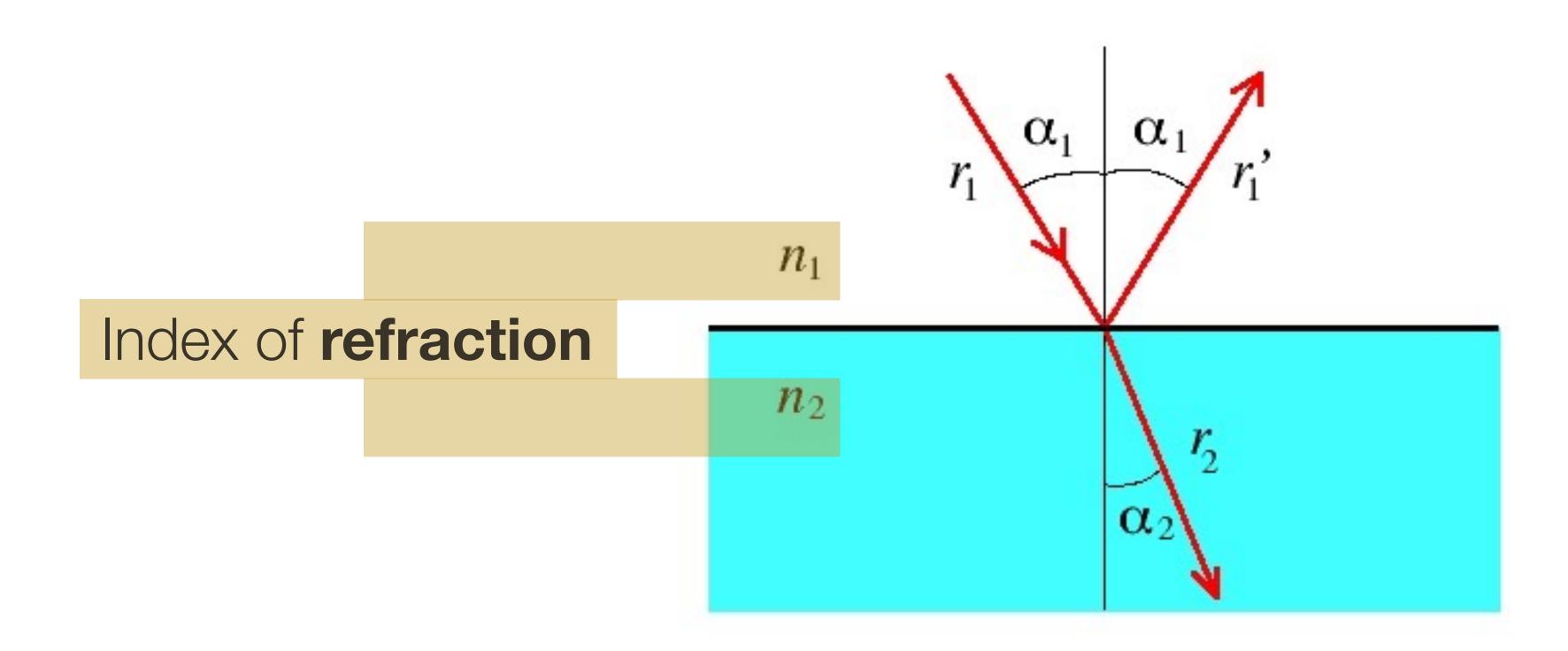
Solution: use a lens to focus light onto the image plane

Snell's Law



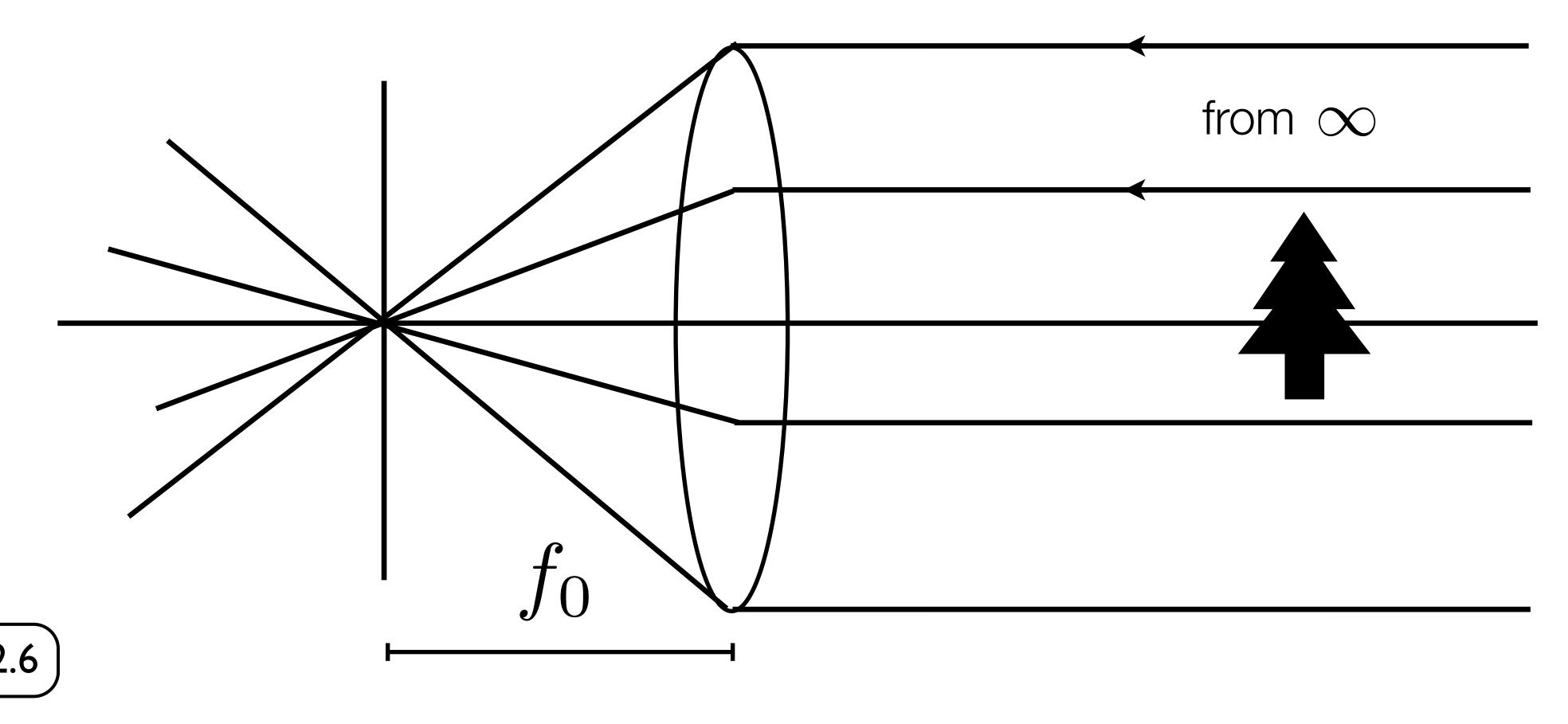
$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Snell's Law



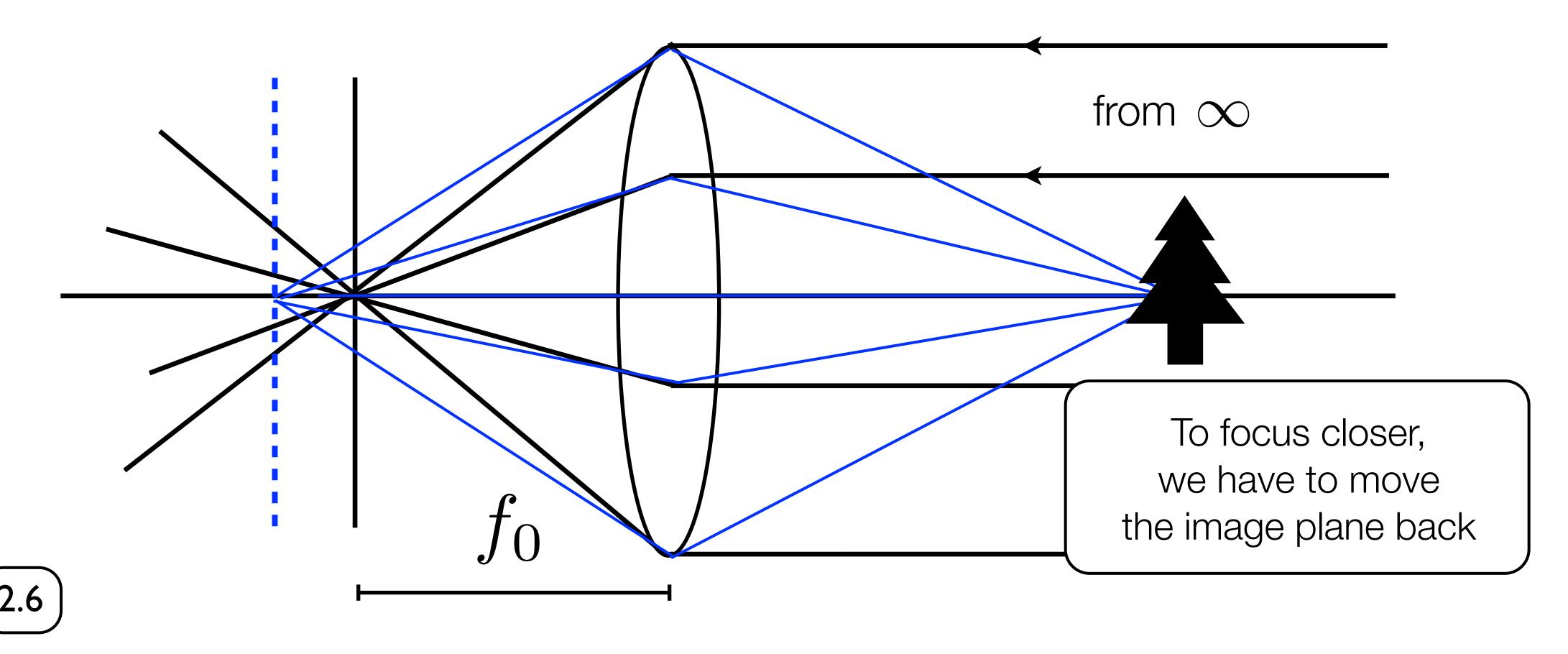
$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent



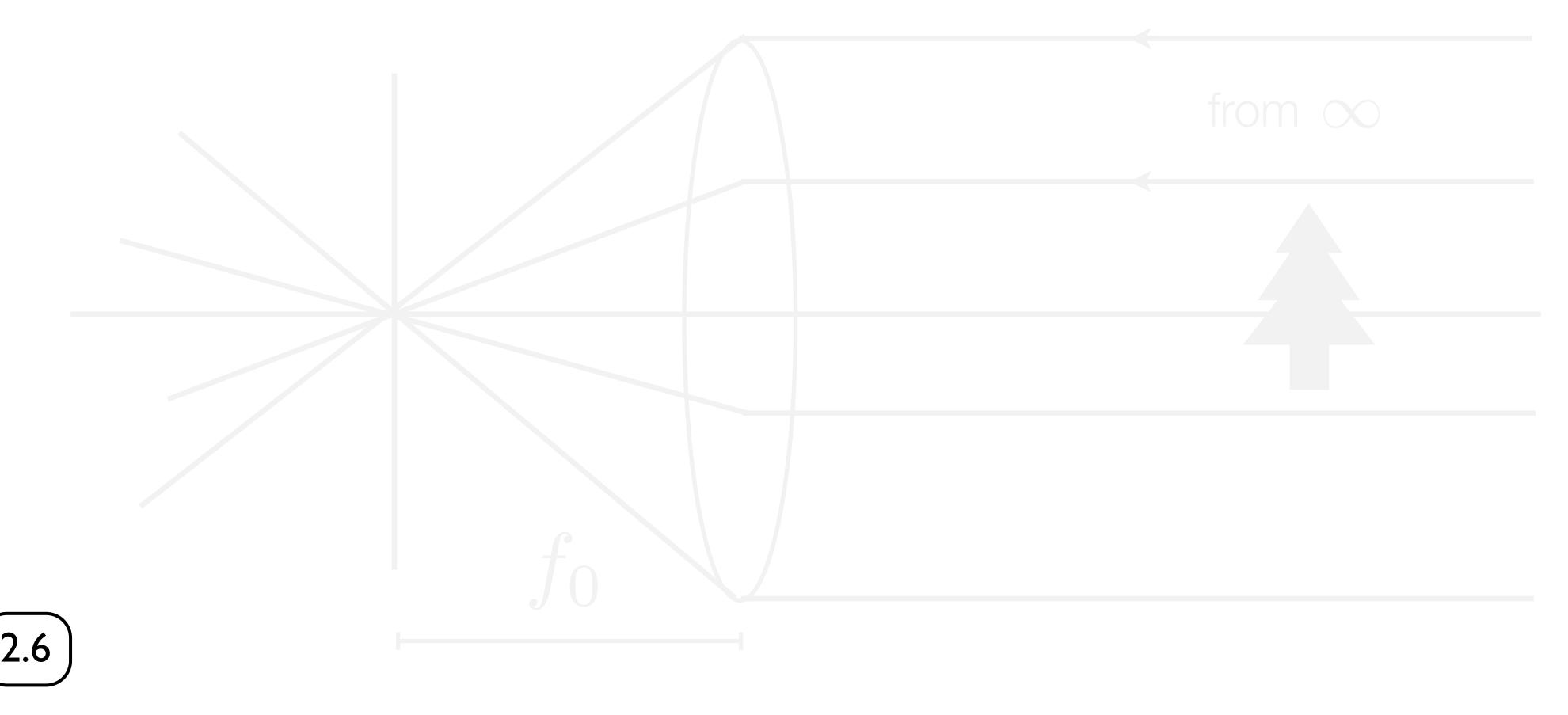
• We can use these 2 properties to find the thin lens equation

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent



• We can use these 2 properties to find the thin lens equation

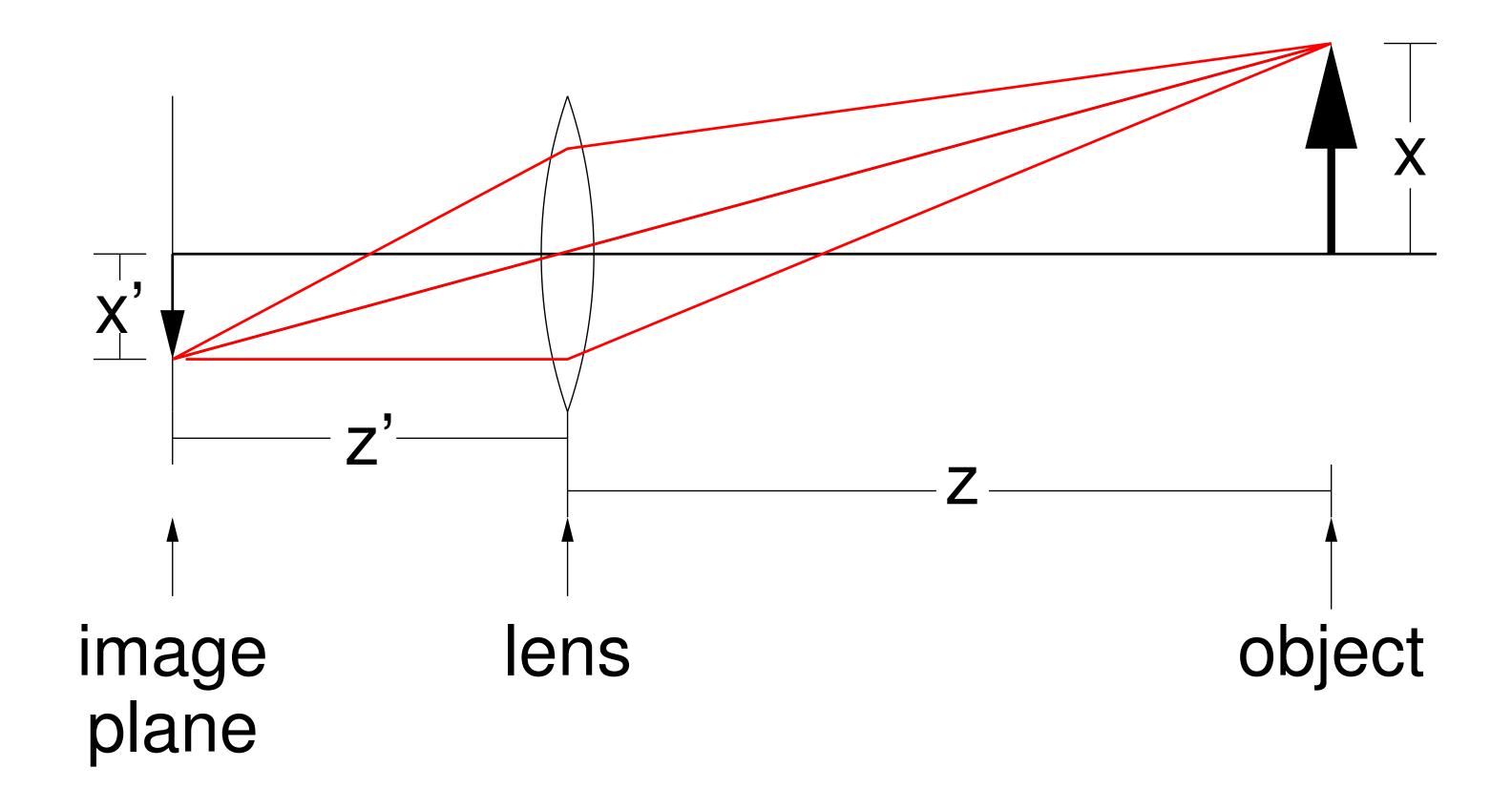
- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent



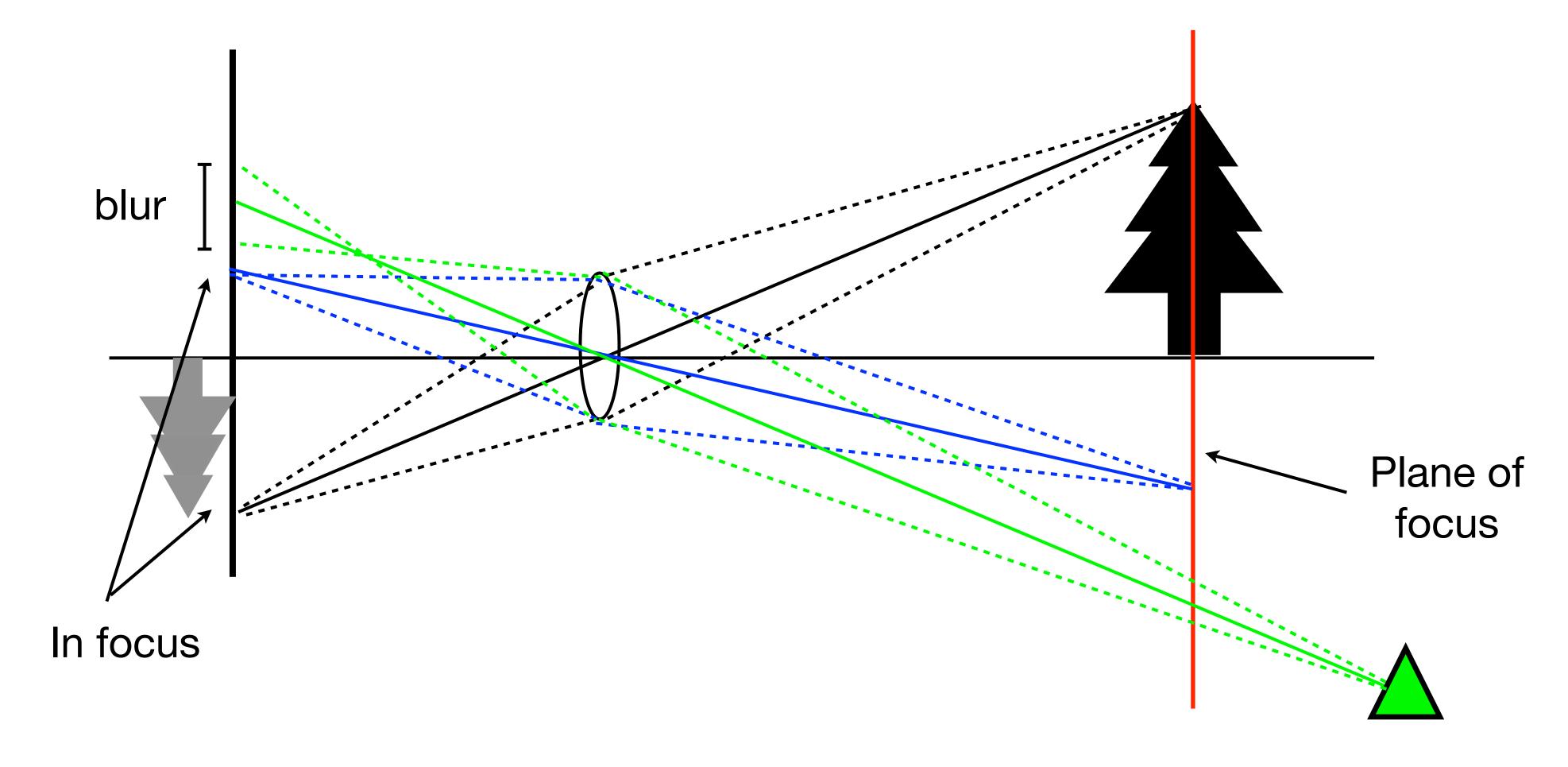
• We can use these 2 properties to find the thin lens equation

• A 50mm lens is focussed at infinity. It now moves to focus on something 5m away. How far does the lens move?

