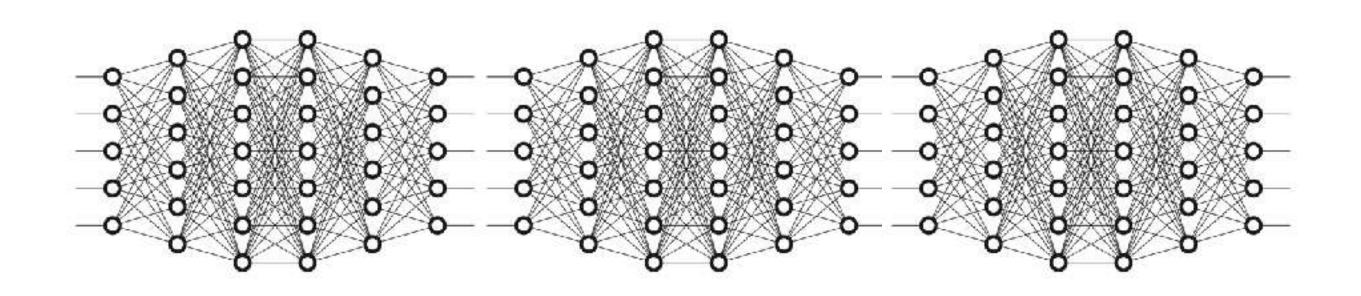


CPSC 425: Computer Vision



Lecture 22: Neural Networks 3

Menu for Today

Topics:

- Neural Networks part 3

- Weight Initialization

Readings:

— Today's Lecture: Szeliski 5.1.3, 5 498/598

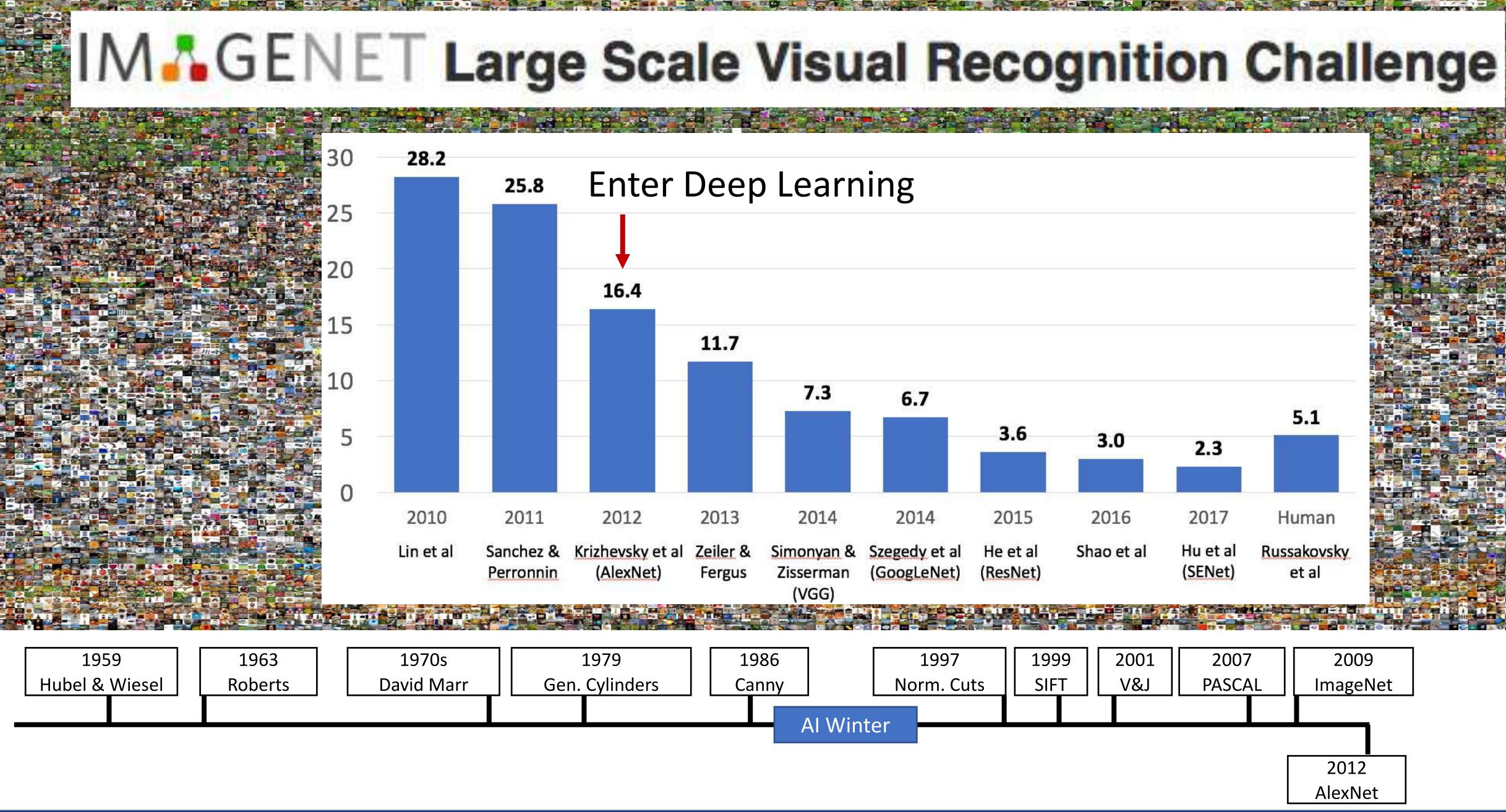
Reminders:

-Quiz 6 April 7th

-Assignment 6: due Apr 10th <-- watch out!

Normalization Preventing Overfitting

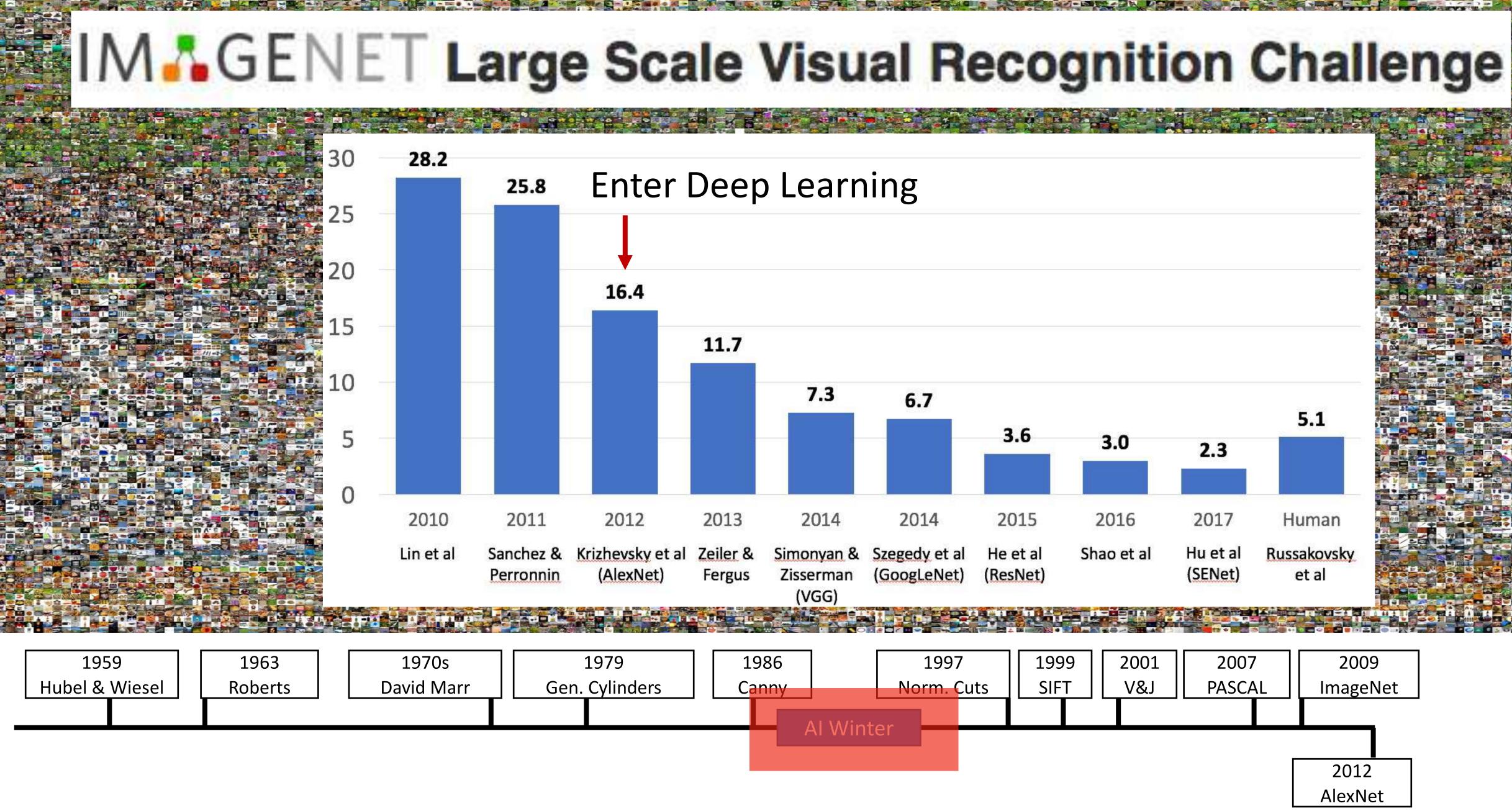
- Today's Lecture: Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS



Justin Johnson

Lecture 1 - 28

January 5, 2022



Justin Johnson

Lecture 1 - 28

January 5, 2022

So why now?

Rise of large datasets

IMAGENET

22K categories and **14M** images

- Animals
 - Bird
 - Fish
 - Mammal
 - Invertebrate •

- Plants
 - Tree
 - Flower
- Food
- Materials •

www.image-net.org

- Structures
- Artifact
 - Tools
 - Appliances
 - Structures •

- Person
- Scenes •

•

- Indoor
- Geological Formations
- Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

Rise of large datasets

[] https://laion.ai/blog/laion-5b/

. . .

D

G

C

LAION Projects Team Blog Notes Press About FAQ Donations **Privacy Policy Dataset Requests** Impressum

m ()

 \sim

by: Romain Beaumont, 31 Mar, 2022

We present a dataset of 5,85 billion CLIP-filtered image-text pairs, 14x bigger than LAION-400M, previously the biggest openly accessible image-text dataset in the world - see also cur NeurIPS2022 paper

Kaczmarczyk, Jenia Jitsev

Clip.retrieval works by converting the text query to a CLIP embedding then using that ng to auer a knn indet of clip image embedddings

Display captions Display full captions Display similarities

LAION-5B: A NEW ERA OF OPEN LARGE-SCALE MULTI-MODAL DATASETS | LAION

LAION-5B: A NEW ERA OF

2

OPEN LARGE-SCALE MULTI-MODAL DATASETS

12

Authors: Christoph Schuhmann, Richard Vencu, Romain Beaumont, Theo Coombes, Cade Gordon, Aarush Katta, Robert

french cat

french cat

french czt

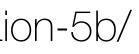
feline is french. He wyars a b.

イケメン翌モデル 「トキ・ナンタケッ ト」がかっこいし、

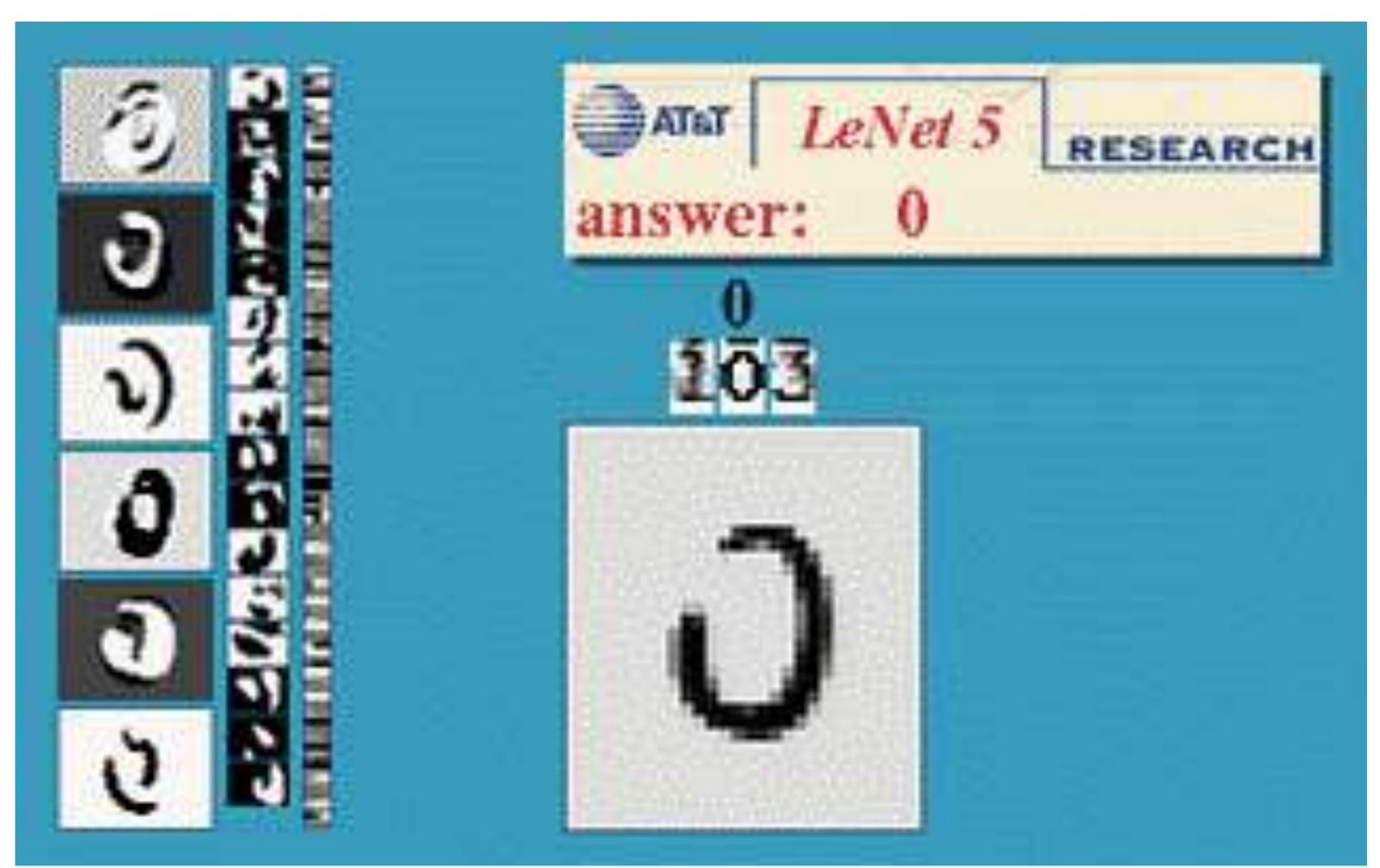
001

Hibridgs pies of funny cats! funnycatsgif com

https://laion.ai/blog/laion-5b/

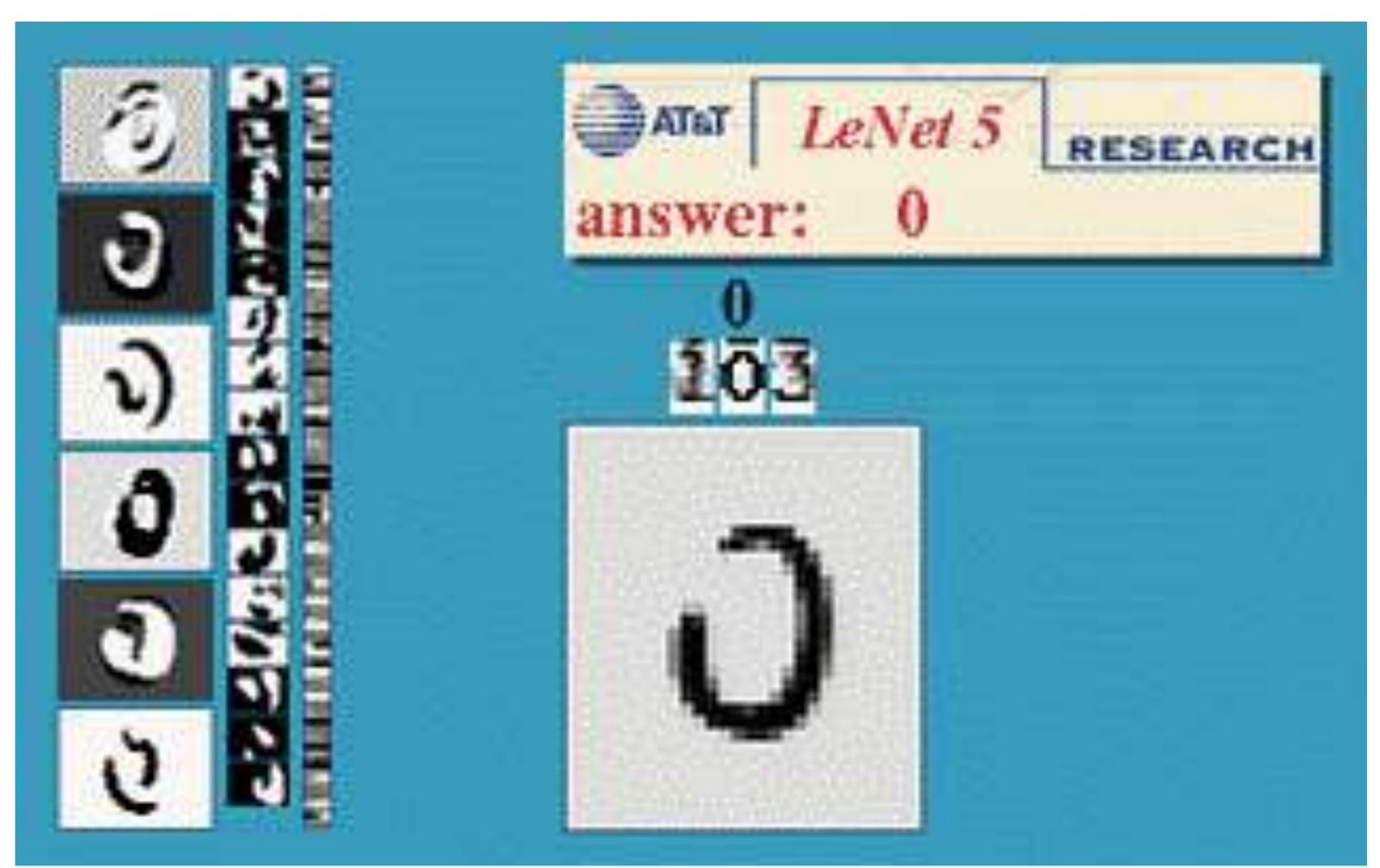


Clever architectures Convolutional neural networks



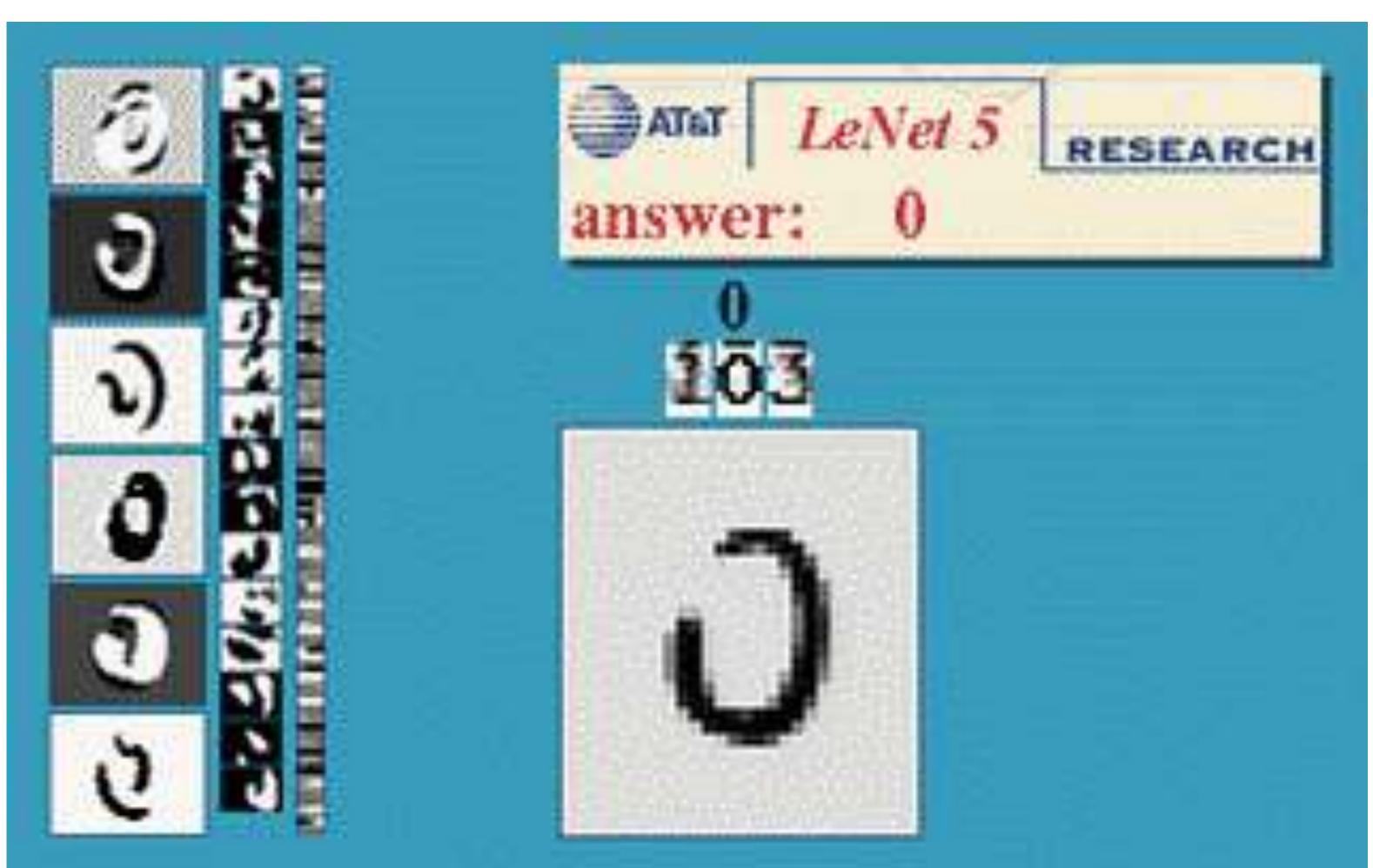
[Lecun, Bottou, Bengio, and Haffner, "Gradient-Based Learning Applied to Document Recognition", 1998]

Clever architectures Convolutional neural networks



[Lecun, Bottou, Bengio, and Haffner, "Gradient-Based Learning Applied to Document Recognition", 1998]

Clever architectures Convolutional neural networks

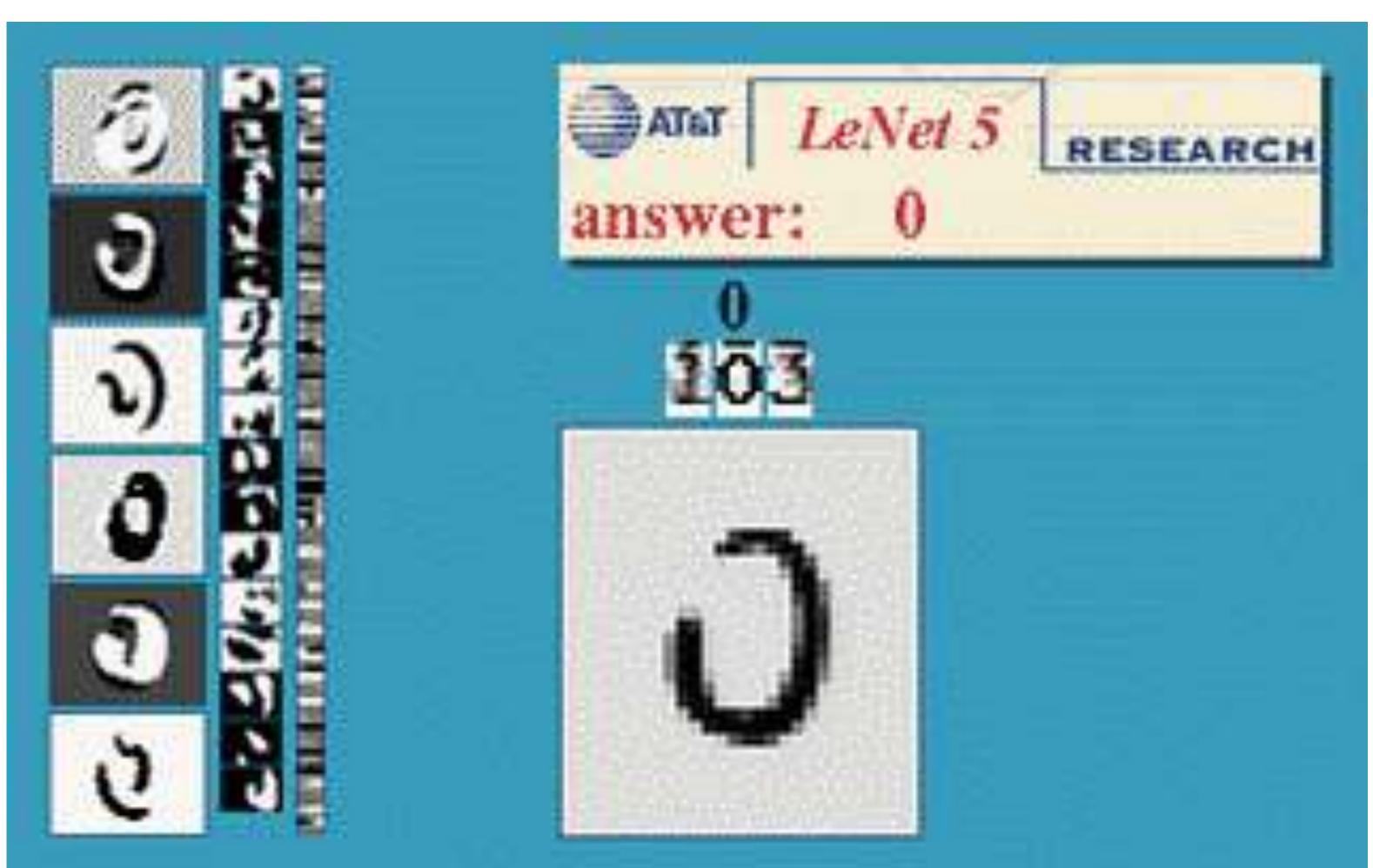


[Lecun, Bottou, Bengio, and Haffner, "Gradient-Based Learning Applied to Document Recognition", 1998]



Restricted Boltzmann Machines", 2010

Clever architectures Convolutional neural networks



[Lecun, Bottou, Bengio, and Haffner, "Gradient-Based Learning Applied to Document Recognition", 1998]



Restricted Boltzmann Machines", 2010

Clever architectures Transformers, Vaswani et al., 2017

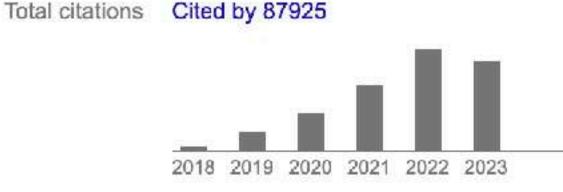
Attention is all you need

	Authors	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,			
		Gomez, Łukasz Kaiser, Illia Polosukhin			

Publication date 2017

> Advances in neural information processing systems Journal

- Volume 30
- The dominant sequence transduction models are based on complex recurrent Description orconvolutional neural networks in an encoder and decoder configuration. The best performing such models also connect the encoder and decoder through an attentionm echanisms. We propose a novel, simple network architecture based solely onan attention mechanism, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superiorin quality while being more parallelizable and requiring significantly less timeto train. Our single model with 165 million parameters, achieves 27.5 BLEU on English-to-German translation, improving over the existing best ensemble result by over 1 BLEU. On English-to-French translation, we outperform the previoussingle state-of-the-art with model by 0.7 BLEU, achieving a BLEU score of 41.1.



