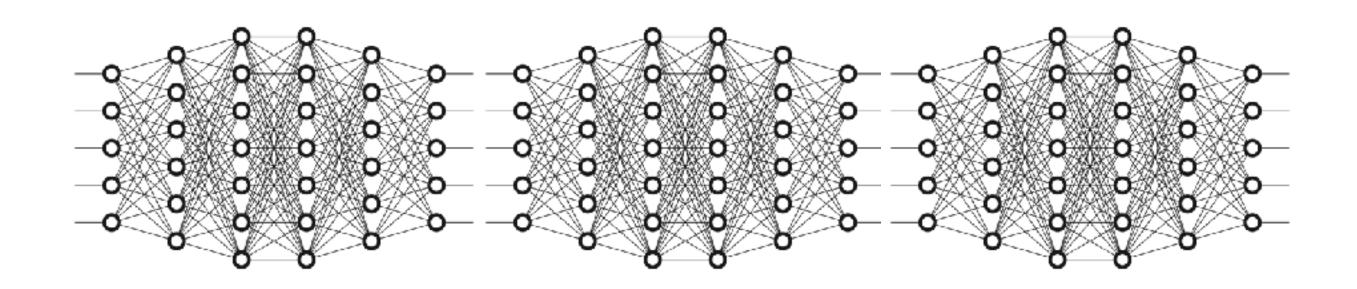


THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 21: Neural Networks 2

Menu for Today

Topics:

– Neural Networks part 2

- Linear + Convolutional layers

Readings:

498/598

Reminders:

-Quiz 6 April 7th -Assignment 6: due Apr 10th < - watch out!

Deep nets, AlexNet, VGG ____

- Today's Lecture: Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS

Many slides from this lecture are from Justin Johnson, University of Michigan, EECS 498/598 https://web.eecs.umich.edu/~justincj/

Image Features: Bag of Words (Data-Driven!)

Step 1: Build codebook

Fei-Fei and Perona, "A bayesian hierarchical model for learning natural scene categories", CVPR 2005

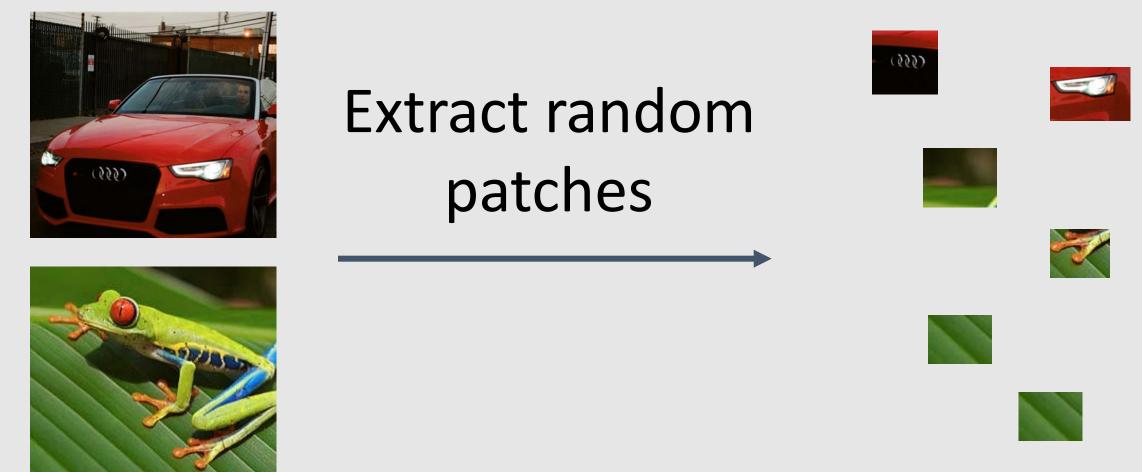
Cluster patches to form "codebook" of "visual words"

Car image is CC0 1.0 public domain

Image Features: Bag of Words (Data-Driven!)

Lecture 5 - 17

Step 1: Build codebook

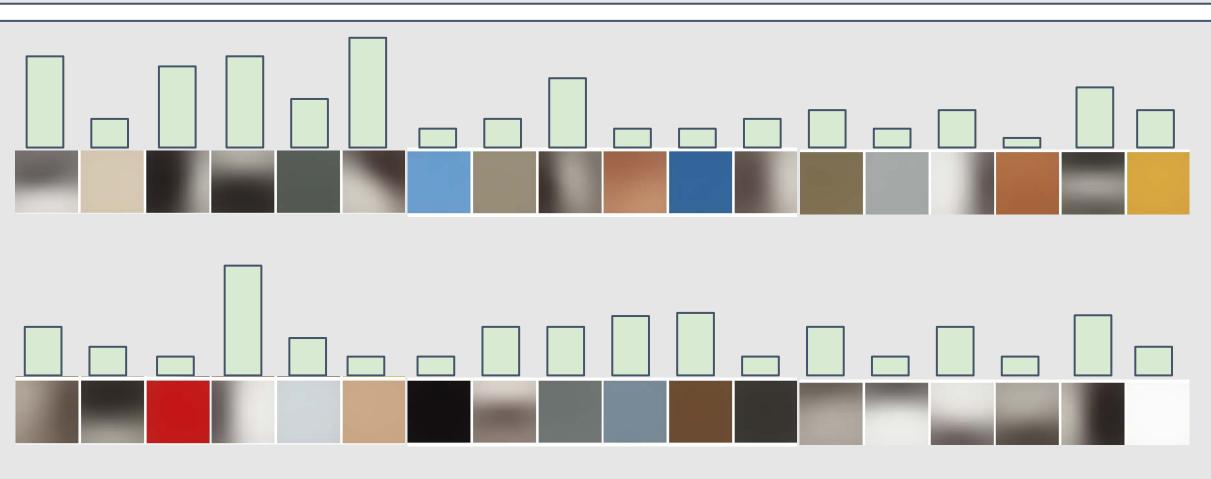


Step 2: Encode images

Fei-Fei and Perona, "A bayesian hierarchical model for learning natural scene categories", CVPR 2005

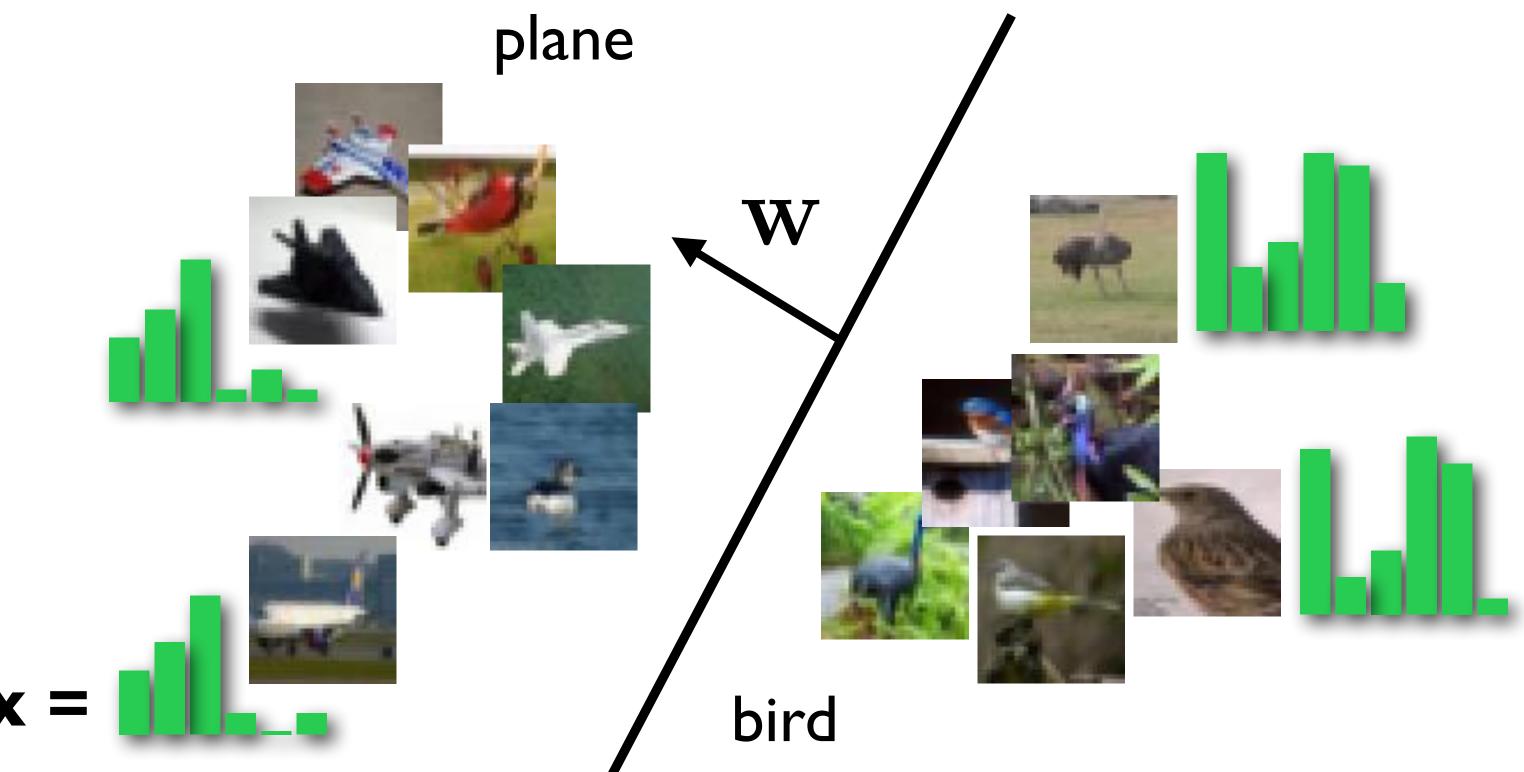
Justin Johnson

Cluster patches to form "codebook" of "visual words"