Pinhole Model with Lens

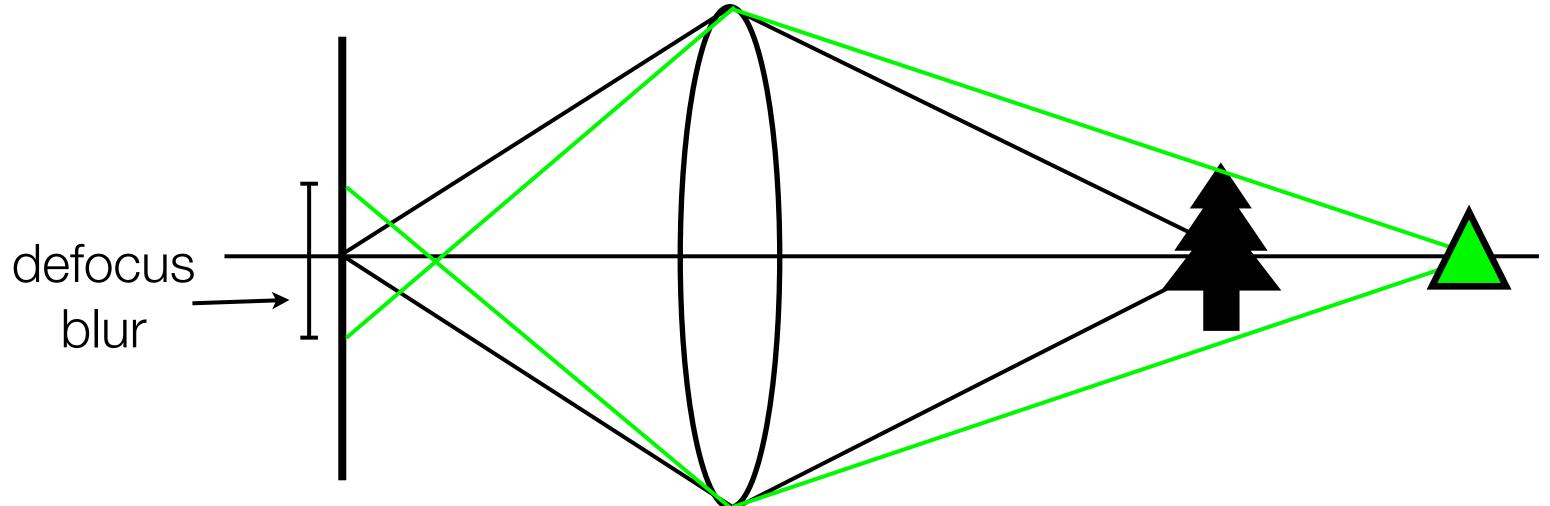


Lenses focus all rays from a plane in the world

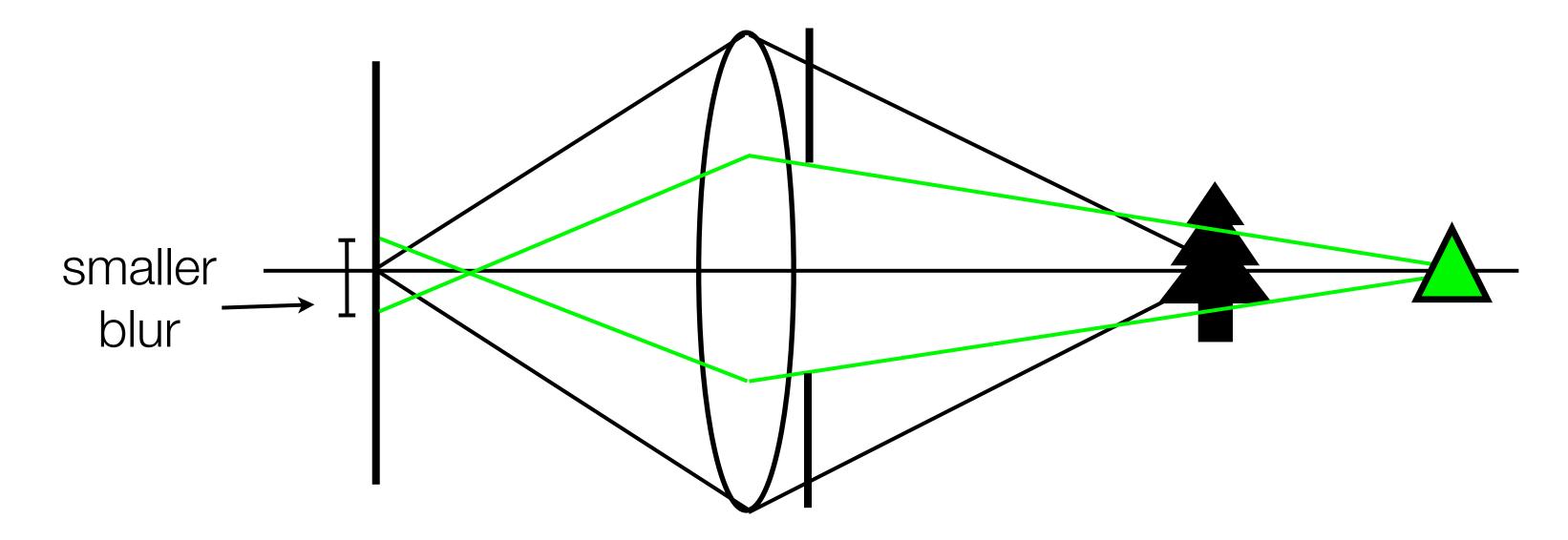


Objects off the plane are blurred depending on distance

Effect of Aperture Size



Smaller aperture ⇒ smaller blur, larger depth of field



Depth of Field

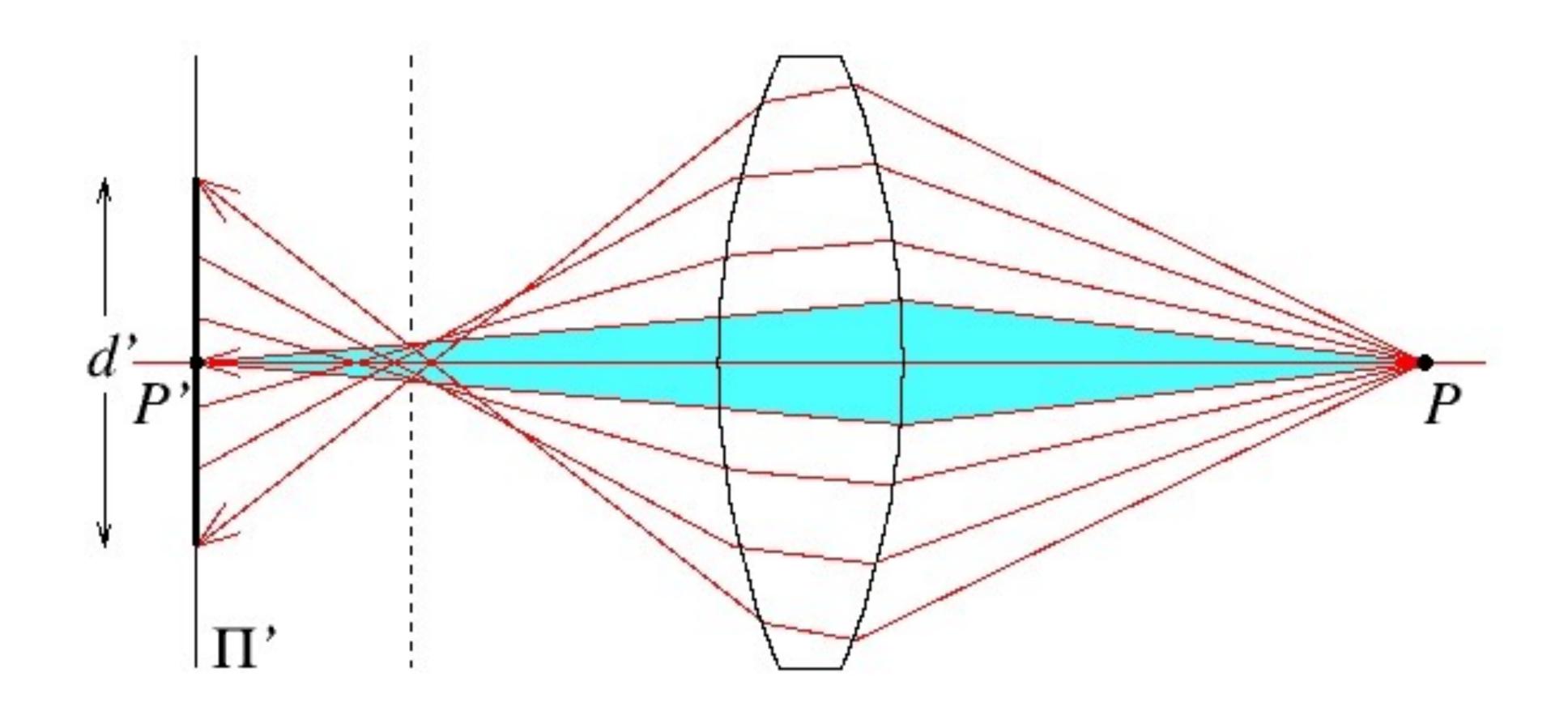
Photographers use large apertures to give small depth of field

Aperture size = f/N, \Rightarrow large N = small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration



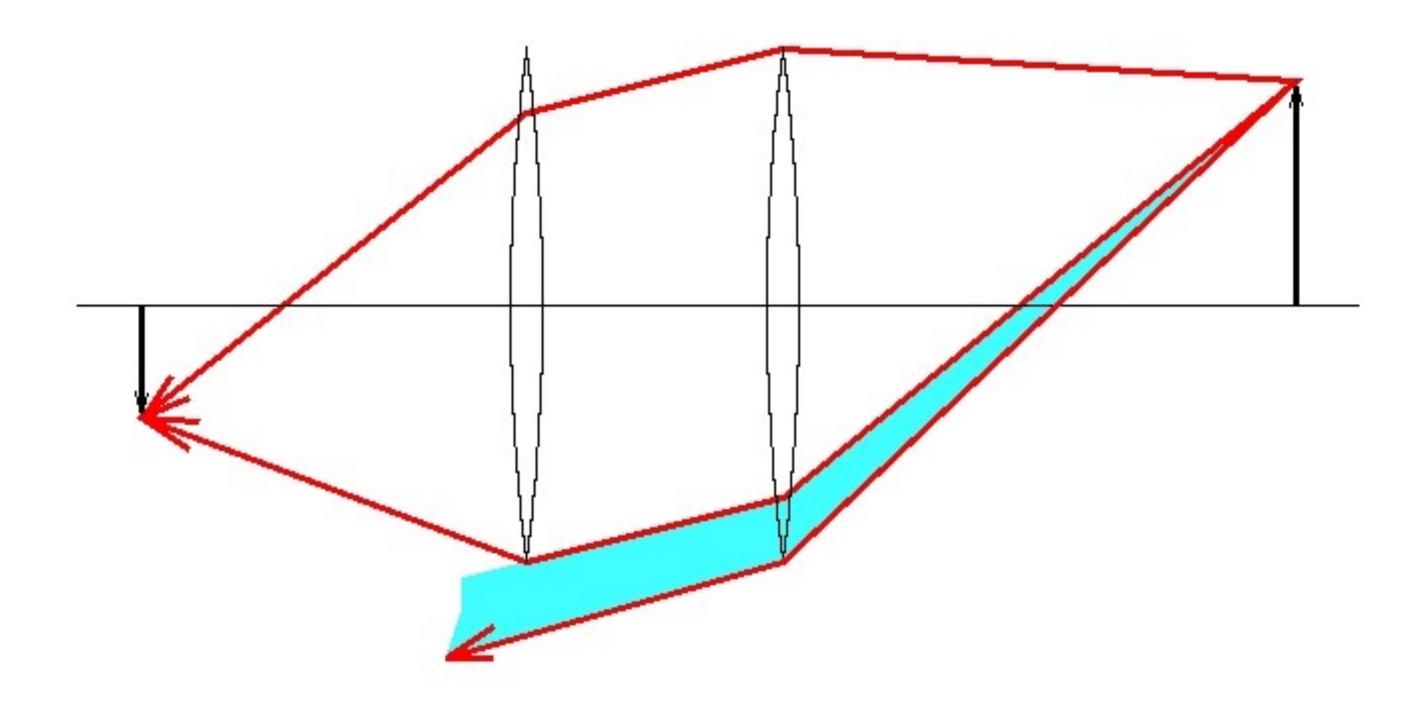
Forsyth & Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Image from lens with Spherical Un-aberrated image Aberration

Vignetting

Vignetting in a two-lens system



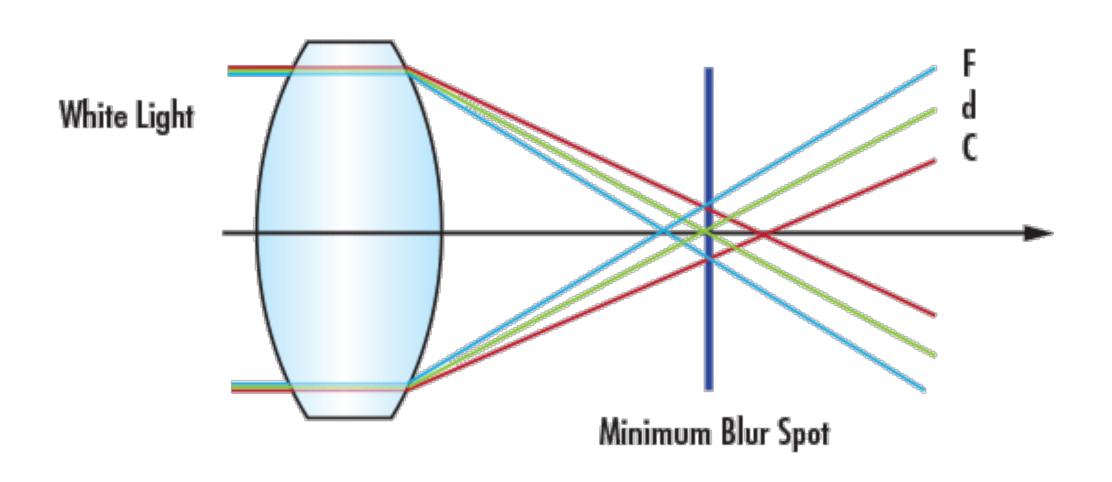
Forsyth & Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Chromatic Aberration

- Index of refraction depends on wavelength, λ , of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus



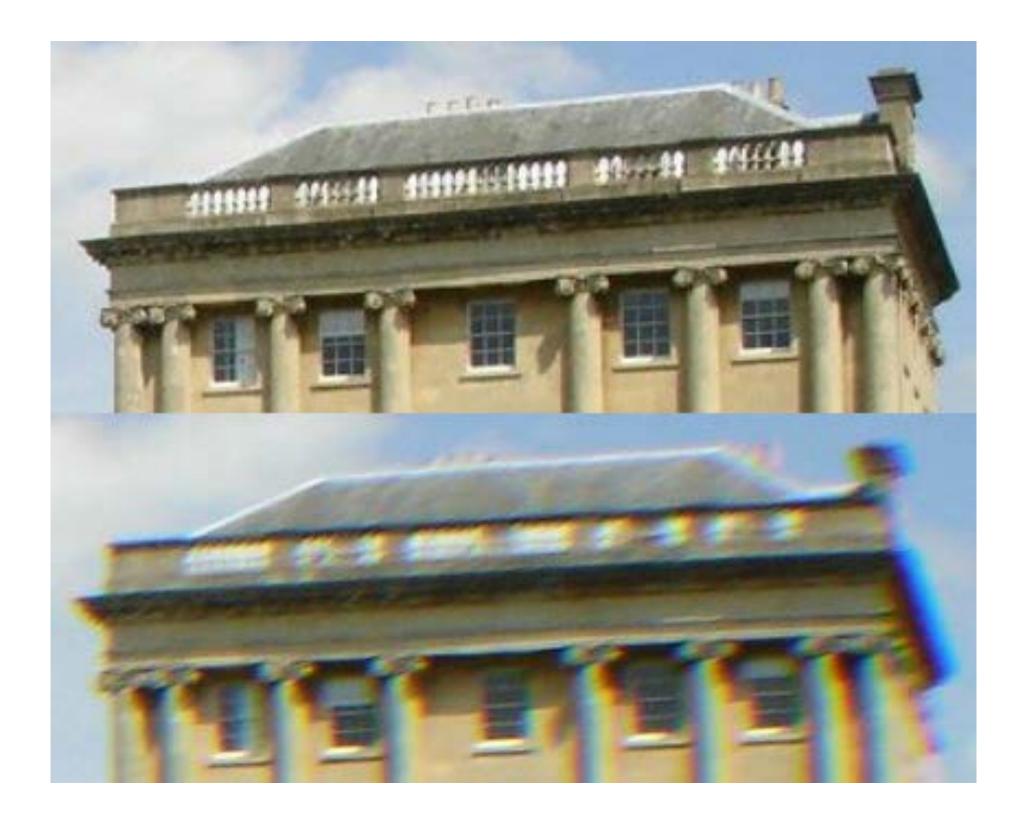
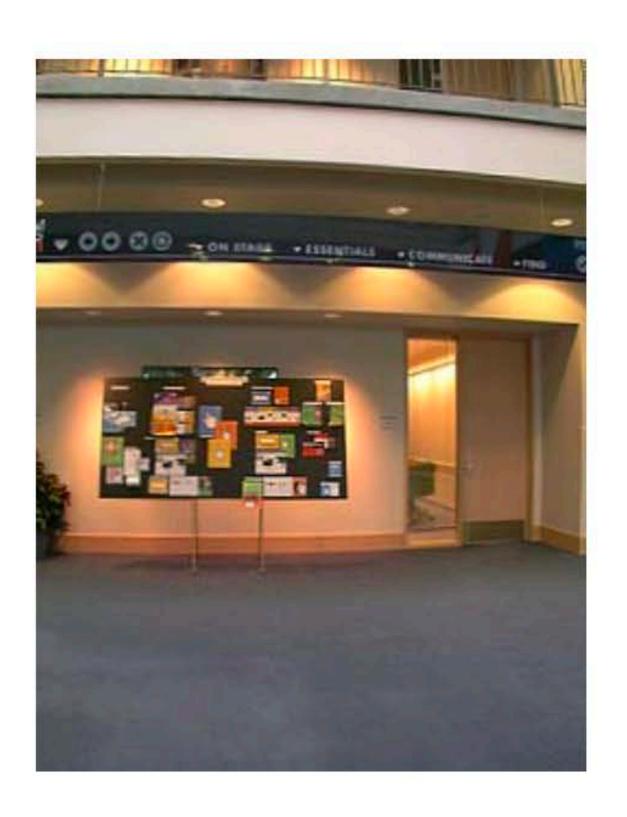
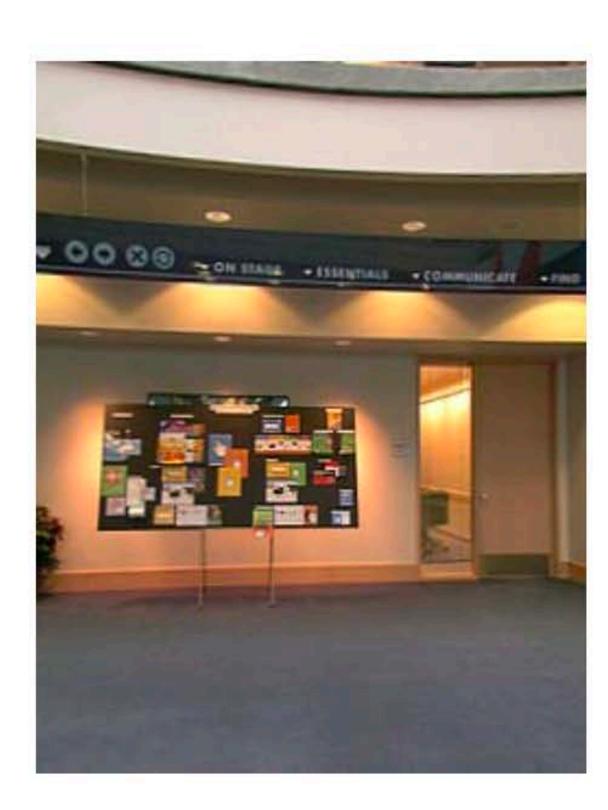


Image Credit: Trevor Darrell

Lens Distortion





Fish-eye Lens

Szeliski (1st ed.) Figure 2.13

Lines in the world are no longer lines on the image, they are curves!

Other (Possibly Significant) Lens Effects

Scattering at the lens surface

Image from [Schöps et al., 2019]. Reproduced for educational purposes.