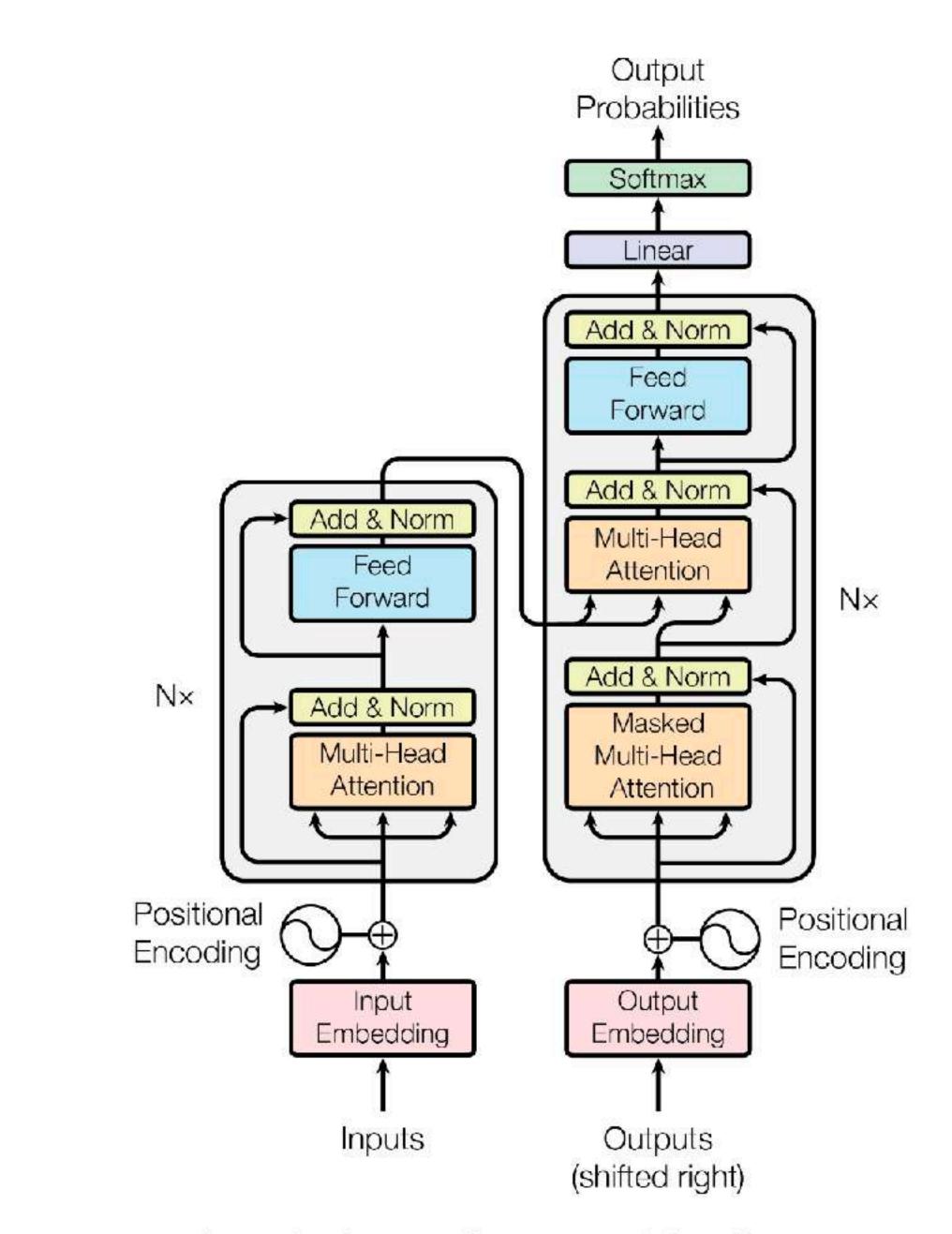
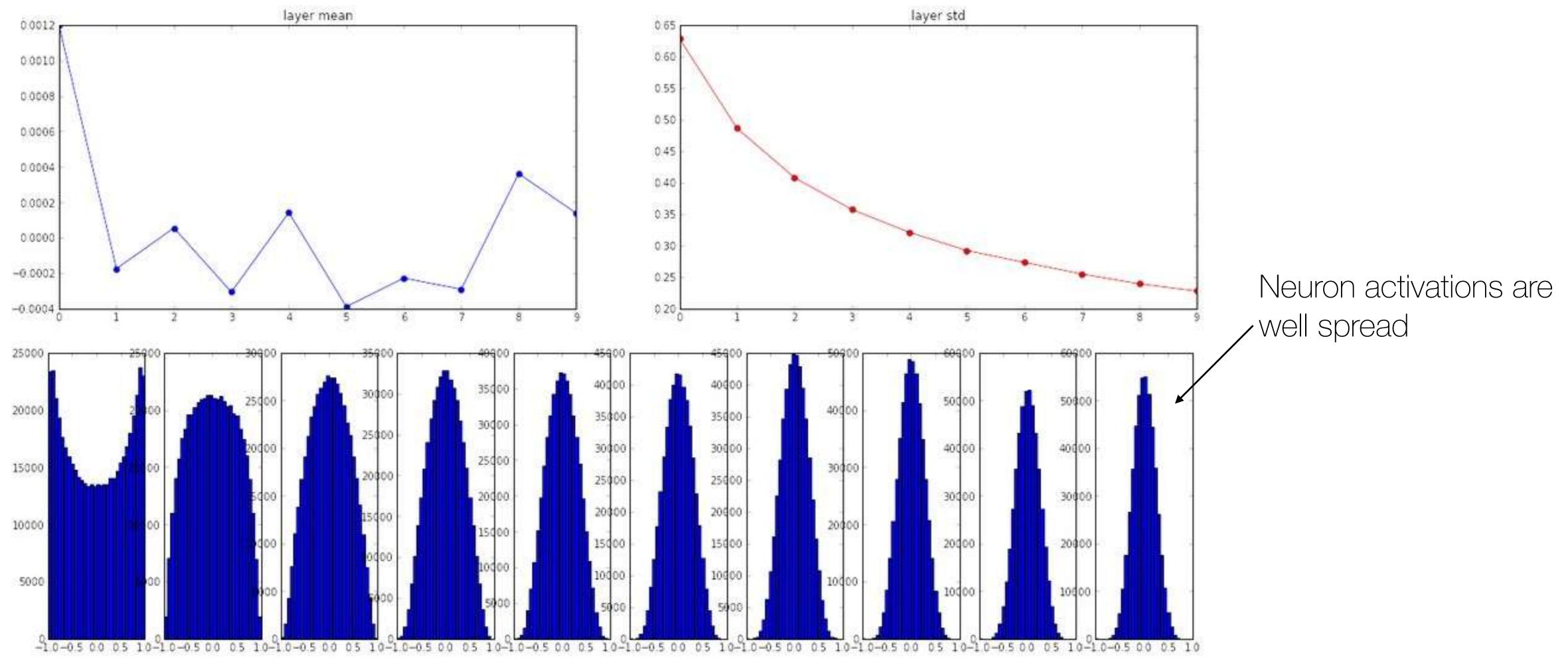


Figure 1: The Transformer - model architecture.

s, Aidan N

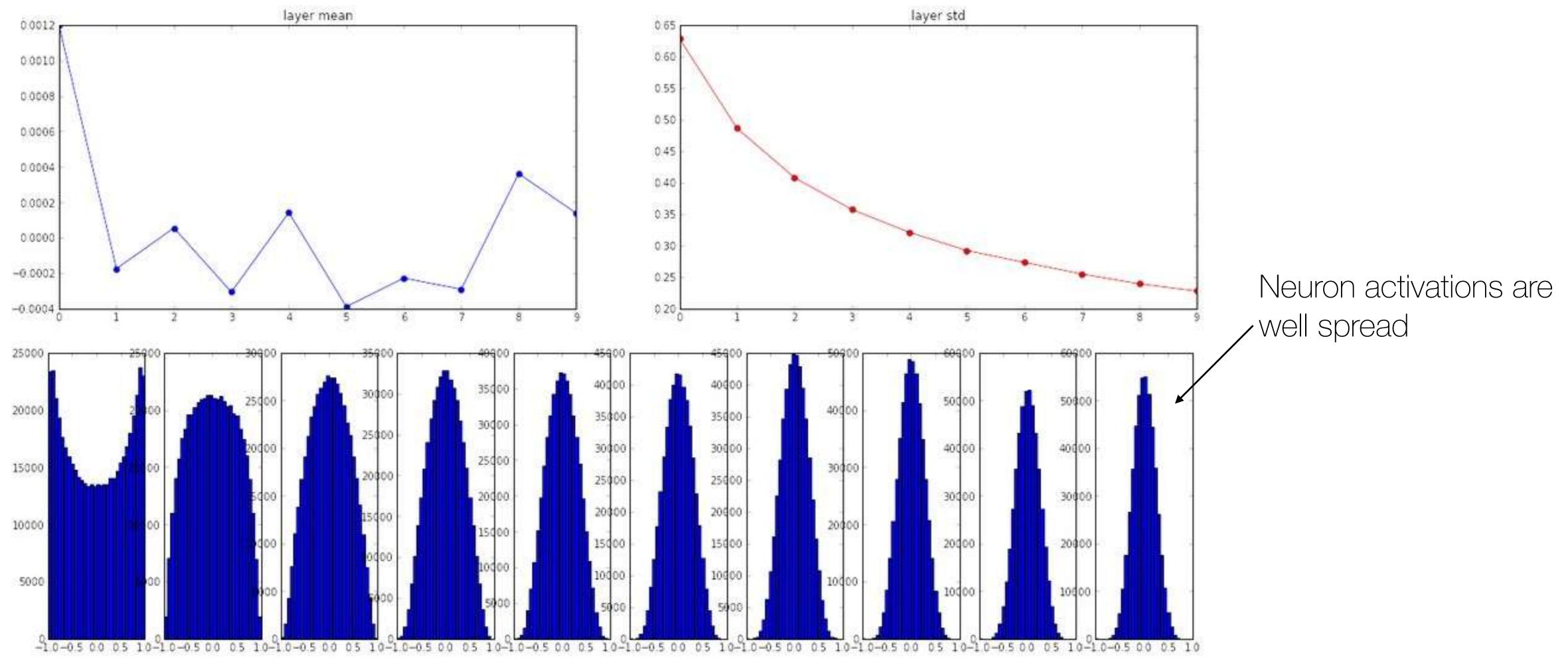
Proper initialization schemes Much more important than you think



Based on slides for <u>Stanford cs231n</u> by Li, Jonson, and Young. Modified and reused with permission

"Xavier initialization" [Glorot et al., 2010]

Proper initialization schemes Much more important than you think

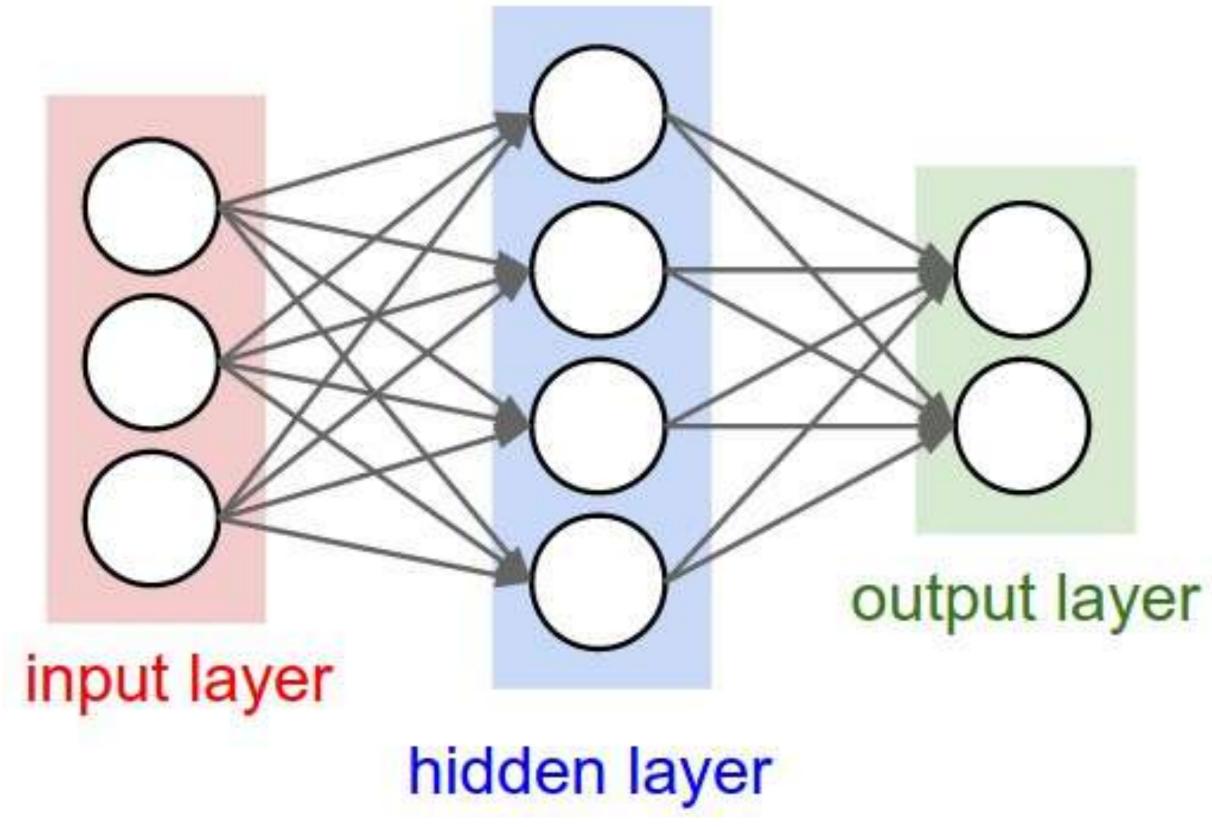


Based on slides for <u>Stanford cs231n</u> by Li, Jonson, and Young. Modified and reused with permission

"Xavier initialization" [Glorot et al., 2010]

Weight initialization

Weight initialization A look into ways things can go wrong



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Q: what happens when W=0 init is used?

Weight initialization A look into ways things can go wrong

First idea: Small random numbers (gaussian with zero mean and 1e-2 standard deviation)

$W = 0.01^*$ np.random.randn(D,H)

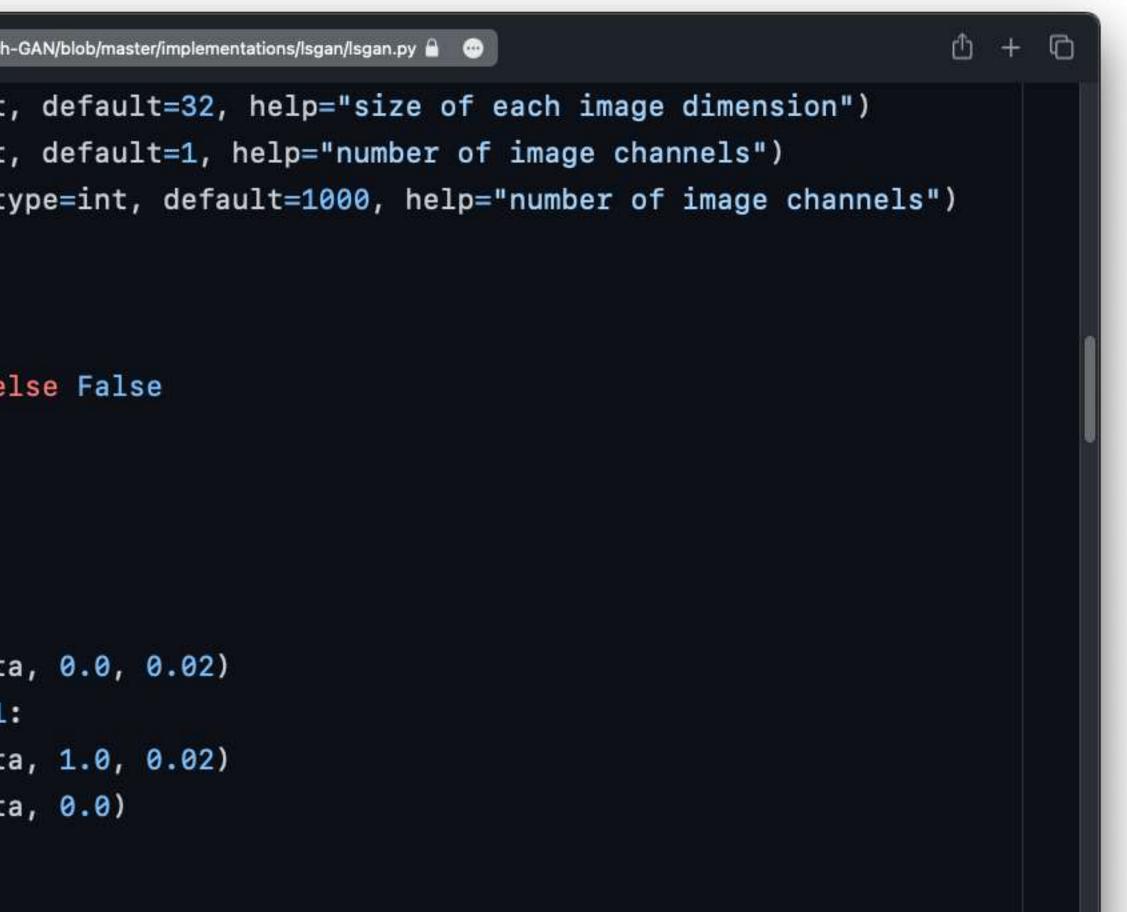
deeper networks.

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Works ~okay for small networks, but problems with

	□ ~	< 🥥 🚘 🎯	github.com/eriklindernoren/PyTorch-0
We	27	parser.add_argument("	img_size", type=int,
	28	parser.add_argument("	channels", type=int,
	29	parser.add_argument("	sample_interval", ty
	30	<pre>opt = parser.parse_args</pre>	()
	31	print(opt)	
	32		
	33	cuda = True if torch.cu	da.is_available() <mark>el</mark>
	34		
	35		
	36	<pre>def weights_init_normal</pre>	(m):
	37	classname = mcla	issname
	38	<pre>if classname.find("</pre>	Conv") != -1:
	39	torch.nn.init.r	ormal_(m.weight.data
	40	elif classname.find	("BatchNorm") != -1:
	41	torch.nn.init.r	ormal_(m.weight.data
	42	torch.nn.init.c	onstant_(m.bias.data
	43		
	44		
	45	class Generator(nn.Modu	le):
	46	<pre>definit(self):</pre>	
	47	super(Generator	, self)init()
	48		
	49	self.init_size	<pre>= opt.img_size // 4</pre>
	50	001f 11 - nn 80	quantial(nn linear(a

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission



ant latant dim 190 4 aalf init aiza 44 9))

Weight initialization A look into ways things can go wrong

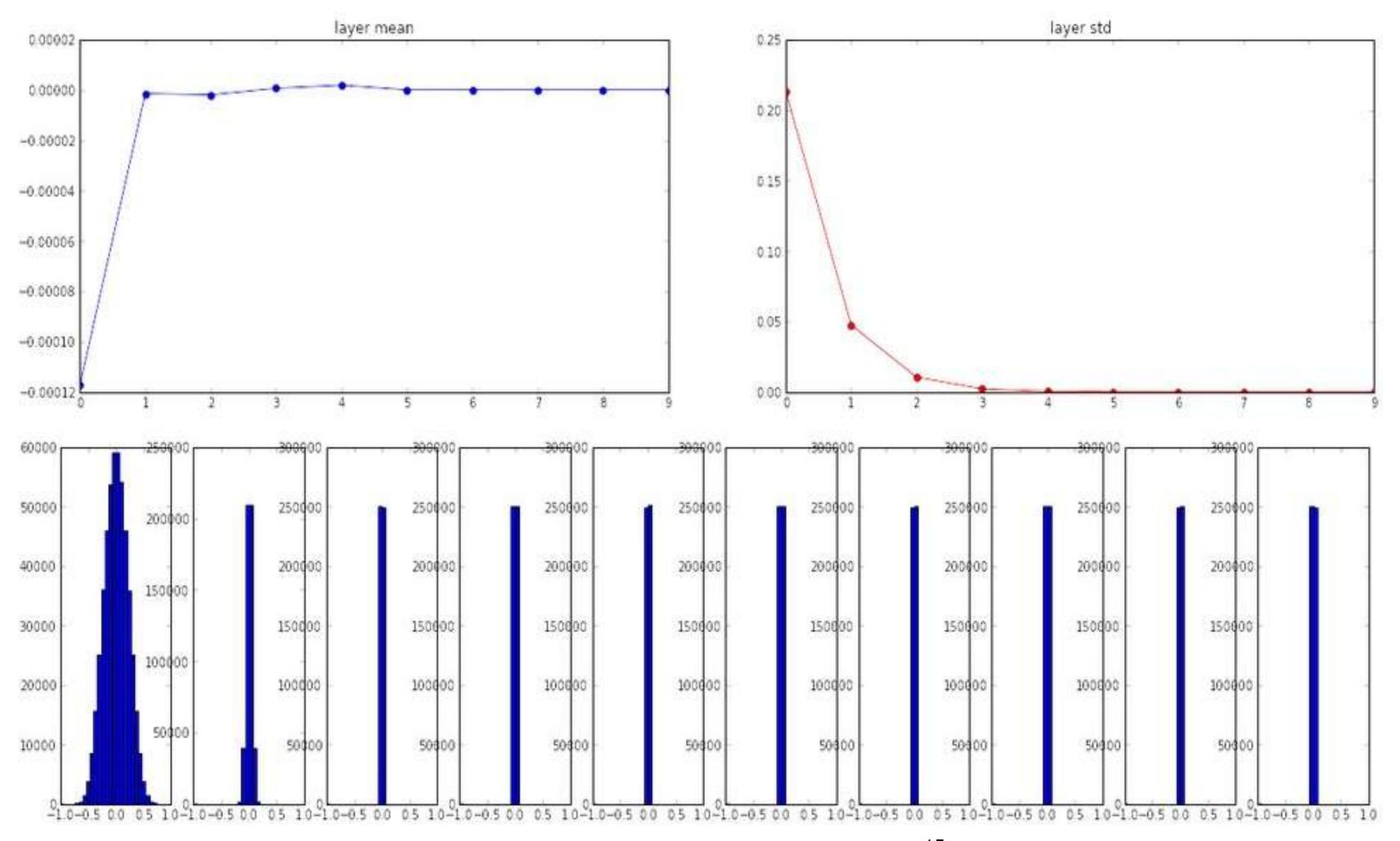
l et's look at some activation statistics

E.g. 10-layer net with 500 neurons on each layer, using tanh nonlinearities, and initializing as described in last slide.

assume some unit gaussian 10-D input data D = np.random.randn(1000, 500)hidden layer sizes = [500]*10 nonlinearities = ['tanh']*len(hidden layer sizes) $Hs = \{\}$ for i in xrange(len(hidden layer sizes)): fan in = X.shape[1] fan out = hidden layer sizes[i] H = np.dot(X, W) # matrix multiply H = act[nonlinearities[i]](H) # nonlinearity Hs[i] = H # cache result on this layer # look at distributions at each layer layer means = [np.mean(H) for i,H in Hs.iteritems()] layer_stds = [np.std(H) for i,H in Hs.iteritems()] for i,H in Hs.iteritems(): *# plot the means and standard deviations* plt.figure() plt.subplot(121) plt.plot(Hs.keys(), layer means, 'ob-') plt.title('layer mean') plt.subplot(122) plt.plot(Hs.keys(), layer_stds, 'or-') plt.title('layer std') # plot the raw distributions plt.figure() for i,H in Hs.iteritems(): plt.subplot(1,len(Hs),i+1) plt.hist(H.ravel(), 30, range=(-1,1))

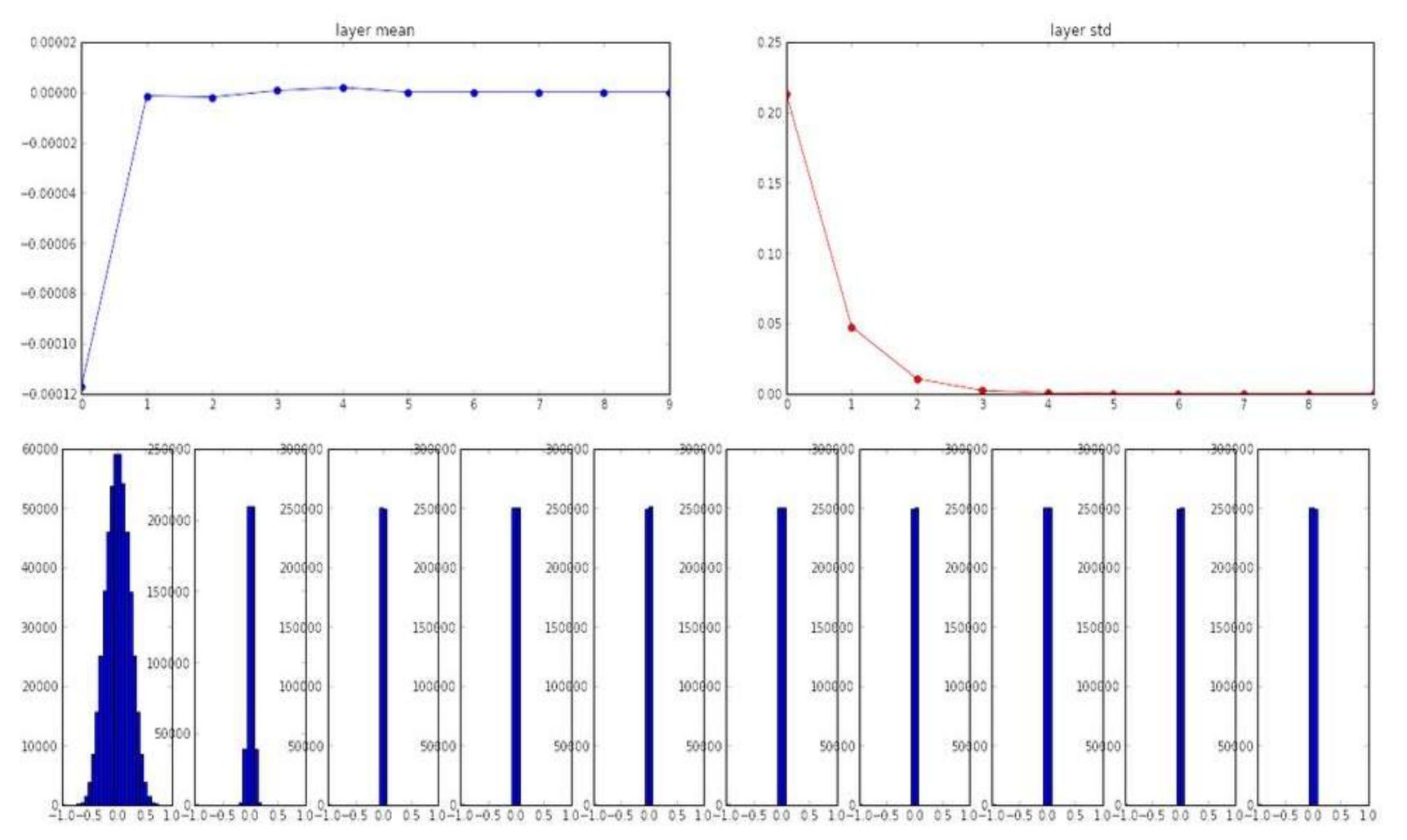
```
act = {'relu':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}
   X = D if i == 0 else Hs[i-1] # input at this layer
   W = np.random.randn(fan in, fan out) * 0.01 # layer initialization
                                                            Init with small random numbers
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
   print 'hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])
```


Weight initialization A look into ways things can go wrong



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Weight initialization A look into ways things can go wrong



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

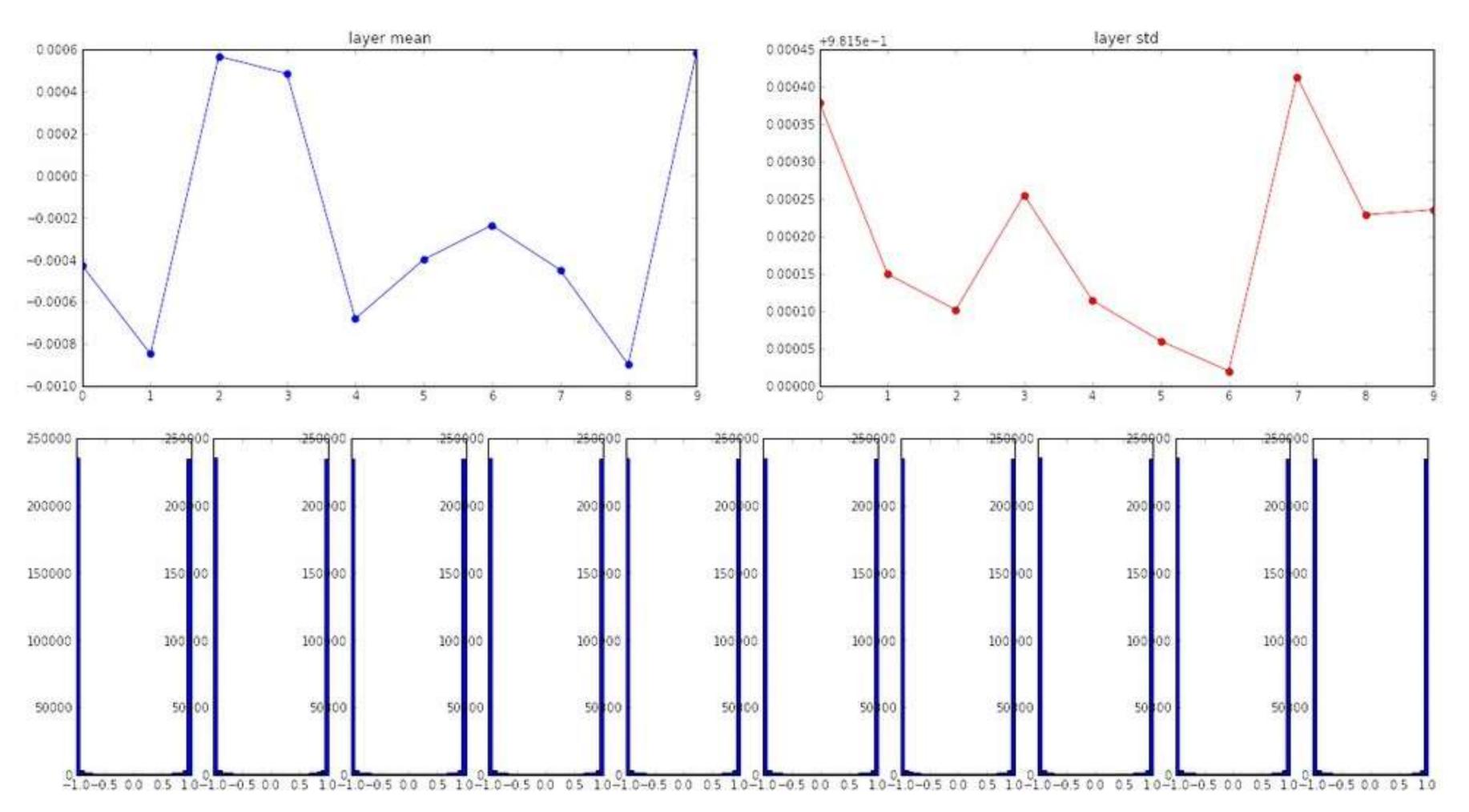
All activations become zero!

Q: think about the backward pass. What do the gradients look like?

Hint: think about backward pass for a W*X gate.