September 18, 2019

Classify Visual Word Histograms



• e.g., bird vs plane classifier as linear classifier in space of histograms Histograms of visual word frequencies = vector \mathbf{x} , linear classifier \mathbf{w}

Example: Winner of 2011 ImageNet challenge

- FV extraction and compression: N=1,024 Gaussians, R=4 regions ⇒ 520K dim x 2 compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

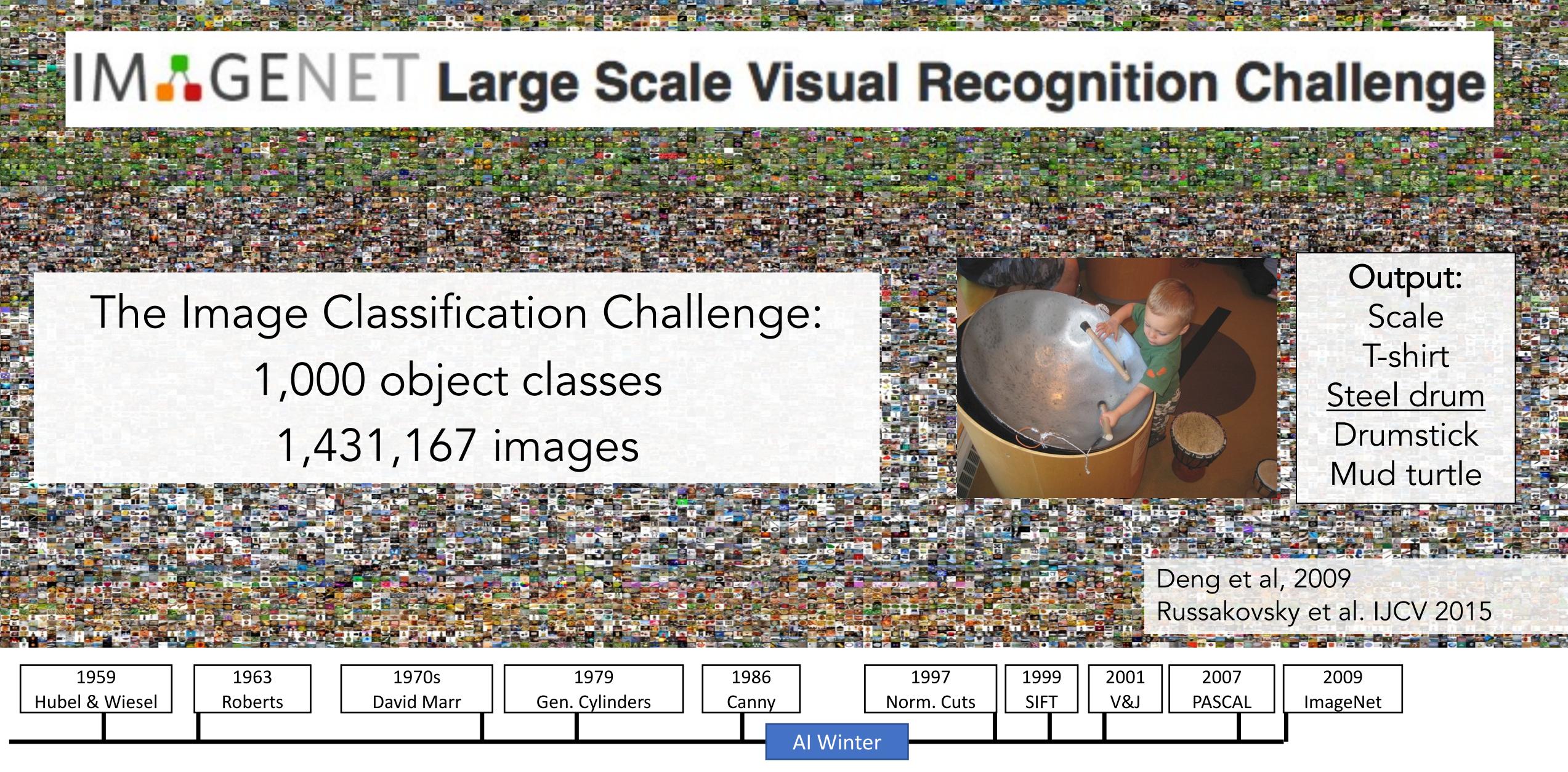
Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

- Low-level feature extraction $\approx 10k$ patches per image
 - SIFT: 128-dim
 color: 96-dim
 reduced to 64-dim with PCA

