
Lecture 22: Neural Networks 3

CPSC 425: Computer Vision 

1



Menu for Today
Topics: 

— Neural Networks part 3 
— Weight Initialization

Readings: 

— Today’s Lecture:  Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS 
498/598                           

— Normalization 
— Preventing Overfitting 

Reminders: 
—Quiz 6 April 7th 
—Assignment 6: due Apr 10th <— watch out! 
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So why now?



Rise of large datasets

4/4/2017

22K categories and 14M images

www.image-net.org

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009 

• Animals 
• Bird 
• Fish 
• Mammal 
• Invertebrate

• Plants 
• Tree 
• Flower 

• Food 
• Materials

• Structures 
• Artifact 

• Tools 
• Appliances 
• Structures

• Person 
• Scenes 

• Indoor 
• Geological Formations 

• Sport Activities 

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
5

http://cs231n.stanford.edu/


Rise of large datasets

https://laion.ai/blog/laion-5b/



Clever architectures
Convolutional neural networks

[Lecun, Bottou, Bengio, and Haffner, “Gradient-Based Learning Applied to Document Recognition”, 1998] 
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Clever architectures
Transformers, Vaswani et al., 2017



Proper initialization schemes
Much more important than you think

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

“Xavier initialization” 
[Glorot et al., 2010] 

Neuron activations are 
well spread

http://cs231n.stanford.edu/


Proper initialization schemes
Much more important than you think

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

“Xavier initialization” 
[Glorot et al., 2010] 

Neuron activations are 
well spread

Less important now with “normalization” 

(But still can be VERY important in some cases)

http://cs231n.stanford.edu/


Weight initialization



Q: what happens when W=0 init is used?

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

12

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

13

First idea: Small random numbers  
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.

http://cs231n.stanford.edu/
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Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

14

Let’s look at 
some 
activation 
statistics

E.g. 10-layer net with 
500 neurons on each 
layer, using tanh non-
linearities, and initializing 
as described in last slide.

Init with small random numbers

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

15

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

16

All activations 
become zero! 

Q: think about the 
backward pass. 
What do the 
gradients look like?

Hint: think about backward 
pass for a W*X gate.

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
A look into ways things can go wrong

17

Almost all neurons 
completely saturated, 
either -1 and 1. 
Gradients will be all 
zero.

*1.0 instead of *0.01

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
Glorot initialization [Glorot et al., 2010]

18

Statistically motivated  

Good for tanh 

Some number according to “fan in”

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
Glorot initialization [Glorot et al., 2010]

19

Statistically motivated  

Good for tanh 

Not so good for ReLU

Some number according to “fan in”

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
He initialization [He et al., 2015]

20

magic number 2

Statistically motivated  

Good for ReLU 

http://cs231n.stanford.edu/


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization
He initialization [He et al., 2015]

21

magic number 2

Statistically motivated  

Good for ReLU 

http://cs231n.stanford.edu/


Recall: But it is never that easy
A typical sad loss curve

22

Loss

Steps

Did something wrong, network not learning

Finally learning, but I graduated last year



Recall: But it is never that easy
A typical sad loss curve

23

Loss

Steps

Did something init wrong, network not learning gradients saturated?

Finally learning, but I graduated last year



Normalization



Batch normalization
Recall…

25

[Ioffe and Szegedy, 2015]



Batch normalization
Recall…

26

[Ioffe and Szegedy, 2015]

Linear operations should cancel out



Batch normalization
Forcing a zero-mean and unit standard deviation

27

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

consider a batch of activations at some layer. To 
make each dimension unit gaussian, apply:

this is a linear differentiable 
function...

http://cs231n.stanford.edu/


Batch normalization
Forcing a zero-mean and unit standard deviation

28

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

XN

D

1. Compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize

http://cs231n.stanford.edu/


Batch normalization
Forcing a zero-mean and unit standard deviation

29

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully Connected 
or Convolutional layers, and before 
nonlinearity.

http://cs231n.stanford.edu/


Batch normalization
Introducing learnable scale / shift

30

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

And then allow the network to squash  
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

http://cs231n.stanford.edu/


Batch normalization
Introducing learnable scale / shift

31

[Ioffe and Szegedy, 2015]

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

And then allow the network to squash  
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

IMPORTANT: At test time, we don’t have these — use training time stats

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

32Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class 

(outside of scope)



Other normalization techniques
Batch Normalization

33
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

34
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

This is why train/test needs to be different

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

35
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

This is why train/test needs to be different
Always watch out when implementing!!!