OF BRITISH COLUMBIA

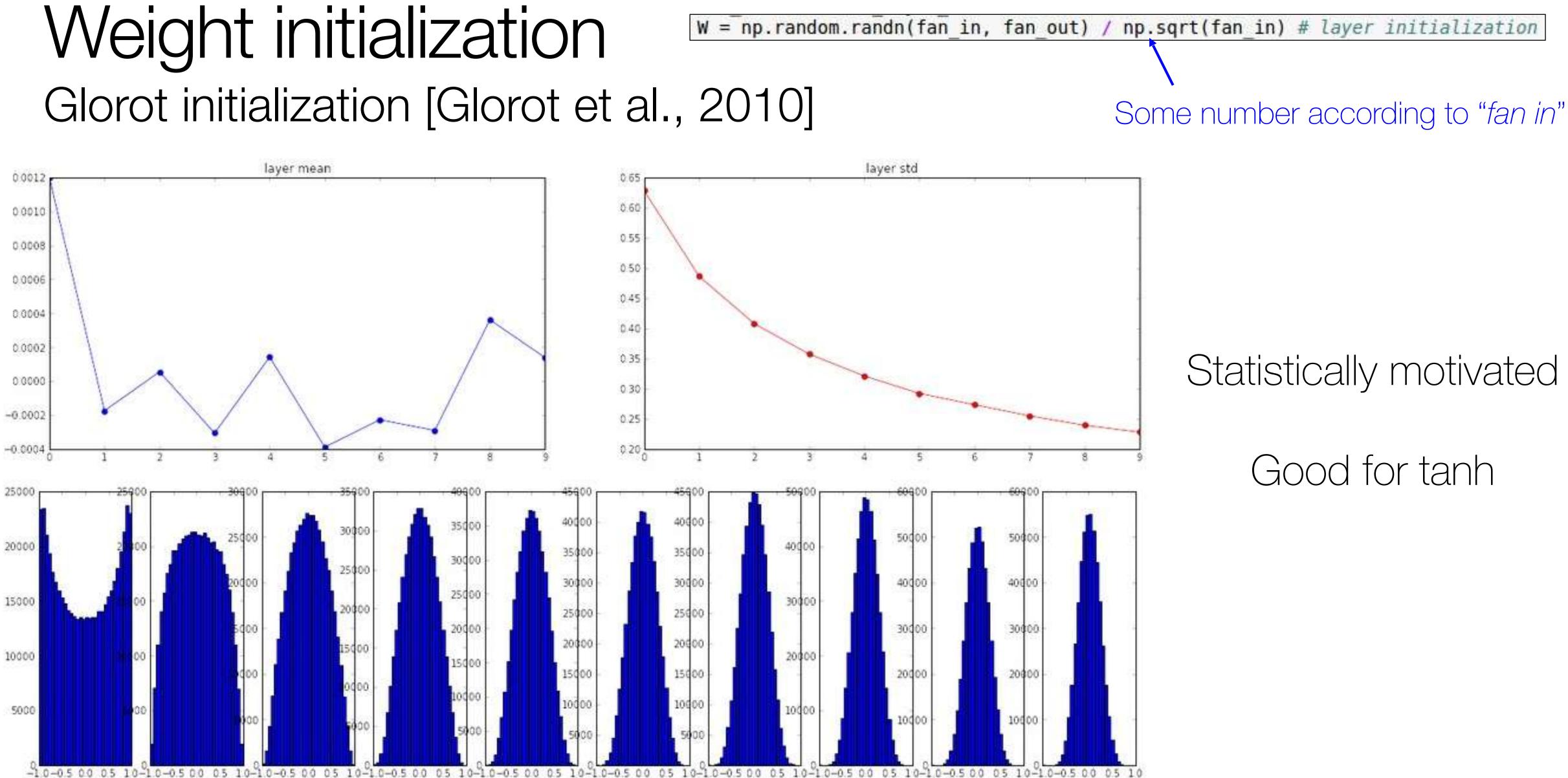
Weight initialization W = np.random.randn(fan in, fan out) * 1.0 # layer initialization A look into ways things can go wrong *1.0 instead of *0.01



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Almost all neurons completely saturated, either -1 and 1. Gradients will be all zero.

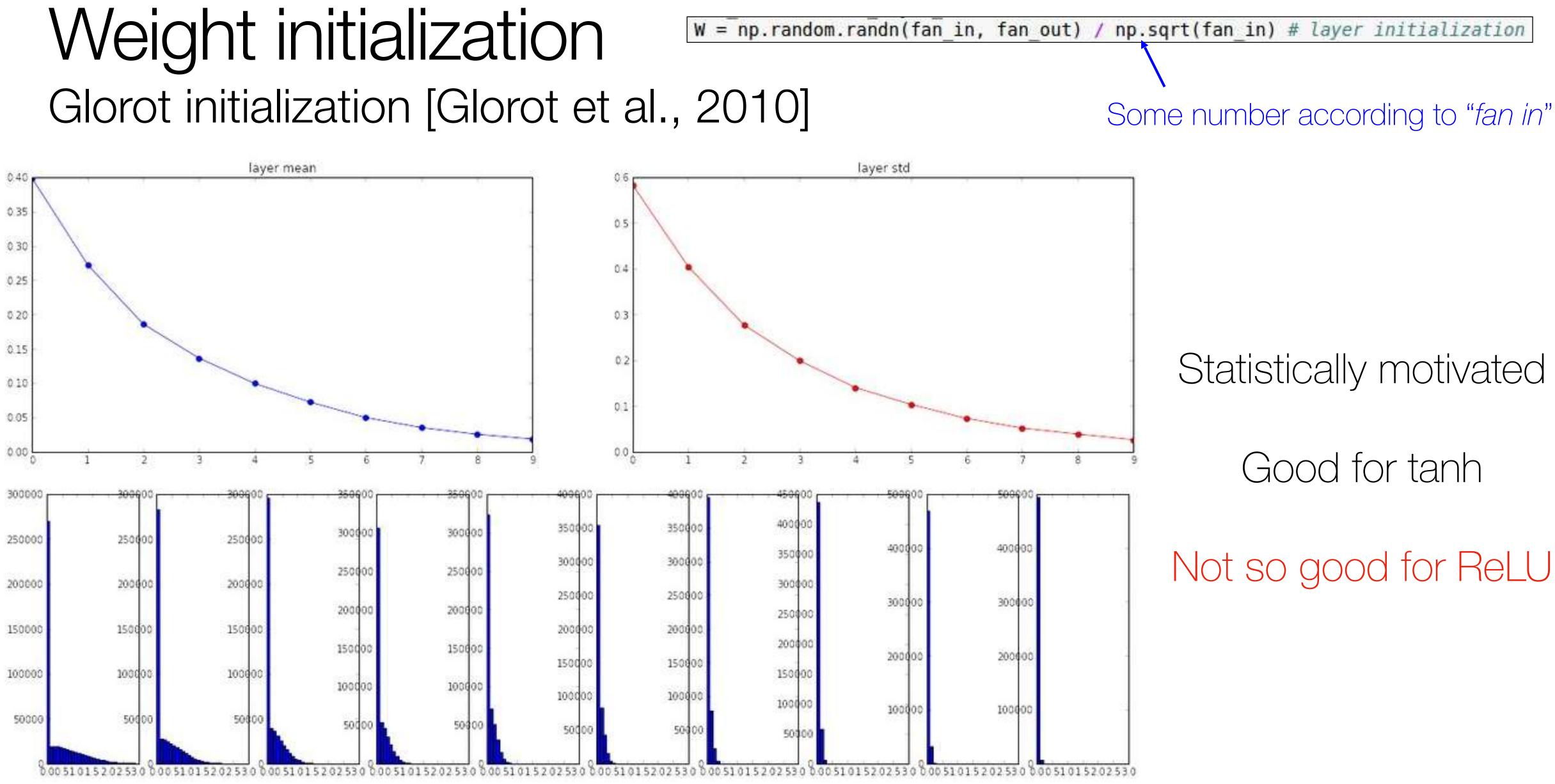
Weight initialization



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

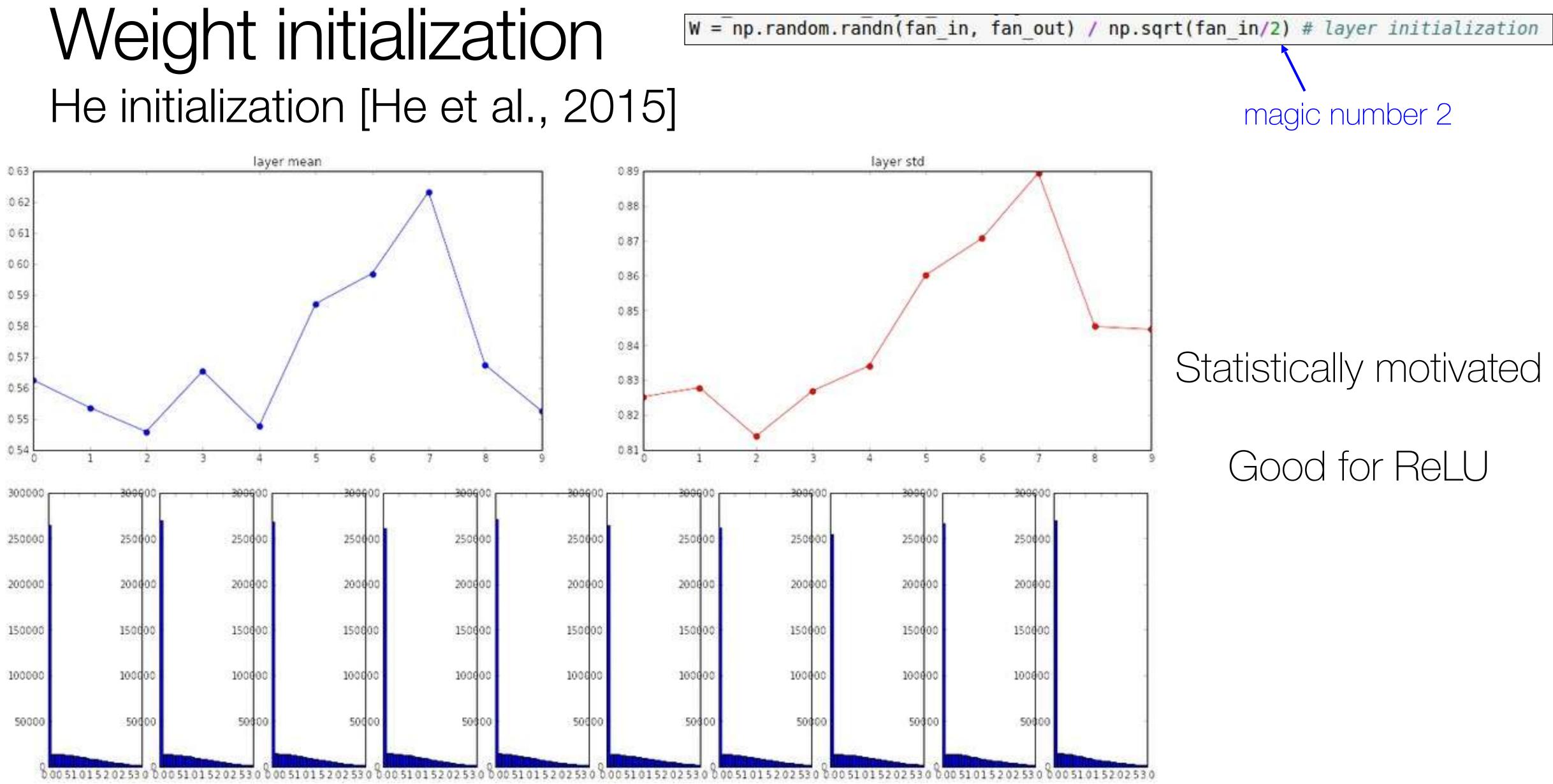
OF BRITISH COLUMBIA

Weight initialization



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

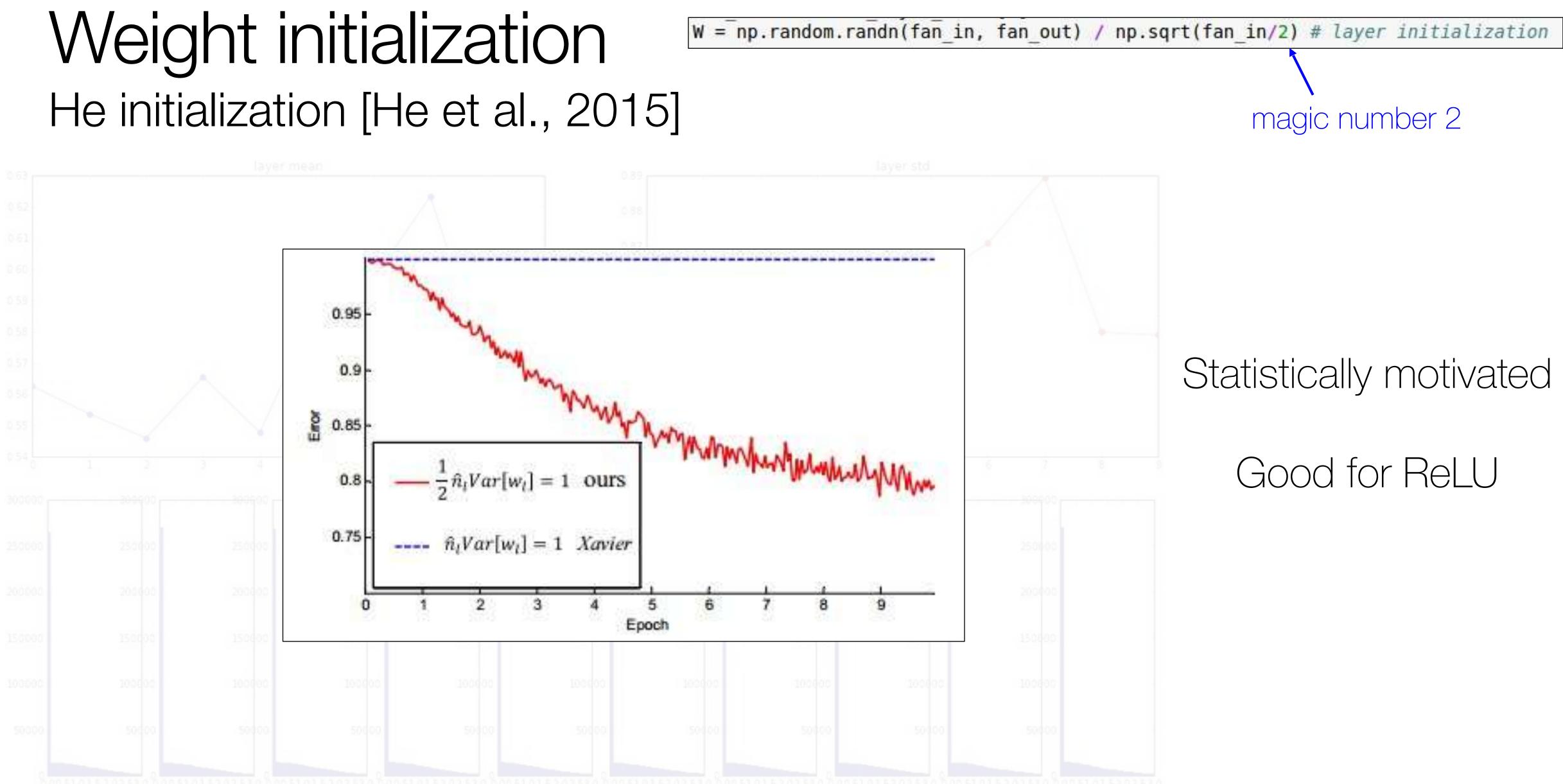
OF BRITISH COLUMBIA



20 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

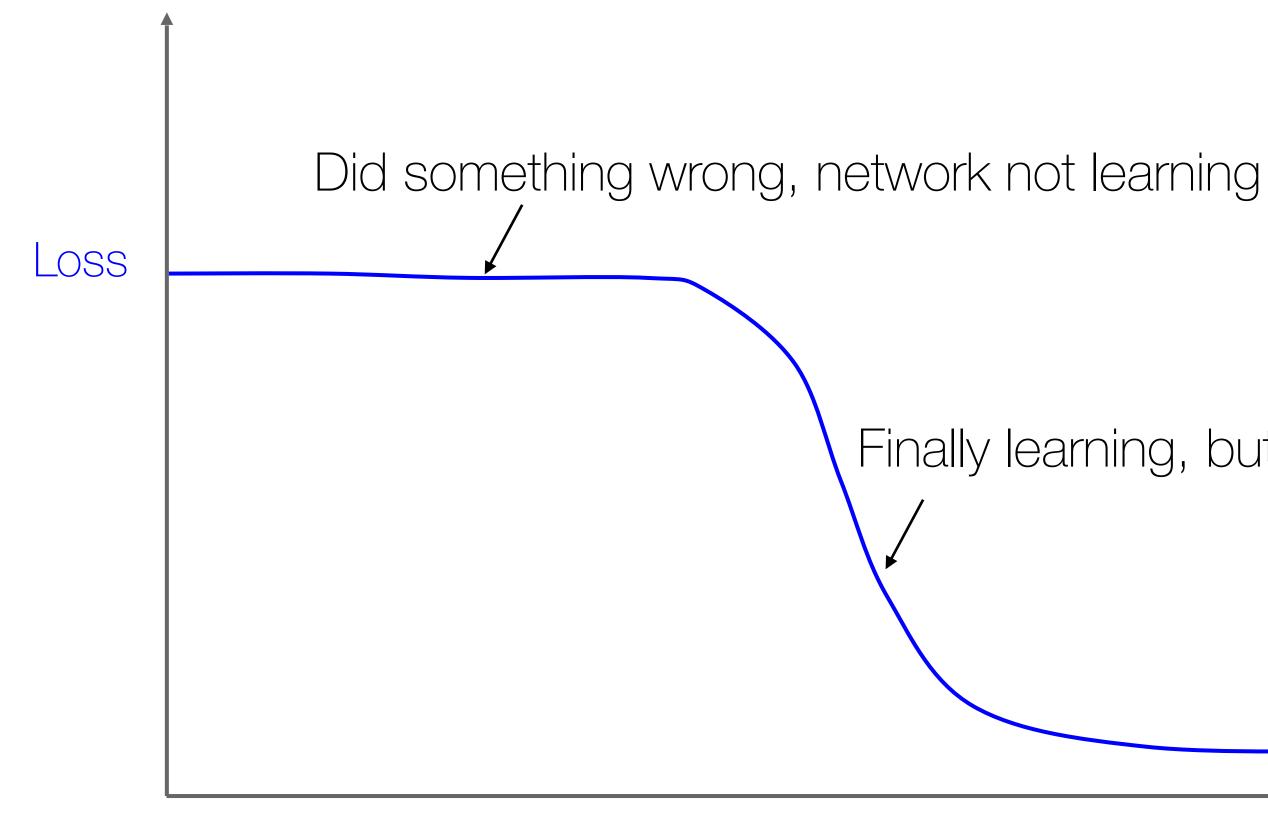
OF BRITISH COLUMBIA

Weight initialization



based on silves for Stanioru CSZSTII by LI, Jonson, and Toung. Woullieu and reused with permission

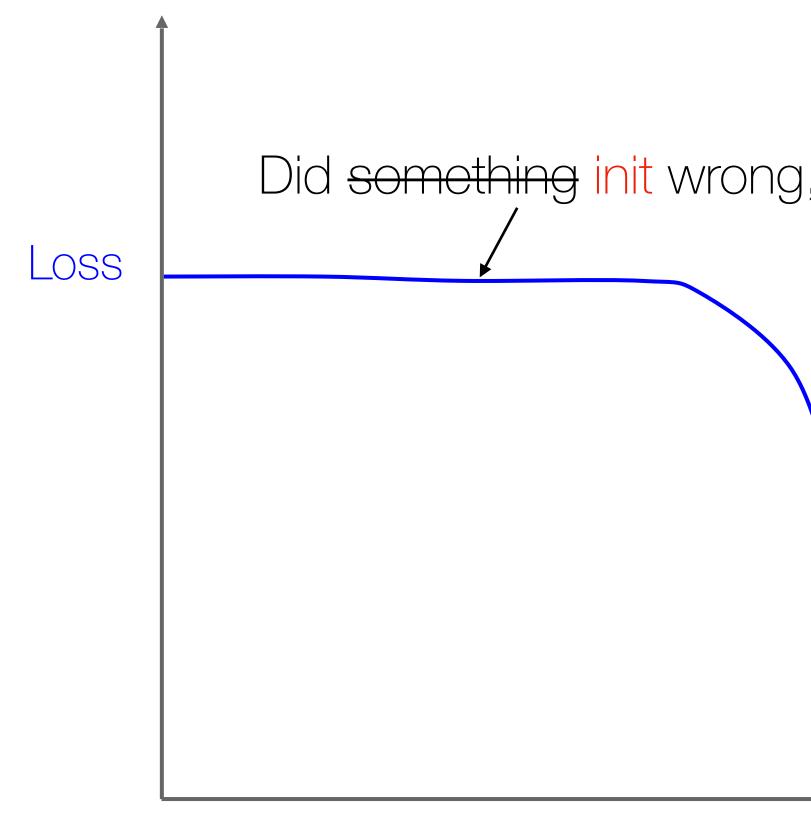
Recall: But it is never that easy A typical sad loss curve



Finally learning, but I graduated last year

Steps

Recall: But it is never that easy A typical sad loss curve



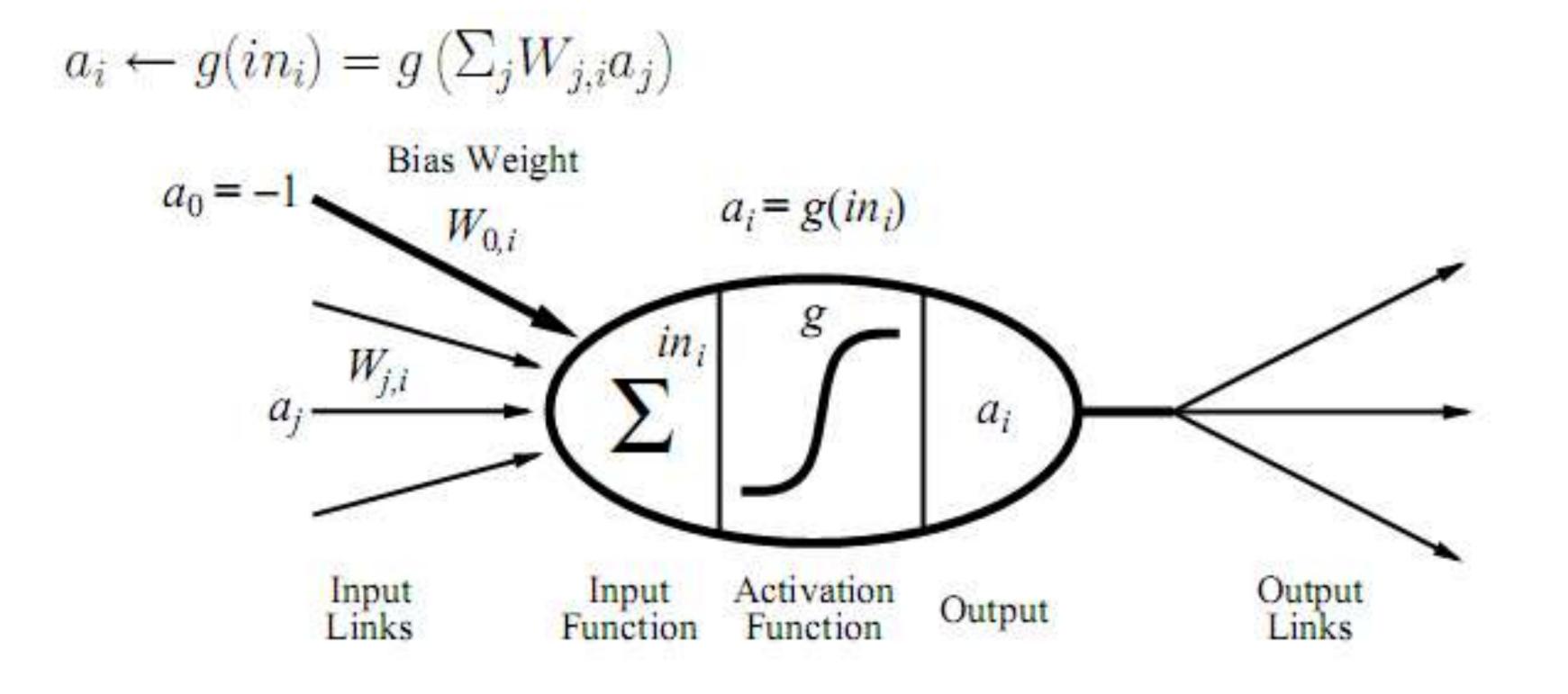
Did something init wrong, network not learning gradients saturated?

Finally learning, but I graduated last year

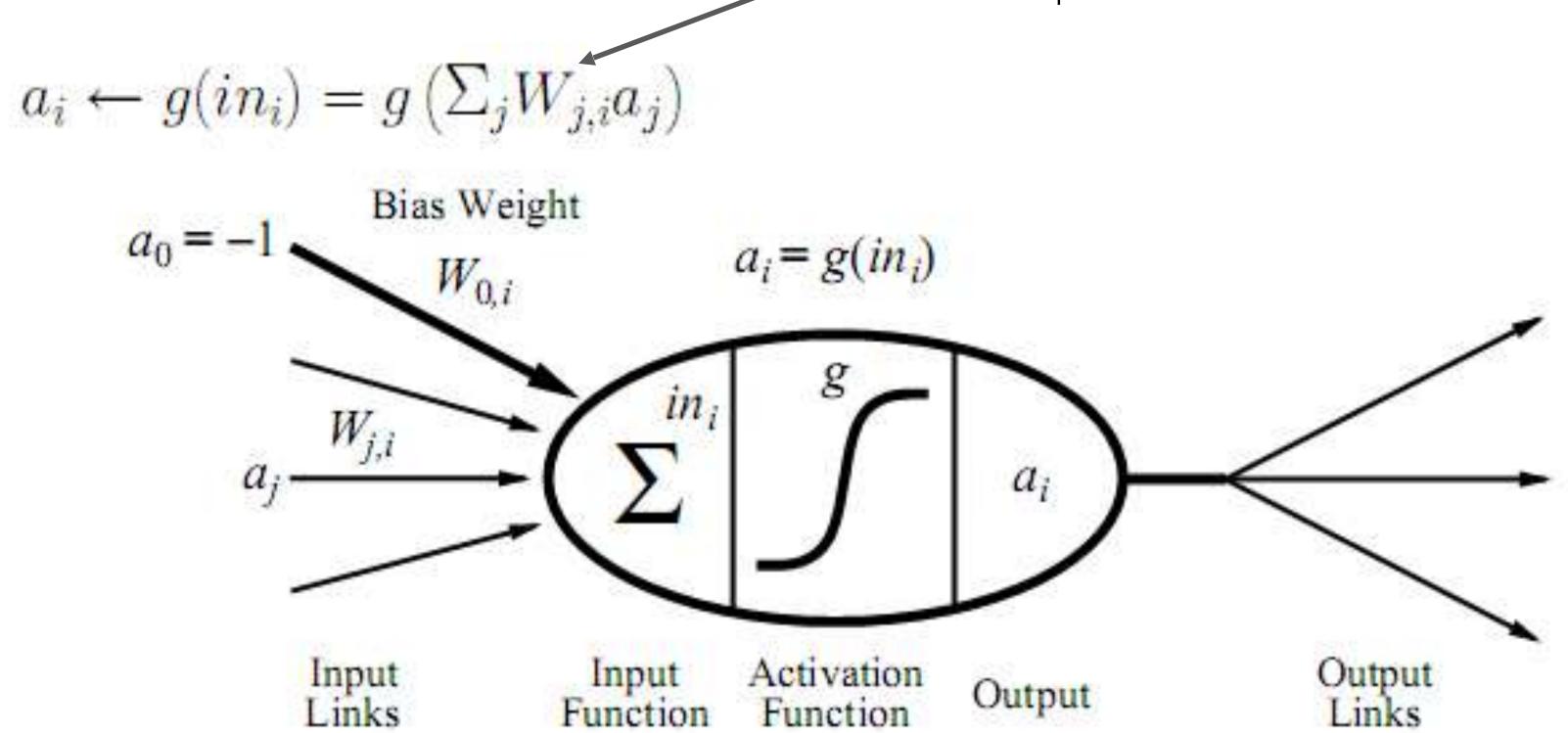
Steps

Normalization

Batch normalization [loffe and Szegedy, 2015] Recall...



Batch normalization [loffe and Szegedy, 2015] Recall...



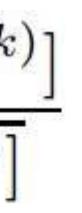
Linear operations should cancel out

Batch normalization [loffe and Szegedy, 2015] Forcing a zero-mean and unit standard deviation

consider a batch of activations at some layer. To make each dimension unit gaussian, apply:

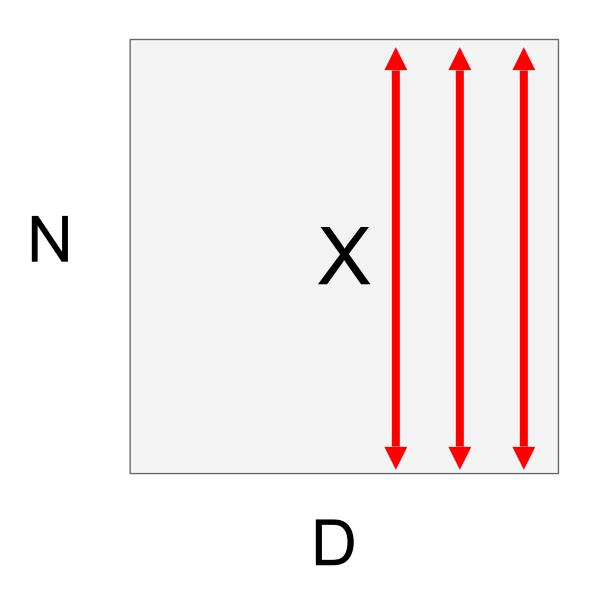
$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission



this is a linear differentiable function...