Some light is reflected at each lens surface

There are other geometric phenomena/distor

pincushion distortion

 harrel distortion Parametric calibration errors

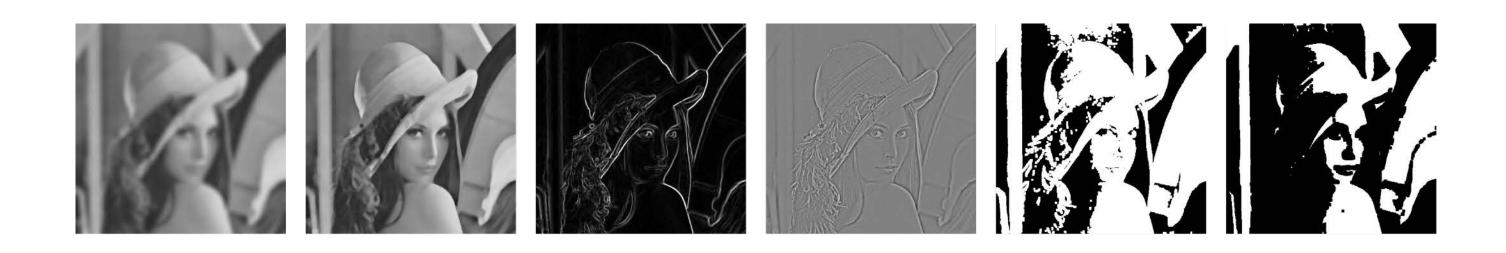
[Schöps et al., 2020]

nragsdale/3192314056/

Lecture Summary

- We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.
- Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction
- Projection equations: perspective, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and distortions" persist (e.g. spherical aberration, vignetting)

CPSC 425: Computer Vision



Lecture 3: Image Filtering

This Lecture

Topics: Image Filtering

- Image as a function
- Linear filters

— Correlation / Convolution

Readings:

— Today's Lecture: Szeliski 3.1-3.3, Forsyth & Ponce (2nd ed.) 4.1, 4.5

Reminders:

— Assignment 1 is due 29th

Goa

- 1. Learn how to mathematically describe image processing
- 2. Basic building blocks

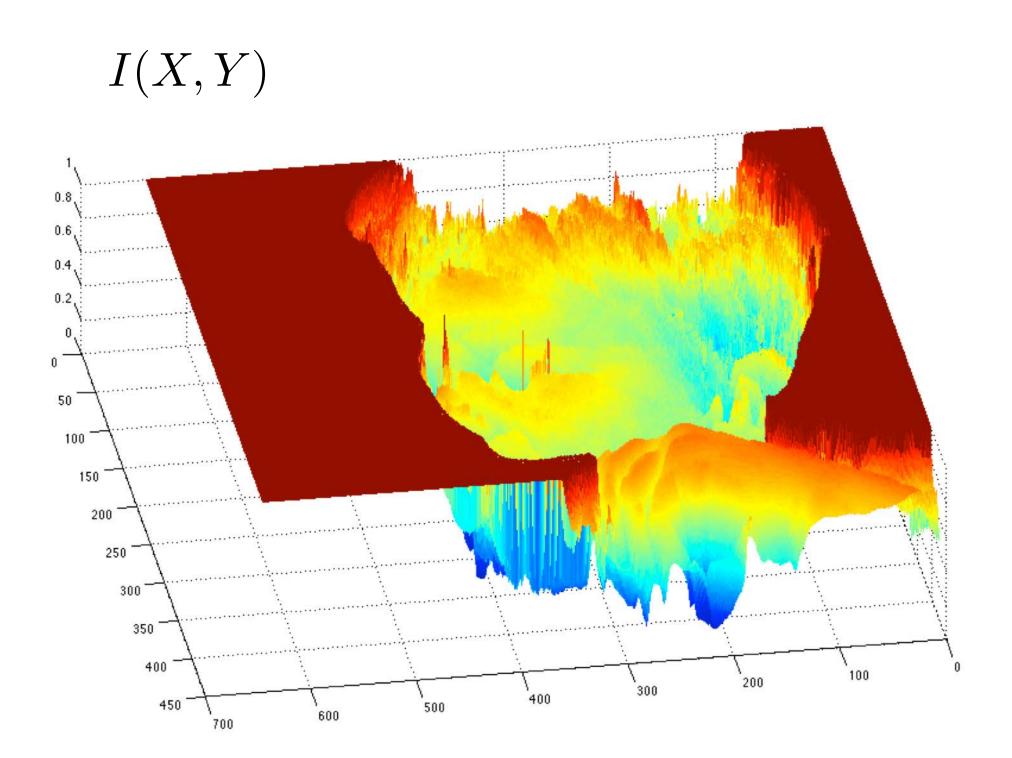
Image as a 2D Function

A (grayscale) image is a 2D function

grayscale image

What is the **range** of the image function?

$$I(X,Y) \in [0,255] \in \mathbb{Z}$$



domain: $(X,Y) \in ([1,width],[1,hight])$

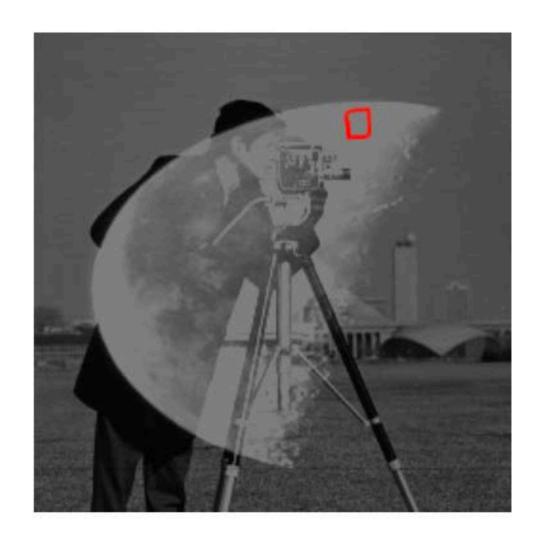
Since images are functions, we can perform operations on them, e.g., average

I(X,Y)

G(X,Y)

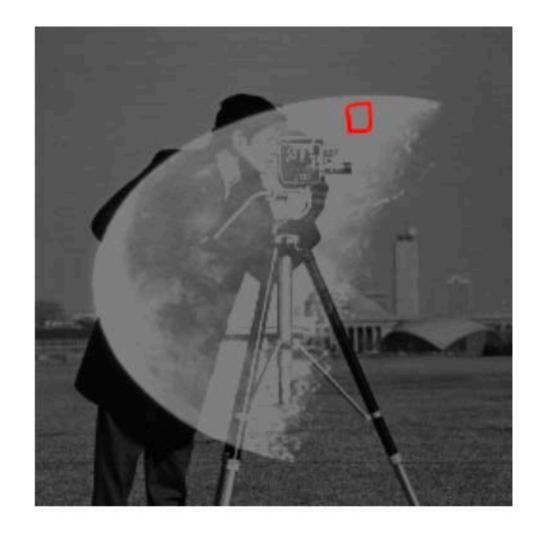
$$\frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$

$$a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$



$$b = \frac{I(X,Y) + G(X,Y)}{2}$$

$$a = \frac{I(X,Y)}{2} + \frac{G(X,Y)}{2}$$



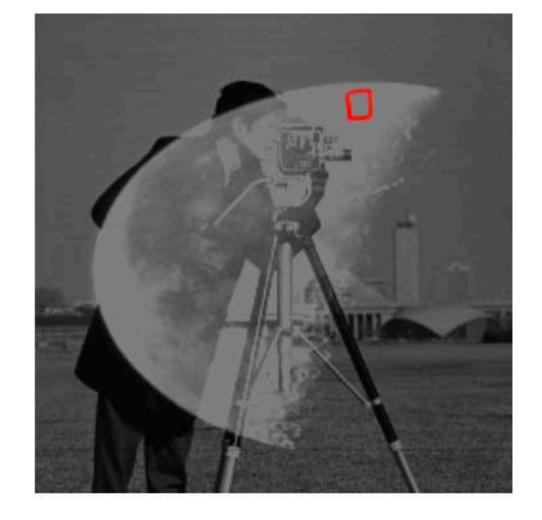
$$b = \frac{I(X,Y) + G(X,Y)}{2}$$

Question:

$$a = b$$

Red pixel in camera man image = 98 Red pixel in moon image = 200

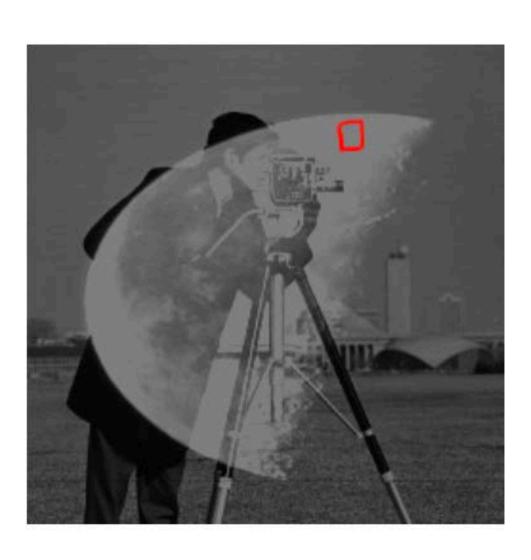
$$\frac{98}{2} + \frac{200}{2} = 49 + 100 = 149$$



$$\frac{98 + 200}{2} = \frac{\lfloor 298 \rfloor}{2} = \frac{255}{2} = 127$$

Question:

$$a = b$$



It is often convenient to convert images to doubles when doing processing

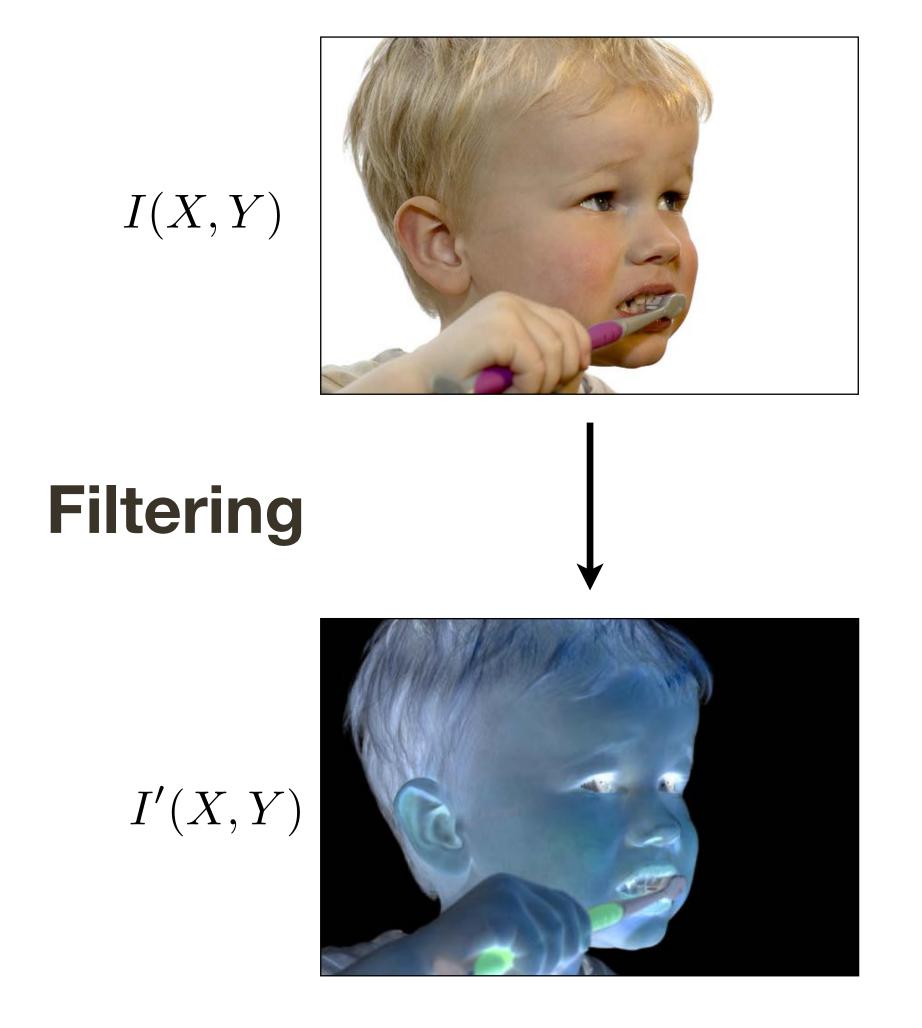
In Python

```
from PIL import Image
img = Image.open('cameraman.png')
import numpy as np
imgArr = np.asfarray(img)

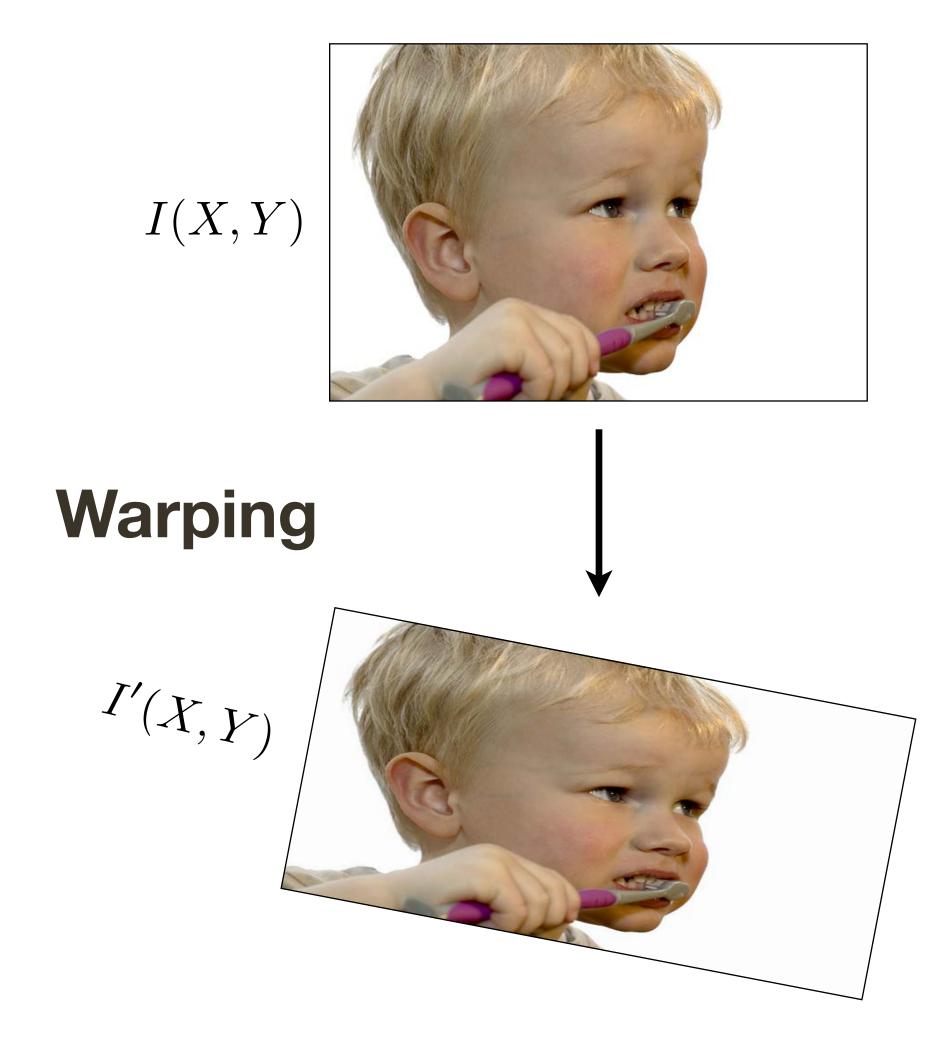
or "imgArr=np.array(img).astype(np.float32)/255.0"

# Or do this
import matplotlib.pyplot as plt
camera = plt.imread('cameraman.png');
```

What types of transformations can we do?



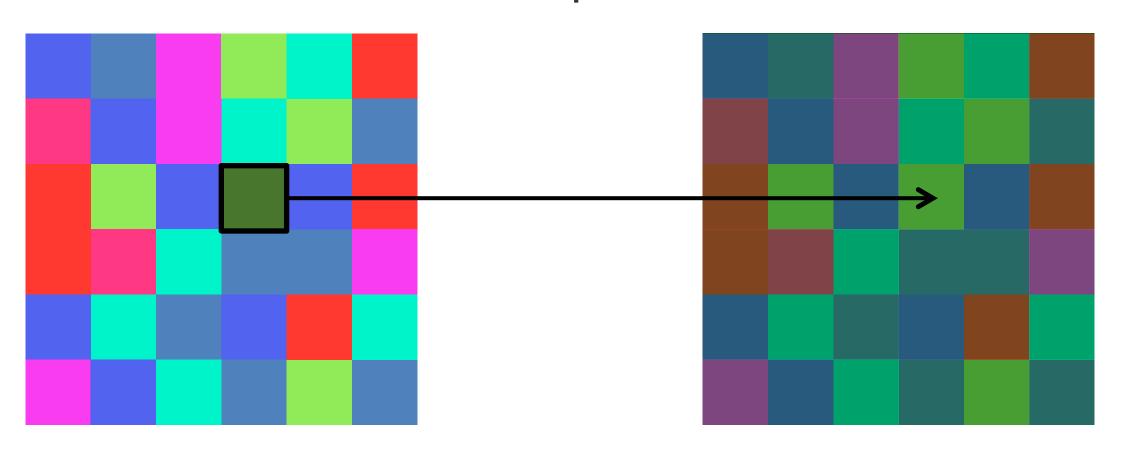
changes range of image function



changes domain of image function

What types of filtering can we do?

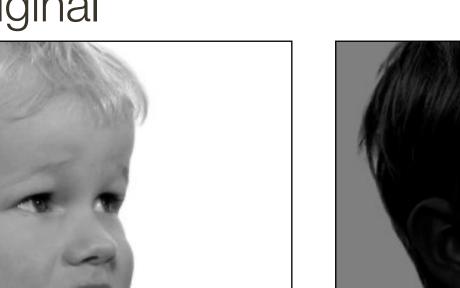
Point Operation

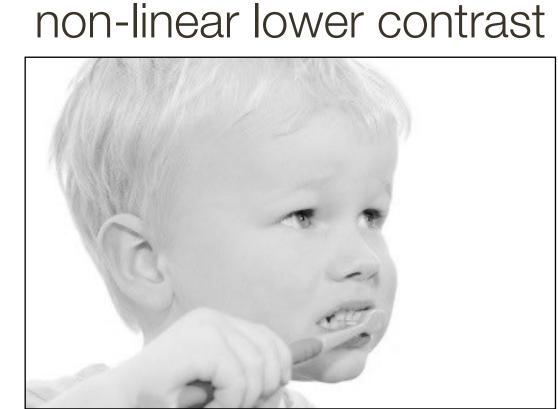


point processing

Examples of Point Processing

original



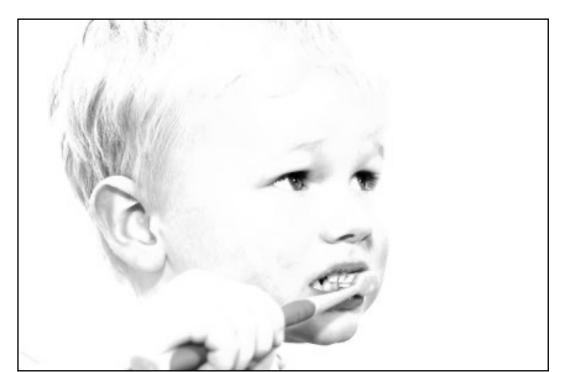


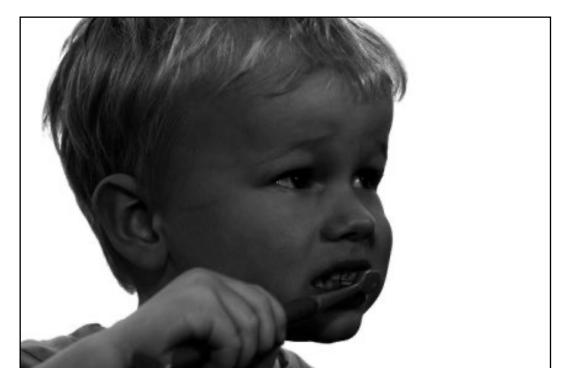
I(X,Y)

I(X, Y) - 128

I(X,Y)

raise contrast

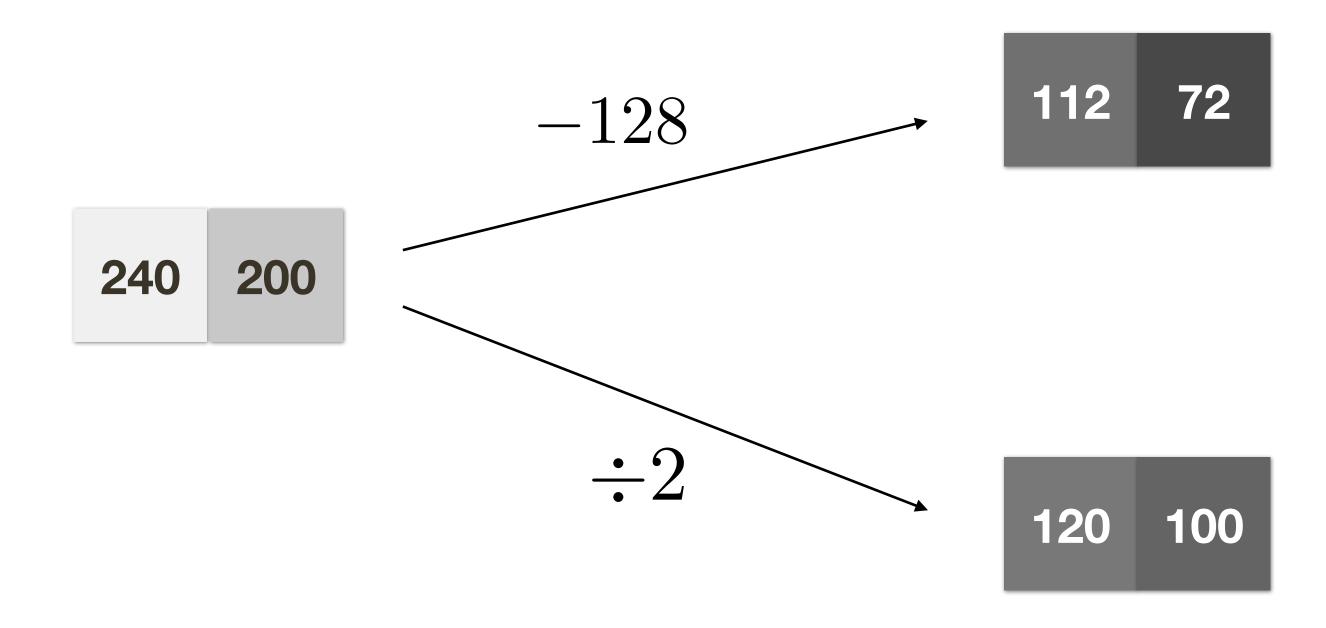




Brightness v.s. Contrast

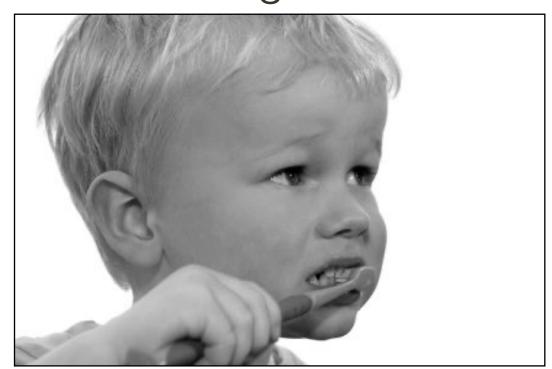
Brightness: all pixels get lighter/darker, relative difference between pixel values stays the same

Contrast: relative difference between pixel values becomes higher / lower



Examples of Point Processing

original

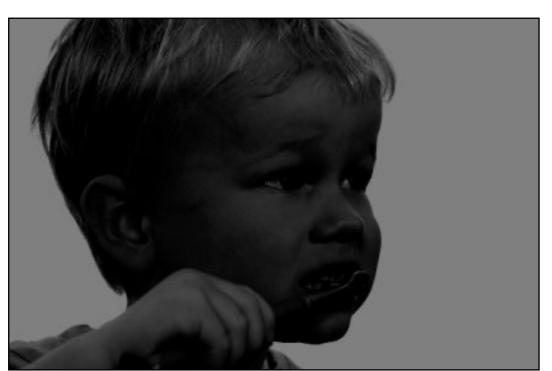


I(X,Y)

invert

255 - I(X, Y)

darken



I(X, Y) - 128

lighten

$$I(X, Y) + 128$$

lower contrast

 $\frac{I(X,Y)}{2}$

raise contrast

$$I(X,Y) \times 2$$

non-linear lower contrast

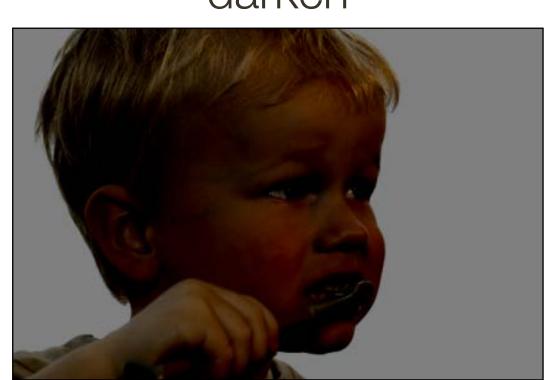
$$\left(\frac{I(X,Y)}{255}\right)^{1/3} \times 255$$

non-linear raise contrast

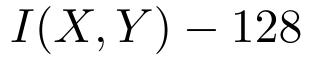
$$\left(\frac{I(X,Y)}{255}\right)^2 \times 255$$