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Other normalization techniques
Batch Normalization

36Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class 

(outside of scope)



Other normalization techniques
Layer Normalization
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Other normalization techniques
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38Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class 

(outside of scope)



Other normalization techniques
Instance Normalization
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Other normalization techniques
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Other normalization techniques
Group Normalization
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Other normalization techniques
Group Normalization

42Image from Wu and He 2018. Reproduced for educational purposes.
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Other normalization techniques
Group Normalization

43Image from Wu and He 2018. Reproduced for educational purposes.

No train/test-time differences. 

Much preferred in my opinion.

Skipped in class 

(outside of scope)



Other normalization techniques
Group Normalization

44Image from Wu and He 2018. Reproduced for educational purposes.

Can be implemented using PyTorch’s Group norm.

Skipped in class 

(outside of scope)



Other normalization techniques
Group Normalization

45Image from Wu and He 2018. Reproduced for educational purposes.

Choice of normalization should be data dependent

Skipped in class 

(outside of scope)



46

By the way… with normalization 
something else also happens



Batch normalization

47
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

[Ioffe and Szegedy, 2015]

http://cs231n.stanford.edu/


Batch normalization
Recall... 

48

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize



Batch normalization

49

[Ioffe and Szegedy, 2015]

This imbalance between 
dimensions is the problem



Batch normalization

50
Let’s artificially make it like this!

[Ioffe and Szegedy, 2015]



Batch normalization

51
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

[Ioffe and Szegedy, 2015]

http://cs231n.stanford.edu/


Preventing overfitting



Beyond training loss
Recall the other problem

53
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Better optimization 
algorithms help reduce 
training loss

But we really care about error 
on new data - how to reduce 
the gap?

http://cs231n.stanford.edu/


Beyond training loss
Recall the other problem

54
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Better optimization 
algorithms help reduce 
training loss

But we really care about error 
on new data - how to reduce 
the gap?

NOTE: No validation loss!

http://cs231n.stanford.edu/


A typical approach to overfitting
Regularization

55

Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor:  
“Among competing hypotheses, 
the simplest is the best” 
William of Ockham, 1285 - 1347

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

http://cs231n.stanford.edu/


Common regularizers

56
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In common use:  
L2 regularization 
L1 regularization 
Elastic net (L1 + L2)

(Weight decay)

http://cs231n.stanford.edu/


Common regularizers

57
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In common use:  
L2 regularization 
L1 regularization 
Elastic net (L1 + L2)

(Weight decay)

http://cs231n.stanford.edu/


Common regularizers
My personal warning against L2

58
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In common use:  
L2 regularization 
L1 regularization 
Elastic net (L1 + L2)

(Weight decay)

Laarhoven, 2017, “However, we show that L2 
regularization has no regularizing effect when 
combined with normalization. Instead, 
regularization has an influence on the scale of 
weights, and thereby on the effective learning rate.”

http://cs231n.stanford.edu/
https://arxiv.org/pdf/1706.05350.pdf


Why does this happen in the first place?

59



Why does this happen in the first place?

60

Can we somehow encode 
uncertainty in data?



Regularization: Dropout
Making it impossible to trust the data 100%

61
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

In each forward pass, randomly set some neurons to zero 
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

http://cs231n.stanford.edu/


Regularization: Dropout
Making it impossible to trust the data 100%

62
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Forces the network to have a redundant representation; 
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous  
look

cat  
score

X

X

X

http://cs231n.stanford.edu/


Regularization: Dropout
Making it impossible to trust the data 100%

63
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Another interpretation: 

Dropout is training a large ensemble of 
models (that share parameters). 

Each binary mask is one model 

An FC layer with 4096 units has 
24096 ~ 101233 possible masks! 
Only ~ 1082 atoms in the universe...