Batch normalization [loffe and Szegedy, 2015] Forcing a zero-mean and unit standard deviation

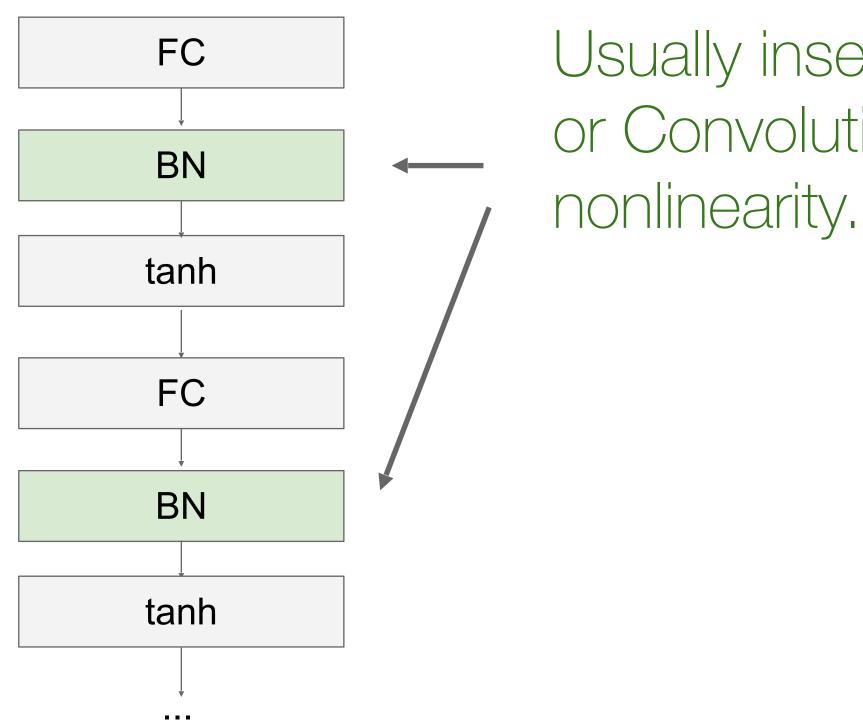


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

1. Compute the empirical mean and variance independently for each dimension.

2. Normalize $x^{(k)}$ $\widehat{x}^{(k)}$

Batch normalization [loffe and Szegedy, 2015] Forcing a zero-mean and unit standard deviation



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Usually inserted after Fully Connected or Convolutional layers, and before

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

Batch normalization [loffe and Szegedy, 2015] Introducing learnable scale / shift

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

And then allow the network to squas the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with per

Note, the network can learn:

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$

$$\beta^{(k)} = \mathbb{E}[x^{(k)}]$$
to recover the identity mapping.

Batch normalization [loffe and Szegedy, 2015] Introducing learnable scale / shift

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathbf{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

IMPORTANT: At test time, we don't have these — use training time stats

Note, the network can learn:

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$

$$\beta^{(k)} = \mathbb{E}[x^{(k)}]$$
to recover the identity mapping.

Other normalization techniques **Batch Normalization**

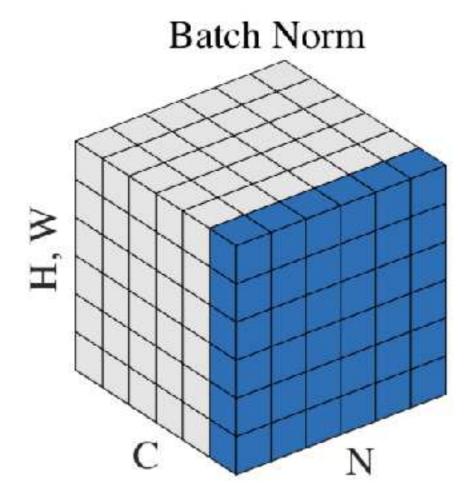
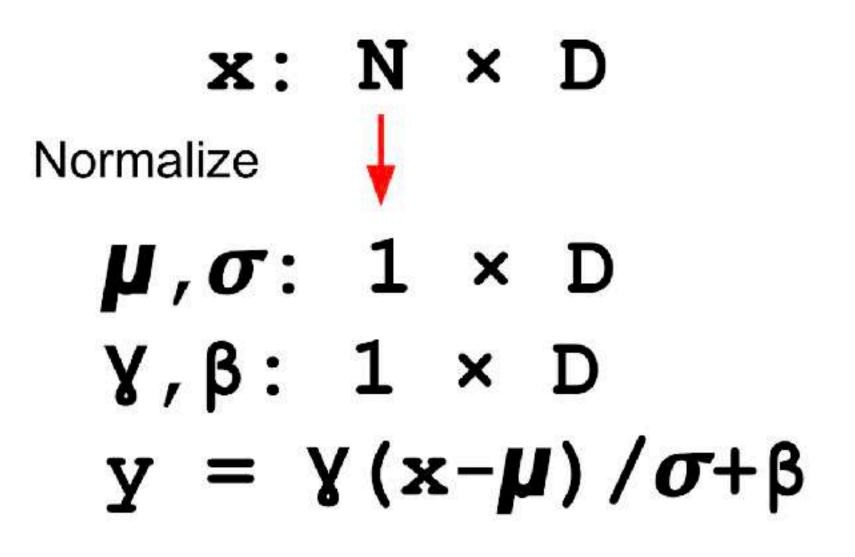


Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)

Other normalization techniques **Batch Normalization**

Batch Normalization for fully-connected networks



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

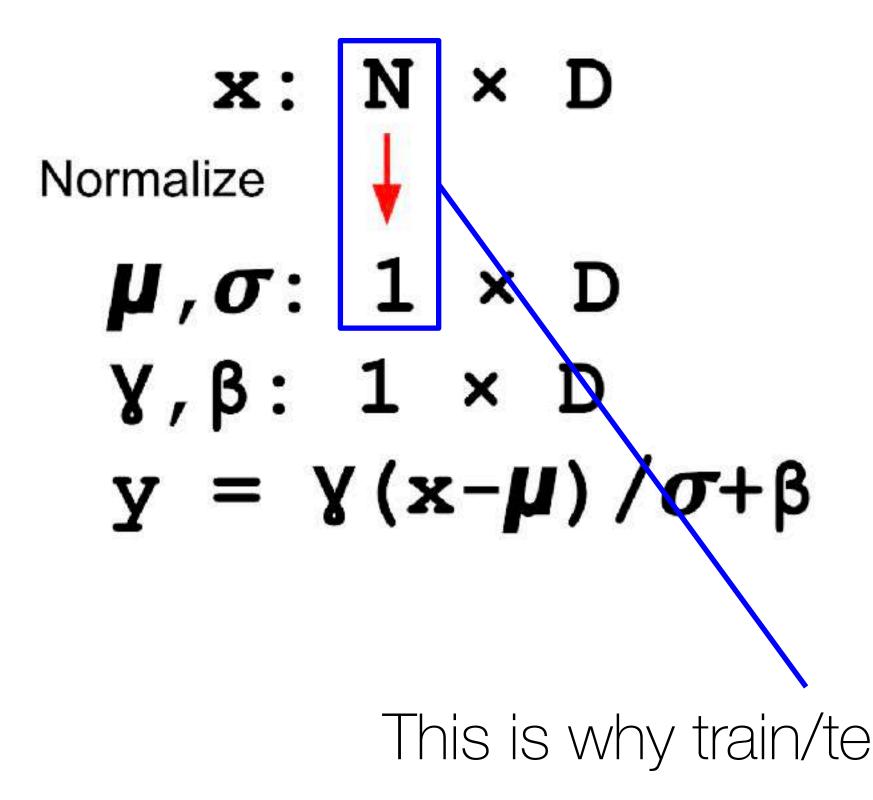
Skipped in class (outside of scope)

Batch Normalization for convolutional networks (Spatial Batchnorm, BatchNorm2D)

 $x: N \times C \times H \times W$ Normalize $\mu, \sigma: 1 \times C \times 1 \times 1$ **γ**, β: 1×C×1×1 $y = \frac{\gamma(x-\mu)}{\sigma+\beta}$

Other normalization techniques **Batch Normalization**

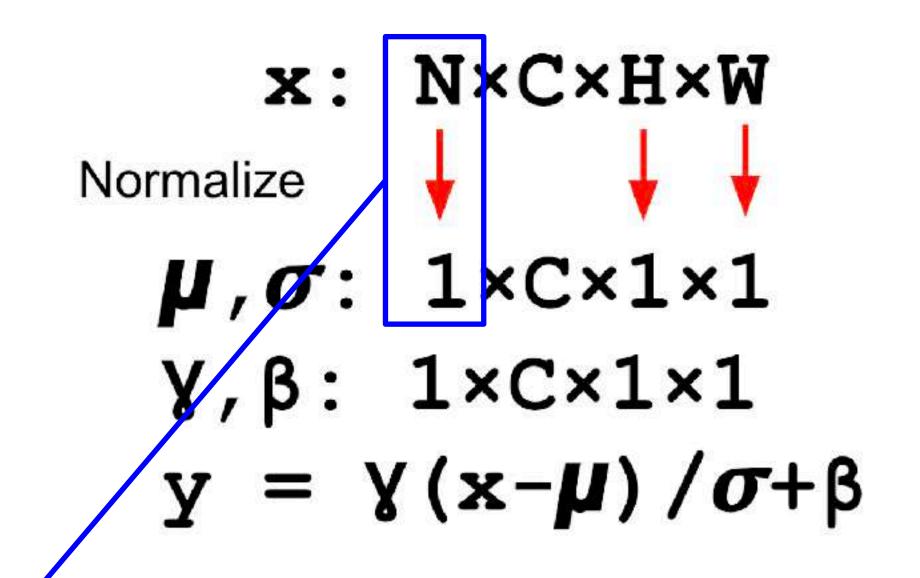
Batch Normalization for fully-connected networks



Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class (outside of scope)

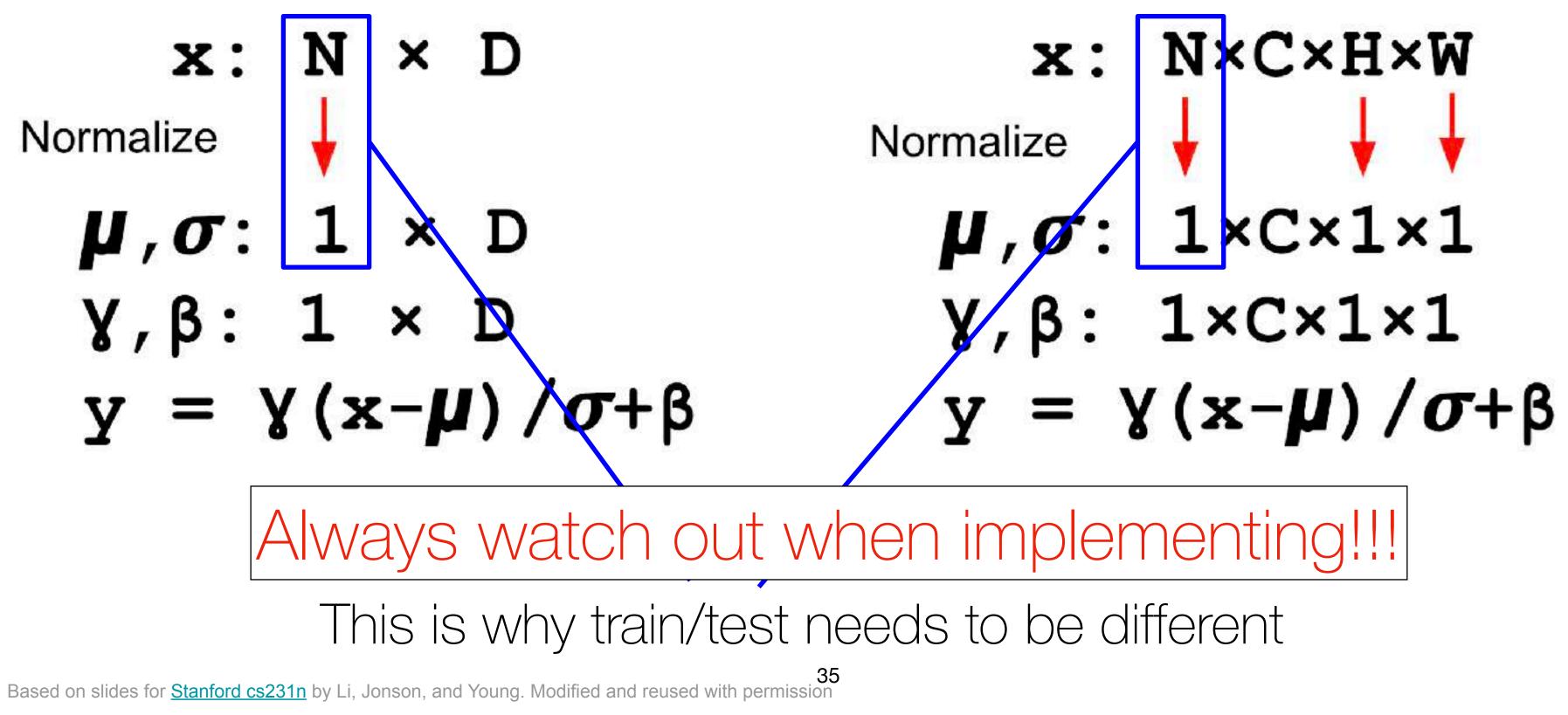
Batch Normalization for convolutional networks (Spatial Batchnorm, BatchNorm2D)



This is why train/test needs to be different

Other normalization techniques **Batch Normalization**

Batch Normalization for fully-connected networks



Skipped in class (outside of scope)

Batch Normalization for convolutional networks (Spatial Batchnorm, BatchNorm2D)

Other normalization techniques **Batch Normalization**

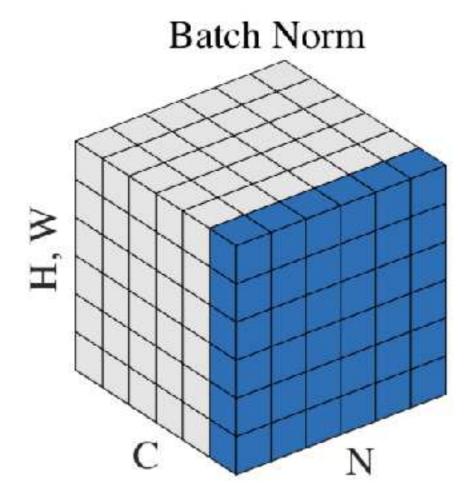


Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)

Other normalization techniques Layer Normalization

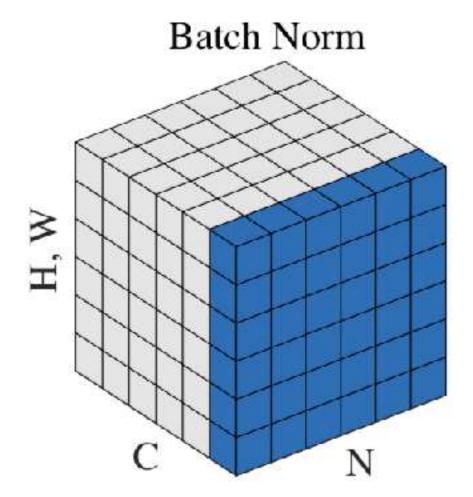
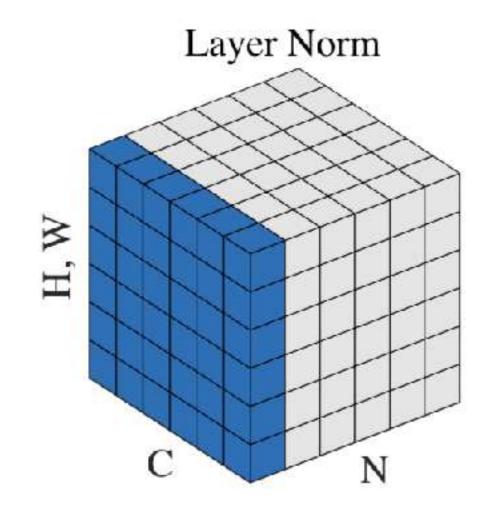


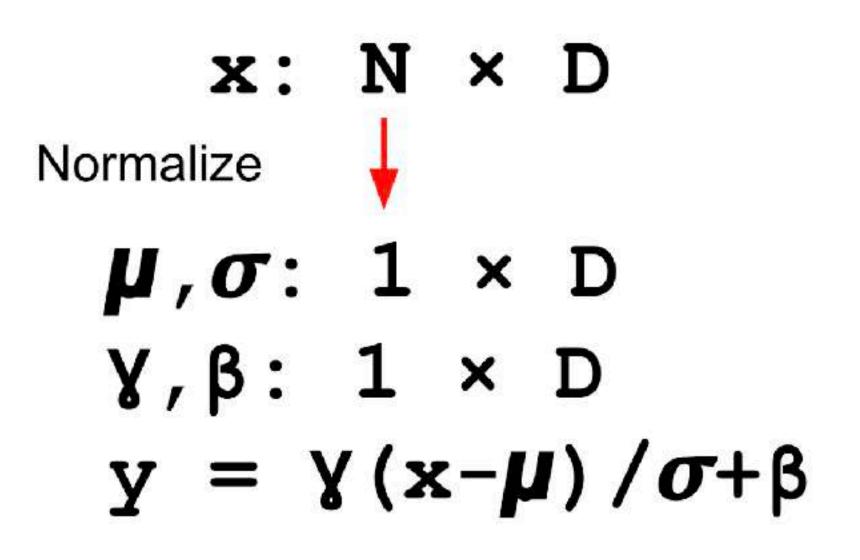
Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)



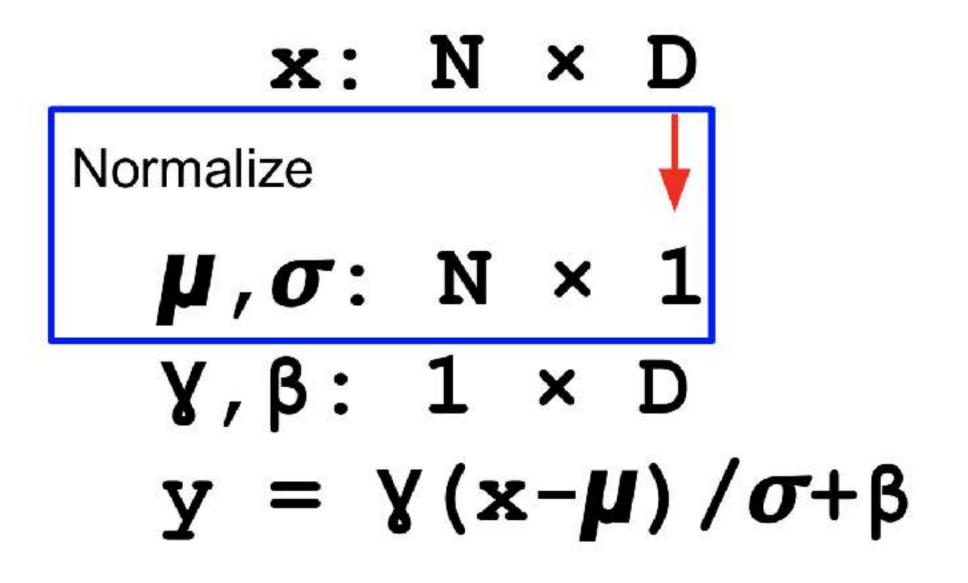
Other normalization techniques Layer Normalization

Batch Normalization for fully-connected networks



Skipped in class (outside of scope)

Layer Normalization for fully-connected networks Same behavior at train and test! Can be used in recurrent networks



Other normalization techniques Instance Normalization

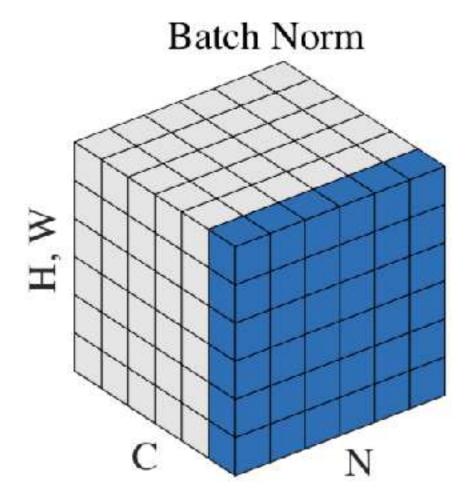
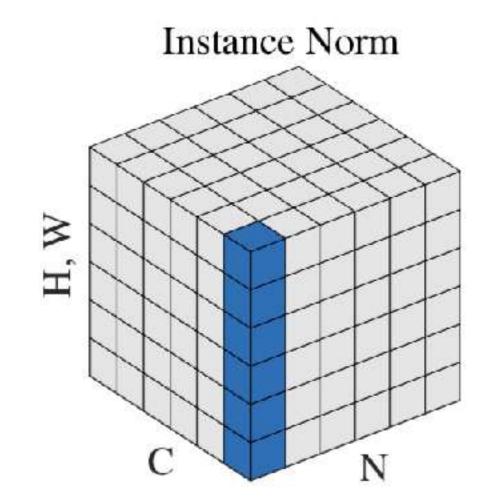


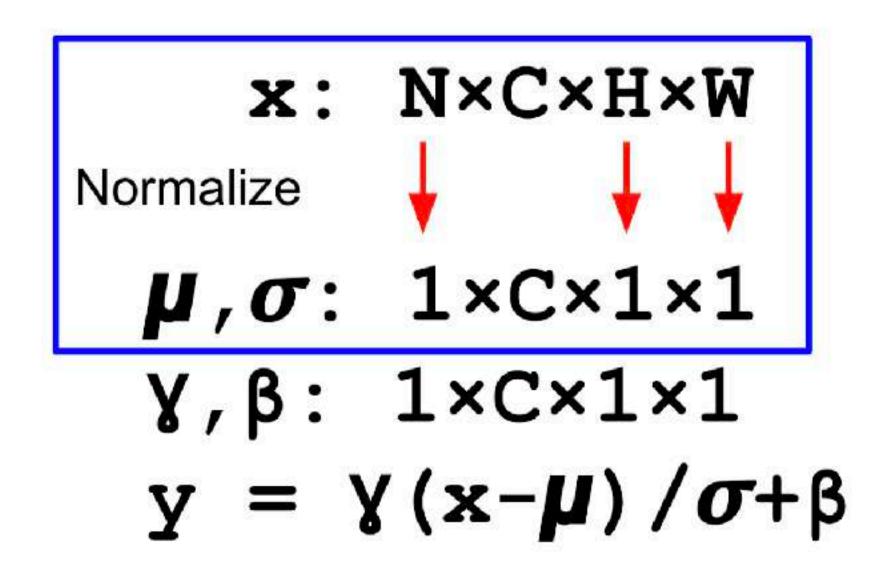
Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)



Other normalization techniques Instance Normalization

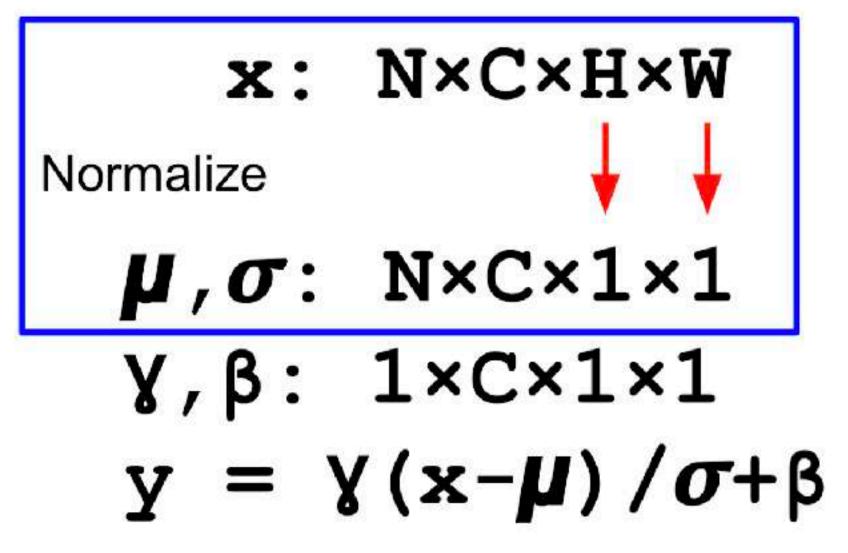
Batch Normalization for convolutional networks



Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Skipped in class (outside of scope)

Instance Normalization for convolutional networks Same behavior at train / test!



OF BRITISH COLUMBIA

Skipped in class THE UNIVERSITY (outside of scope) Other normalization techniques Group Normalization

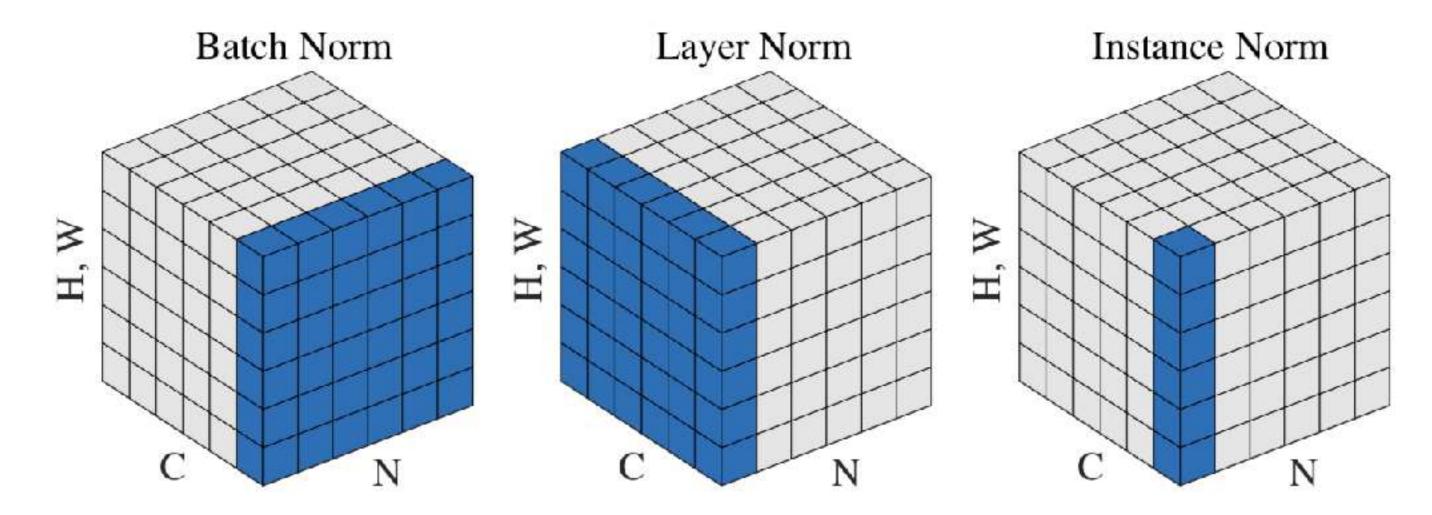


Image from Wu and He 2018. Reproduced for educational purposes.

Other normalization techniques Group Normalization

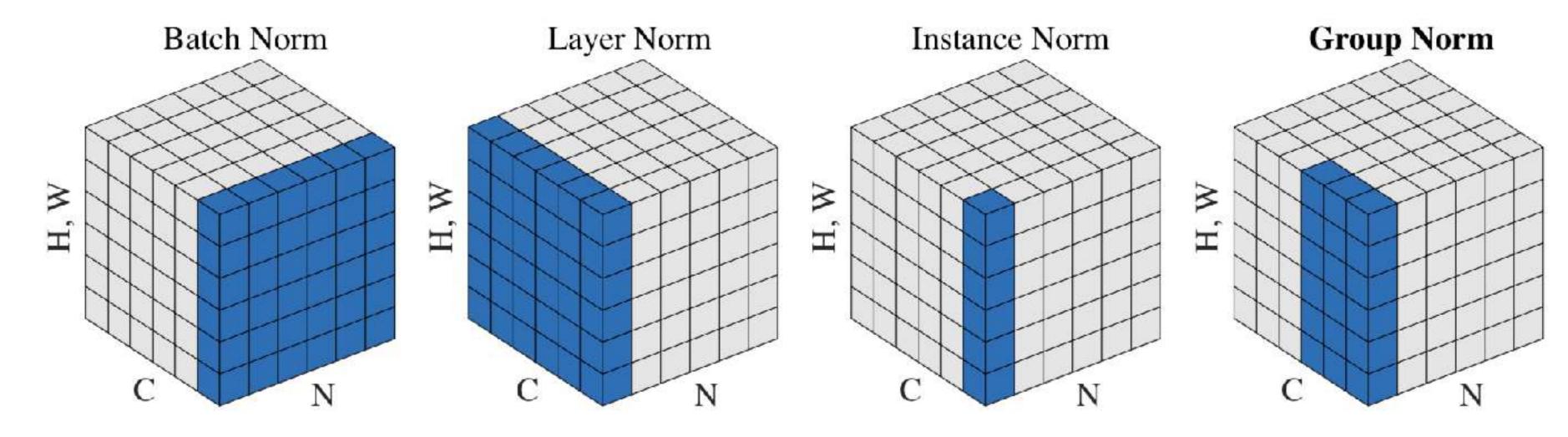


Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)

Other normalization techniques Group Normalization

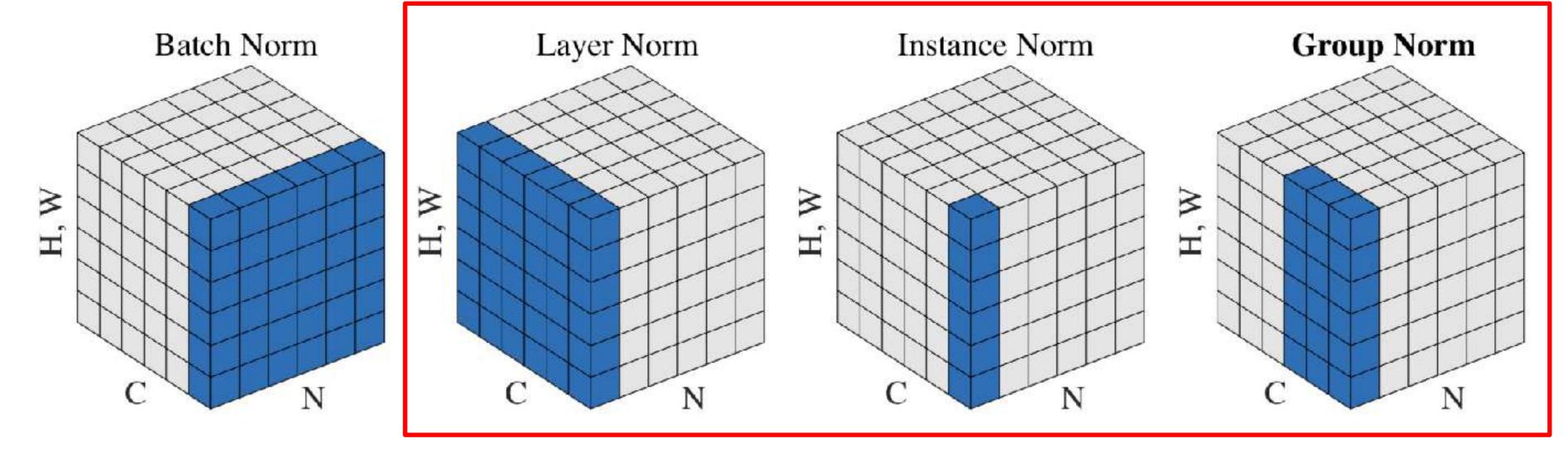


Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)

No train/test-time differences.