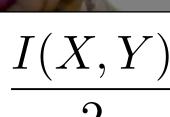
Examples of Point Processing

original



darken





raise contrast

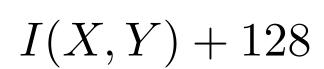
 $\times 255$ 255

invert

lighten

non-linear raise contrast

255 - I(X, Y)

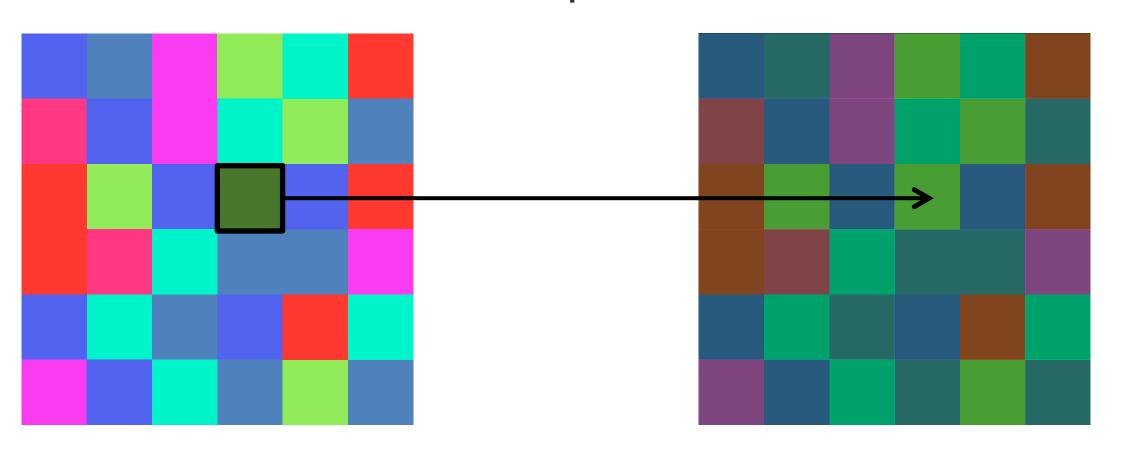


 $I(X,Y) \times 2$

$$\left(\frac{I(X,Y)}{255}\right)^2 \times 255$$

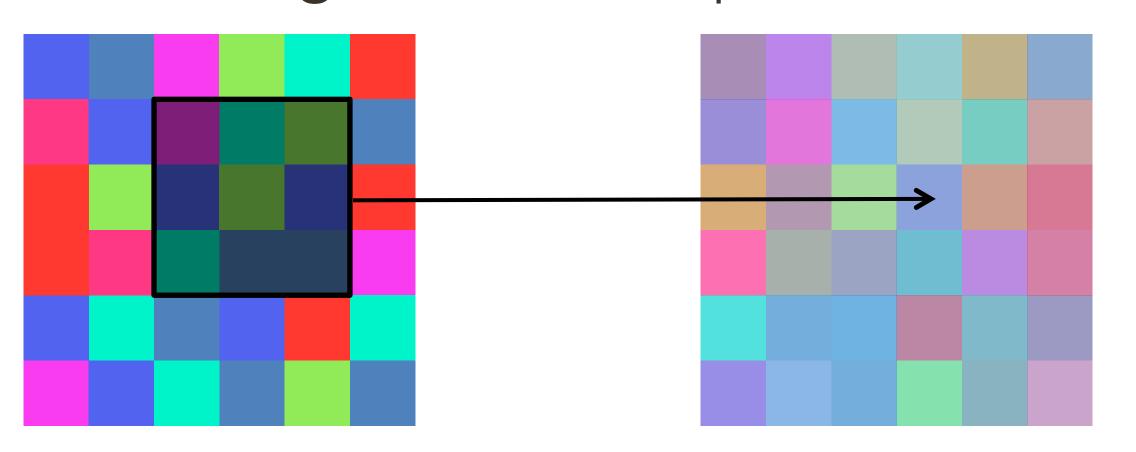
What types of filtering can we do?

Point Operation



point processing

Neighborhood Operation



"filtering"

Linear Neighborhood Operators (Filtering)

Original Image

blur sharpen edge filter

Non-Linear Neighborhood Operators (Filtering)

Original Image

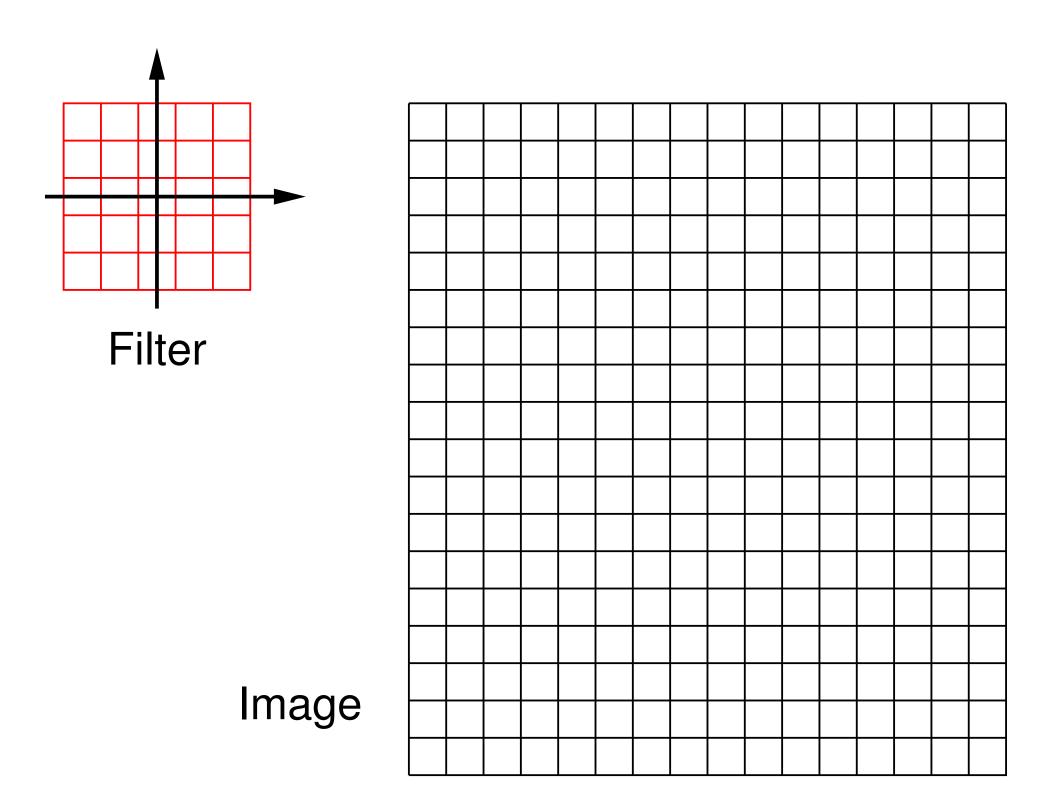
edge preserving smoothing

median

canny edges

Let I(X,Y) be an $n \times n$ digital image (for convenience we let width = height)

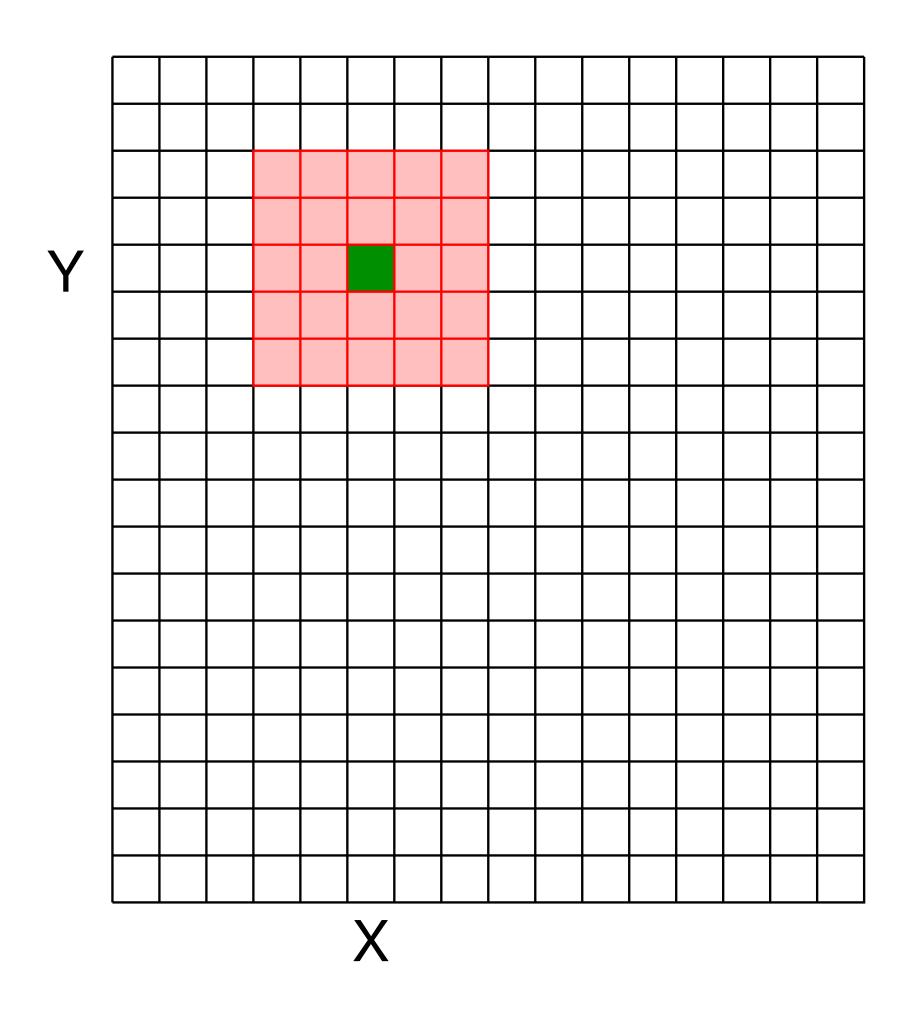
Let F(X,Y) be another $m \times m$ digital image (our "filter" or "kernel")



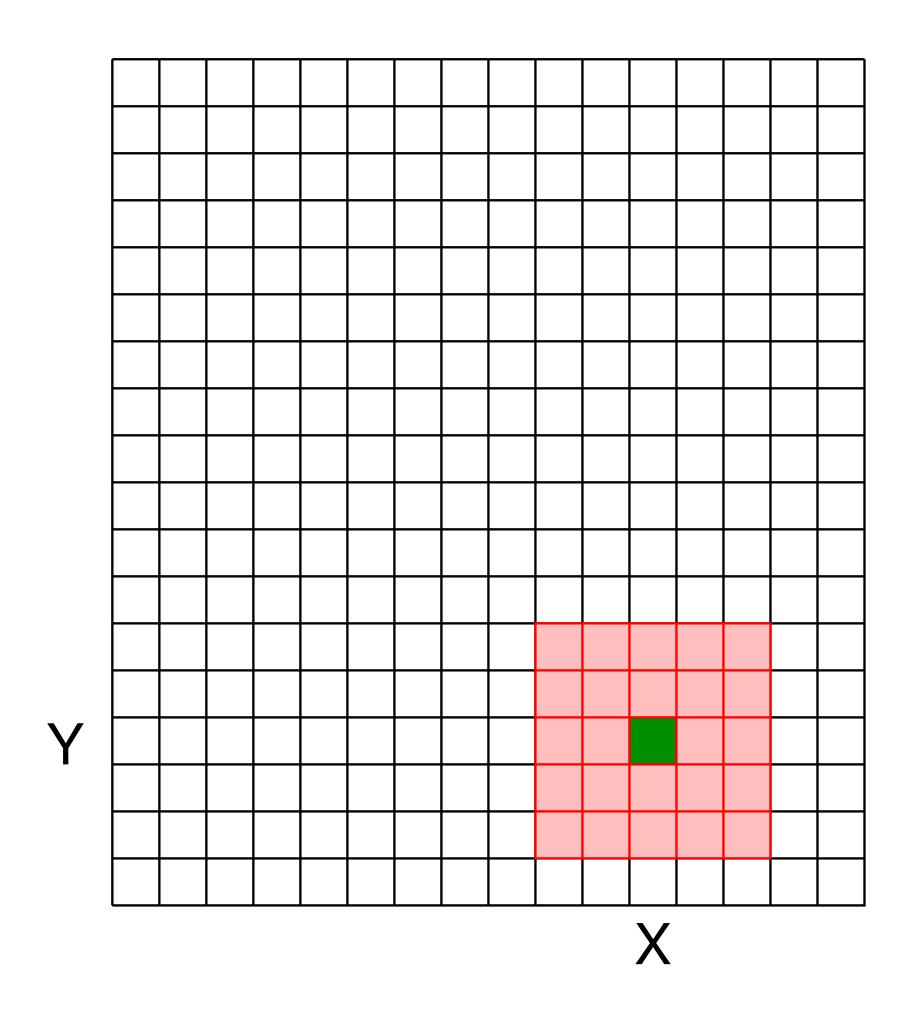
For convenience we will assume m is odd. (Here, m=5)

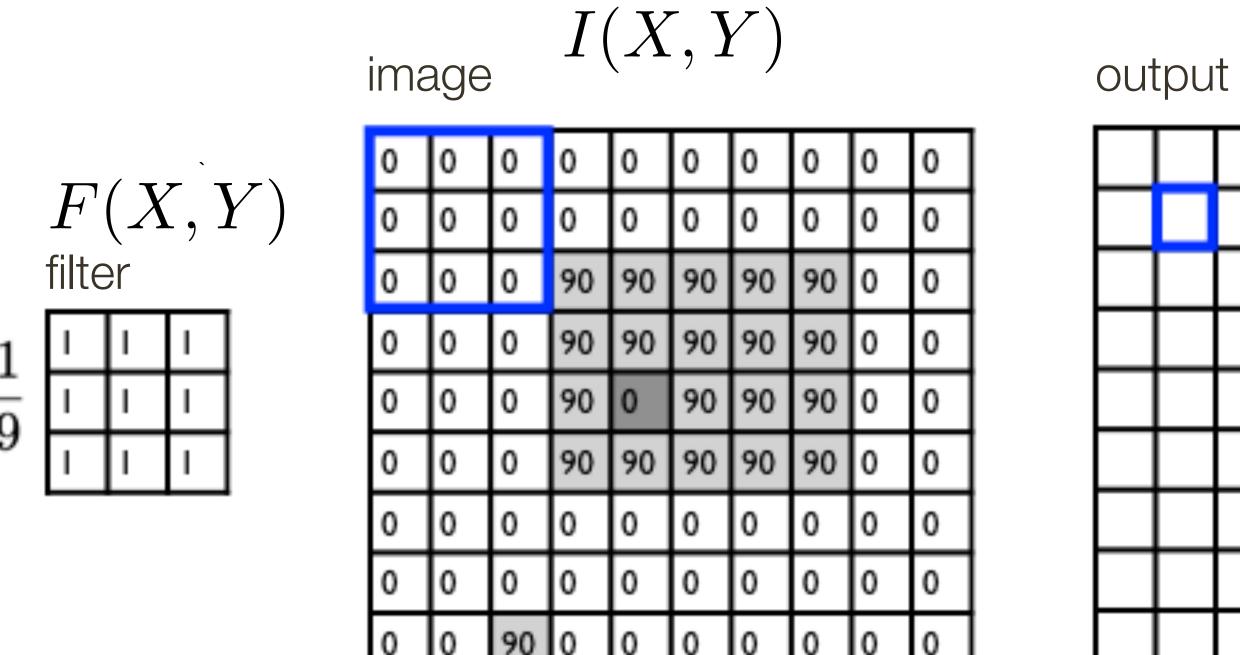
For a give X and Y, superimpose the filter on the image centered at (X, Y)

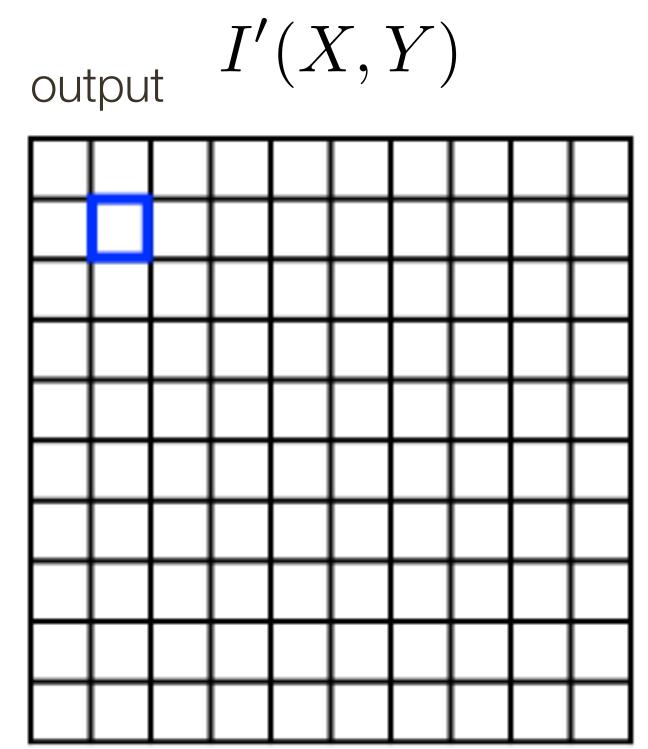
Compute the new pixel value, I'(X,Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X,Y) and the corresponding values in the filter



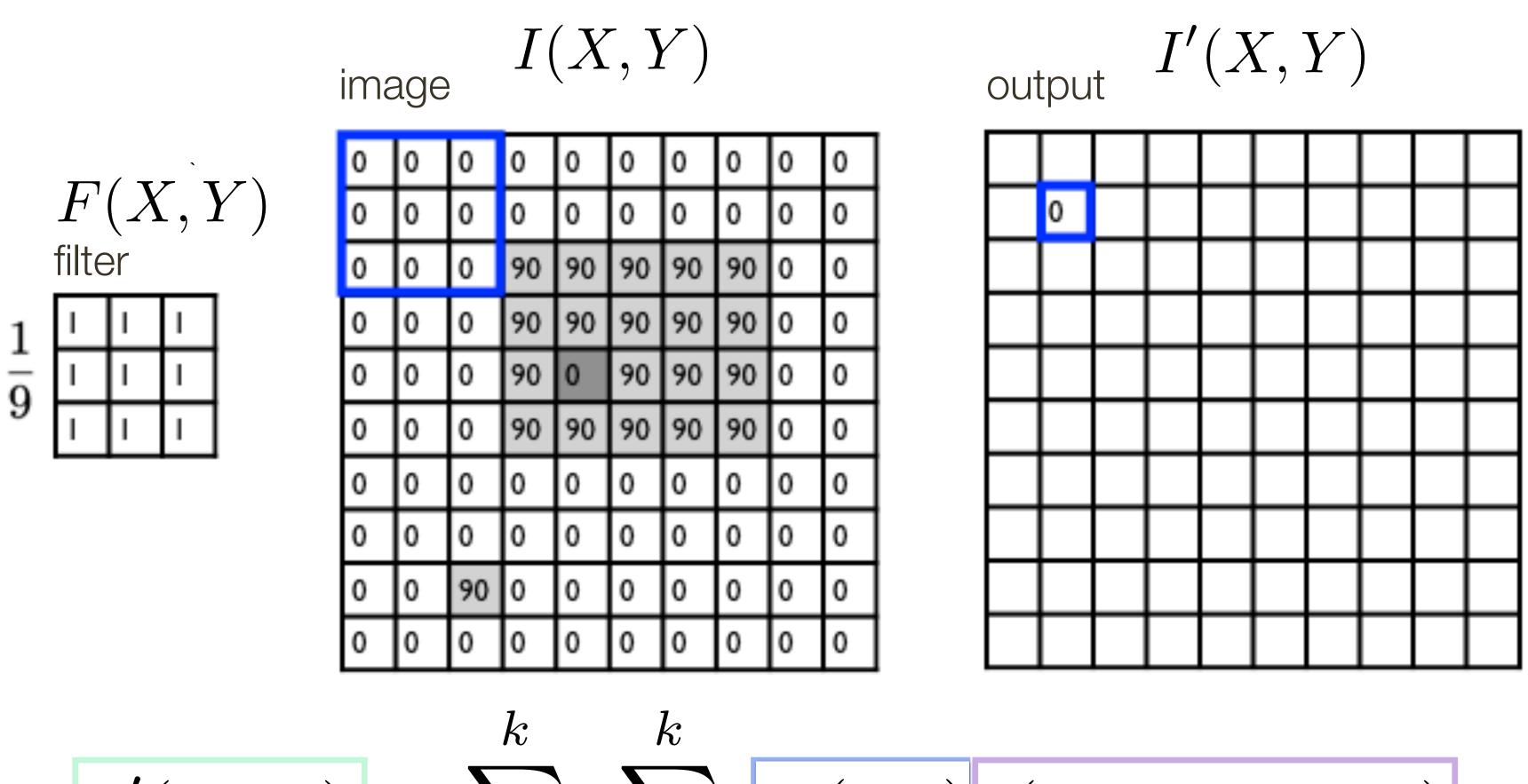
The computation is repeated for each (X,Y)