September 18, 2019

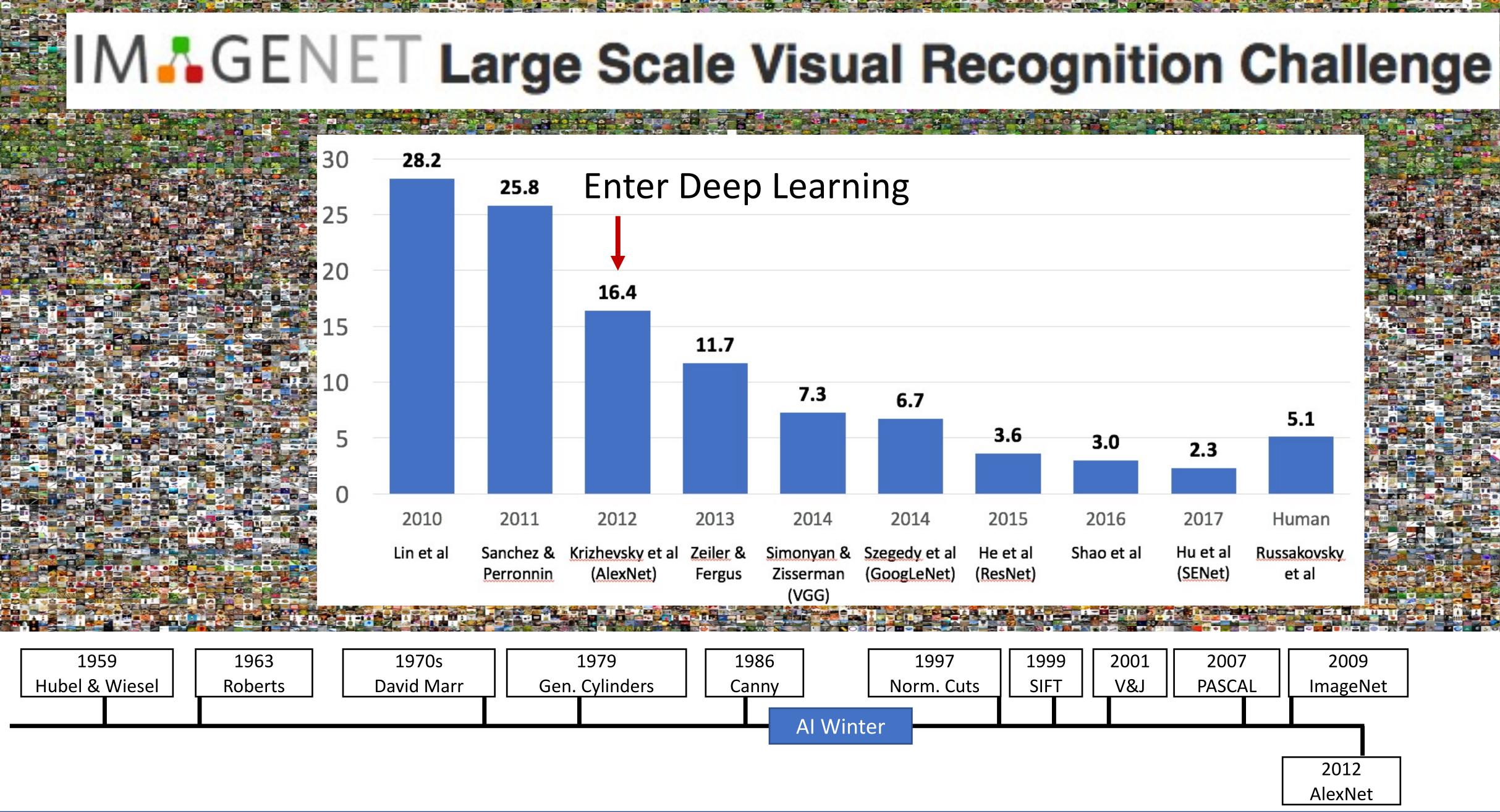
1,000 object classes 1,431,167 images



Justin Johnson

Lecture 1 - 27

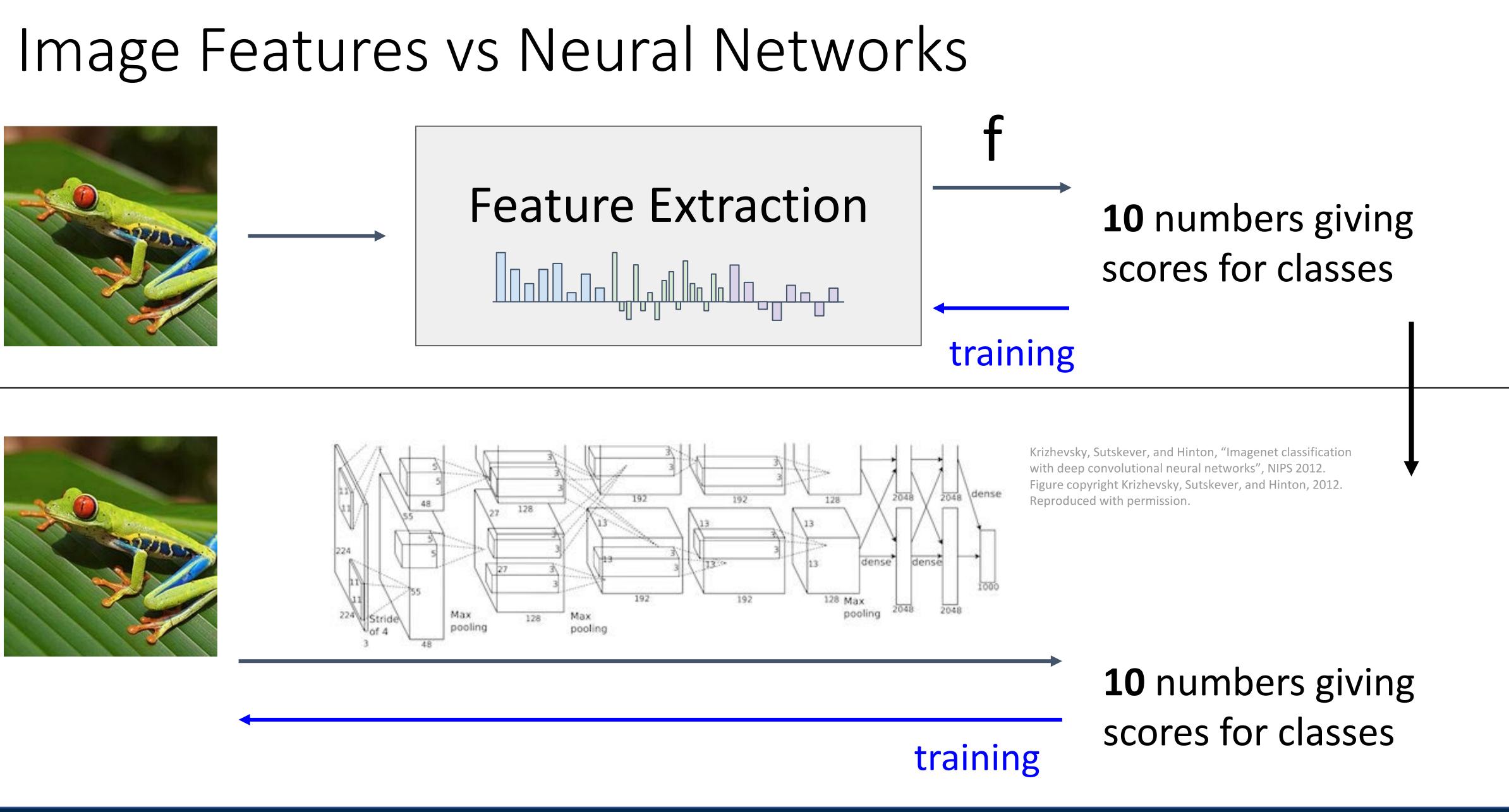
January 5, 2022

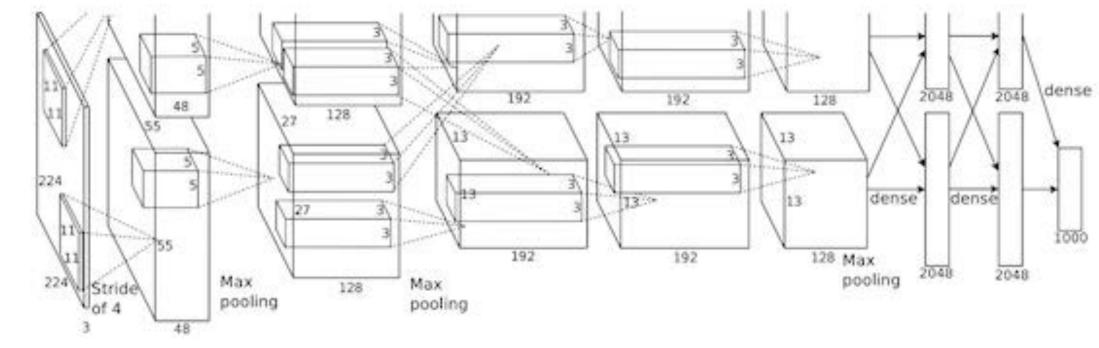


Justin Johnson

Lecture 1 - 28

January 5, 2022



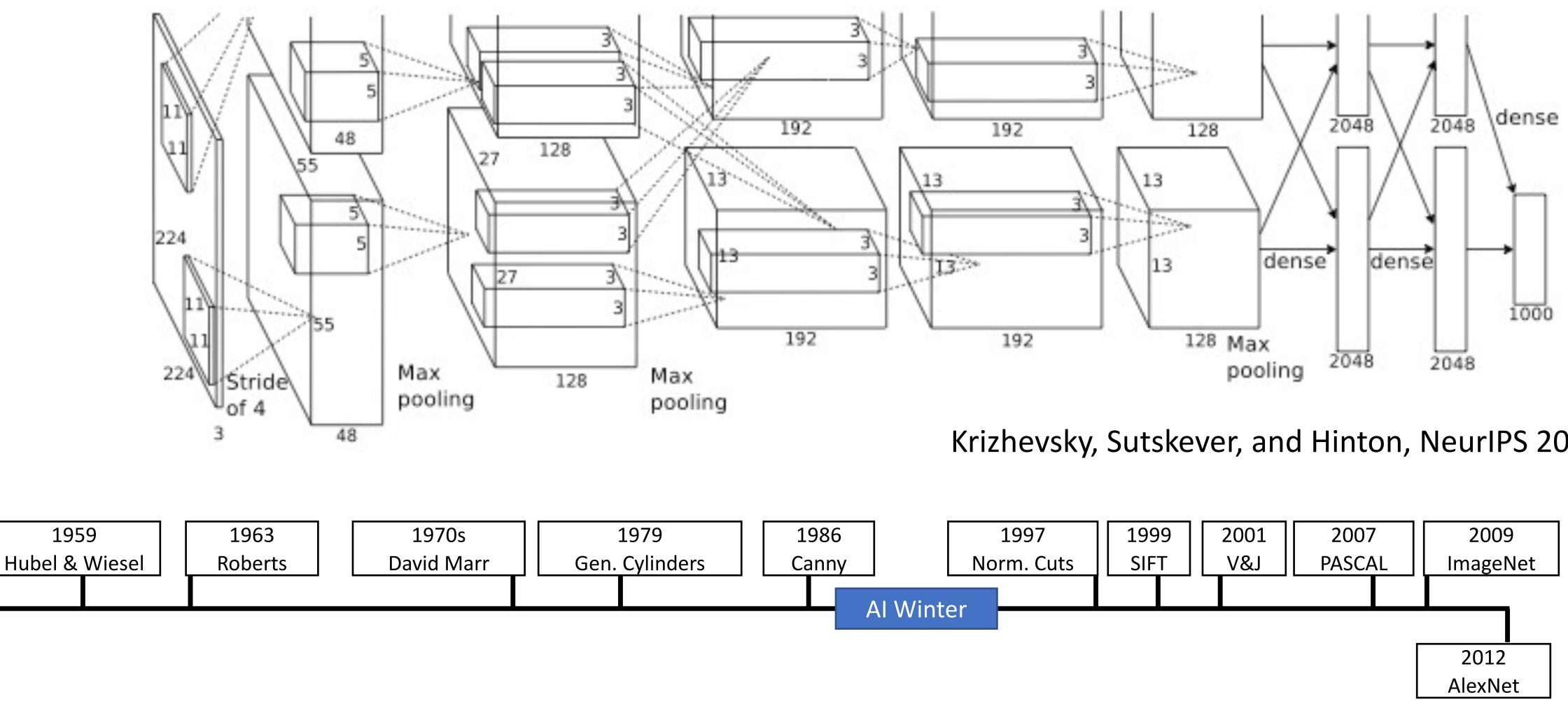


Justin Johnson

September 18, 2019

Lecture 5 - 21

AlexNet: Deep Learning Goes Mainstream



Justin Johnson

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