Much preferred in my opinion.

Other normalization techniques Group Normalization

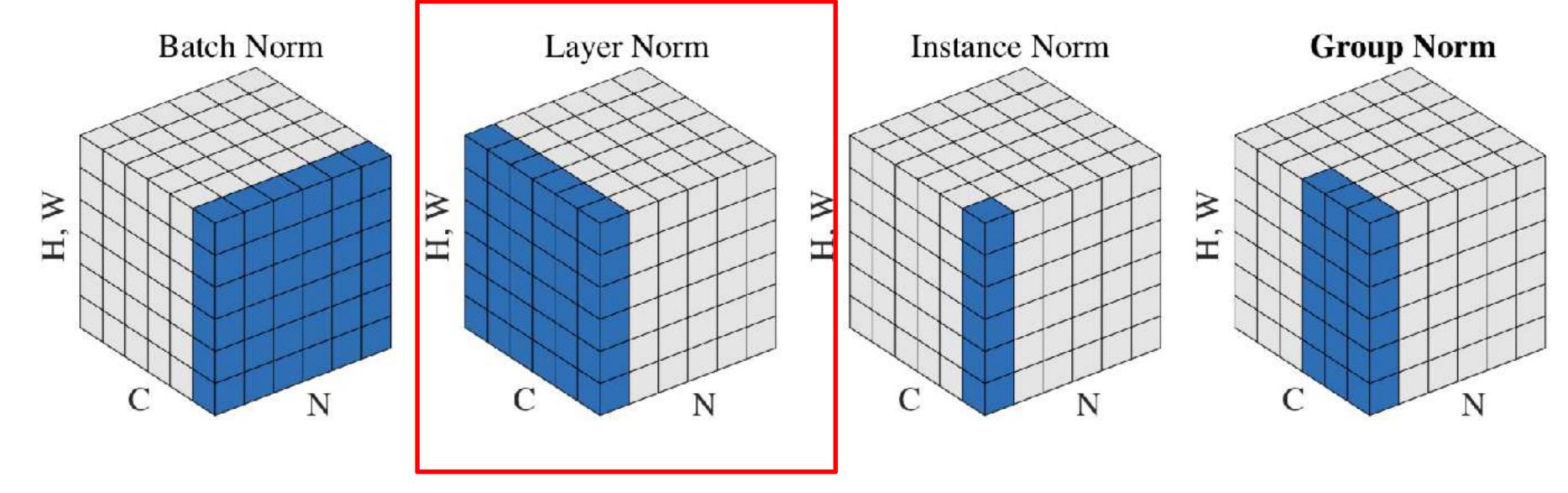
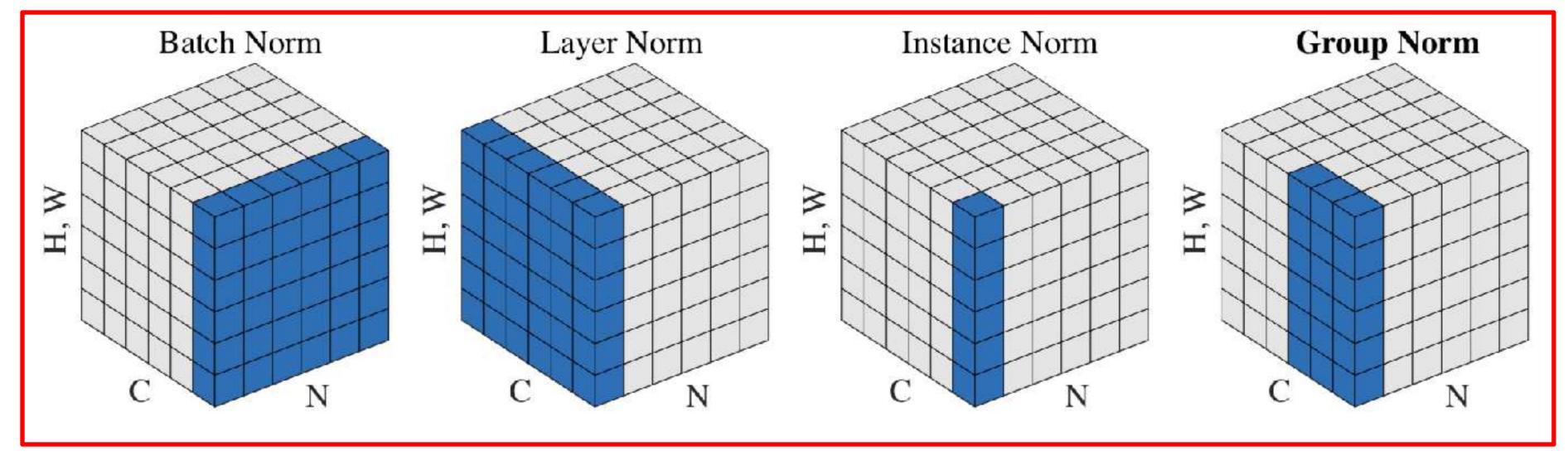


Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)

Can be implemented using PyTorch's Group norm.

Other normalization techniques Group Normalization



Choice of normalization should be data dependent

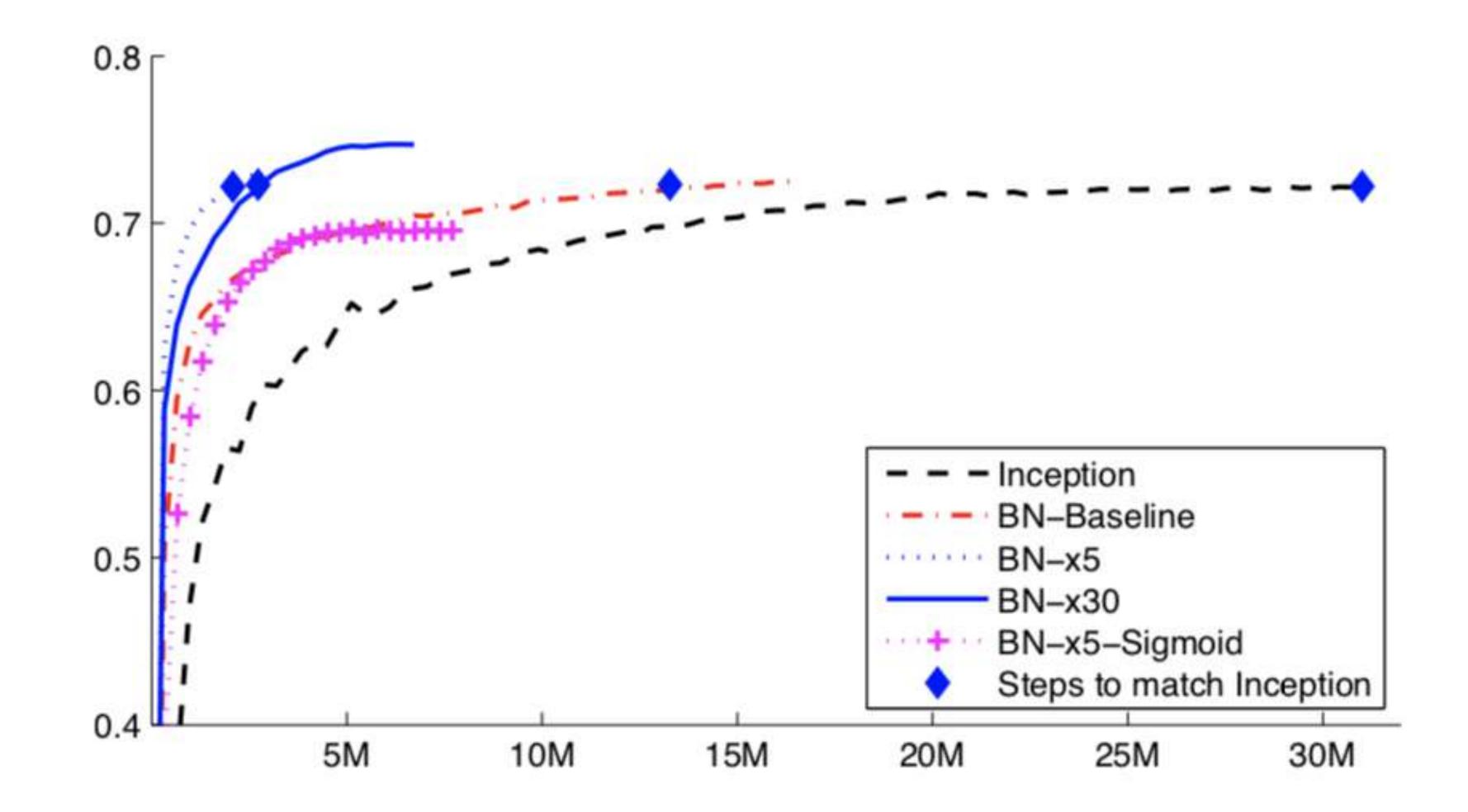
Image from Wu and He 2018. Reproduced for educational purposes.

Skipped in class (outside of scope)

THE UNIVERSITY

By the way... with normalization something else also happens

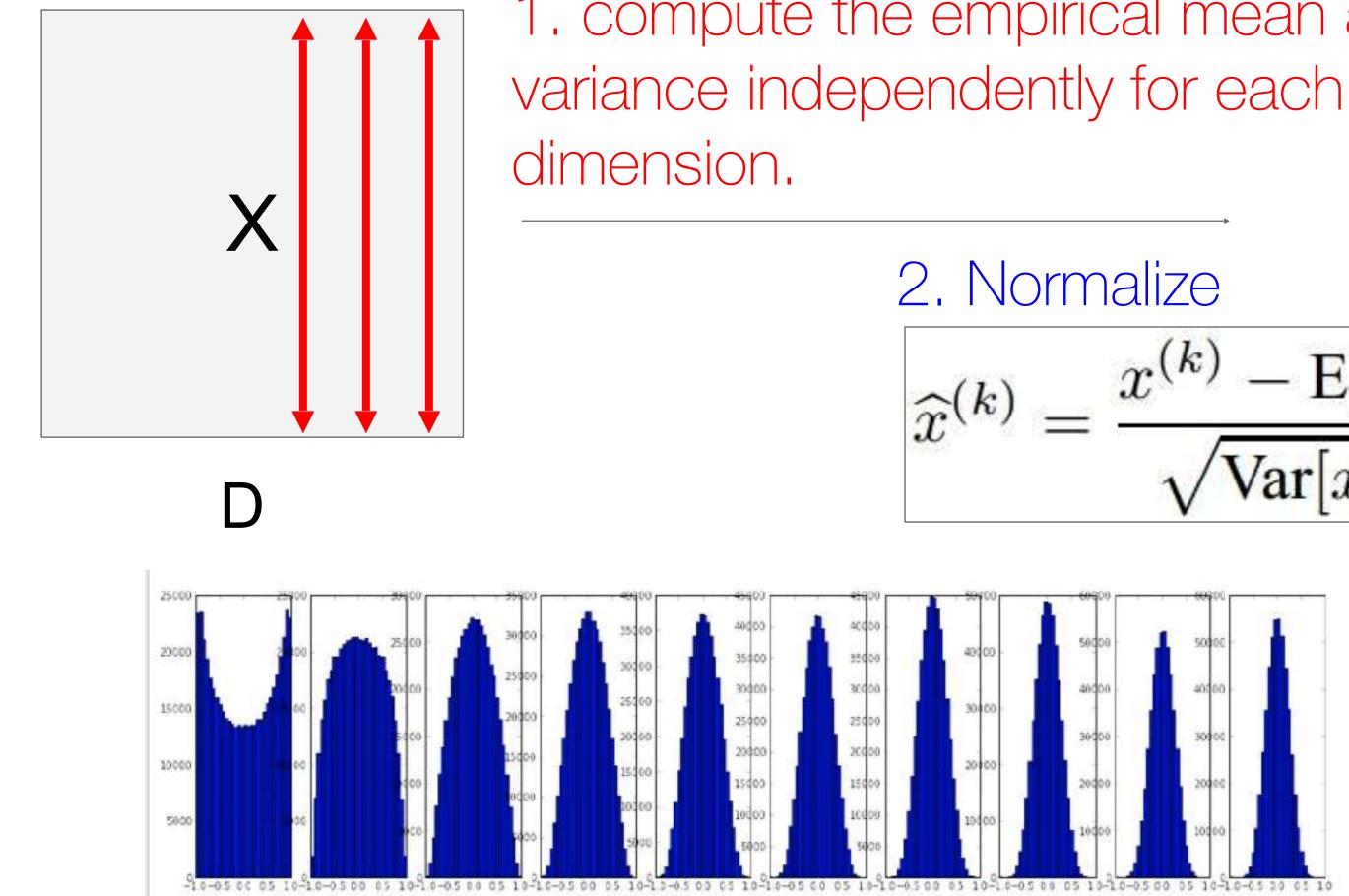
Batch normalization



[loffe and Szegedy, 2015]

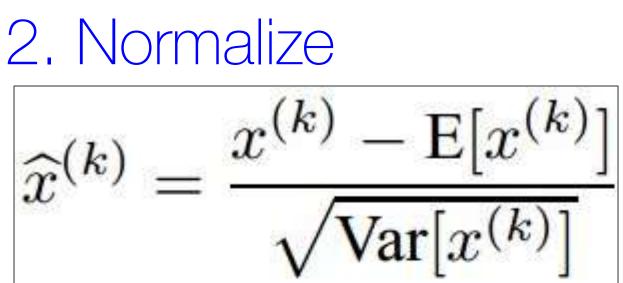
Batch normalization Recall...

Ν

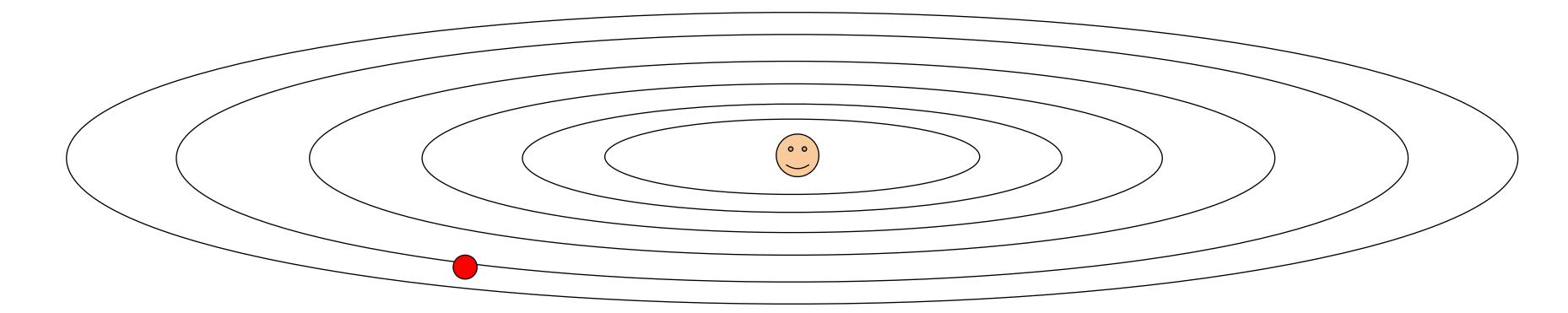


[loffe and Szegedy, 2015]

1. compute the empirical mean and



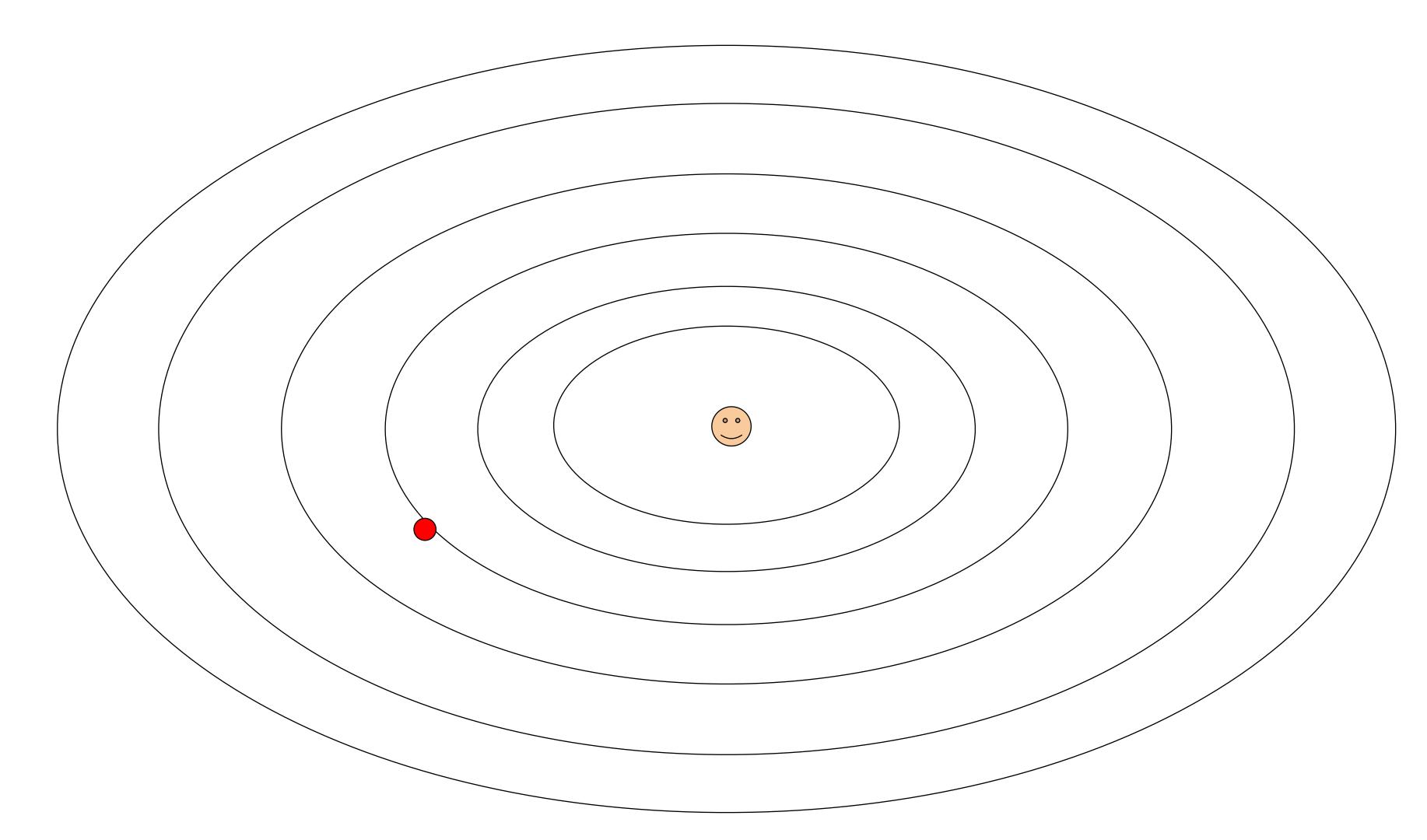
Batch normalization



[loffe and Szegedy, 2015]

This imbalance between dimensions is the problem

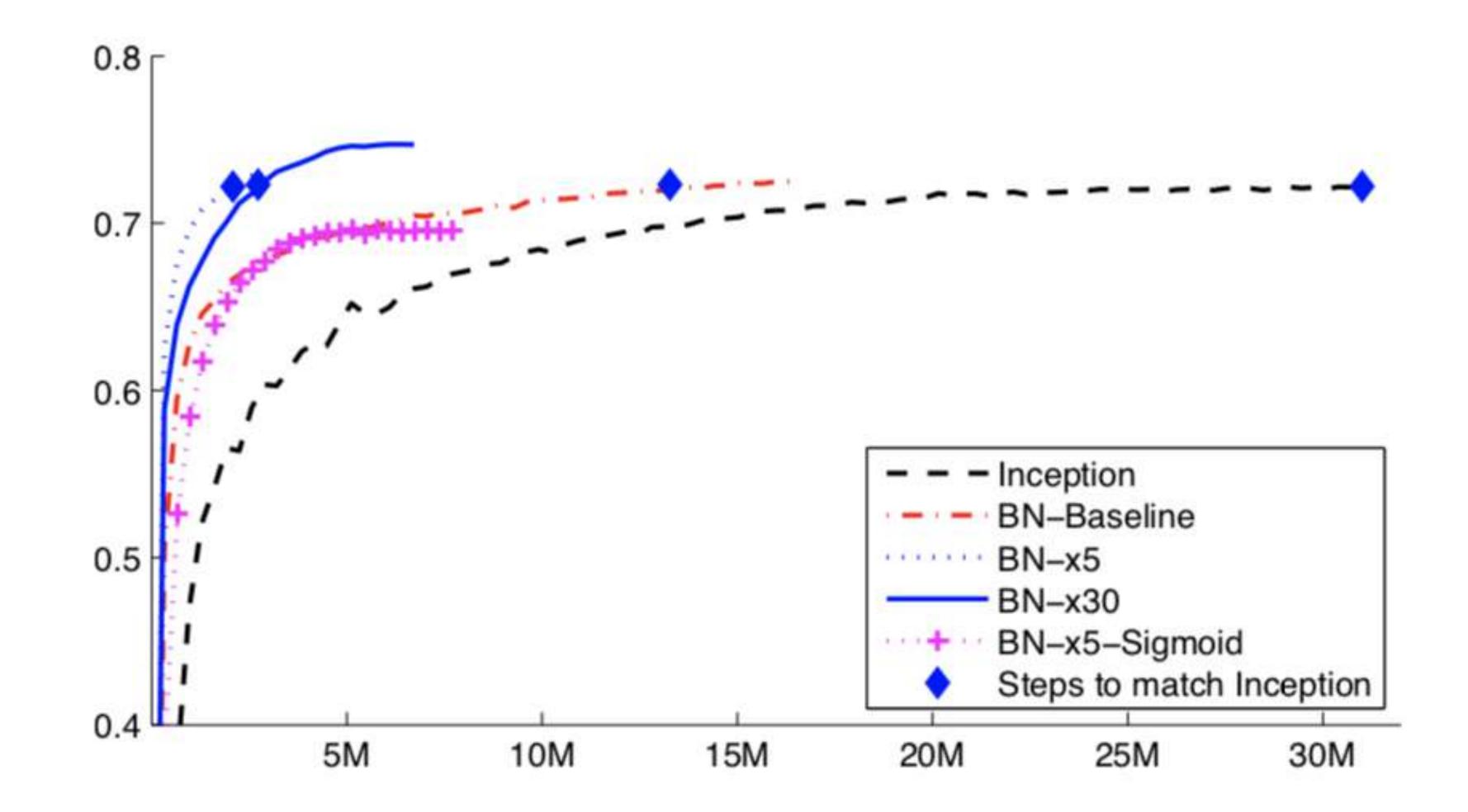
Batch normalization



[loffe and Szegedy, 2015]

Let's artificially make it like this!

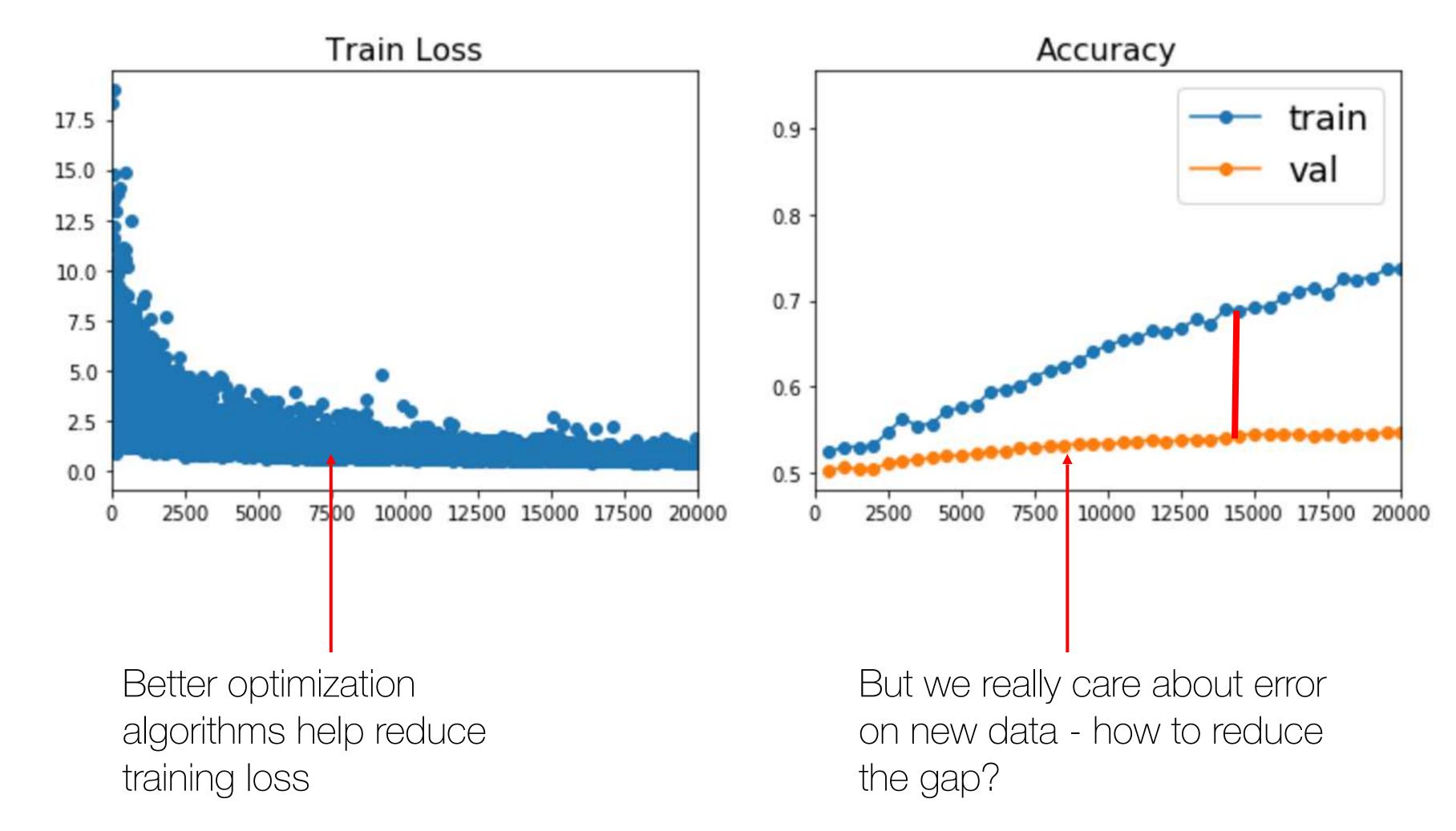
Batch normalization



[loffe and Szegedy, 2015]