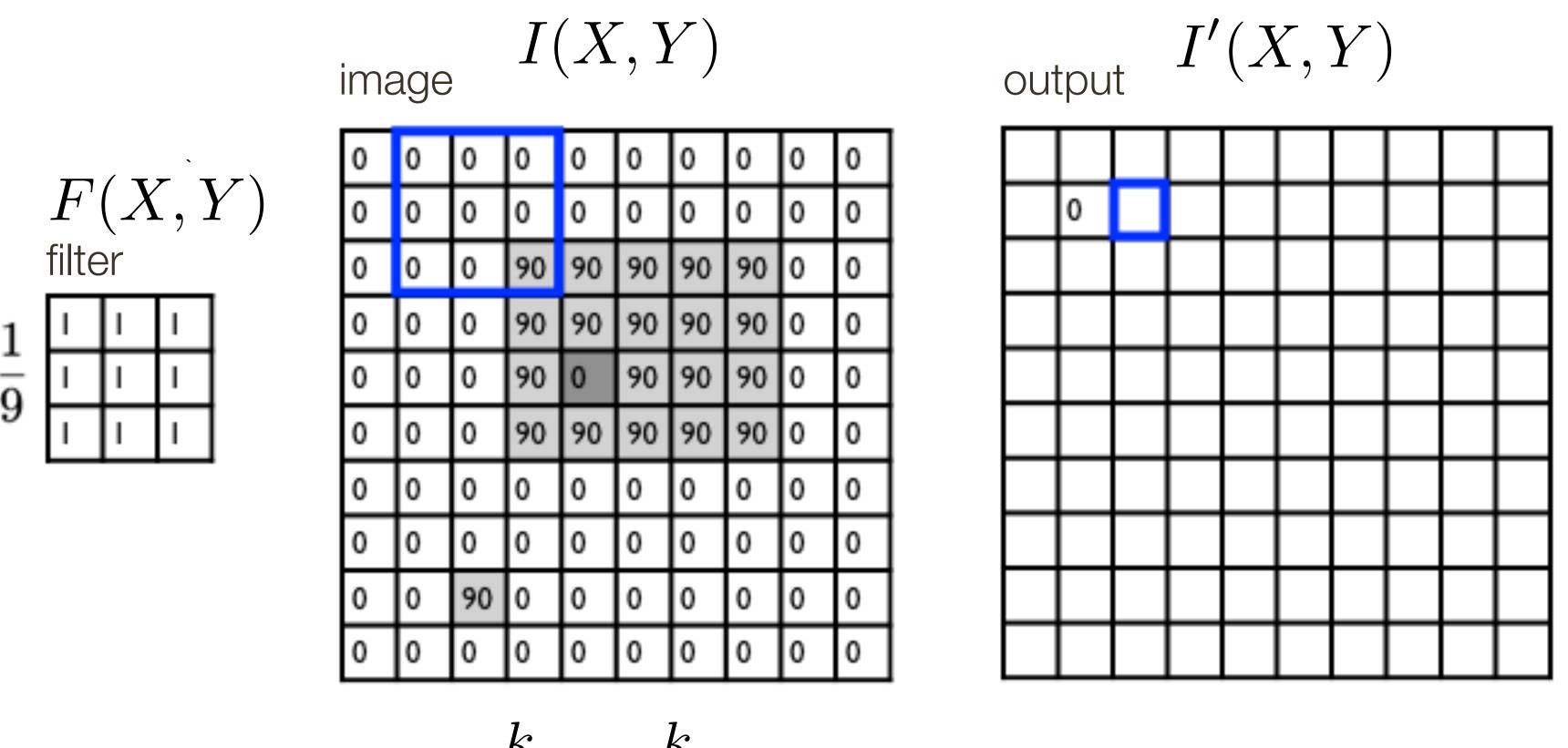




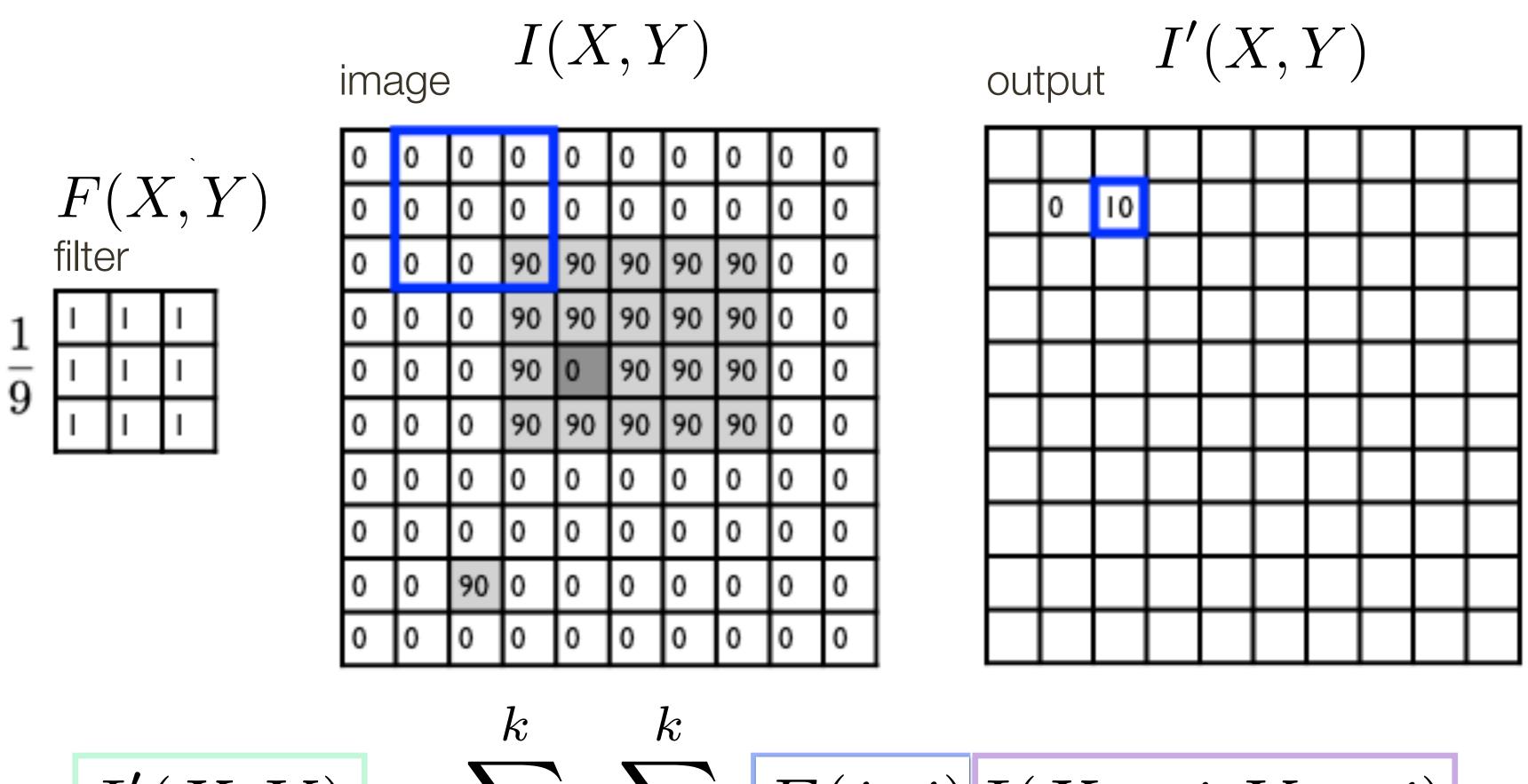
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



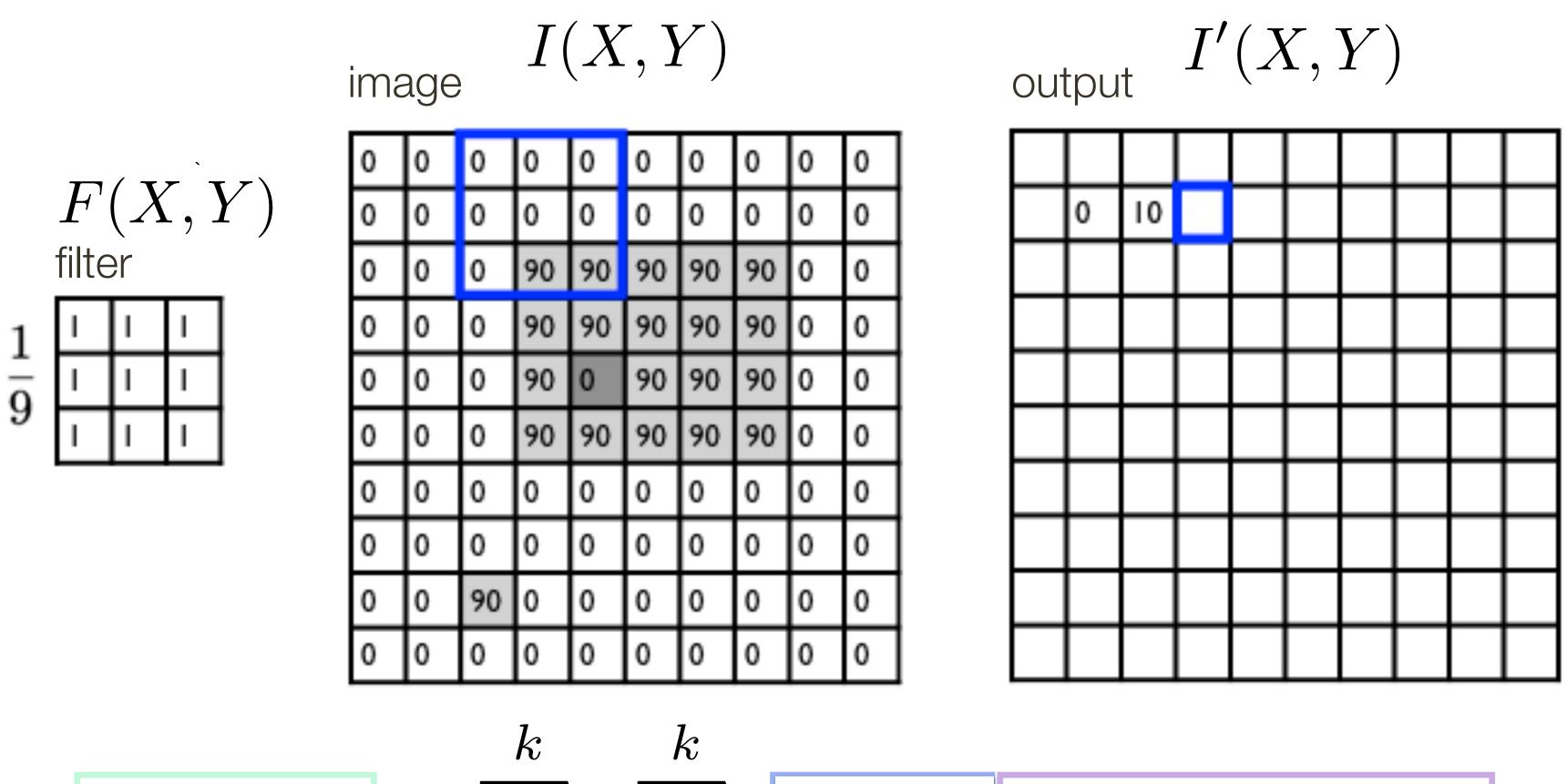
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



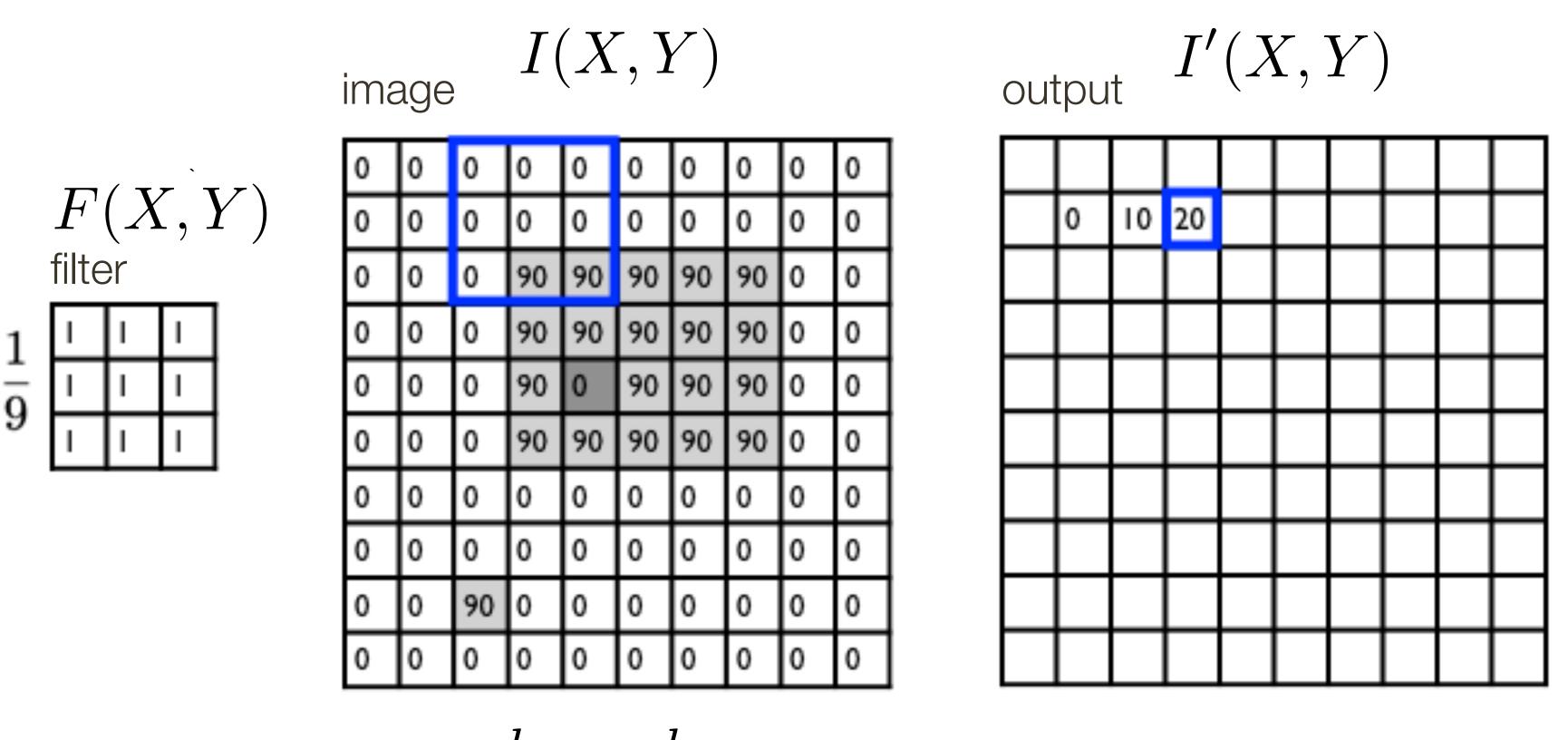
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)



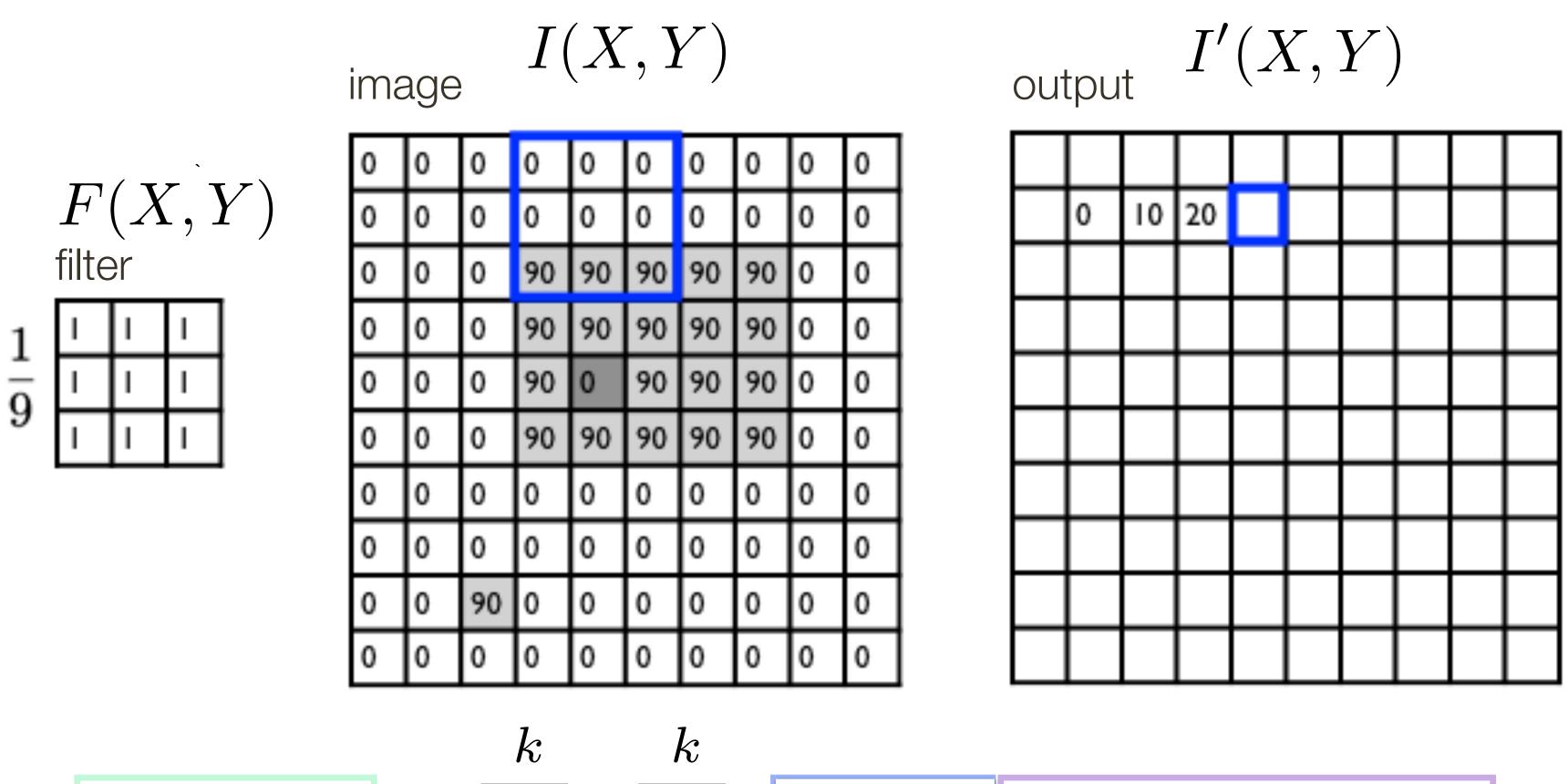
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



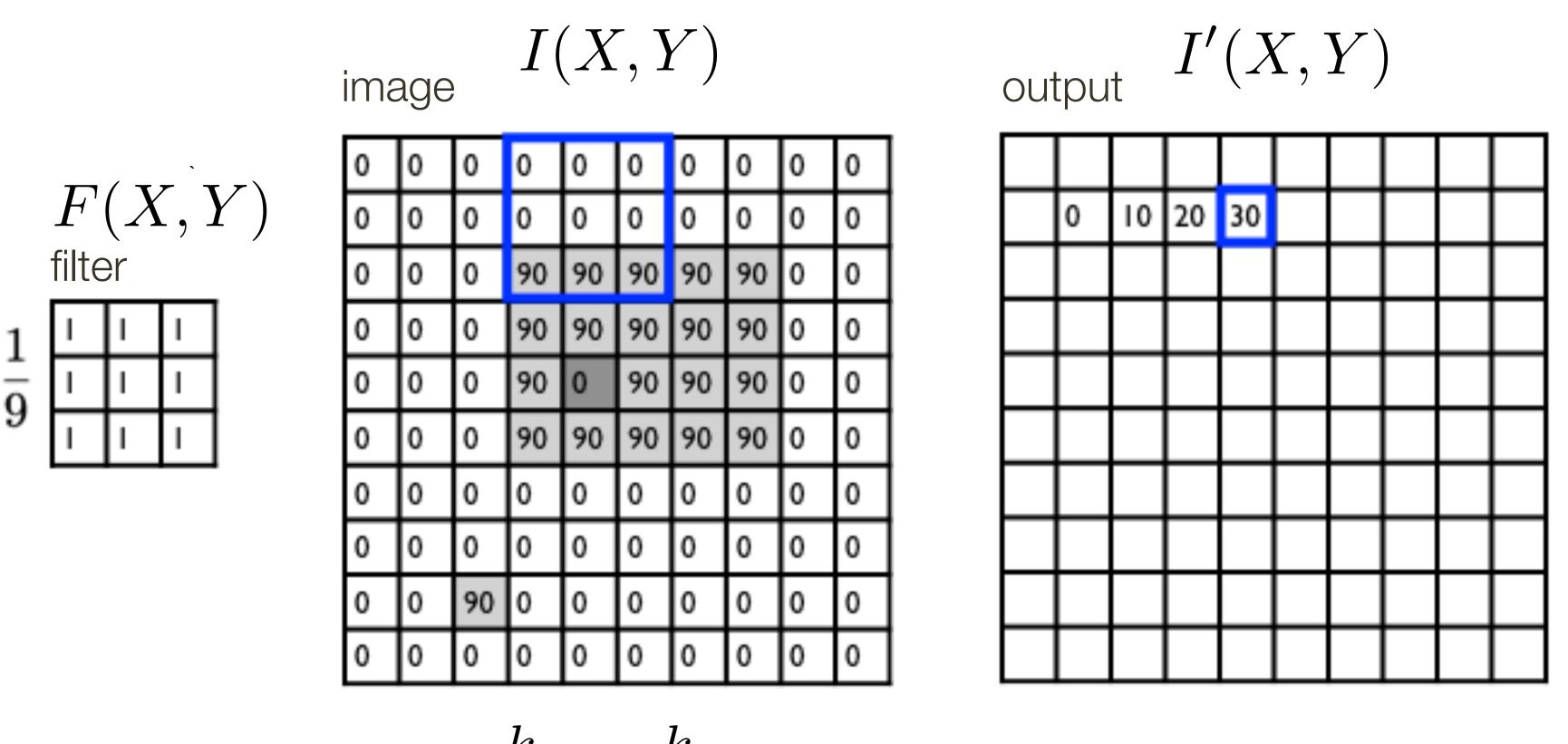
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