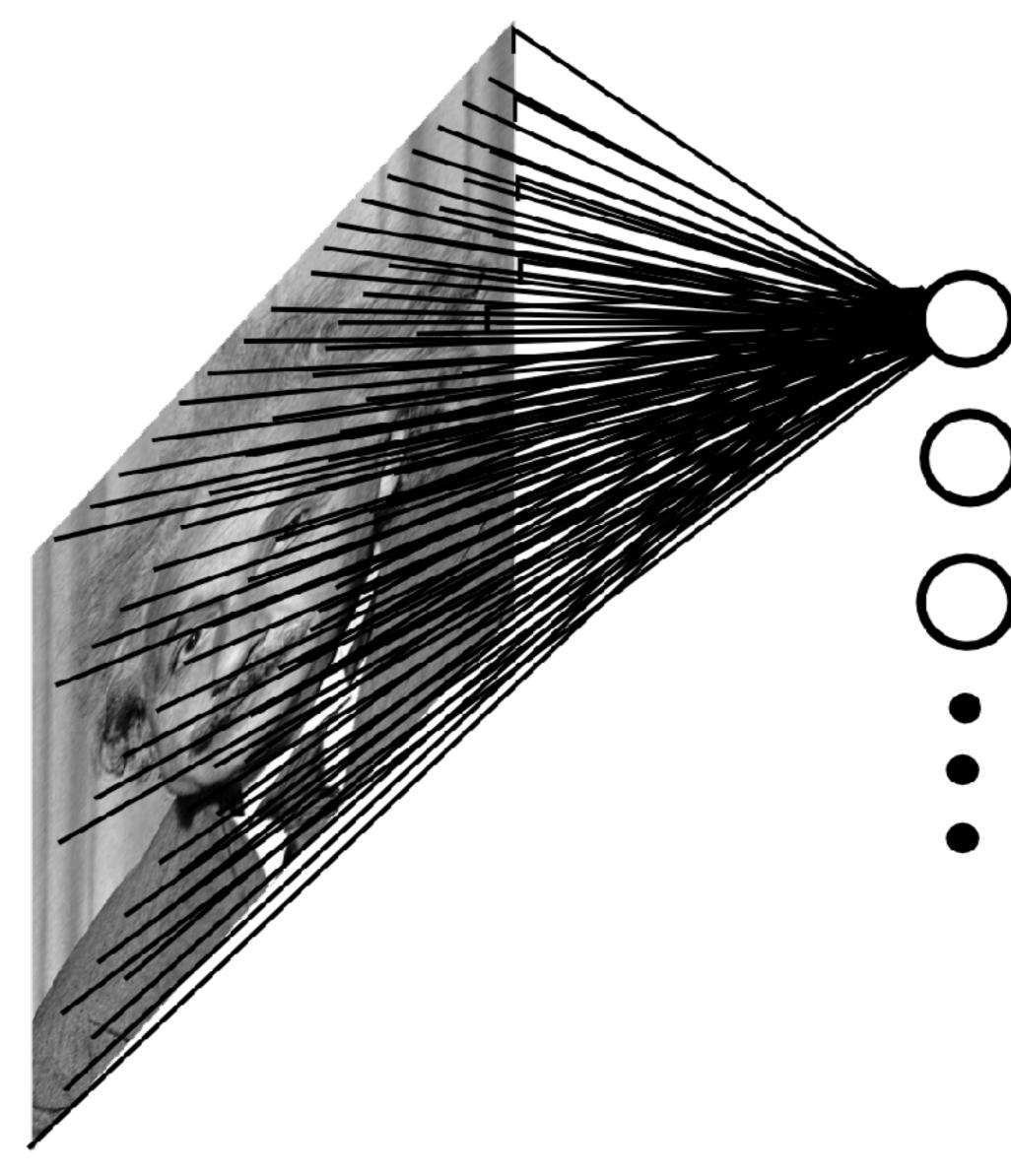
Lecture 1 - 29

January 5, 2022

Backward Pass for Some Common Layers

Linear layers — fully connected

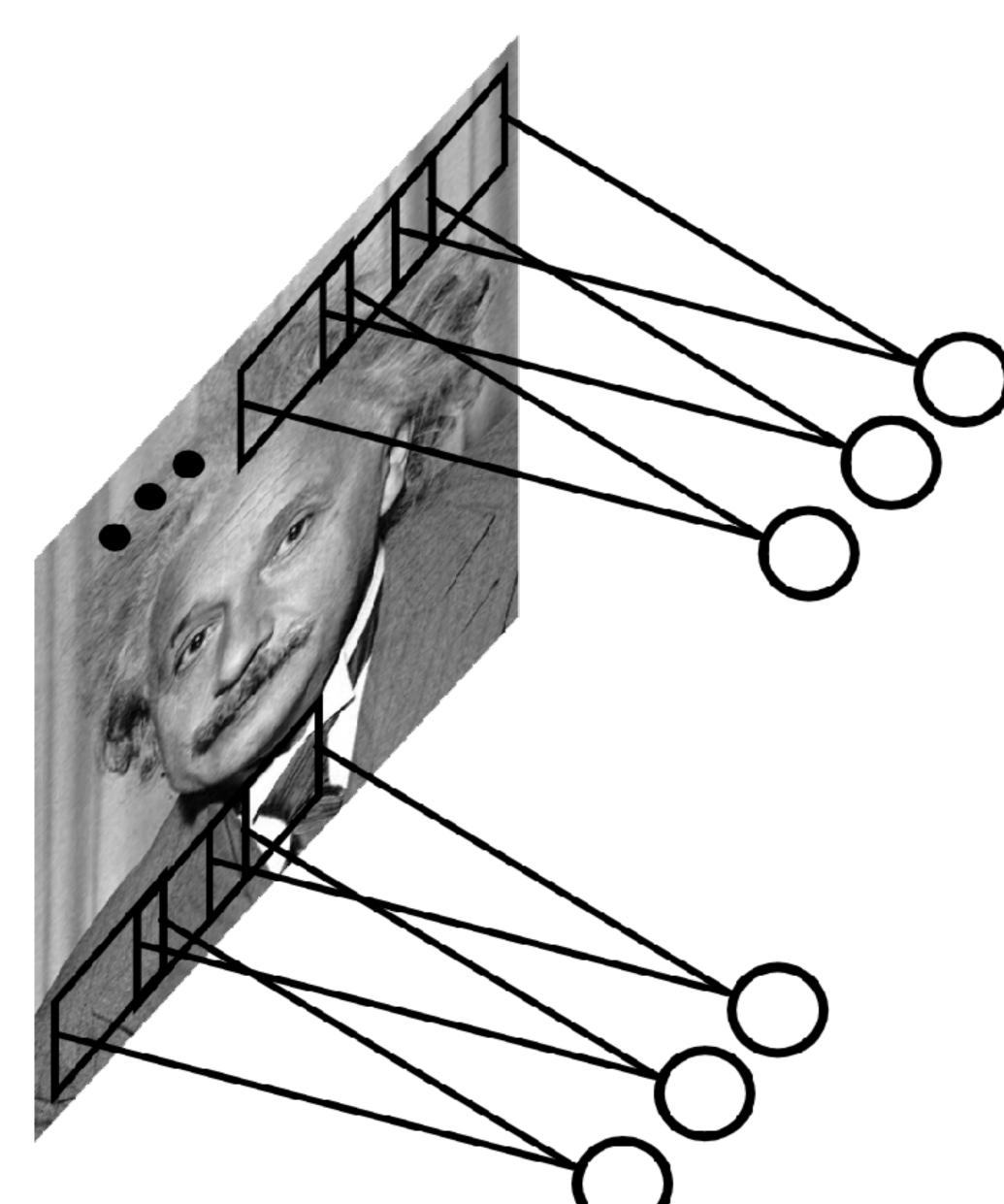
Fully Connected Layer



Example: 200 x 200 image (small) x 40K hidden units (same size)

Spatial correlations are generally local

Waste of resources + we don't have enough data to train networks this large



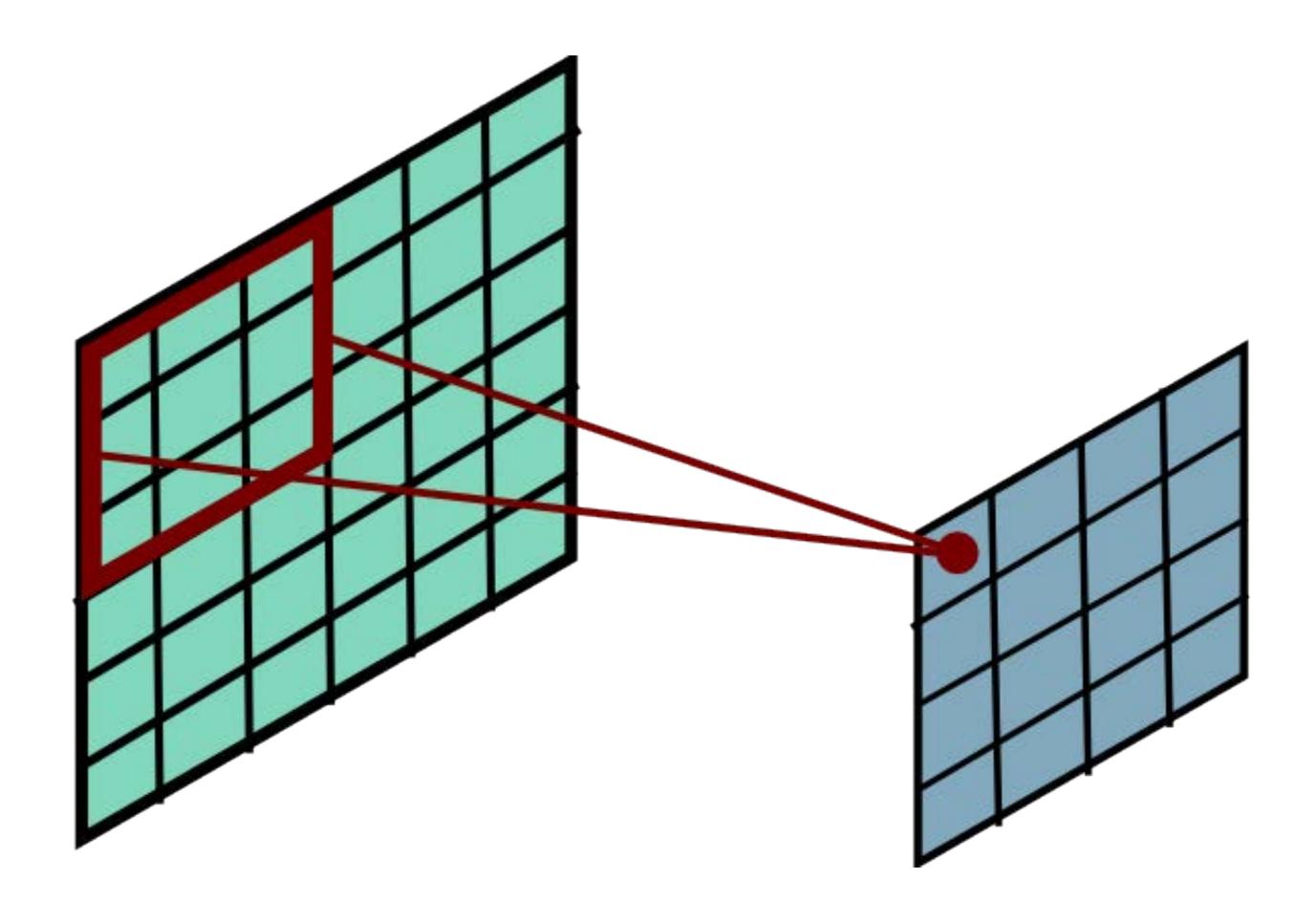
Example: 200 x 200 image (small) x 40K hidden units (same size)