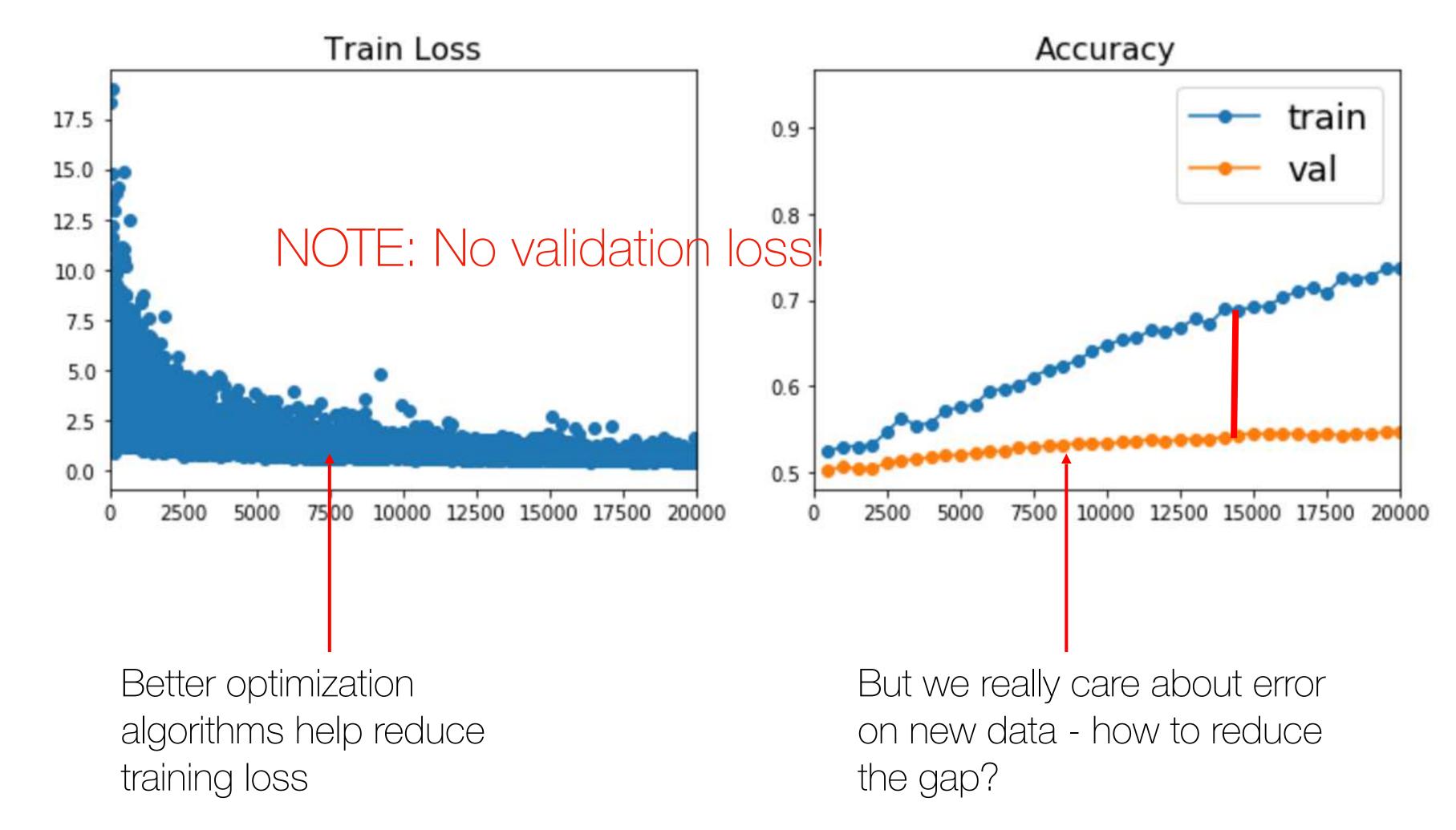
Preventing overfitting

Beyond training loss Recall the other problem



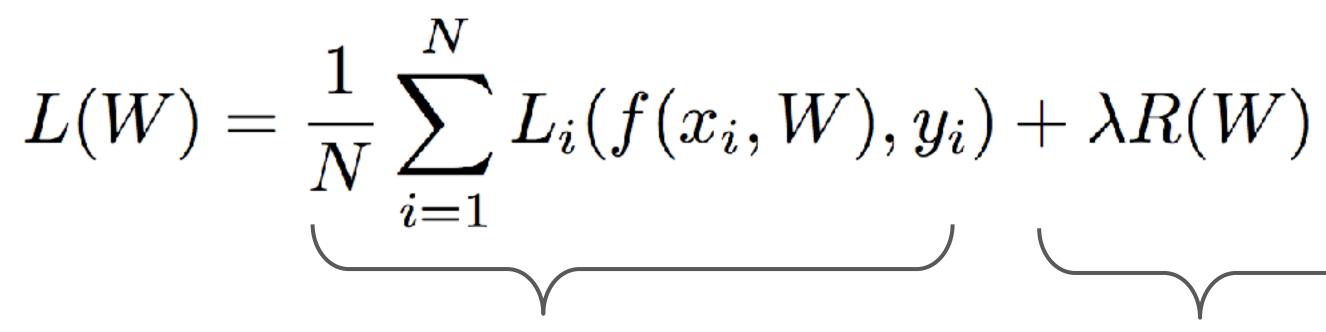
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Beyond training loss Recall the other problem

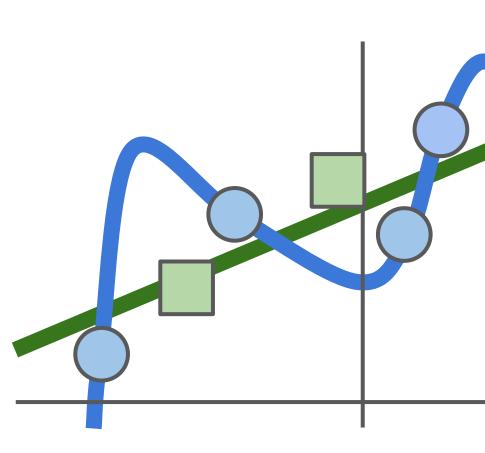


Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

A typical approach to overfitting Regularization



Data loss: Model predictions should match training data



Regularization: Model $\|\mathbf{W}\|_2^2$ should be "simple", so it works on test data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Common regularizers

$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x))$

In common use: L2 regularization L1 regularization

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

$$(x_i;W)_j - f(x_i;W)_{y_i} + 1) + \lambda R(W)$$

 $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ (Weight decay) $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$

Common regularizers

$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x))$

In common use: L2 regularization L1 regularization

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

$$(x_i;W)_j - f(x_i;W)_{y_i} + 1) + \lambda R(W)$$

 $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ (Weight decay) $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$

Common regularizers My personal warning against L2 $L = rac{1}{N} \sum_{i=1}^N \sum_{j eq y_i} \max(0, f(x))$

In common use: RL2 regularization L1 regularization REla Laarhoven, 2017, "However, we show that L2 combined with normalization. Instead, regularization has an influence on the scale of

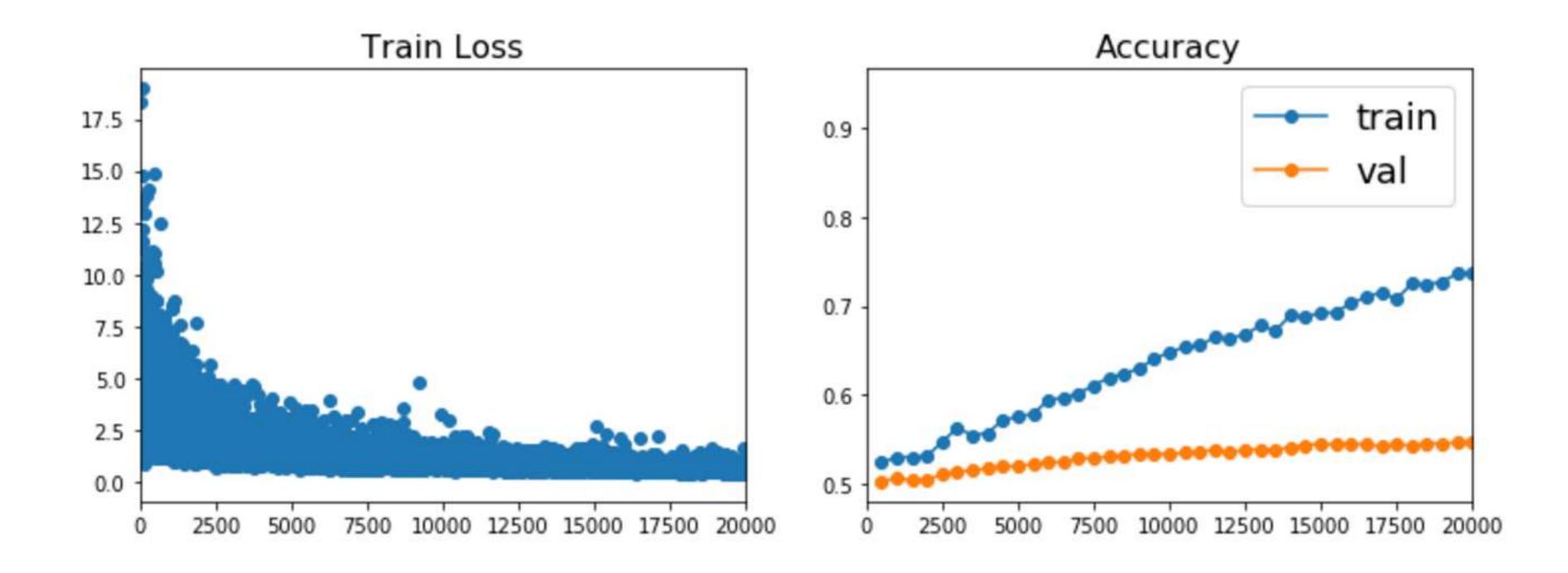
$$(x_i;W)_j - f(x_i;W)_{y_i} + 1) + \lambda R(W)$$

$$(W) = \sum_k \sum_l W_{k,l}^2$$
 (Weight decay)

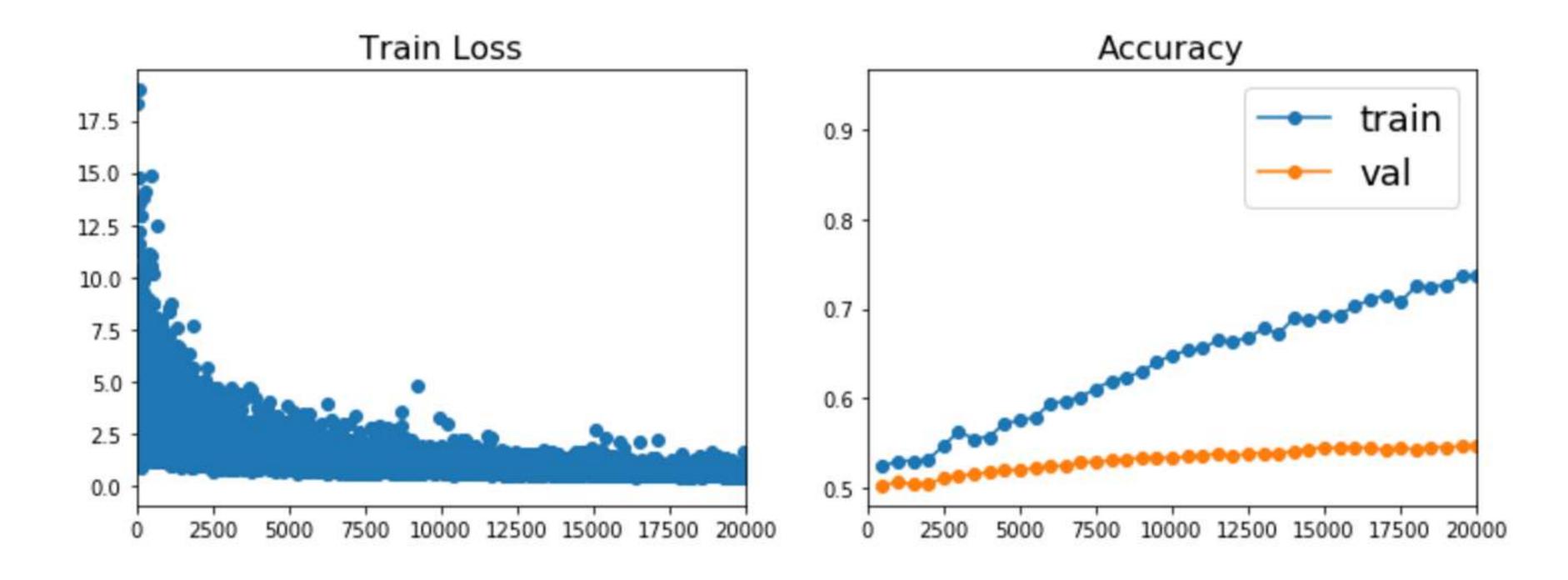
$$(W) = \sum_k \sum_l |W_{k,l}|$$

regularization has no regularizing effect when weights, and thereby on the effective learning rate."

Why does this happen in the first place?



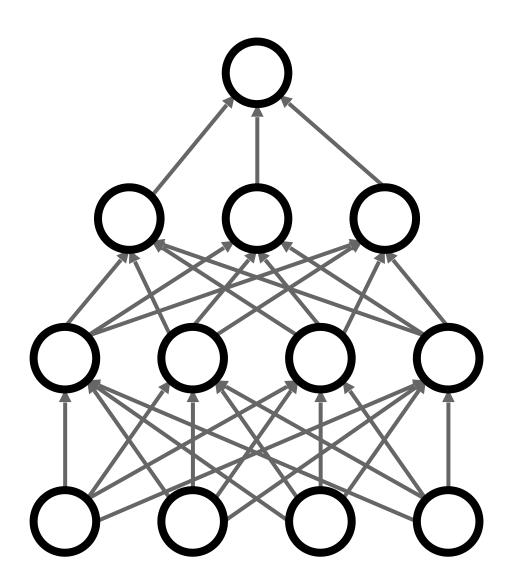
Why does this happen in the first place?



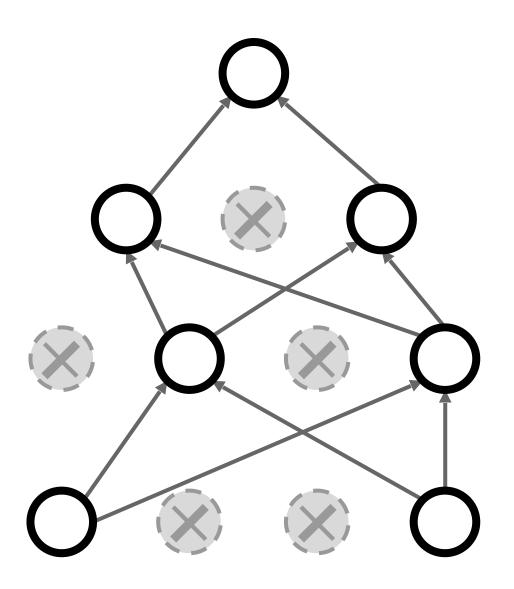
Can we somehow encode uncertainty in data?

Regularization: Dropout Making it impossible to trust the data 100%

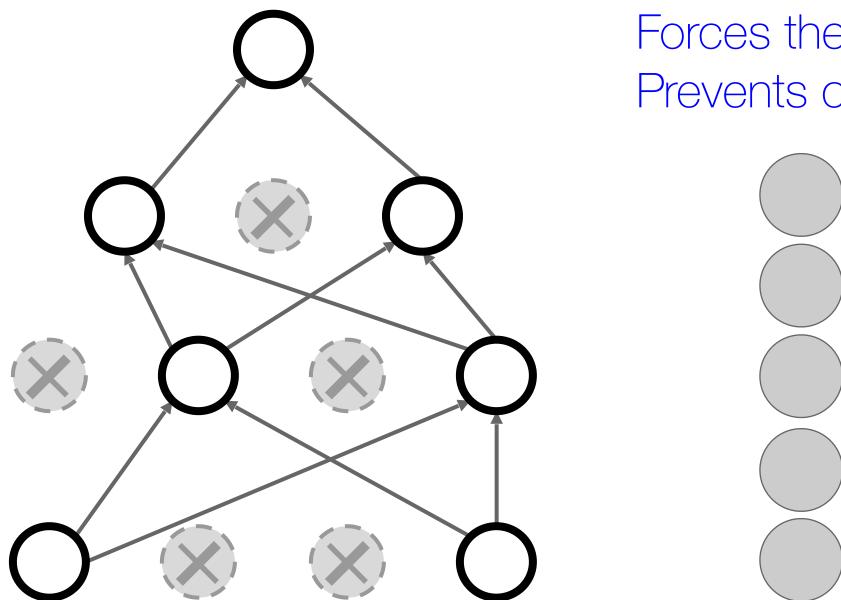
In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common



Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission



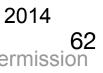
Regularization: Dropout Making it impossible to trust the data 100%



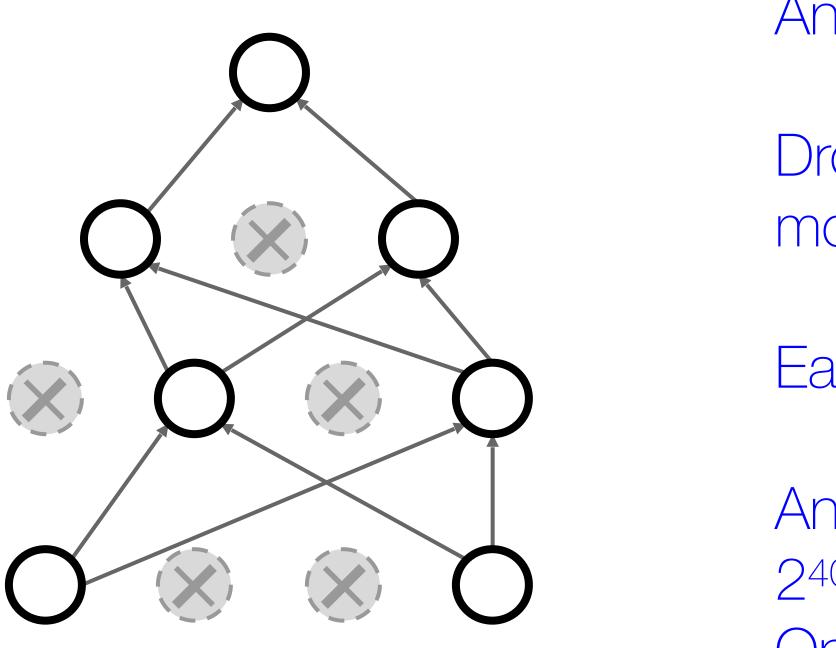
Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Forces the network to have a redundant representation; Prevents co-adaptation of features

	has an ear	X
	has a tail	
	is furry	-X cat
)	has claws	SCOre
	mischievous look	



Regularization: Dropout Making it impossible to trust the data 100%



Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class (outside of scope)

- Another interpretation:
- Dropout is training a large **ensemble** of models (that share parameters).
- Each binary mask is one model
- An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only ~ 10^{82} atoms in the universe...

OF BRITISH COLUMBIA

Skipped in class THE UNIVERSITY Regularization: Dropout at test timeutside of scope) Again the train / test gap

Dropout makes our output rai

Want to "average out" the randomness at test-time $f(x,z)] = \int p(z)f(x,z)dz$

$$y = f(x) = E_z \big[j$$

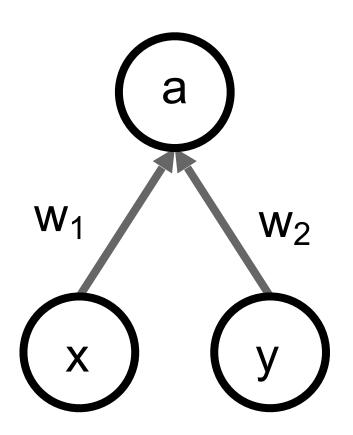
But this integral seems hard ...

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

OF BRITISH COLUMBIA

Skipped in class THE UNIVERSITY Regularization: Dropout at test timeutside of scope) An approximate solution

Want to approximate the integral



Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

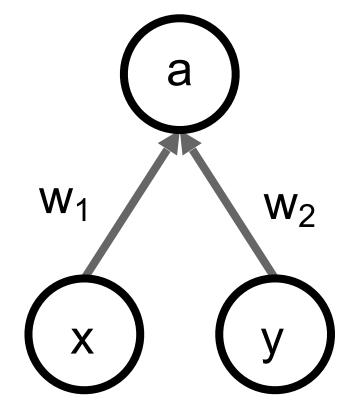
$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

Skipped in class Regularization: Dropout at test timeutside of scope) An approximate solution

Want to approximate the integral

Consider a single neuron.



Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

At test time we have: $E[a] = w_1x + w_2y$

Skipped in class Regularization: Dropout at test timeutside of scope) An approximate solution

Want to approximate the integral

a W- W_2

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

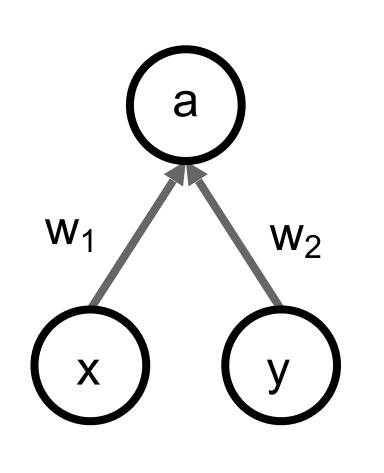
At test time we have: $E[a] = w_1x + w_2y$ During training we have: $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$ $+\frac{1}{4}(0x+0y)+\frac{1}{4}(0x+w_2y)$ $=\frac{1}{2}(w_1x+w_2y)$

Skipped in class Regularization: Dropout at test timeutside of scope) An approximate solution

Want to approximate the integral

dropout probability

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

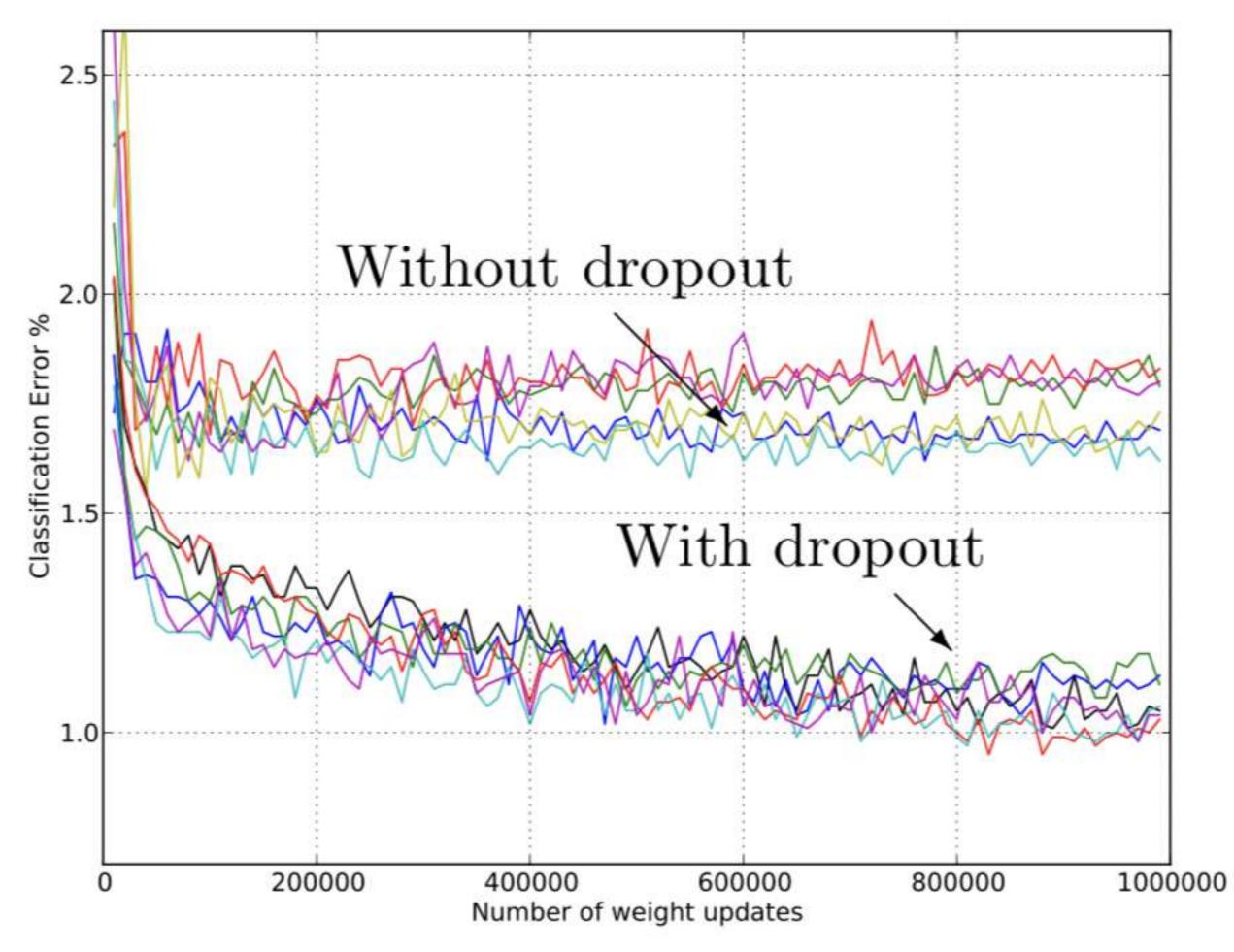


$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have: $E[a] = w_1x + w_2y$ During training we have: $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$ $+\frac{1}{4}(0x+0y)+\frac{1}{4}(0x+w_2y)$ At test time, **multiply** by $=\frac{1}{2}(w_1x+w_2y)$

Regularization: Dropout How good is it?



Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class (outside of scope)

Skipped in class Regularization: A common patterr(outside of scope)

Training: Add some kind of randomness

 $y = f_W(x, z)$

Testing: Average out randomness (sometimes approximate)

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

 $y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$

Skipped in class Regularization: A common patterr(outside of scope)

Training: Add some kind of randomness

 $y = f_W(x, z)$

Testing: Average out randomness (sometimes approximate)

$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$

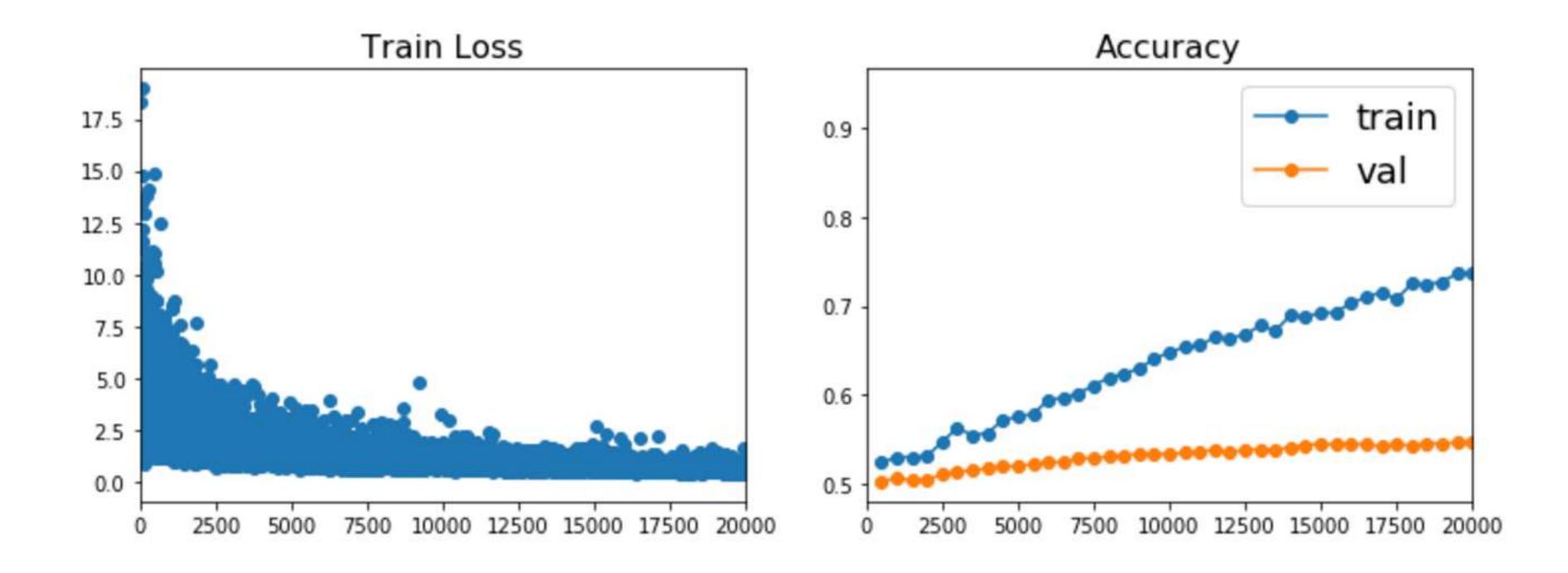
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Example: Batch Normalization **Training**: Normalize using stats

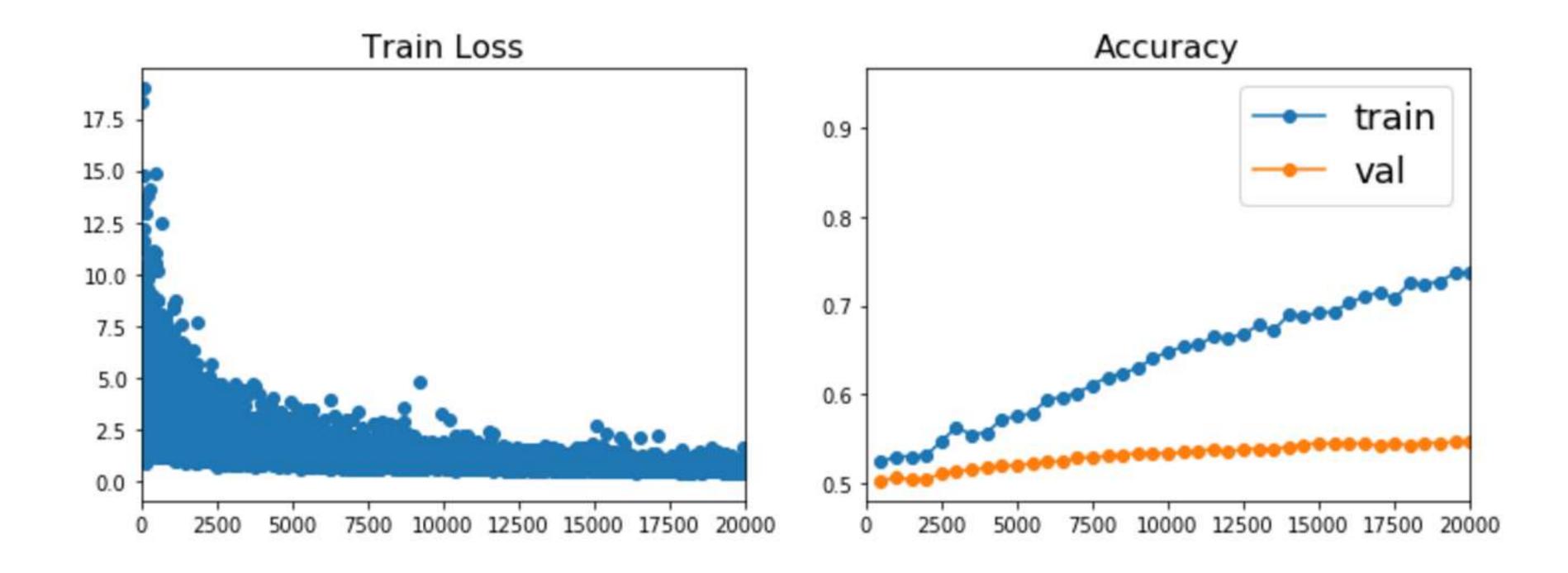
from random minibatches

Testing: Use fixed stats to normalize

Skipped in class Why does this happen in the first waterde of scope)

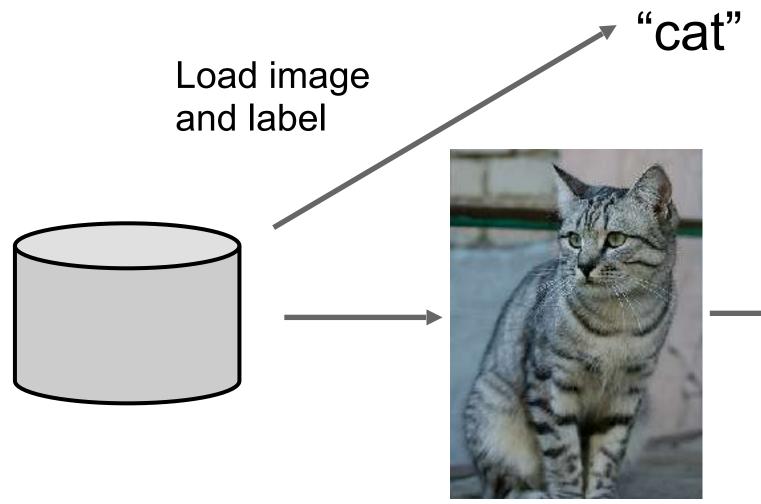


Skipped in class Why does this happen in the first the first wate de scope

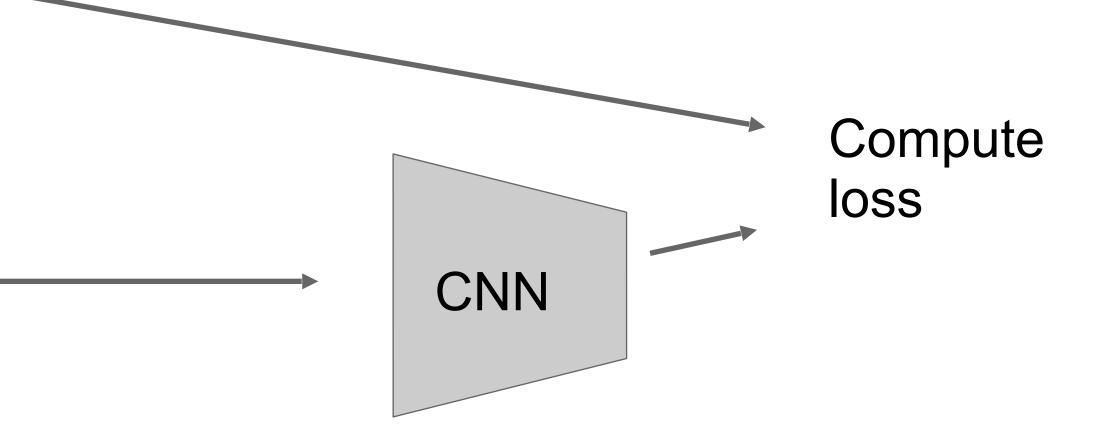


How can we have more data?