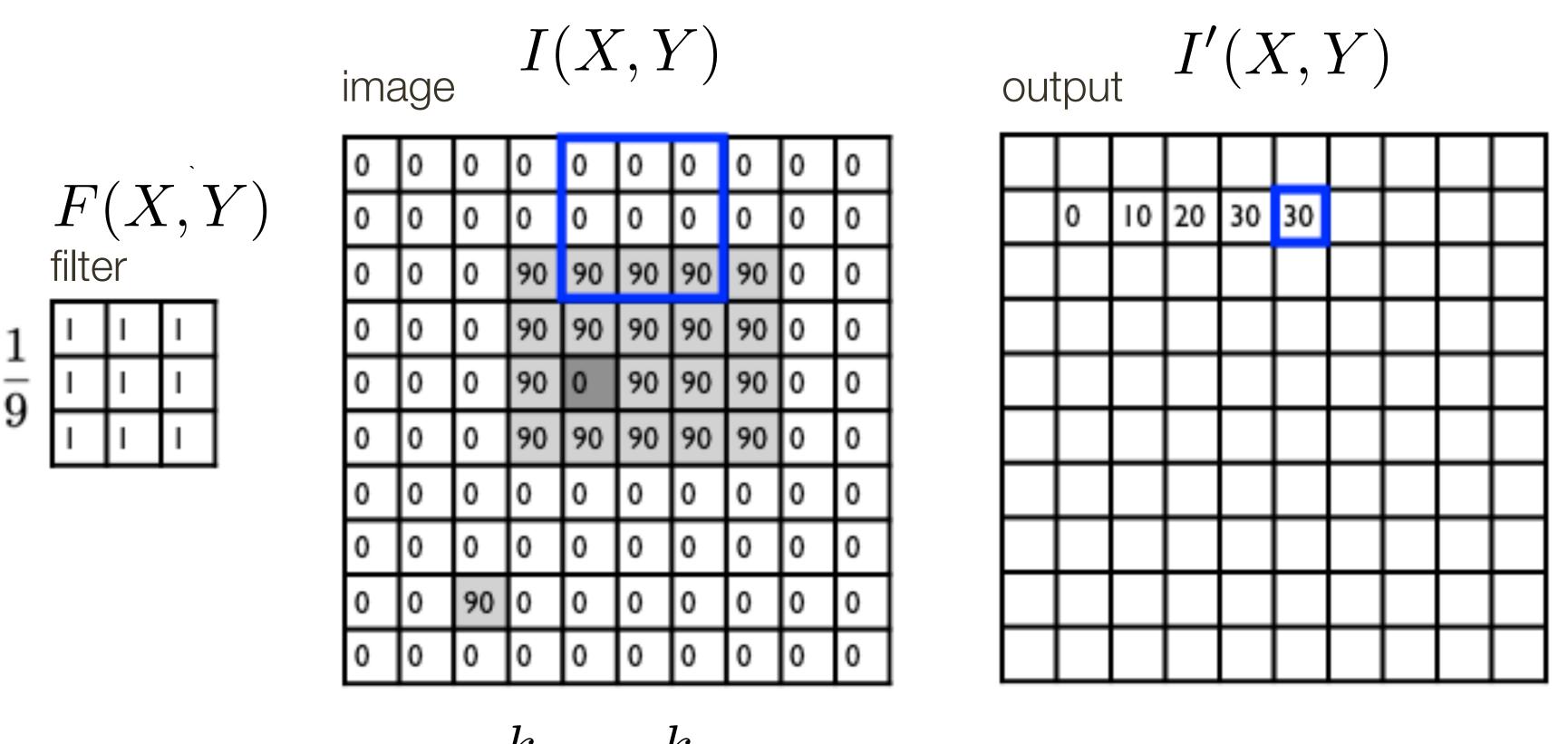
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)



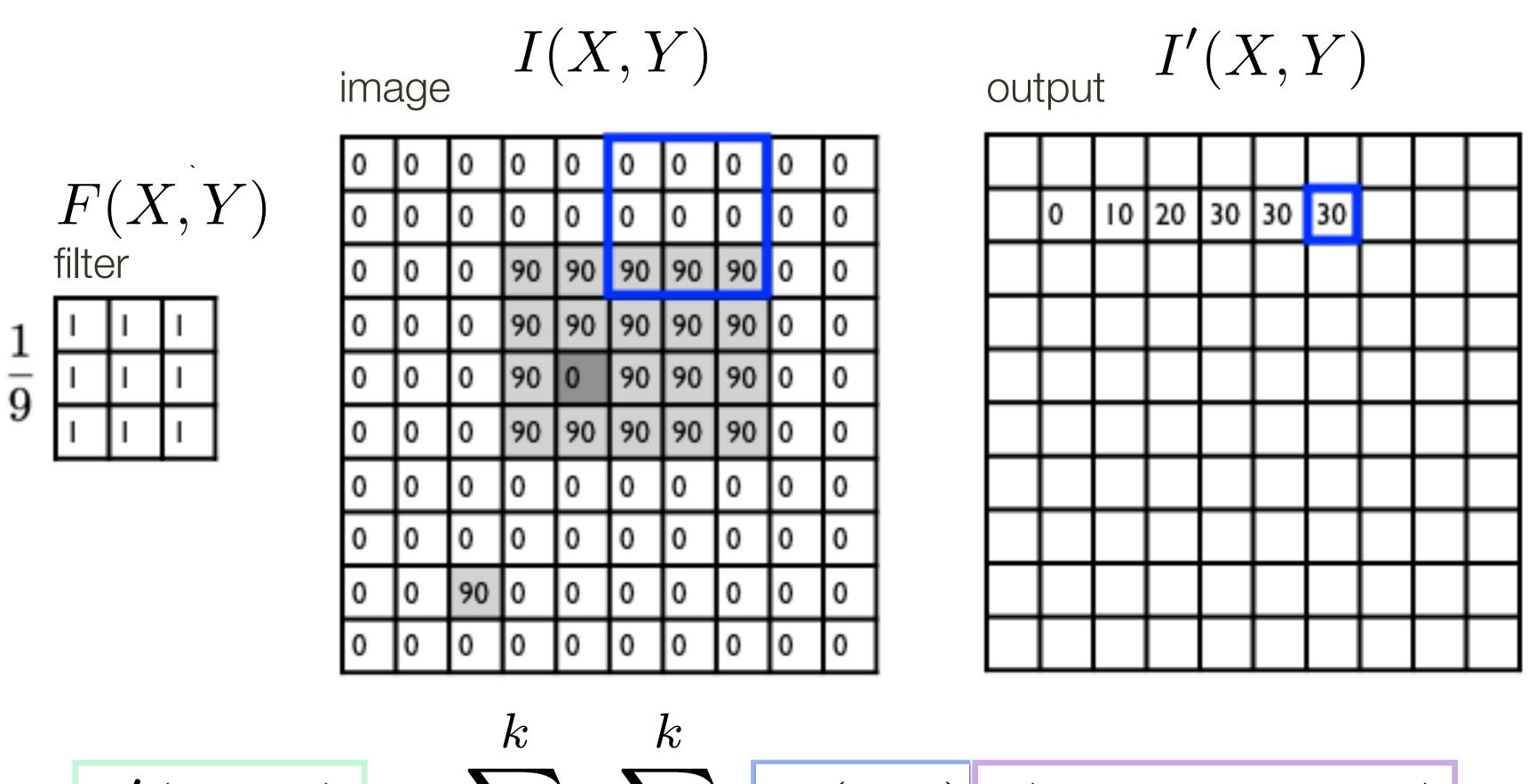
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



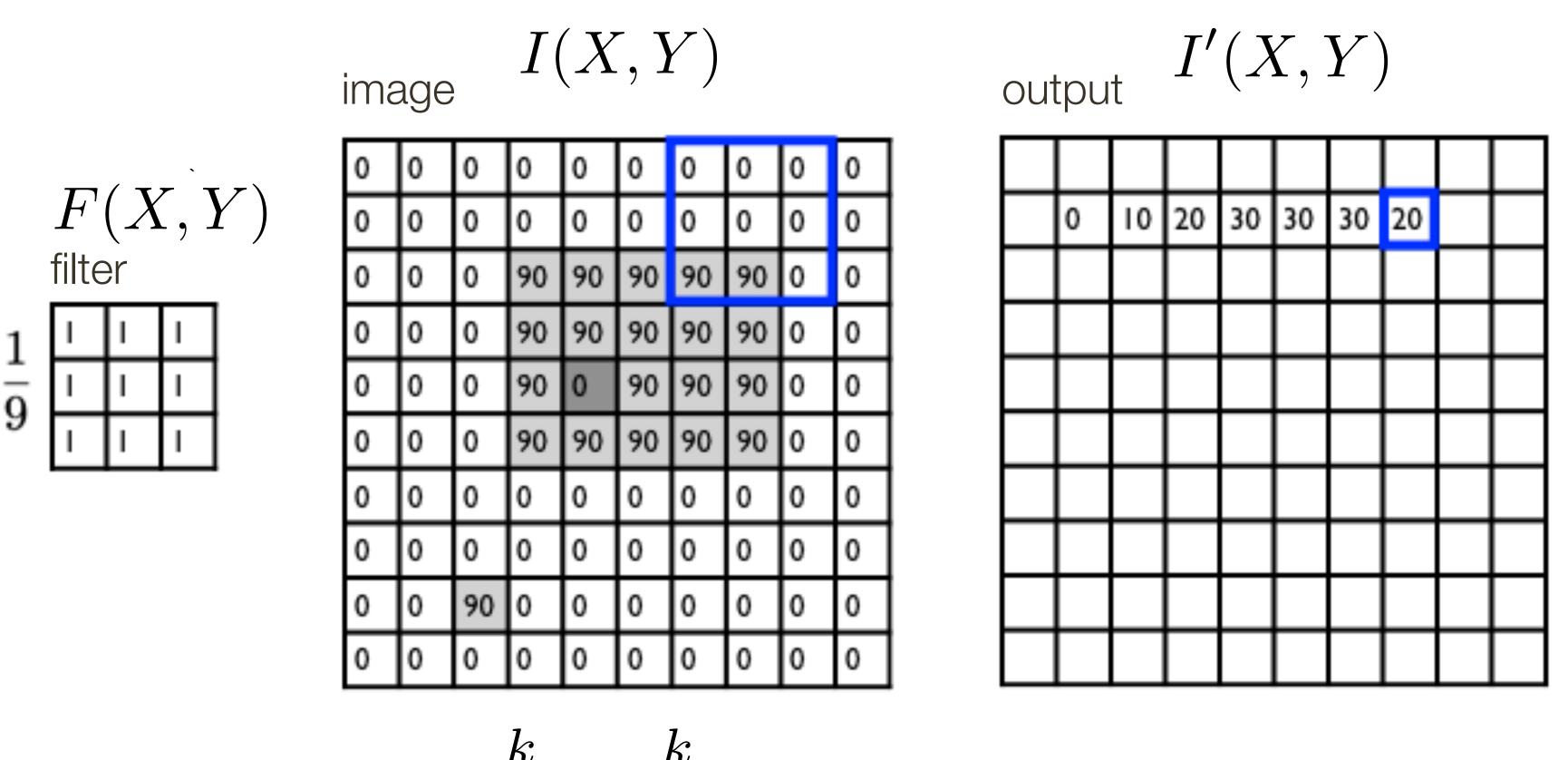
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



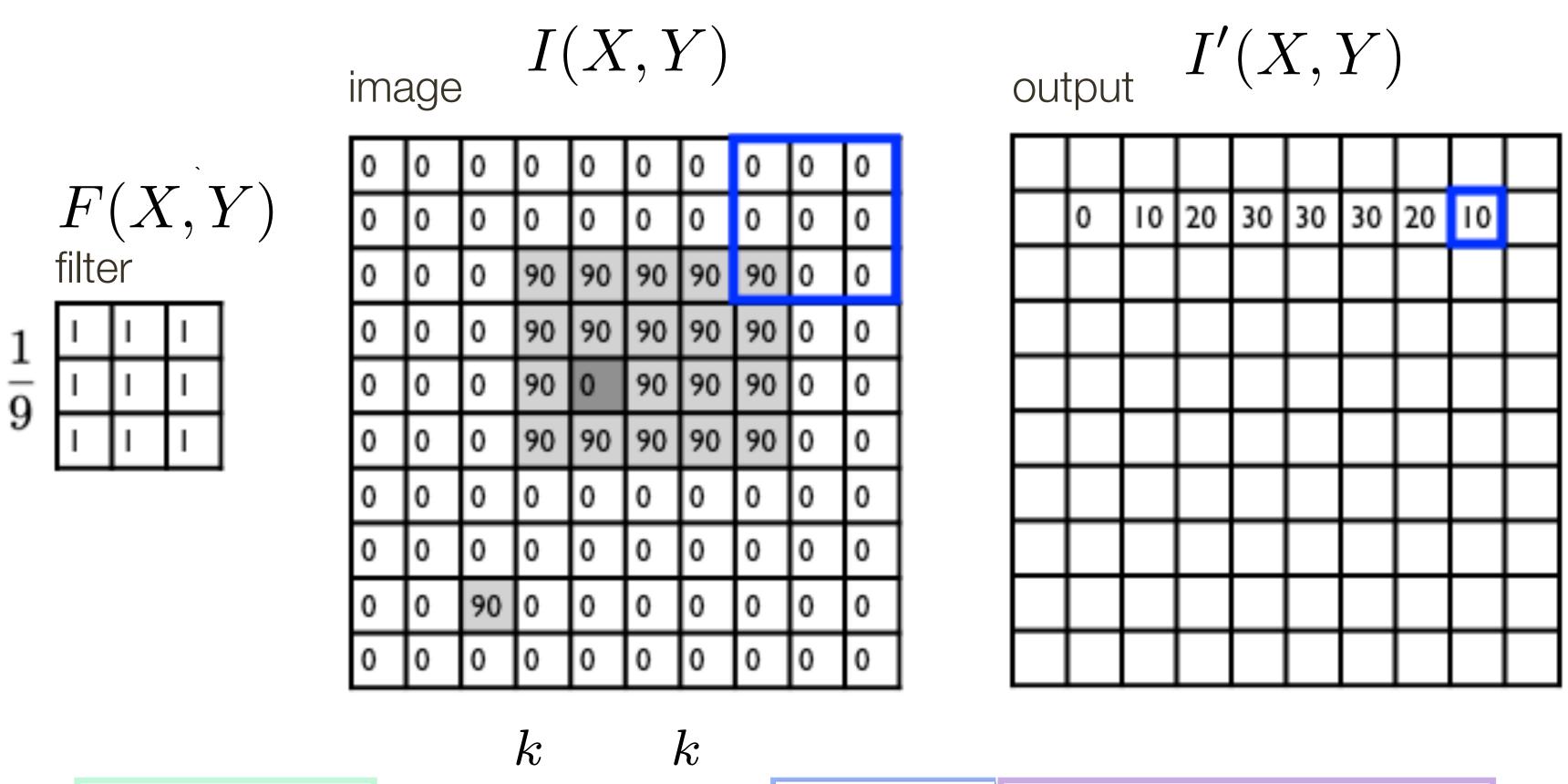
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



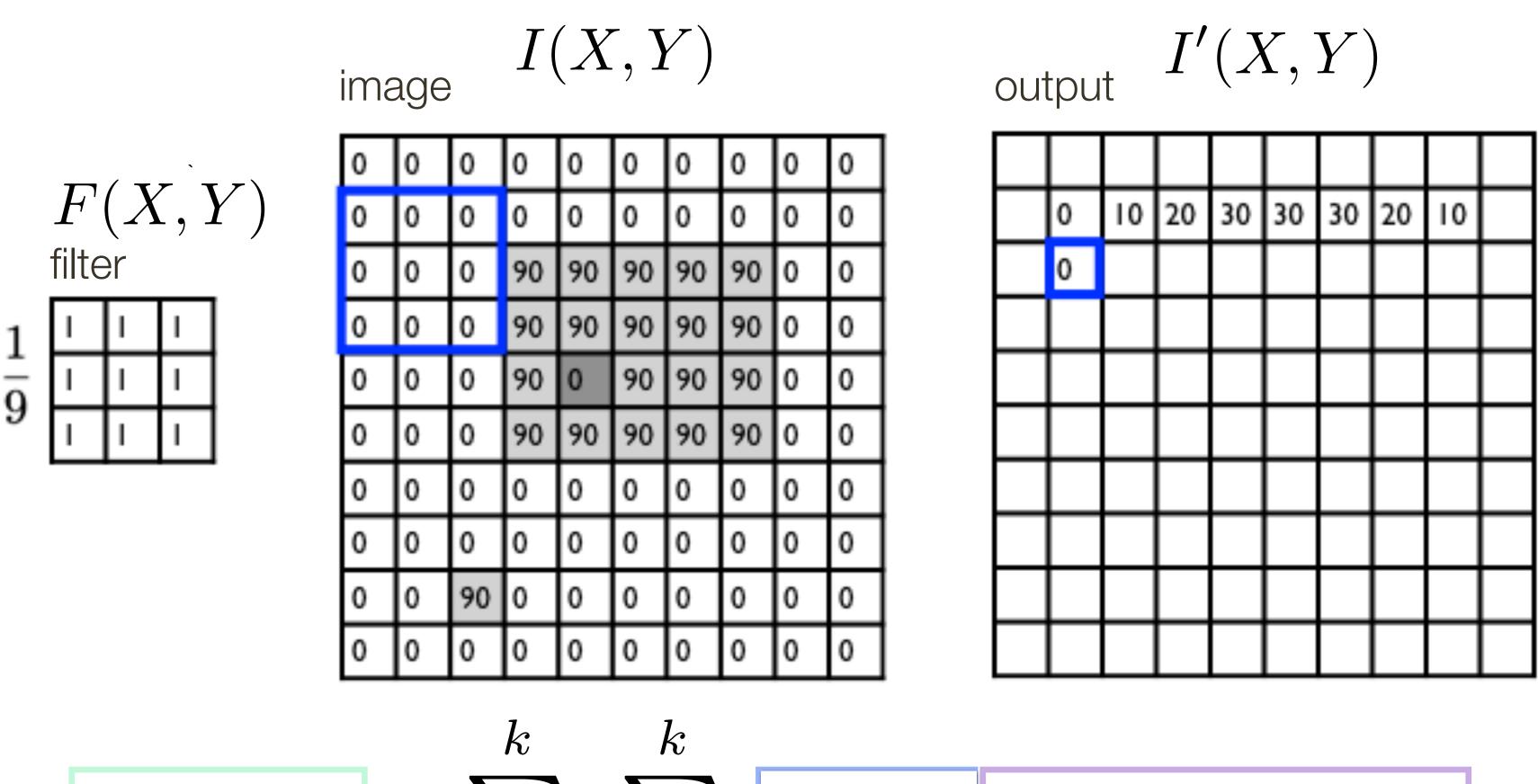
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



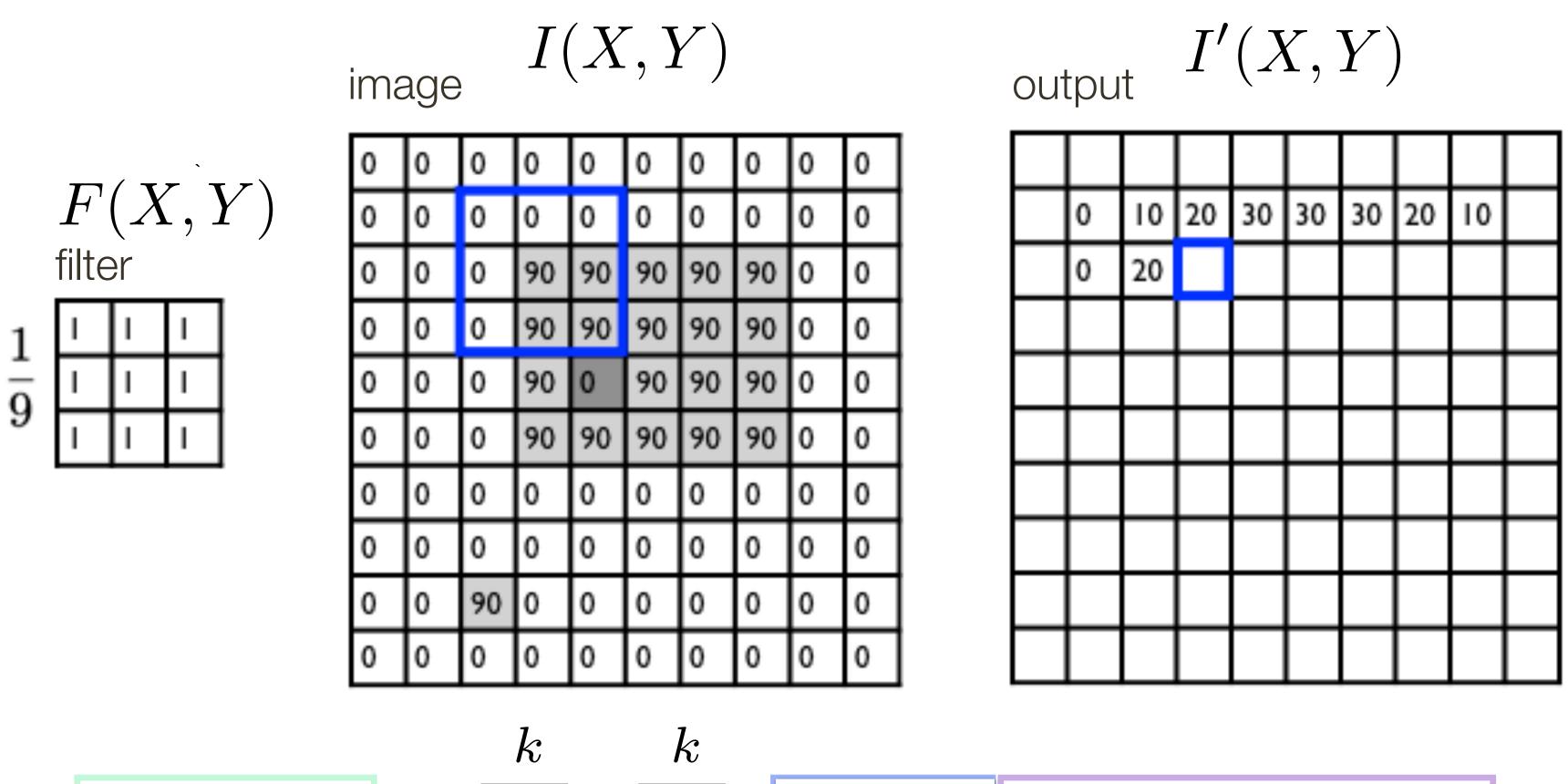
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