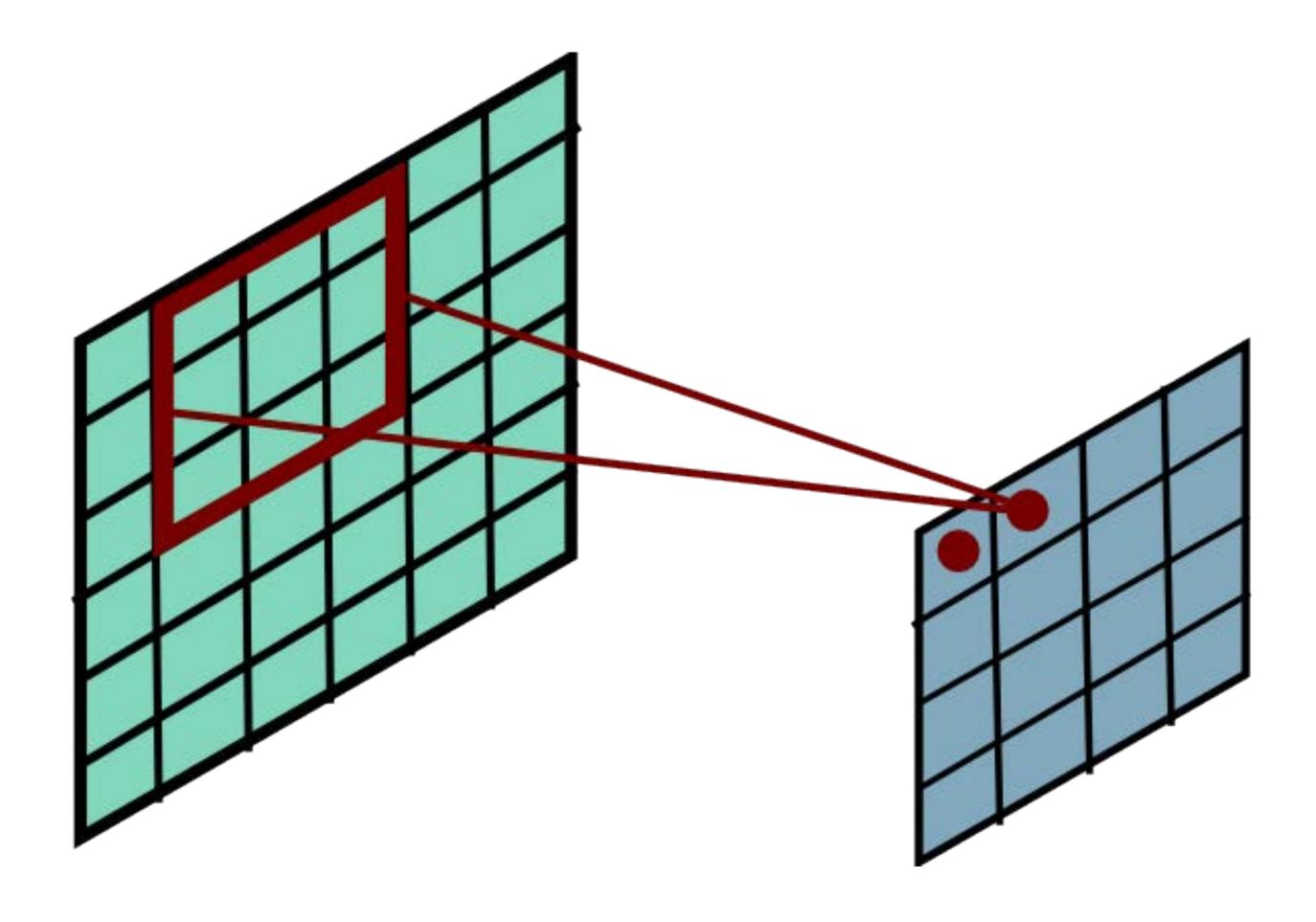
Filter size: 10 x 10

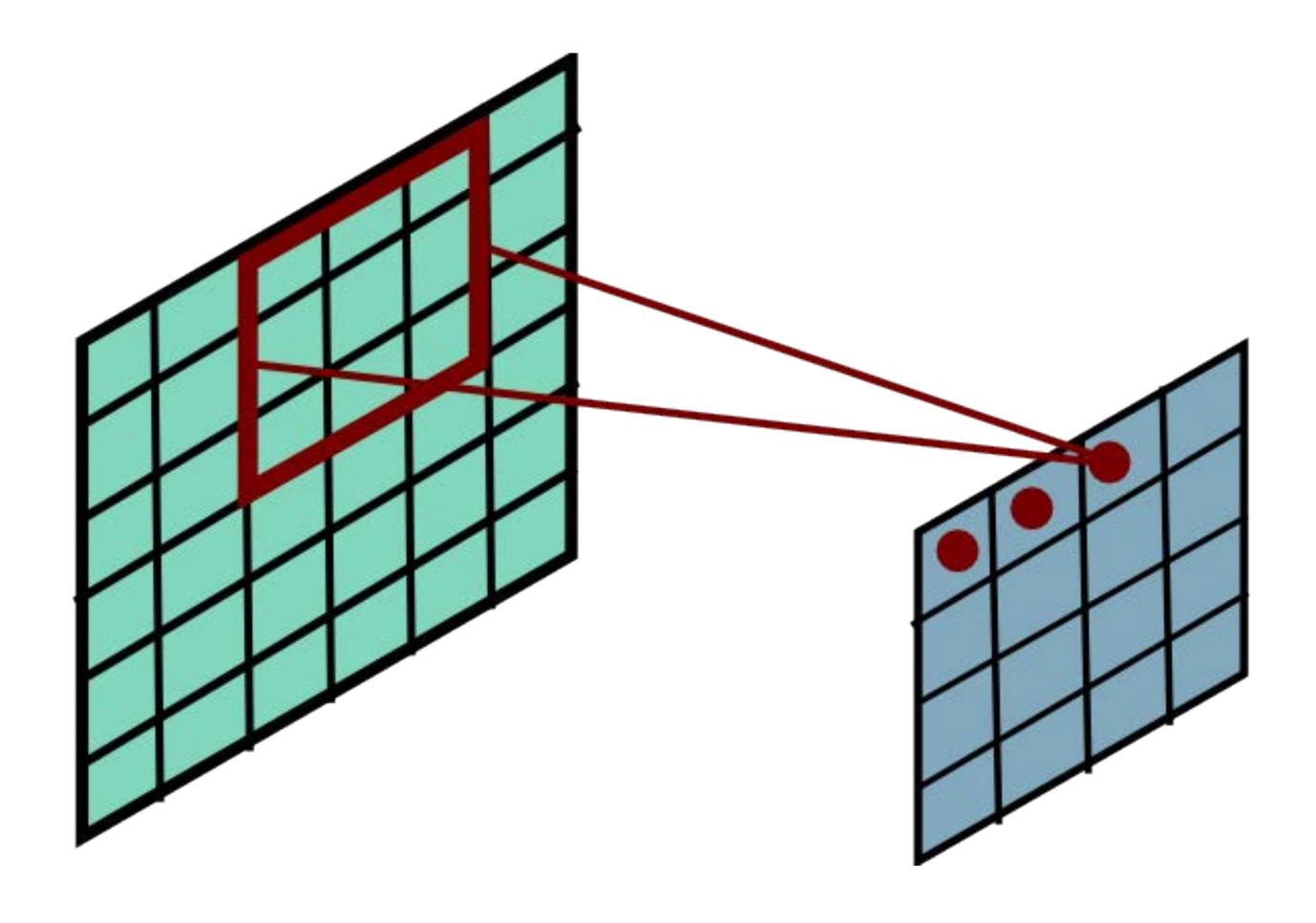
= 100 parameters

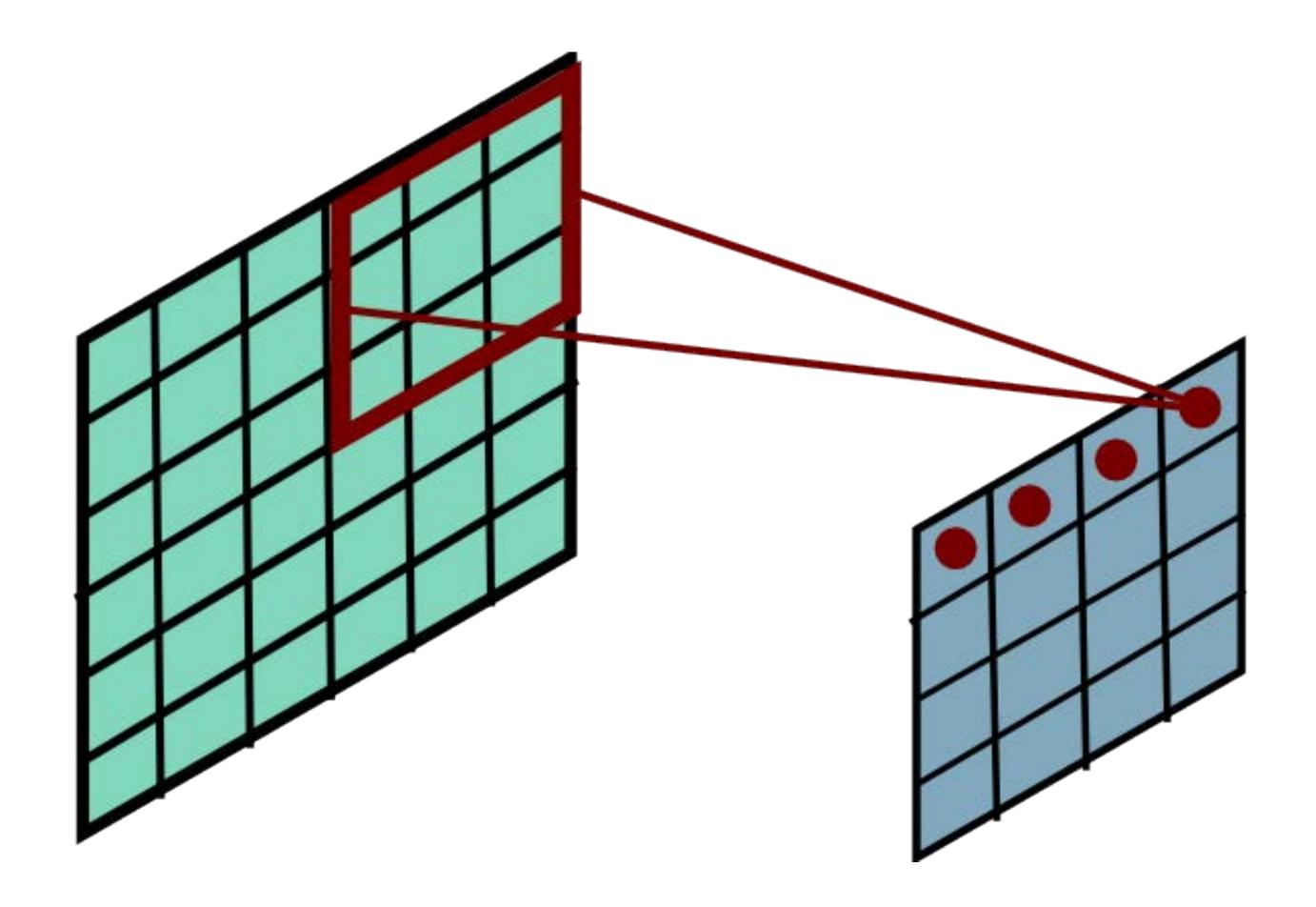