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Dropout at test time
Again the train / test gap

64
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Dropout makes our output random!

Output 
(label)

Input 
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Dropout at test time
An approximate solution

65
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Dropout at test time
An approximate solution

66
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

At test time we have: 

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Dropout at test time
An approximate solution

67
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

At test time we have: 

During training we have:  

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Dropout at test time
An approximate solution

68
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Want to approximate the integral

a

x y

w1 w2

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Consider a single neuron. 

At test time we have: 

During training we have:  

At test time, multiply by 
dropout probability 

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Dropout
How good is it?

69
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Figures copyright JLMR, 2014. Reproduced for educational purposes.

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: A common pattern

70
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Training: Add some kind of randomness

Testing: Average out randomness 
(sometimes approximate)

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: A common pattern

71
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Training: Add some kind of randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch Normalization 

Training: Normalize using stats 
from random minibatches 

Testing: Use fixed stats to 
normalize

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Why does this happen in the first place?

72

Skipped in class 

(outside of scope)



Why does this happen in the first place?

73

How can we have more data?

Skipped in class 

(outside of scope)



Regularization: Data augmentation

74
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

This image by Nikita is 
licensed under CC-BY 2.0

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/
https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Regularization: Data augmentation

75
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

Transform image

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation

76
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

Transform image
- Horizontal / vertical flips 
- Color / brightness 
- Rotations / scaling 
- Elastic transformation

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation

77
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Load image 
and label

“cat”

CNN

Compute 
loss

Transform image
- Horizontal / vertical flips 
- Color / brightness 
- Rotations / scaling 
- Elastic transformation

Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation
Elastic deformations

78
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003

1. Create random 
displacement field with 
uniform distribution 

2. Smooth the displacement 
field with a Gaussian

Figures copyright IEEE, 2003. Reproduced for educational purposes.

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation
Elastic deformations

79
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation
Elastic deformations

80
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Ronneberger et. al,, "U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation
Synthetic data

81
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Shotton et. al,, "Real-Time Human Pose Recognition in Parts from Single Depth Images”, 2011

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Regularization: Data augmentation
Synthetic data + generative models

82
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
Shrivastava et. al,, "Learning from Simulated and Unsupervised Images through Adversarial Training”, 2011

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Using pretrained networks

83

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014 
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Using pretrained networks

84

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014 
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these 

Reinitialize 
this and train

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Using pretrained networks

85

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014 
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these 

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096

FC-C

3. Bigger dataset

Freeze these 

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/


Large generative models

[Video from https://twitter.com/HaiperGenAI/status/1745845670844522760 

Skipped in class 

(outside of scope)

https://twitter.com/HaiperGenAI/status/1745845670844522760


Large generative models

[Video from https://twitter.com/HaiperGenAI/status/1745845670844522760 

Skipped in class 

(outside of scope)

https://twitter.com/HaiperGenAI/status/1745845670844522760


Image from [Hertz et al., ICLR, 2023]

Fishing information within SD

87

Skipped in class 

(outside of scope)



Correspondences from SD

88

Skipped in class 

(outside of scope)



Keypoints from SD
Skipped in class 


(outside of scope)



Keypoints from SD
Skipped in class 


(outside of scope)



Text-to-3D from SD
Skipped in class 


(outside of scope)



Visualize VISUALIZE VISUALIZE

91
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Iterations

Skipped in class 

(outside of scope)

http://cs231n.stanford.edu/
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Lots more to learn! A good place to start is 

Justin Johnson, University of Michigan, EECS 498/598, e.g.,


https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/ 


More on Neural Networks Skipped in class 

(outside of scope)

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/


Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Training Neural Nets: Clever Hans Skipped in class 
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Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Hans could get 89% of the math questions right

Training Neural Nets: Clever Hans Skipped in class 
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Clever Hans 
(Orlov Trotter horse)

Wilhelm  
von Osten 

Hans could get 89% of the math questions right

The course was smart, just not in the way van Osten thought! 

Training Neural Nets: Clever Hans Skipped in class 
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