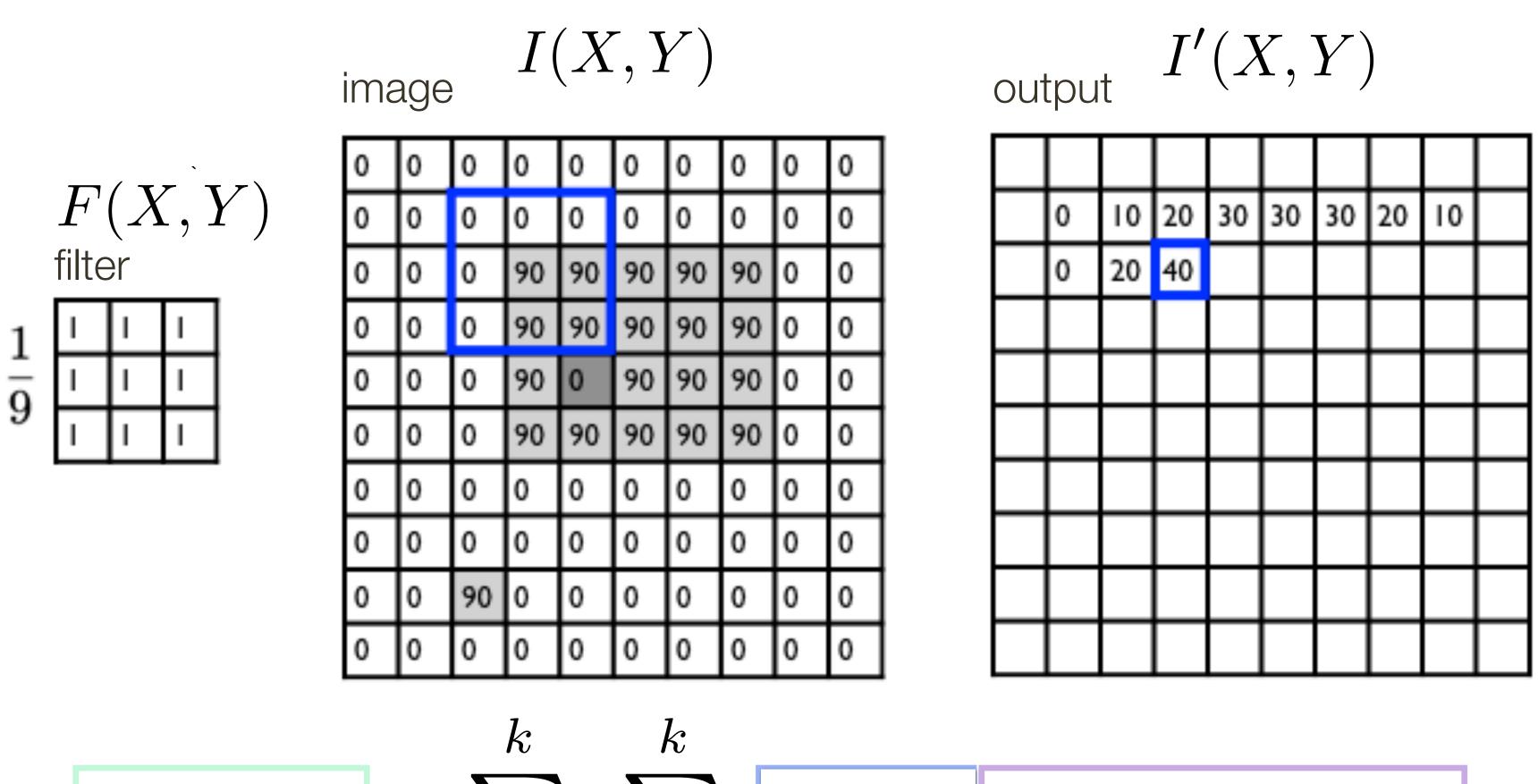
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



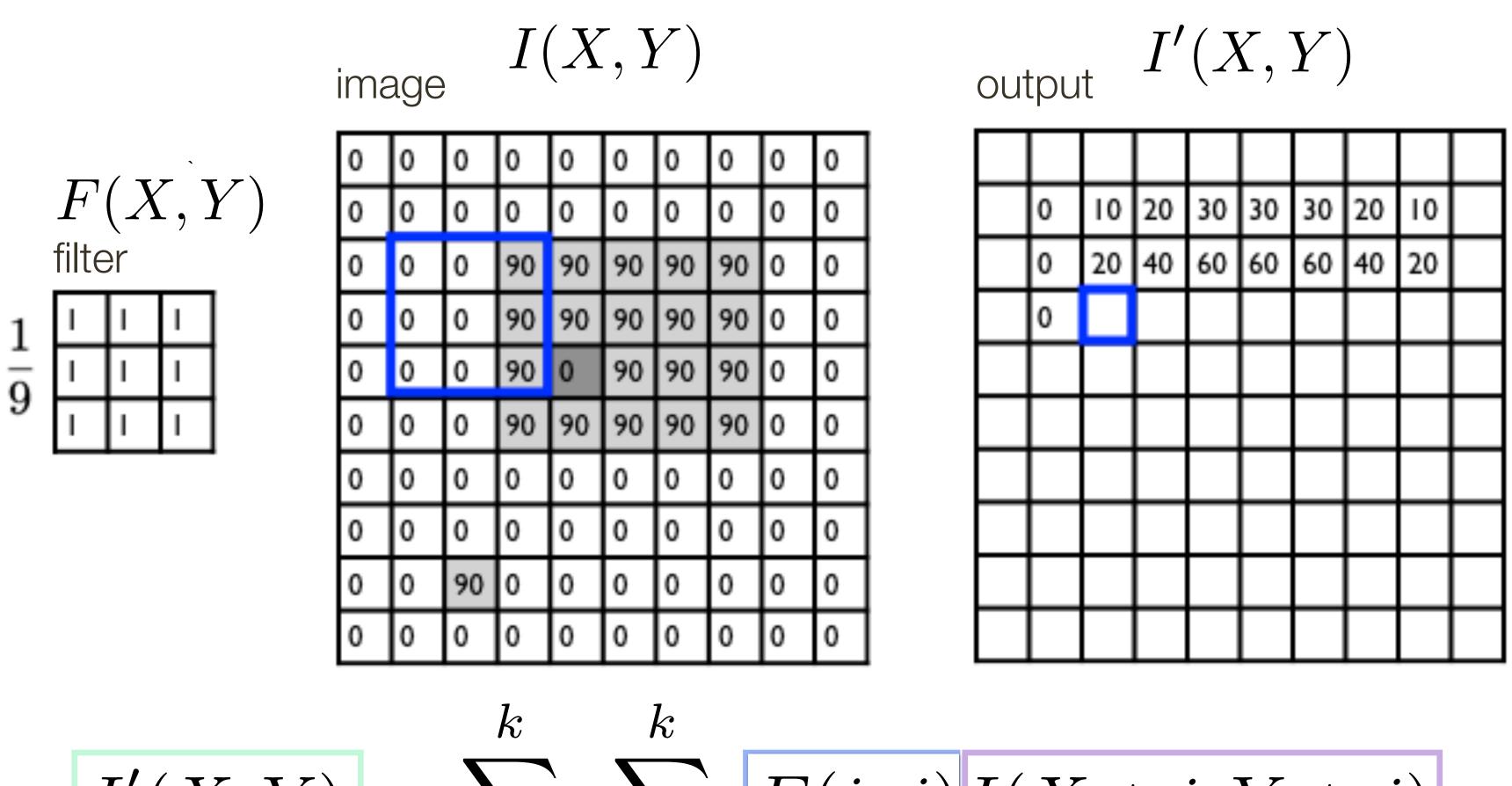
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



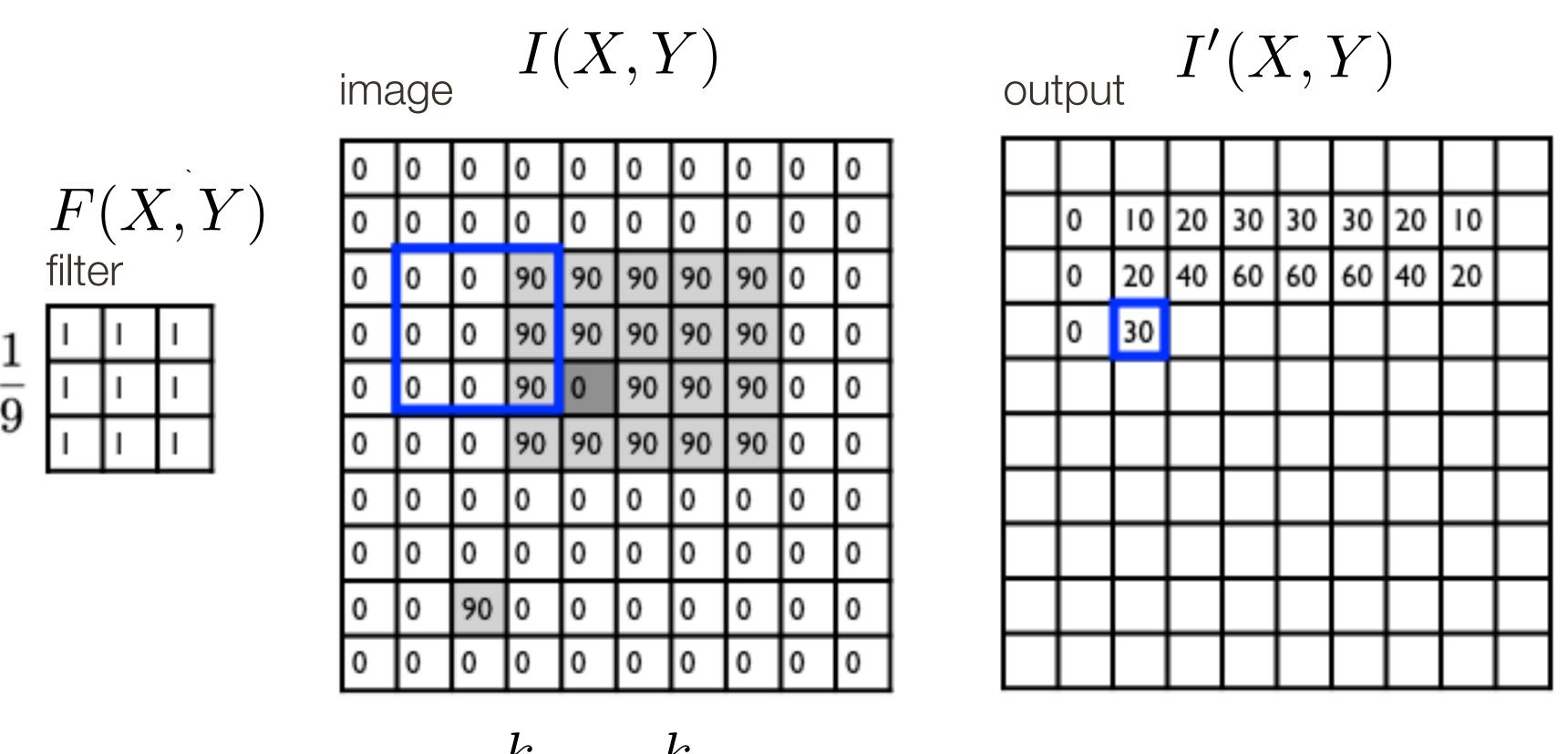
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



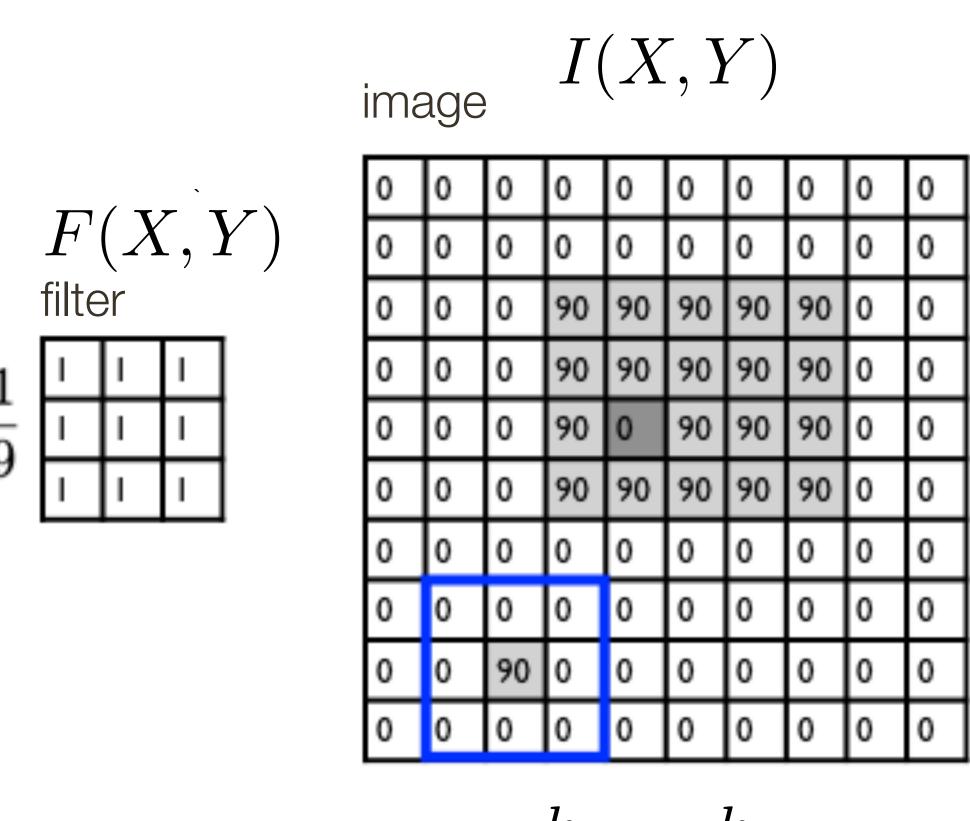
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$



$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)



Output
$$I'(X,Y)$$

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

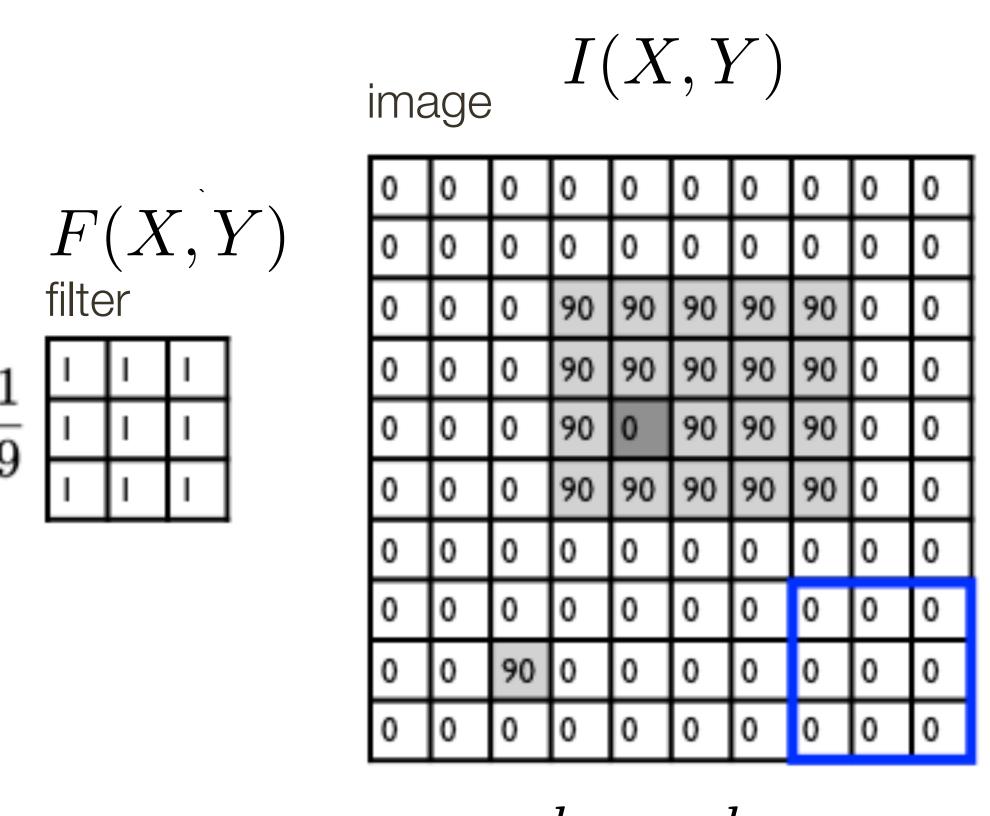
0 30 50 80 80 90 60 30

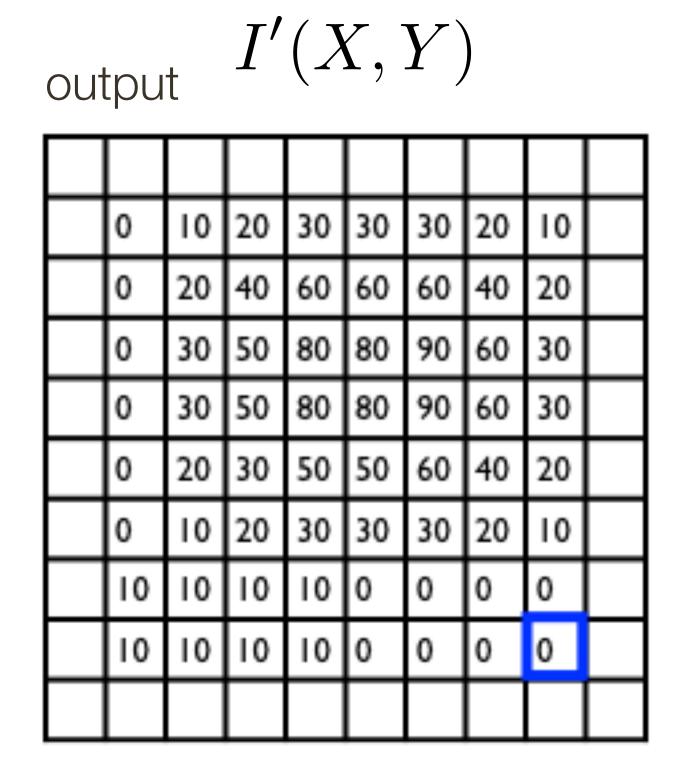
0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

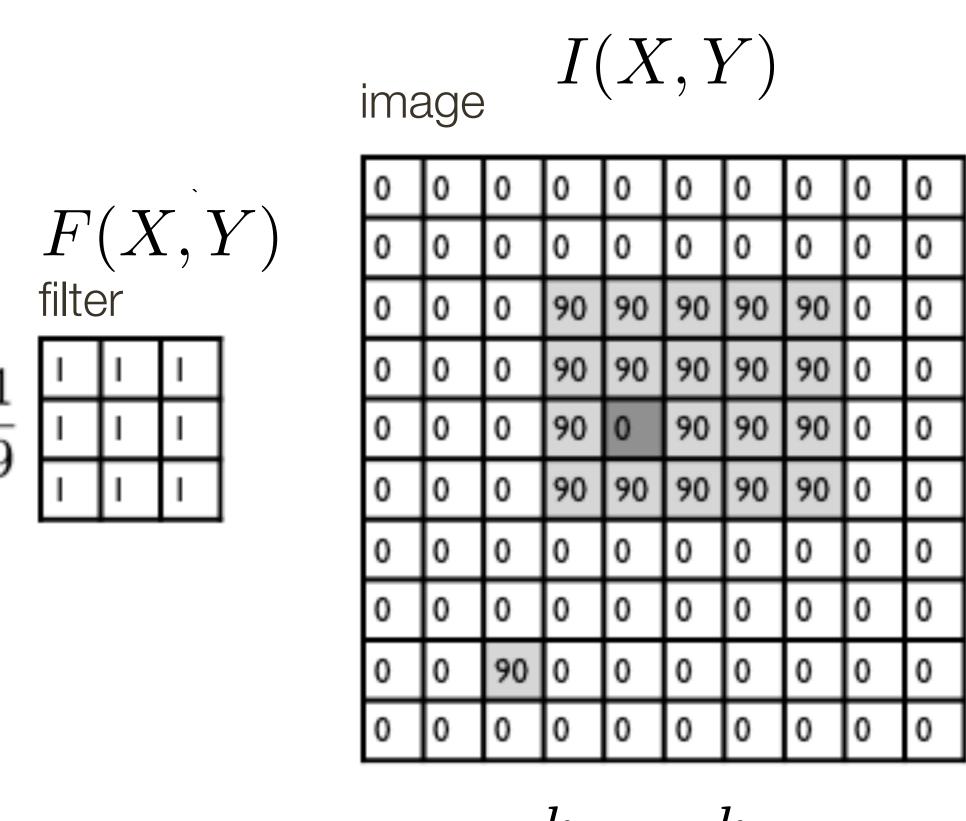
10 10 10 10 0 0 0 0

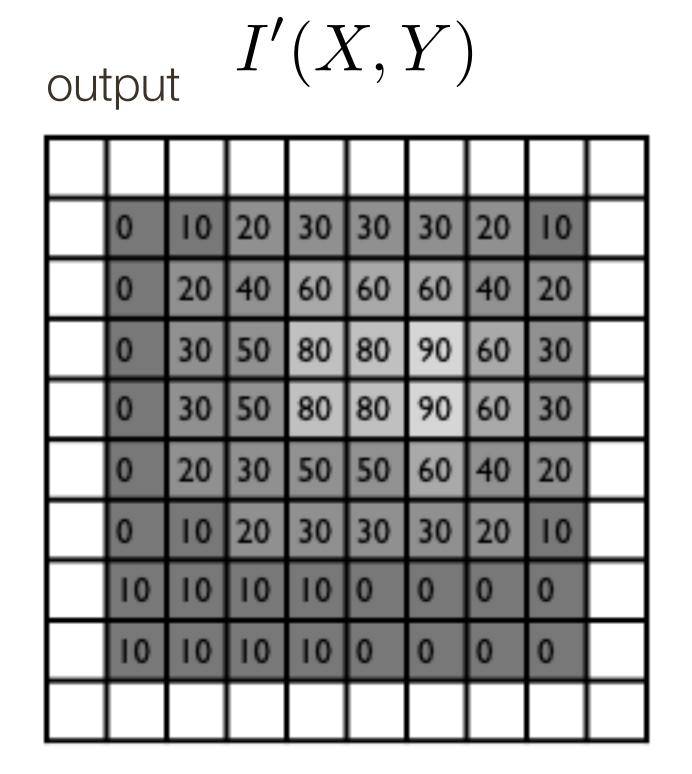
$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$j=-k = -k$$
 filter image (signal)





$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$





$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output filter image (signal)

For a given X and Y, superimpose the filter on the image centered at (X,Y)

Compute the new pixel value, I'(X,Y), as the sum of $m \times m$ values, where each value is the product of the original pixel value in I(X,Y) and the corresponding values in the filter

Let's do some accounting ...

$$I'(X,Y) = \sum_{j=-k}^{k} \sum_{i=-k}^{k} F(i,j) I(X+i,Y+j)$$
 output
$$filter \qquad \text{image (signal)}$$