Share the same parameters across the locations (assuming input is stationary)

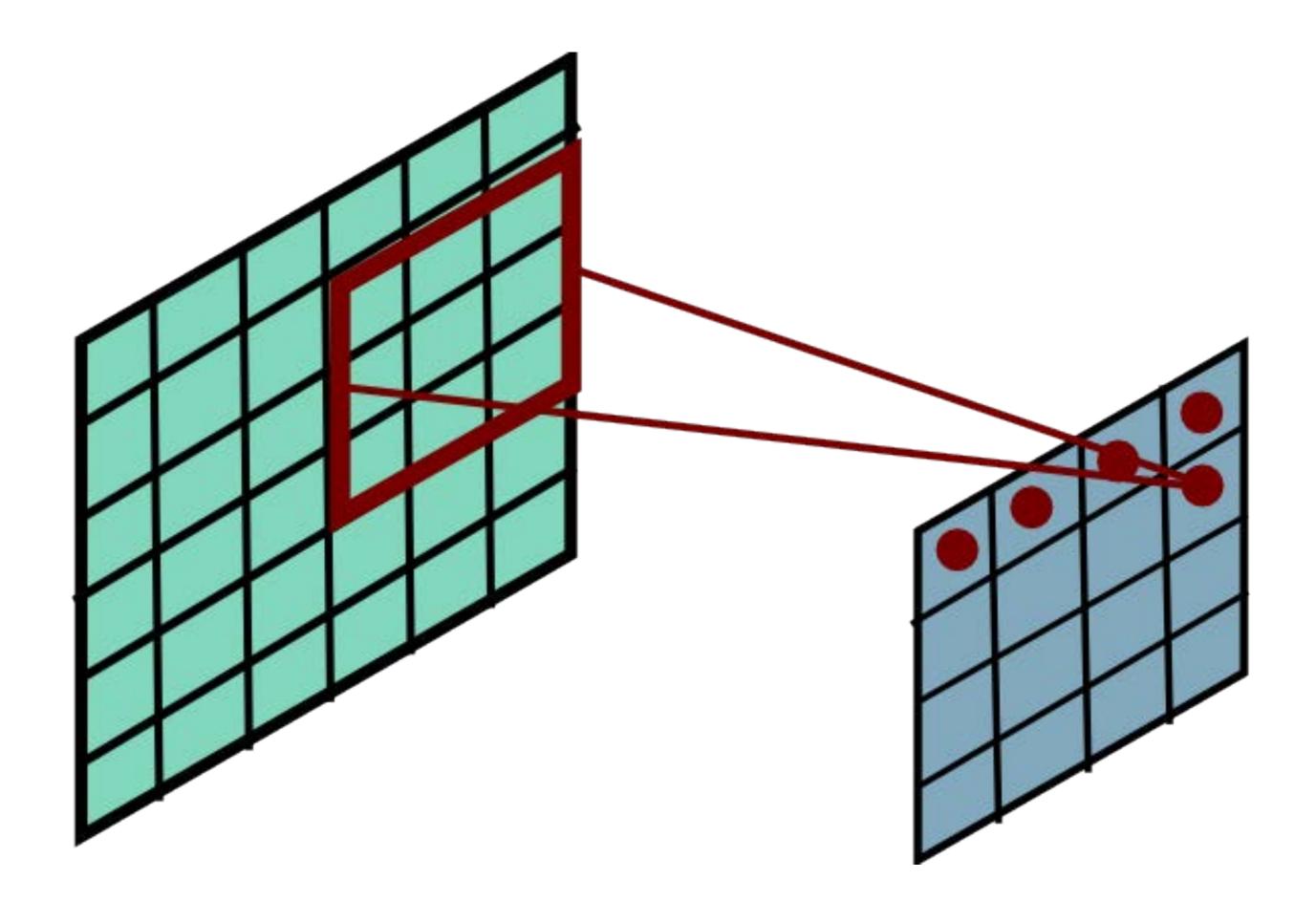
* slide adopted from Marc'Aurelio Renzato