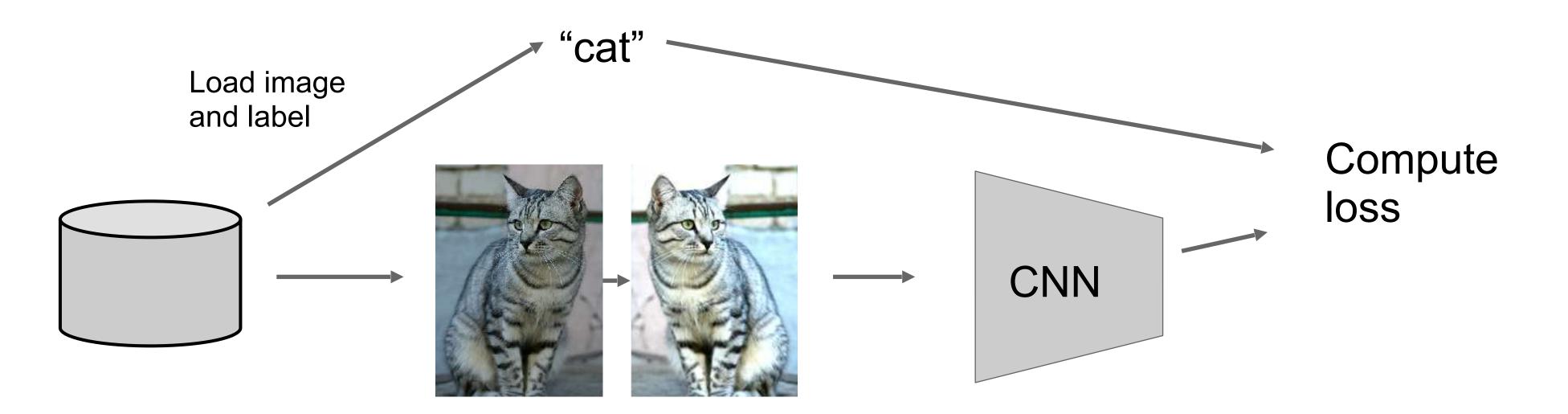
Skipped in class THE UNIVERSITY Regularization: Data augmentation(outside of scope)



<u>This image</u> by <u>Nikita</u> is licensed under CC-BY 2.0



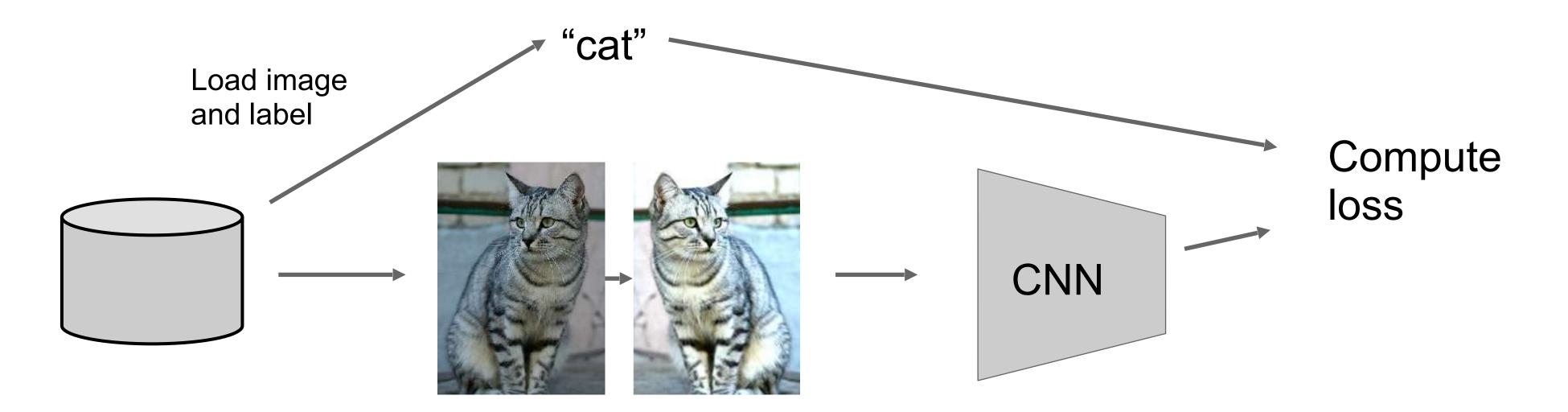
Skipped in class THE UNIVERSITY Regularization: Data augmentation(outside of scope)



Transform image

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

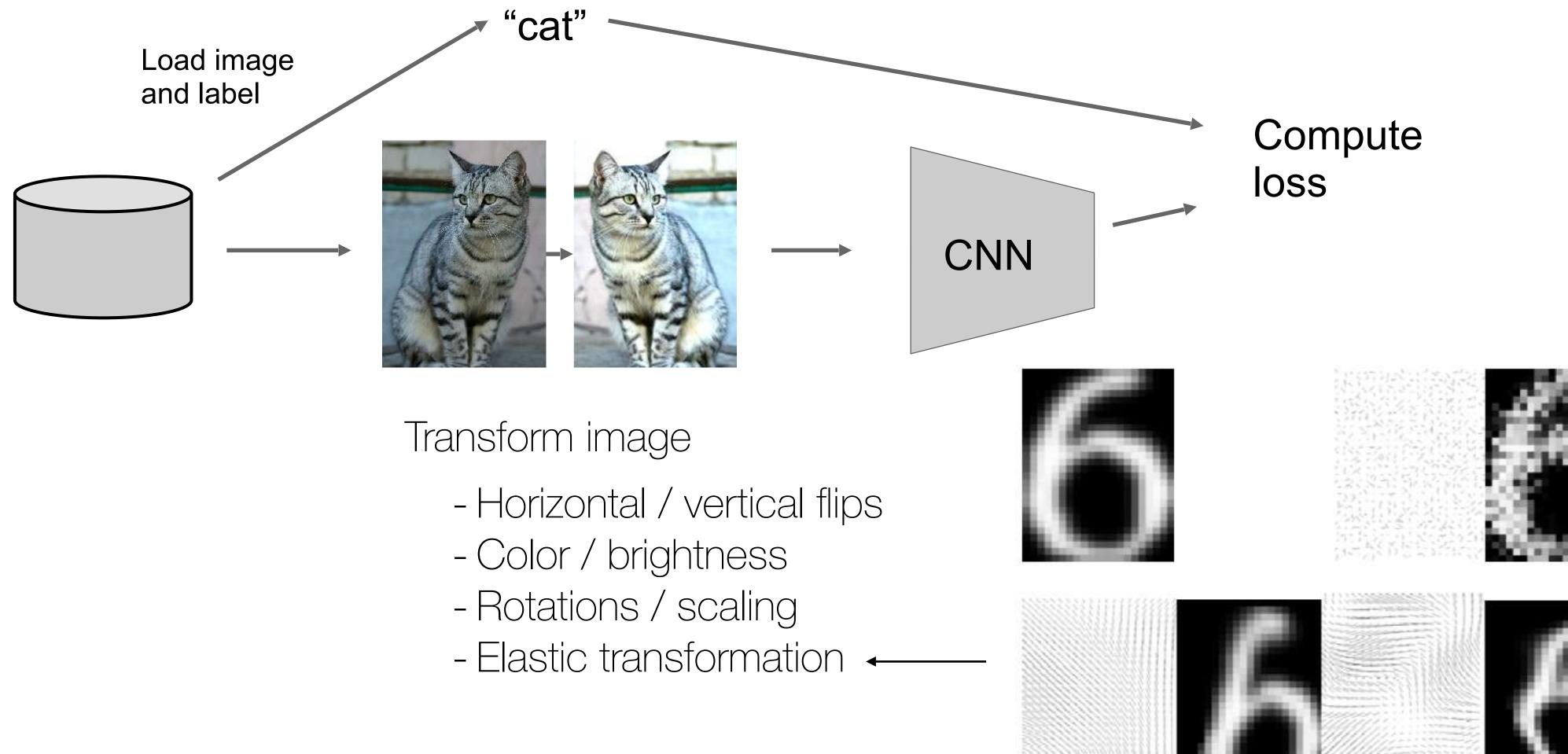
Skipped in class Regularization: Data augmentation(outside of scope)



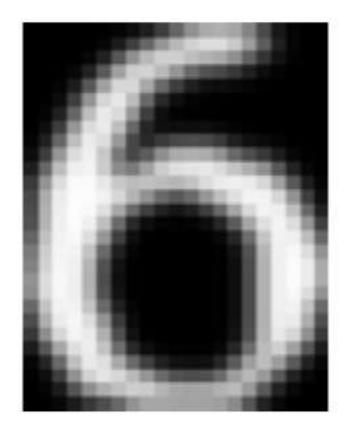
Transform image

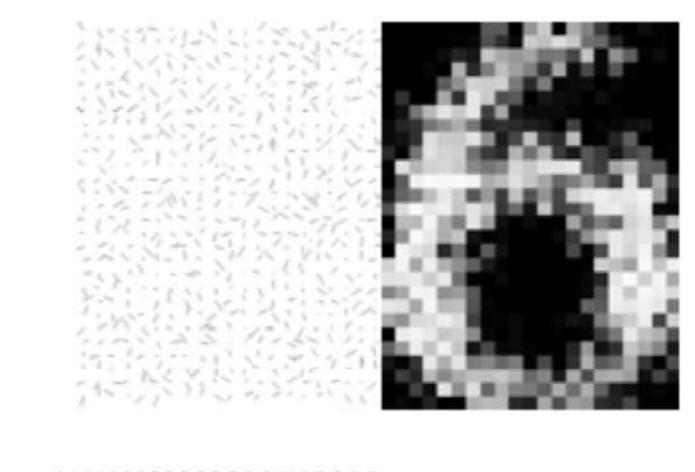
- Horizontal / vertical flips - Color / brightness - Rotations / scaling - Elastic transformation

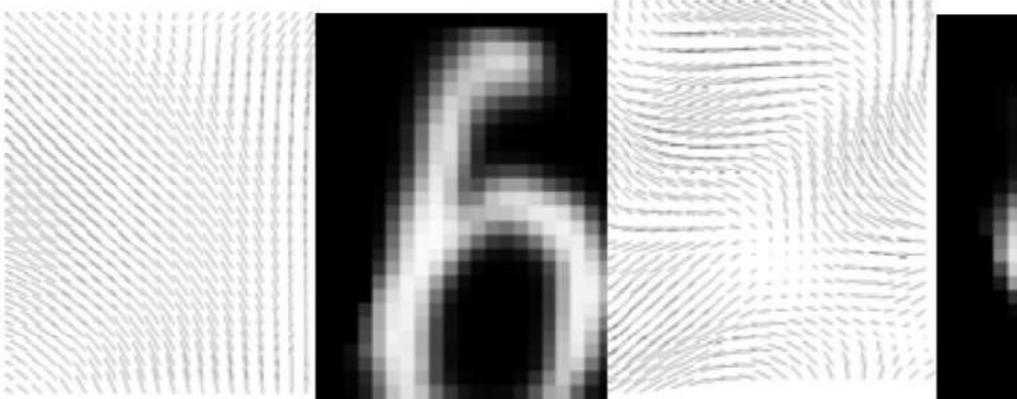
Skipped in class THE UNIVERSITY Regularization: Data augmentation(outside of scope)



Skipped in class THE UNIVERSITY Regularization: Data augmentation(outside of scope) Elastic deformations



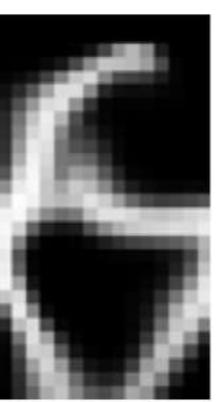




Figures copyright IEEE, 2003. Reproduced for educational purposes

Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

1. Create random displacement field with uniform distribution



2. Smooth the displacement field with a Gaussian

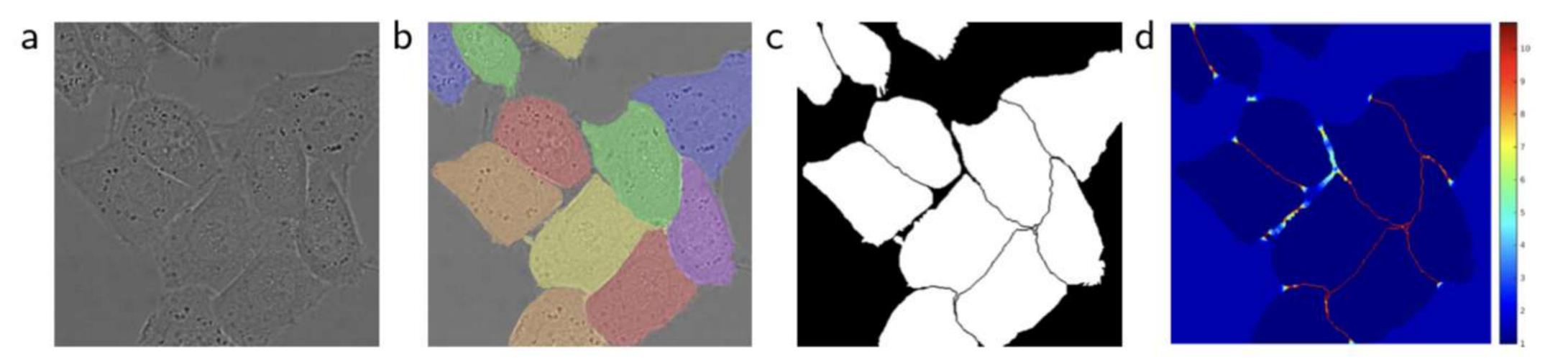
Skipped in class OF BRITISH COLUMBIA Regularization: Data augmentation(outside of scope) Elastic deformations

Algorithm	Distortion	Error	Ref.
2 layer MLP	affine	1.6%	[3]
(MSE)			
SVM	affine	1.4%	[9]
Tangent dist.	affine+thick	1.1%	[3]
Lenet5 (MSE)	affine	0.8%	[3]
Boost. Lenet4 MSE	affine	0.7%	[3]
Virtual SVM	affine	0.6%	[9]
2 layer MLP (CE)	none	1.6%	this paper
2 layer MLP (CE)	affine	1.1%	this paper
2 layer MLP	elastic	0.9%	this paper
(MSE)			
2 layer MLP (CE)	elastic	0.7%	this paper
Simple conv (CE)	affine	0.6%	this paper
Simple conv (CE)	elastic	0.4%	this paper

Table 1. Comparison between various algorithms.

Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", ICDAR, 2003 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class Regularization: Data augmentation(outside of scope) Elastic deformations



Name	PhC-U373	DIC-I
IMCB-SG (2014)	0.2669	0.293
KTH-SE (2014)	0.7953	0.460'
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.775

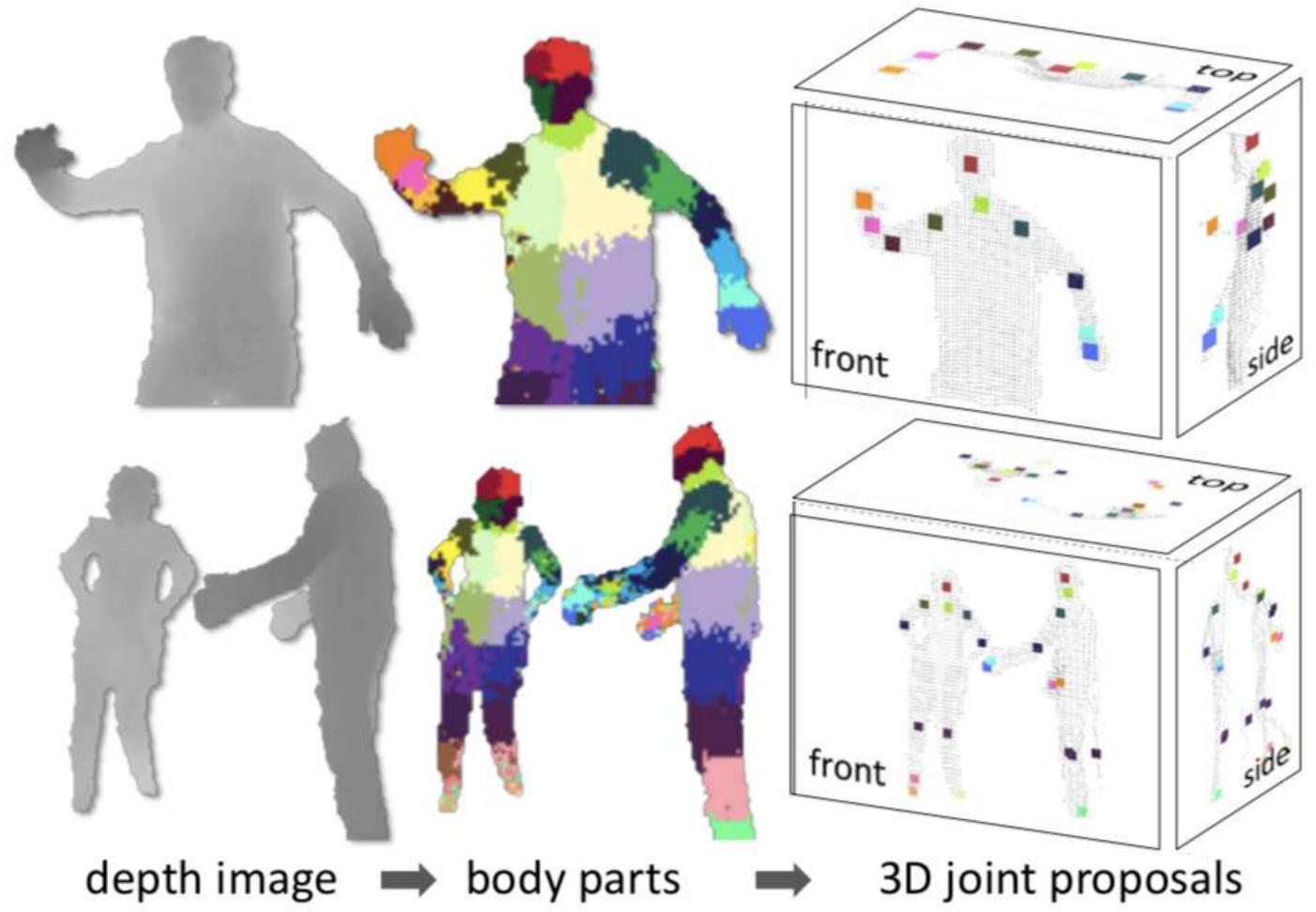
Ronneberger et. al,, "U-Net: Convolutional Networks for Biomedical Image Segmentation", 2015 80 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

HeLa

5

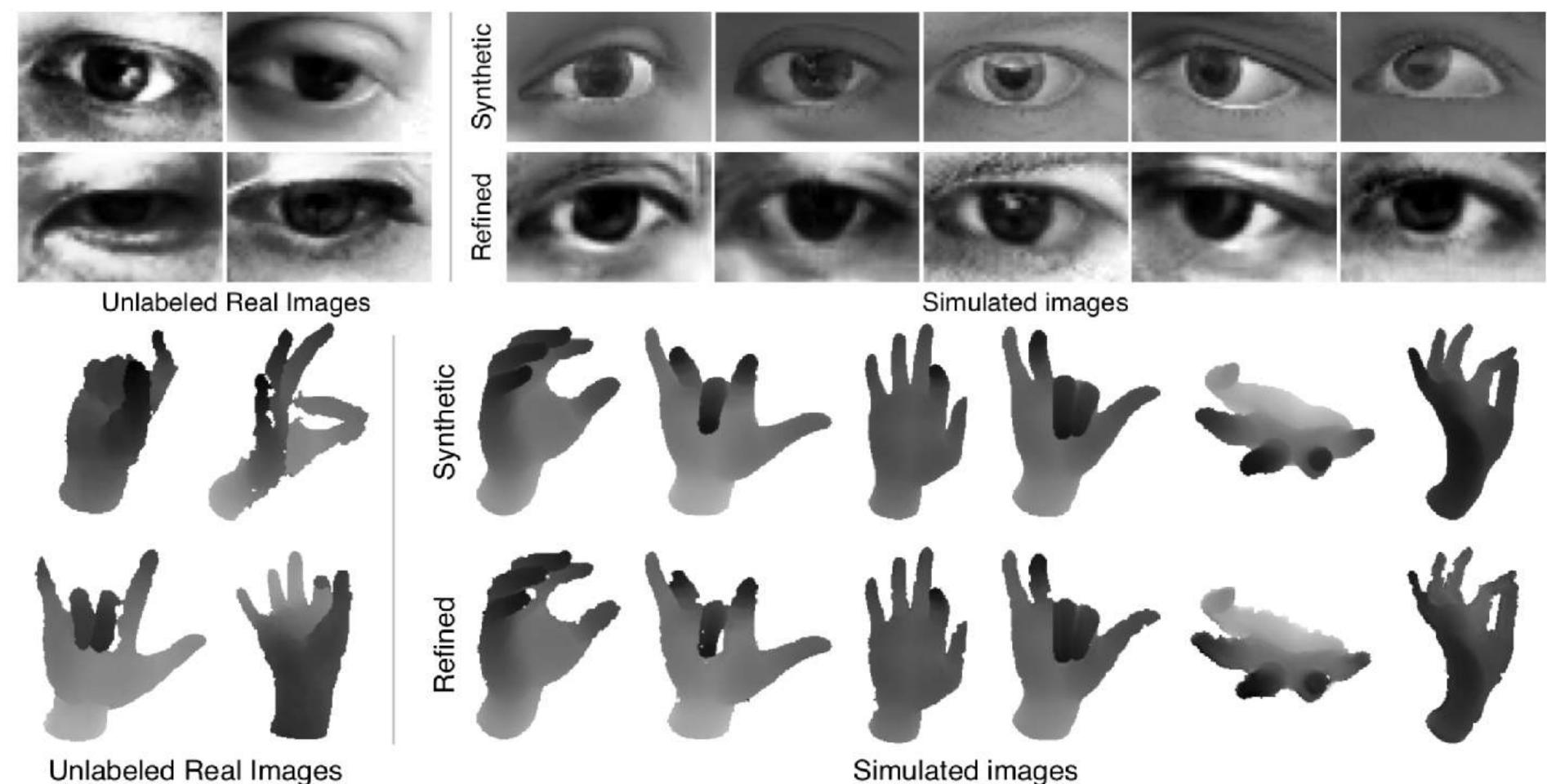
$\mathbf{56}$

Skipped in class THE UNIVERSITY Regularization: Data augmentation(outside of scope) Synthetic data



Shotton et. al,, "Real-Time Human Pose Recognition in Parts from Single Depth Images", 2011 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Skipped in class THE UNIVERSITY Regularization: Data augmentation(outside of scope) Synthetic data + generative models

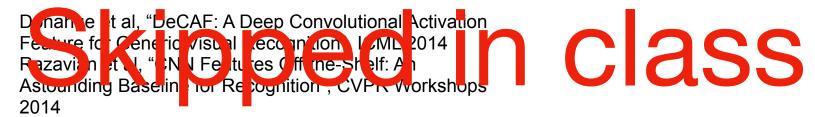


Unlabeled Real Images

Shrivastava et. al,, "Learning from Simulated and Unsupervised Images through Adversarial Training", 2011 Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Using pretrained networks

1. Train on Imagenet

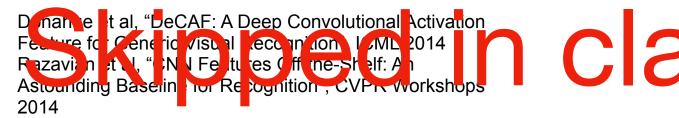


(outside of scope)

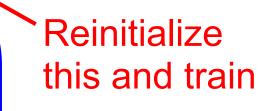
Using pretrained networks

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image



(outside of scope)



Freeze these

Using pretrained networks

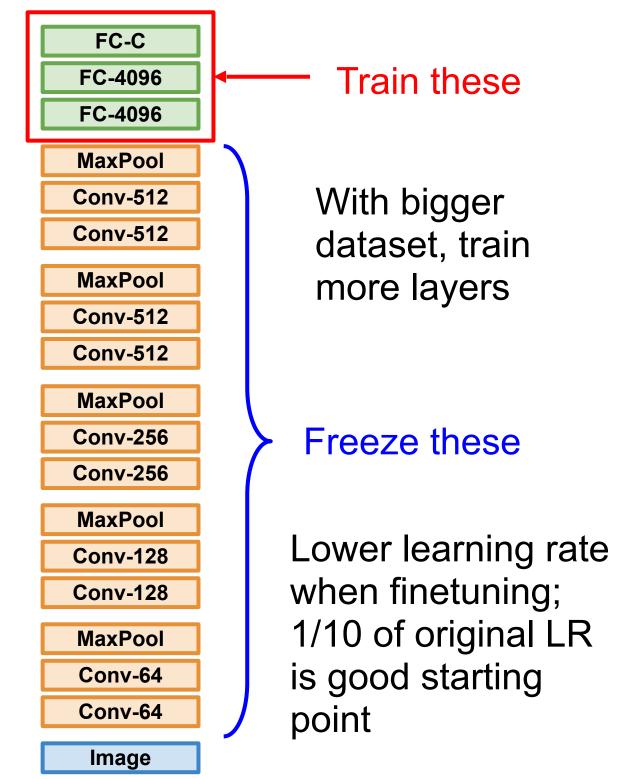
1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Reinitialize this and train

Freeze these

3. Bigger dataset



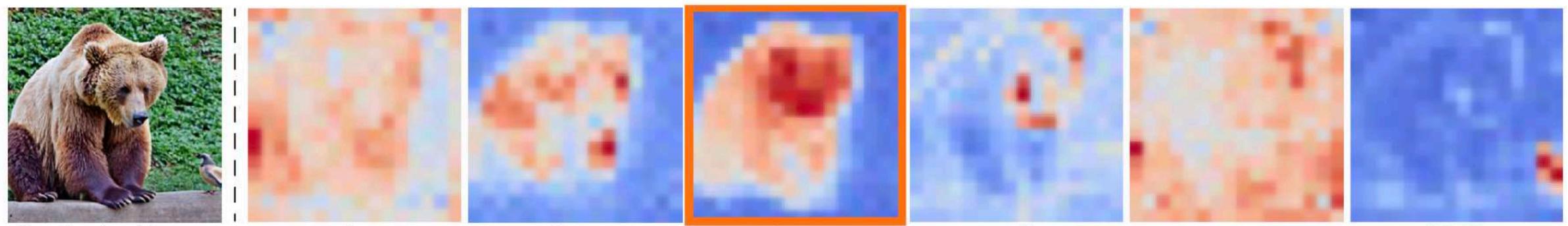
Skipped in class Large generative modelse of scope)