At each pixel, (X,Y), there are $m \times m$ multiplications

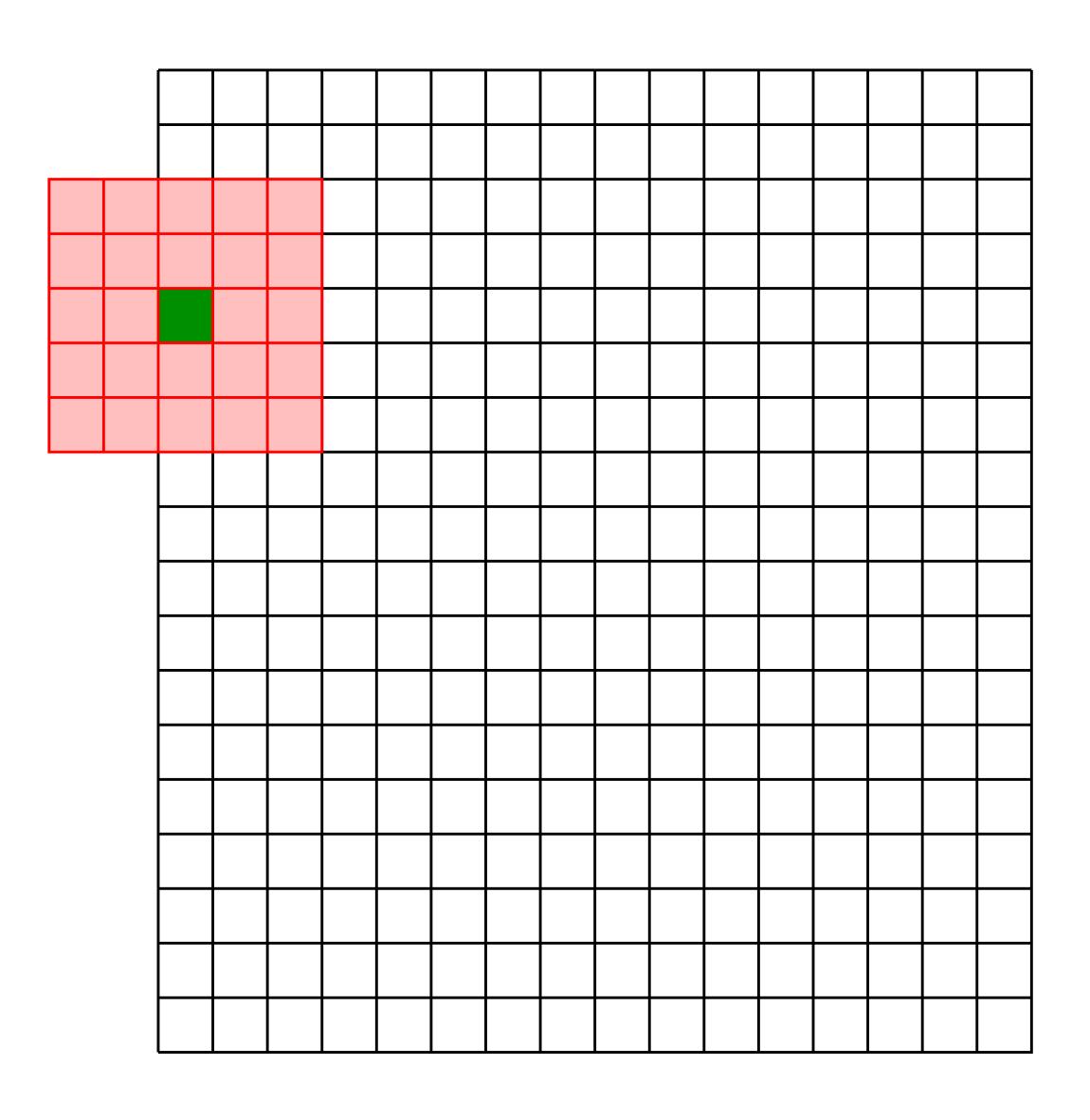
There are

 $n \times n$ pixels in (X, Y)

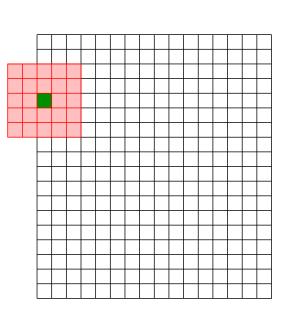
Total:

 $m^2 \times n^2$ multiplications

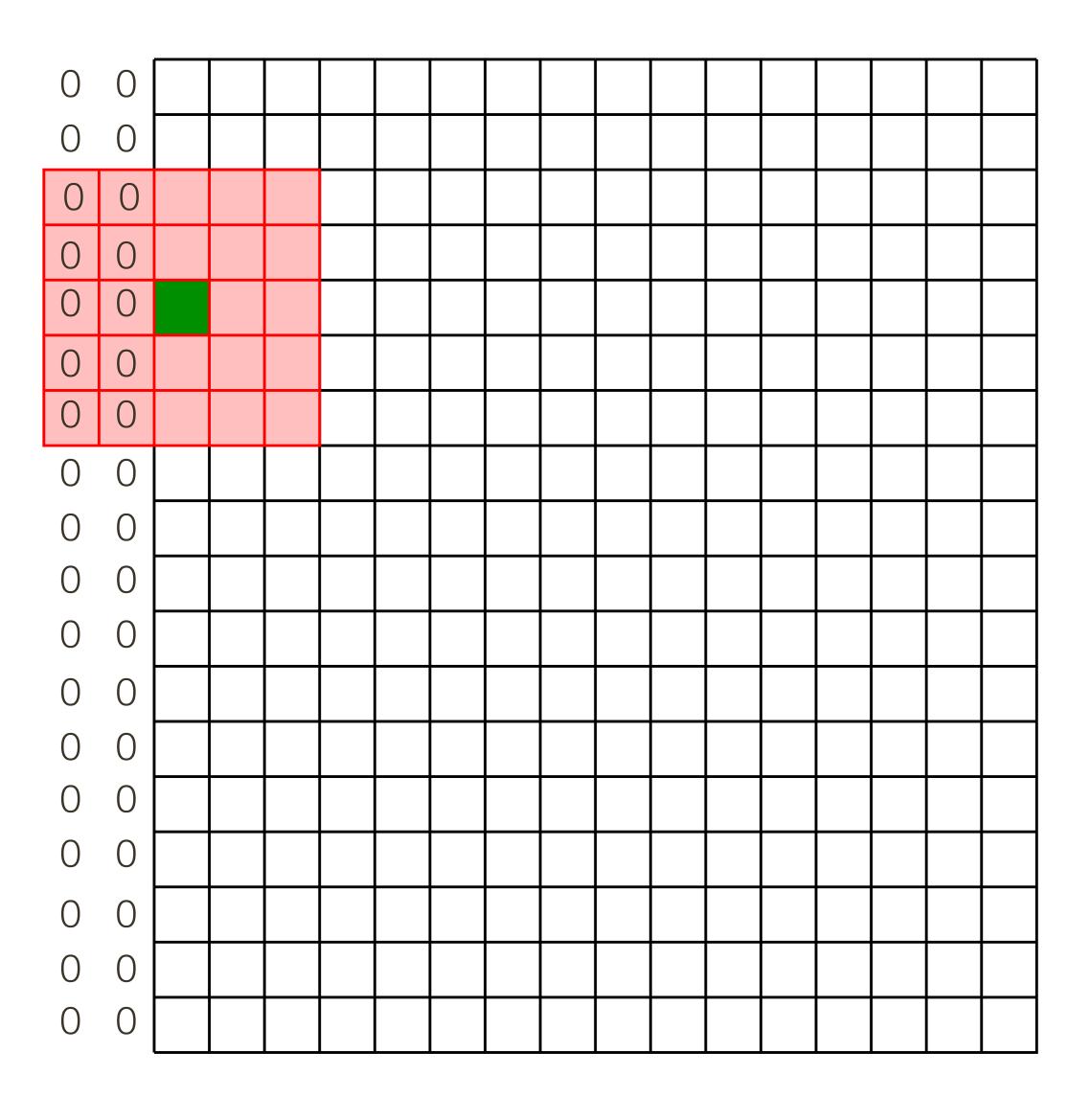
When m is fixed, small constant, this is $\mathcal{O}(n^2)$. But when $m \approx n$ this is $\mathcal{O}(m^4)$.

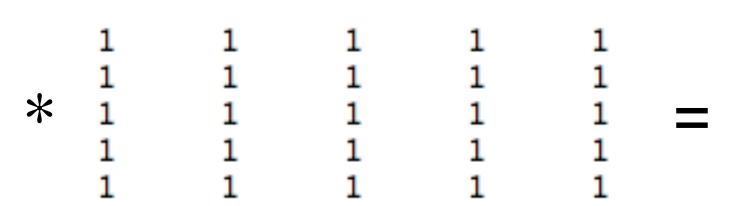


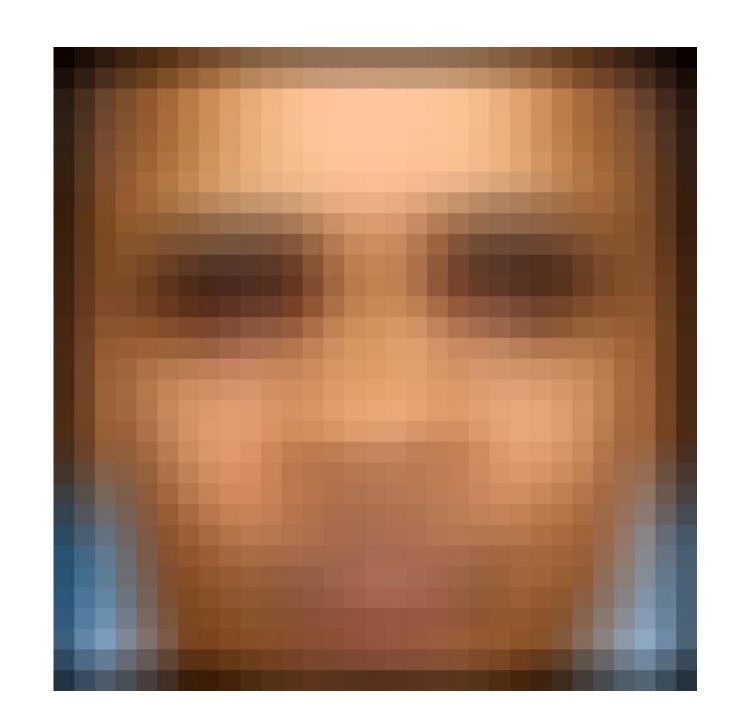
Three standard ways to deal with boundaries:



- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*

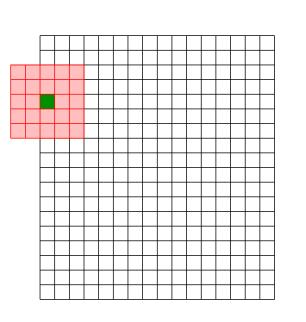




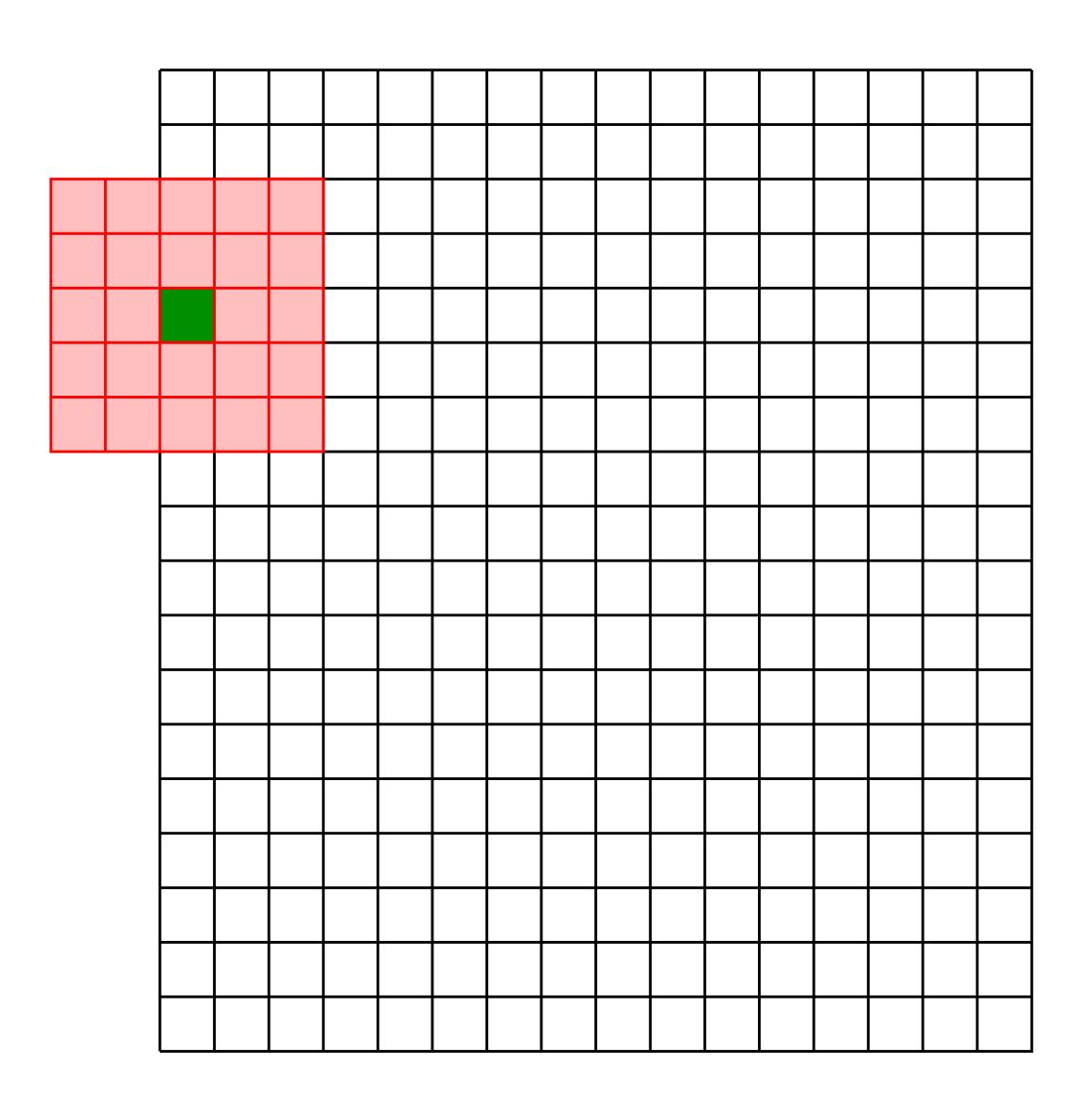


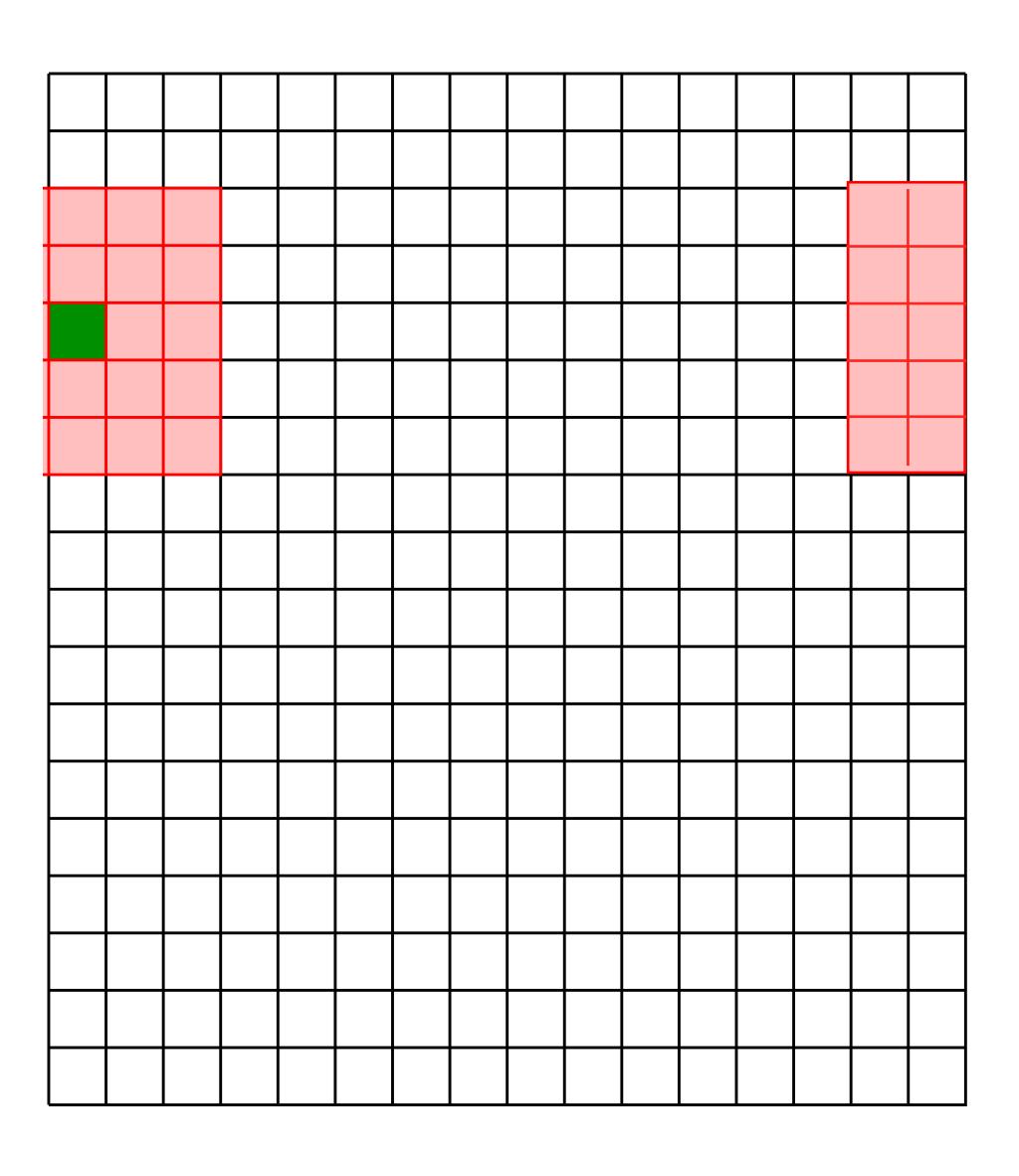
Notice decrease in brightness at edges

Three standard ways to deal with boundaries:

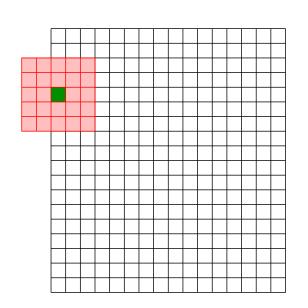


- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*
- 3. **Assume periodicity**: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column

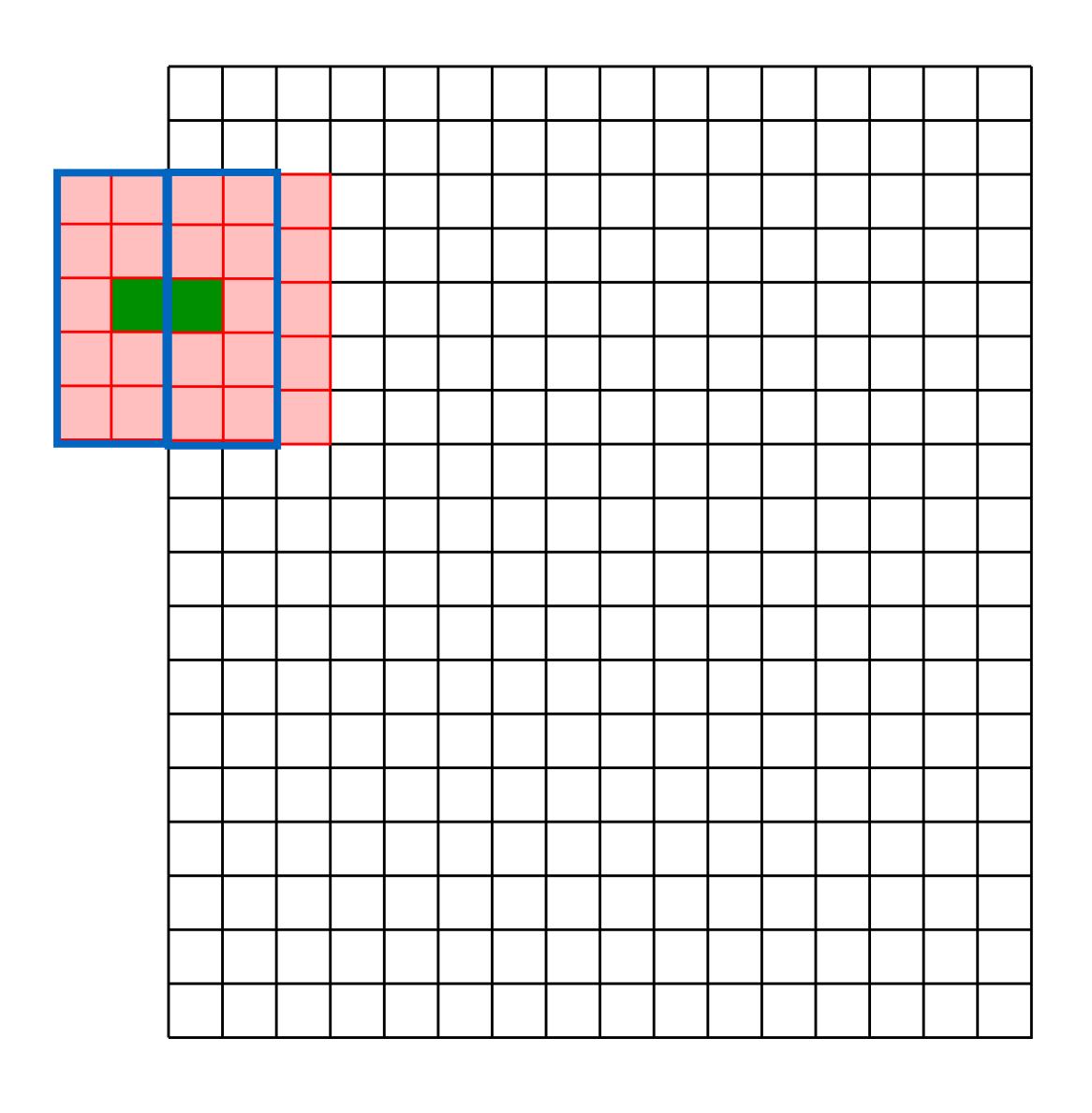




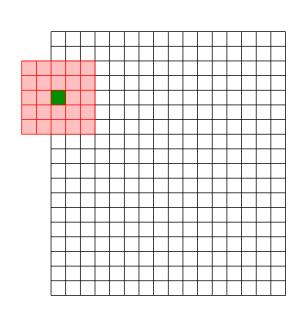
Four standard ways to deal with boundaries:



- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*
- 3. **Assume periodicity**: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
- 4. Reflect boarder: Copy rows/columns locally by reflecting over the edge



Four standard ways to deal with boundaries:



- 1. **Ignore these locations:** Make the computation undefined for the top and bottom k rows and the leftmost and rightmost k columns
- 2. **Pad the image with zeros**: Return zero whenever a value of I is required at some position outside the defined limits of *X* and *Y*
- 3. **Assume periodicity**: The top row wraps around to the bottom row; the leftmost column wraps around to the rightmost column
- 4. Reflect boarder: Copy rows/columns locally by reflecting over the edge