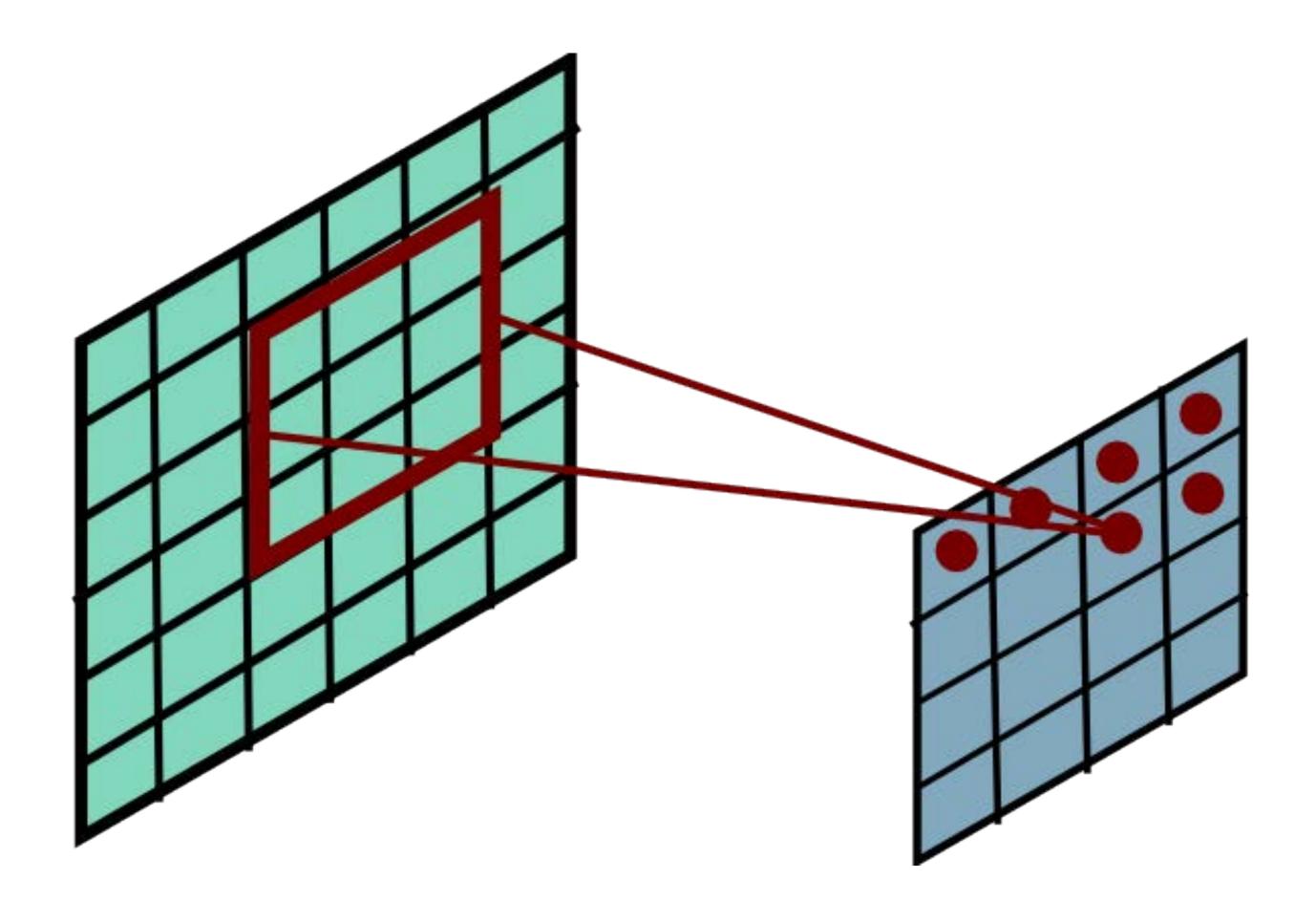


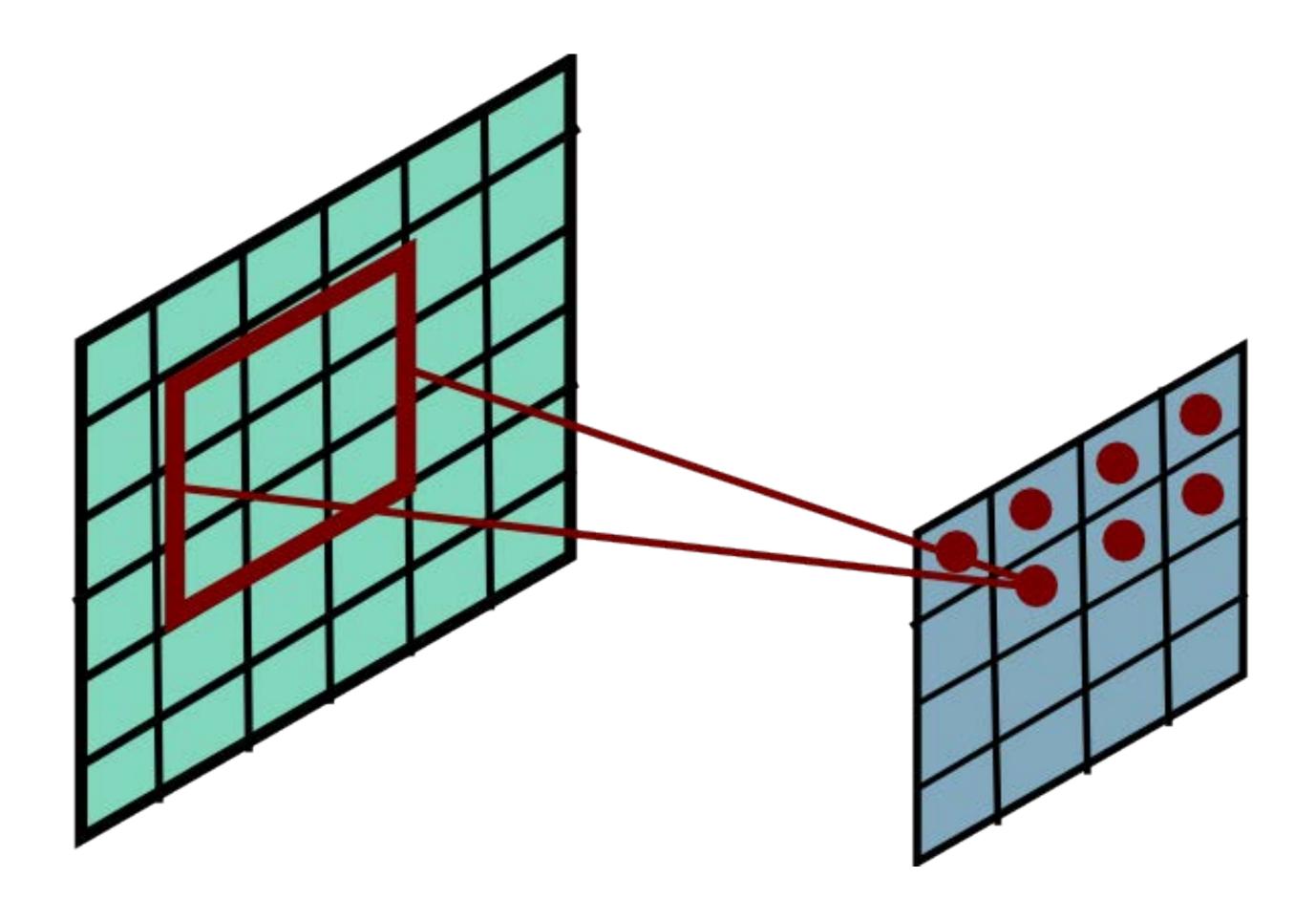


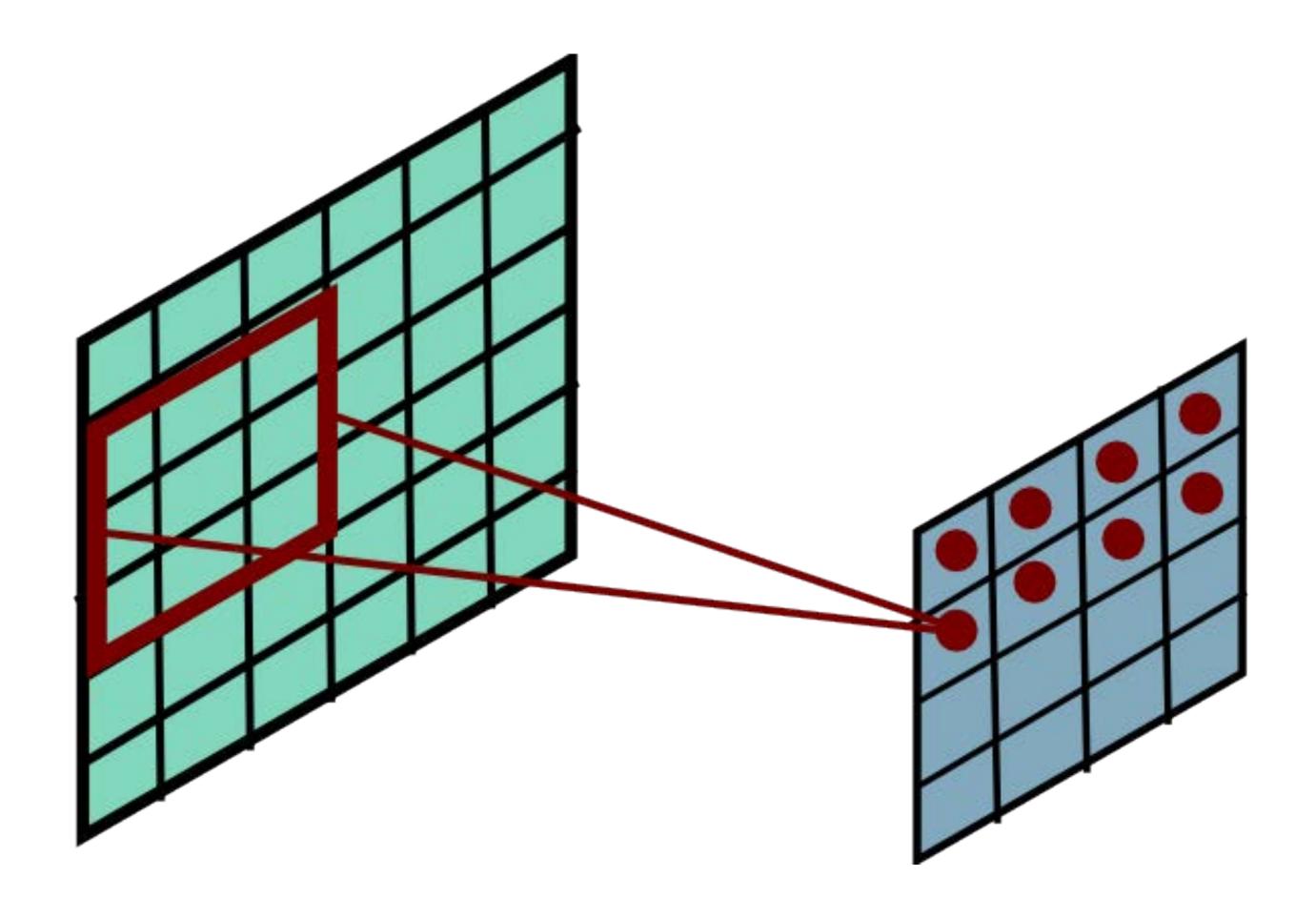