Video from https://twitter.com/HaiperGenAl/status/1745845670844522760

Skipped in class Large generative modelse of scope)

Video from https://twitter.com/HaiperGenAl/status/1745845670844522760

Fishing information wi<mark>thitside of scope)</mark> THE UNIVERSITY OF BRITISH COLUMBIA

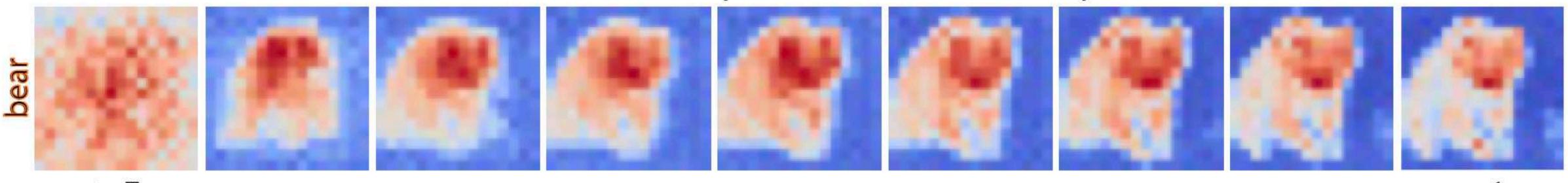


Synthesized image

"a

furry

Cross-attention maps for individual timestamps



t = T

Image from [Hertz et al., ICLR, 2023]

bear

watches

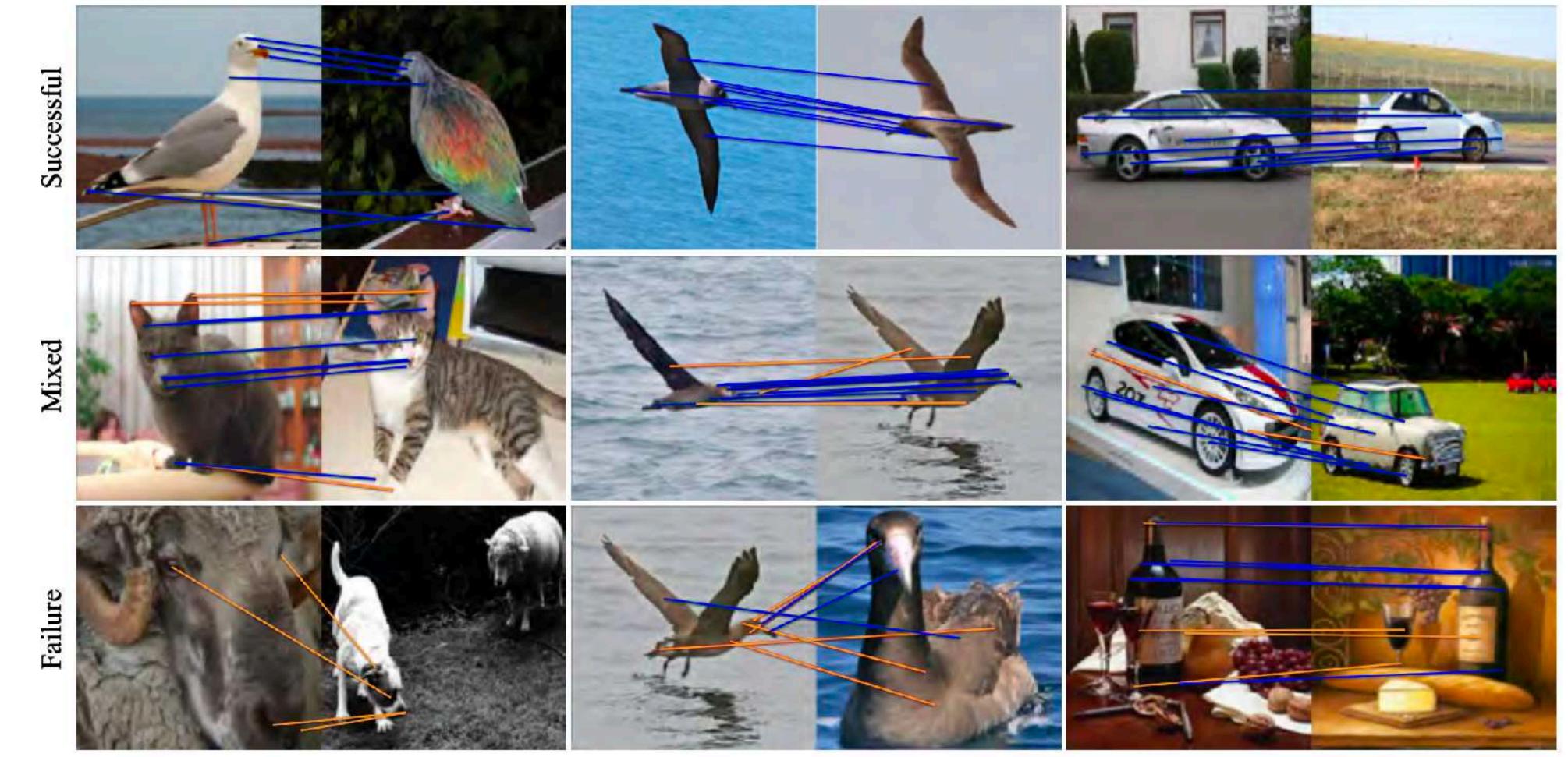
a

bird"

Average cross-attention maps across all timestamps

→ t=1

Skipped in class Correspondences frontside of scope)

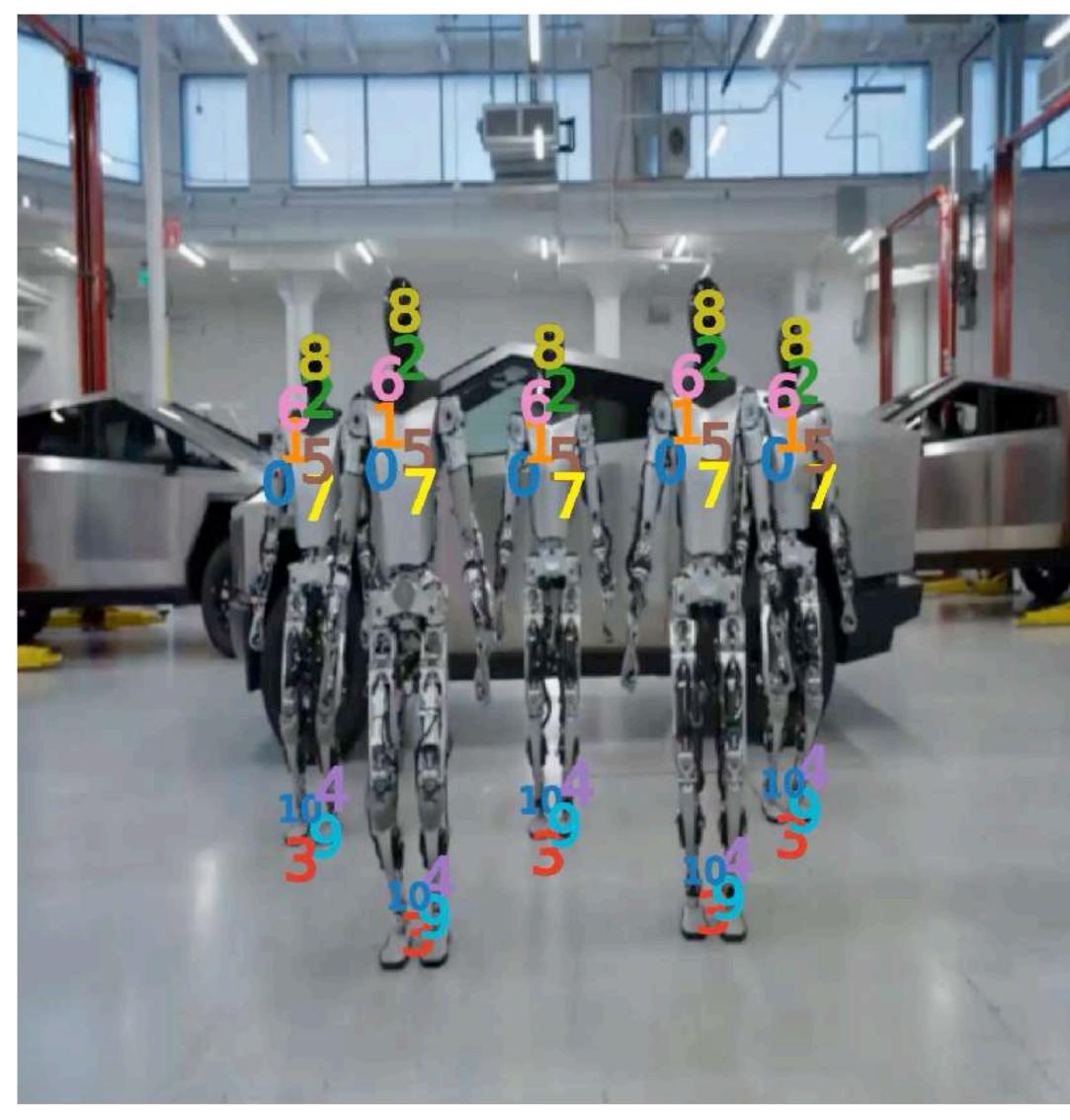


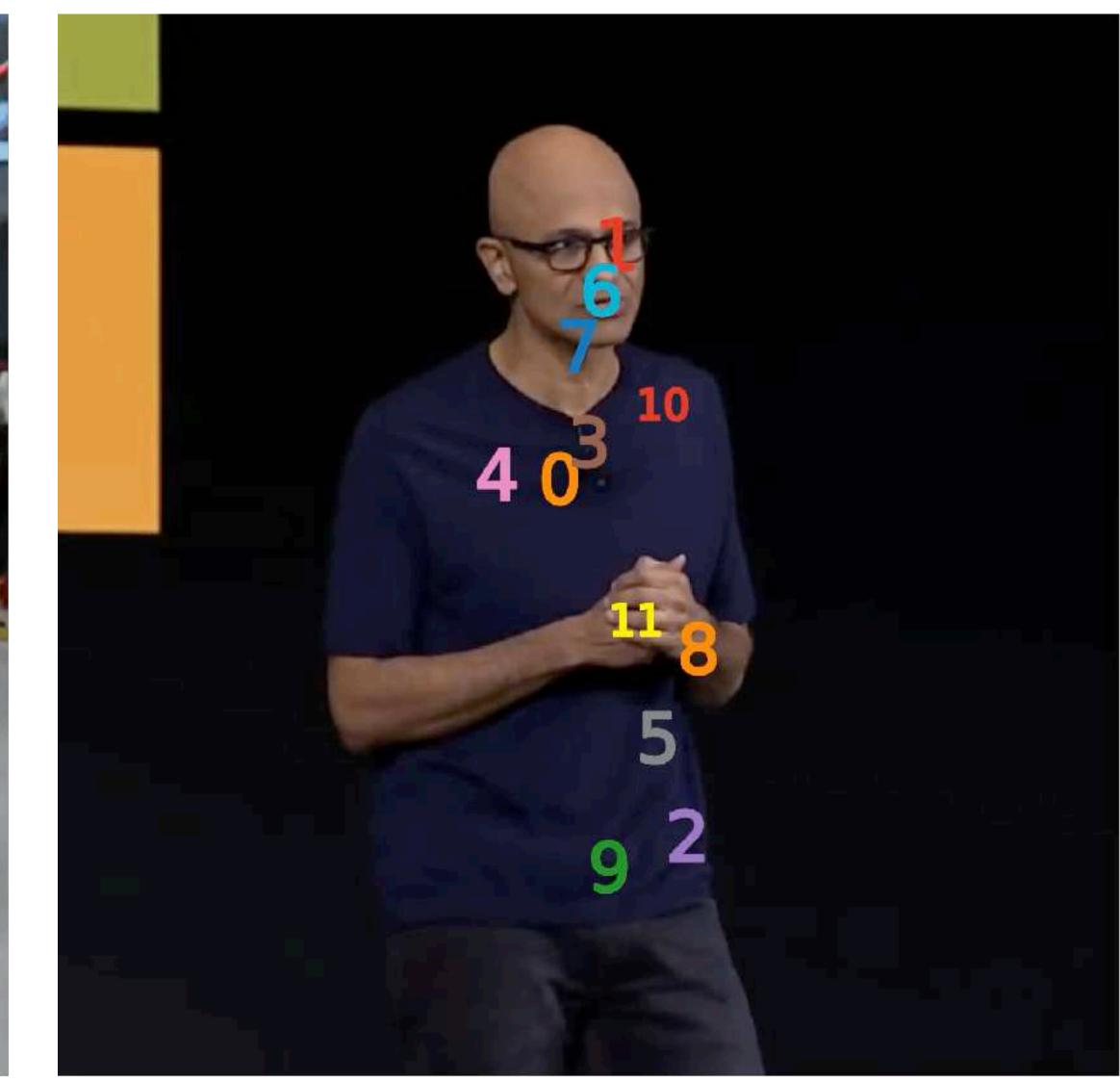
Spair-71k

CUB-200

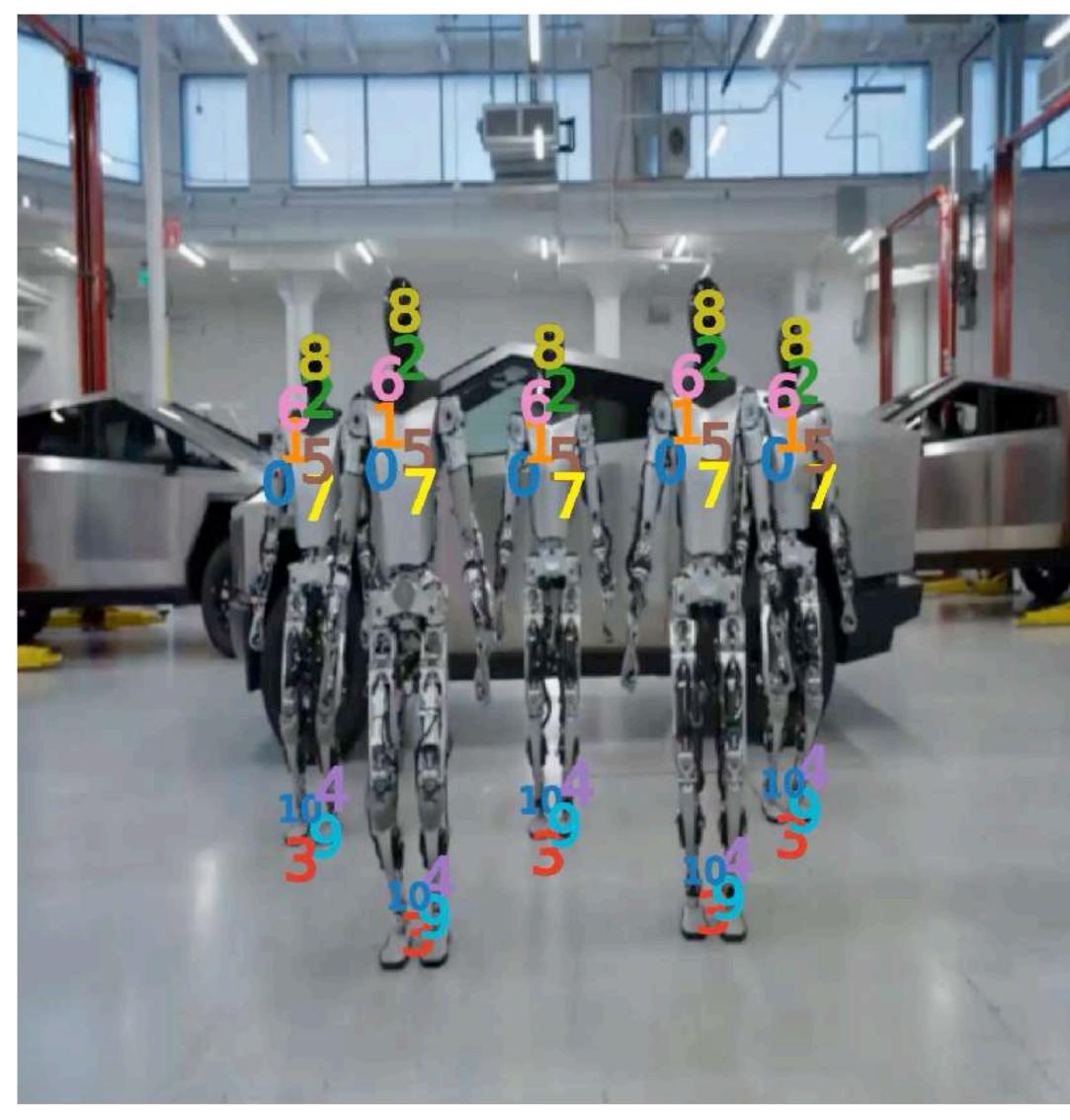
PF-Willow

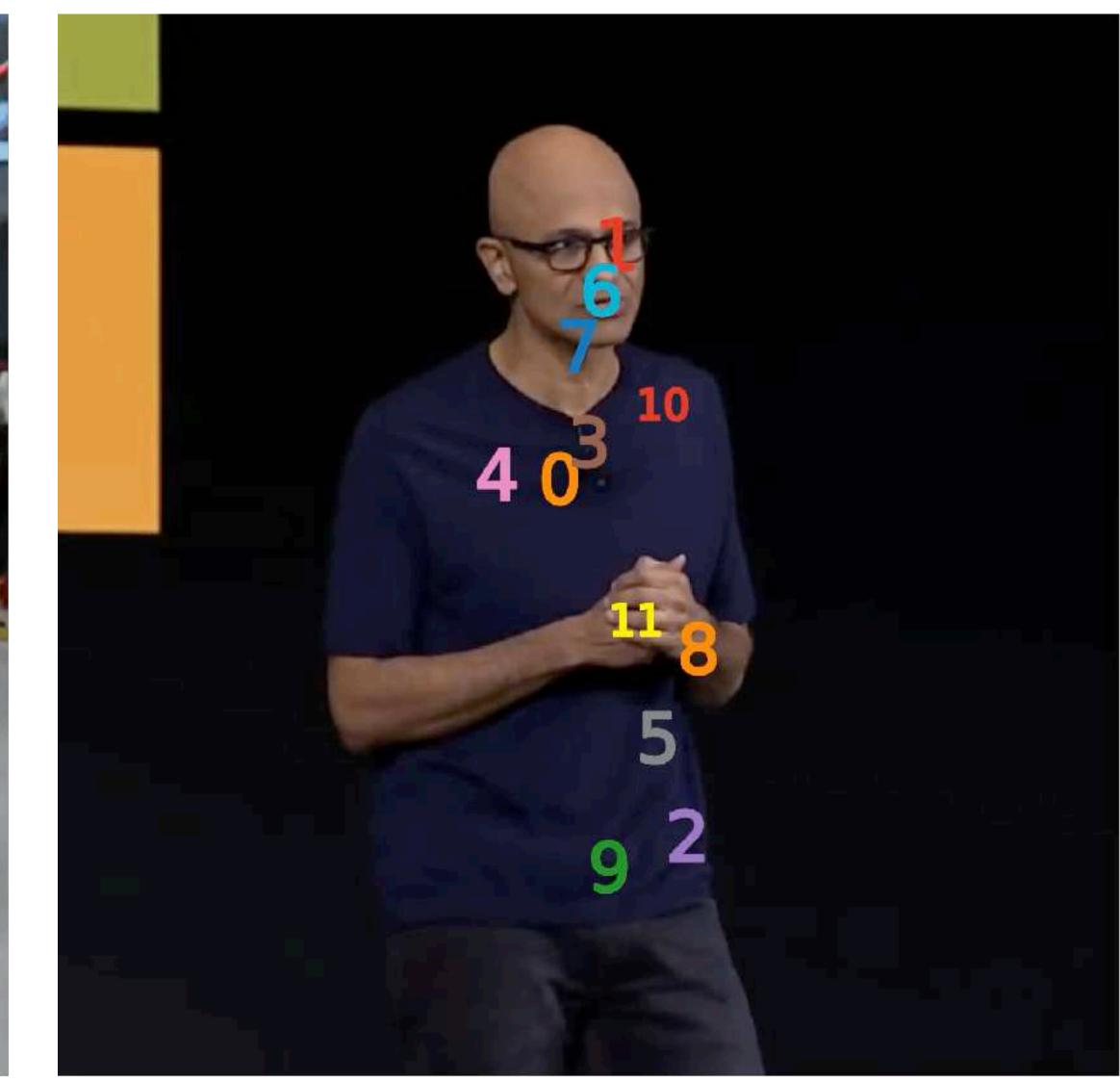
Skipped in class Keypoints from Soutside of scope)





Skipped in class Keypoints from Soutside of scope)

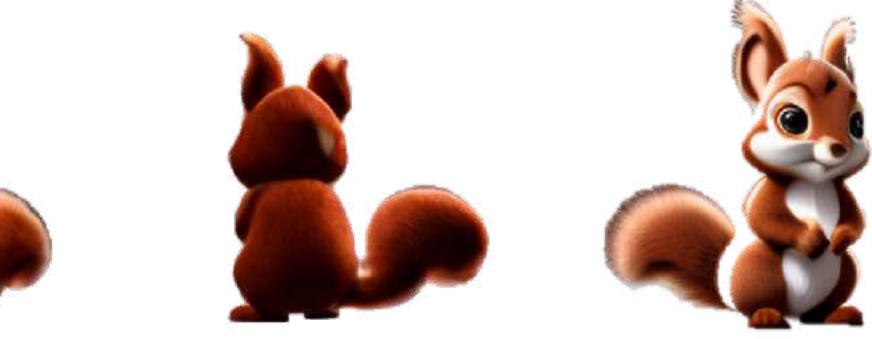




Skipped in class Text-to-3D from Sutside of scope) **Multi-view images**

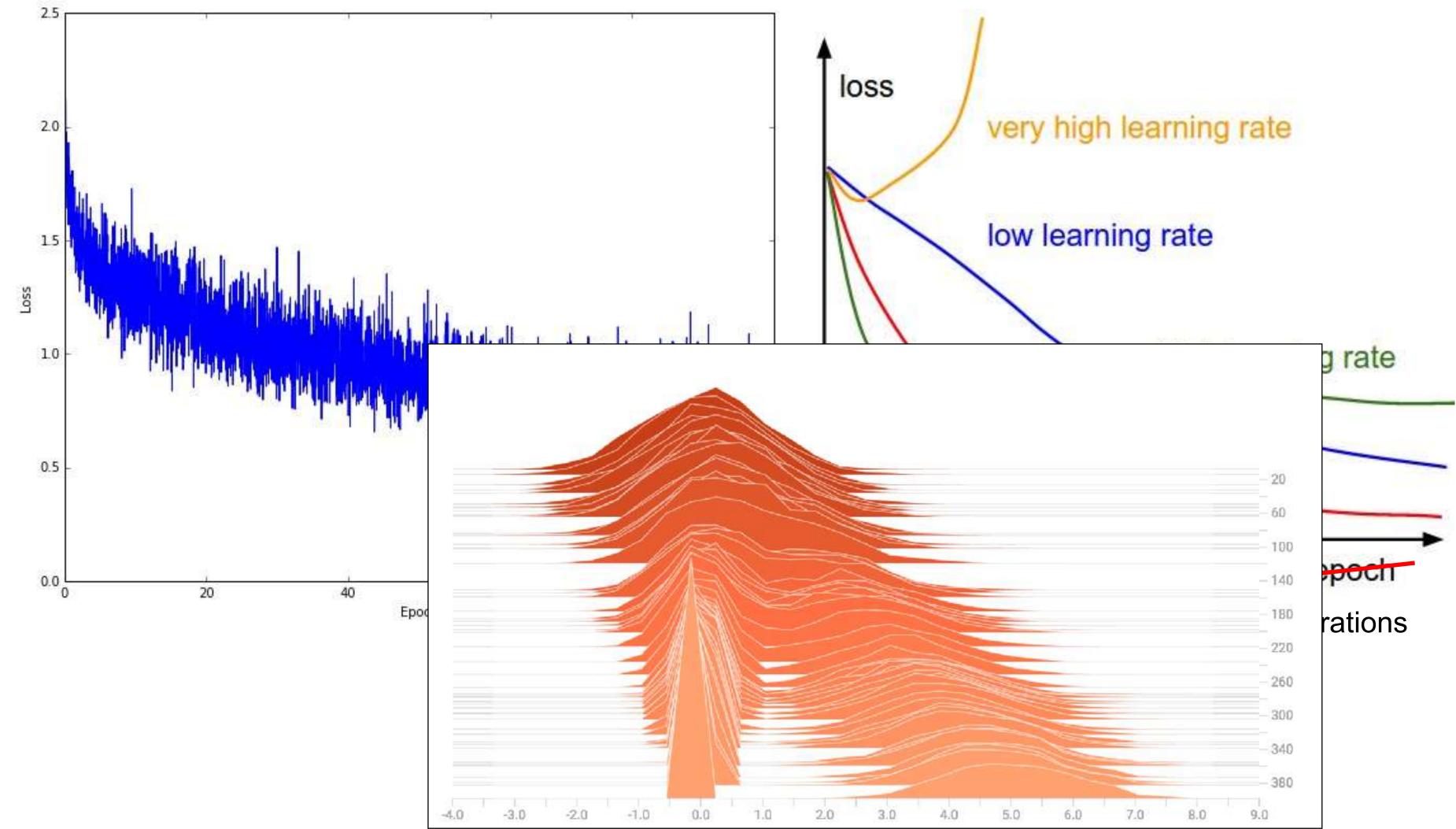
Input

"A pepperoni pizza with arms and legs"



"A cute squirrel"

Skipped in class THE UNIVERSITY Visualize VISUALIZE VISUALIZE (outside of scope)

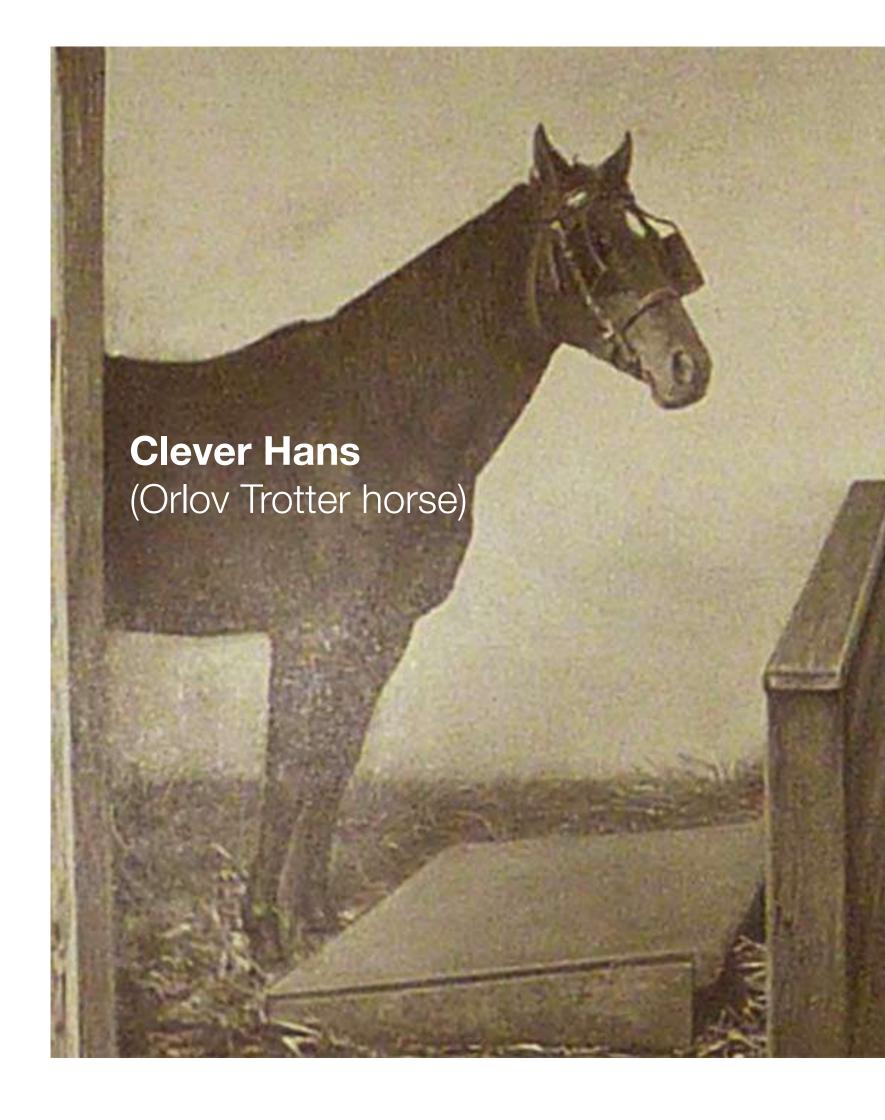


More on Neural Networks

Lots more to learn! A good place to start is Justin Johnson, University of Michigan, EECS 498/598, e.g., https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/

Skipped in class (outside of scope)

Training Neural Nets: Clever Hans



Skipped in class (outside of scope)

Wilhelm von Osten

Training Neural Nets: Clever Hans

Hans could get 89% of the math questions right

Skipped in class (outside of scope)

Training Neural Nets: Clever Hans

The course was **smart**, just not in the way van Osten thought!

Hans could get 89% of the math questions right

Skipped in class (outside of scope)

Wilhelm von Osten