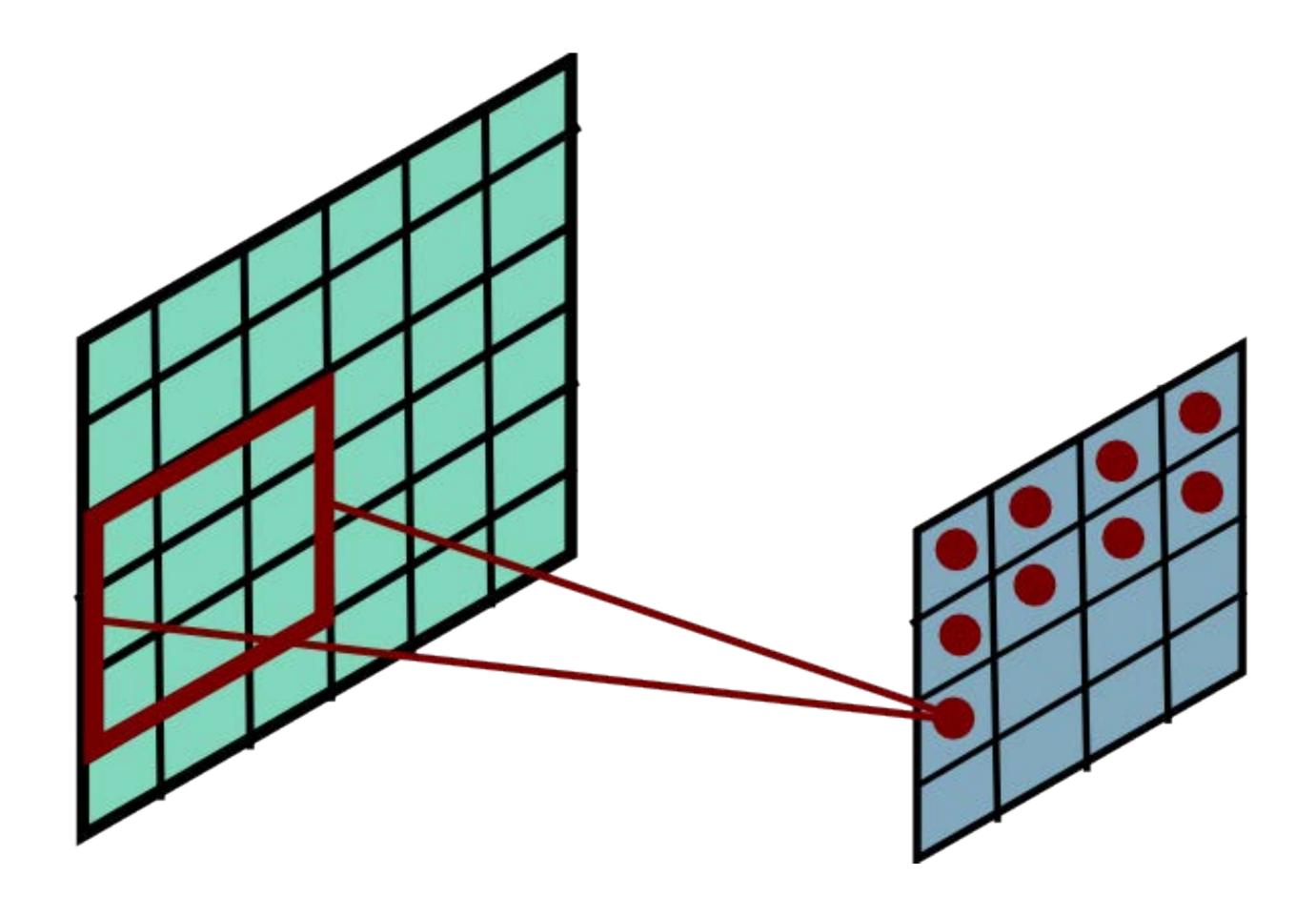


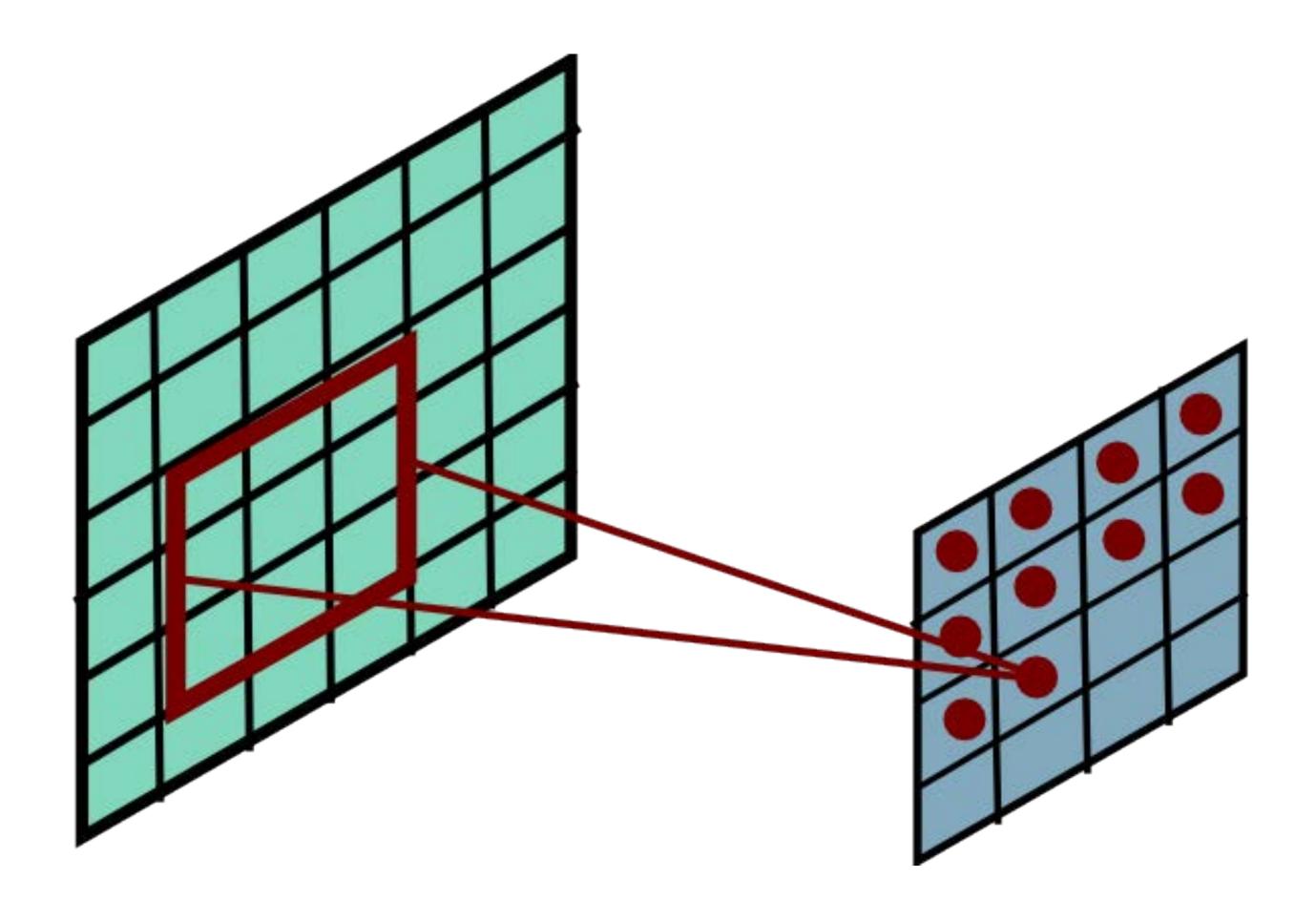


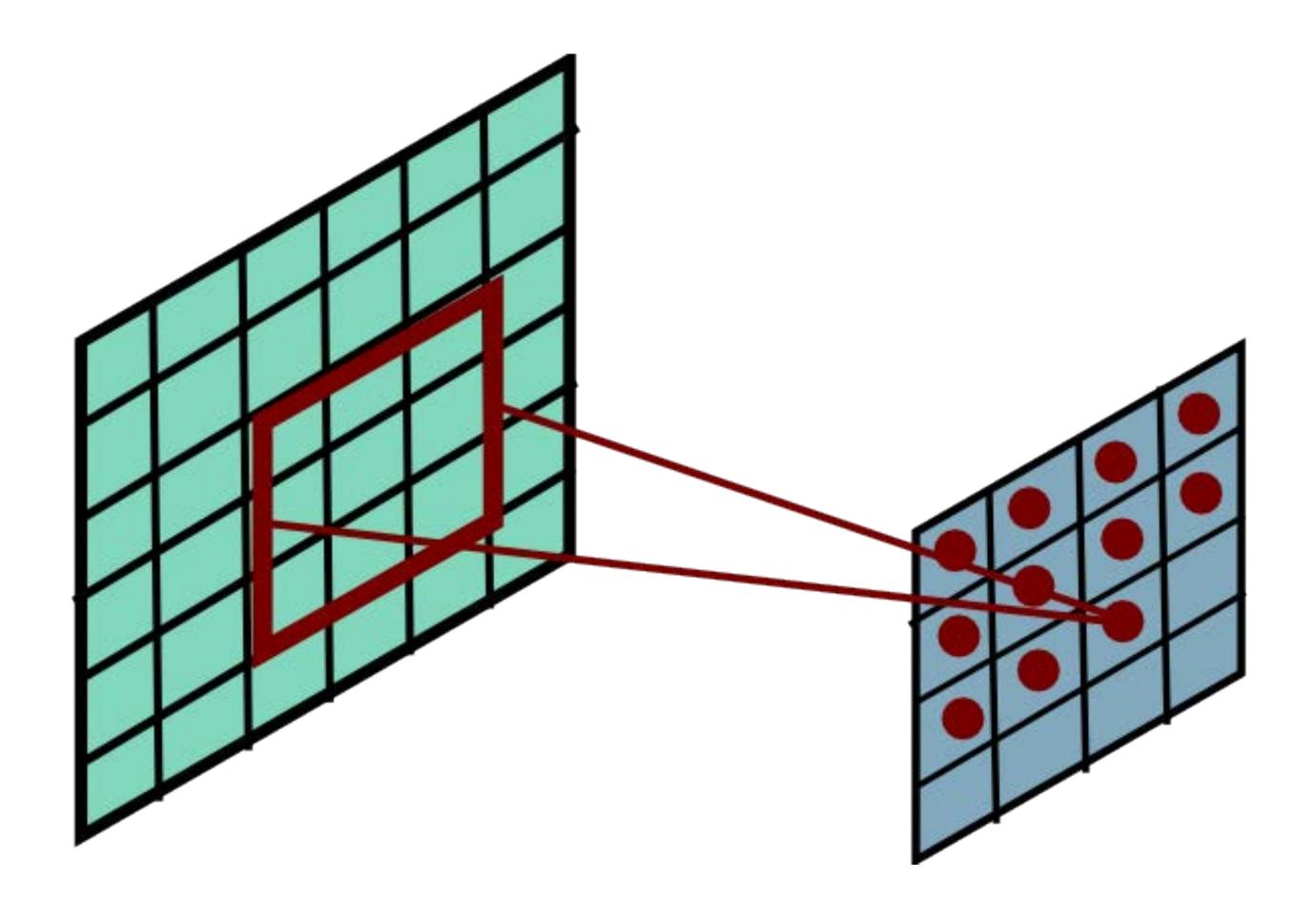


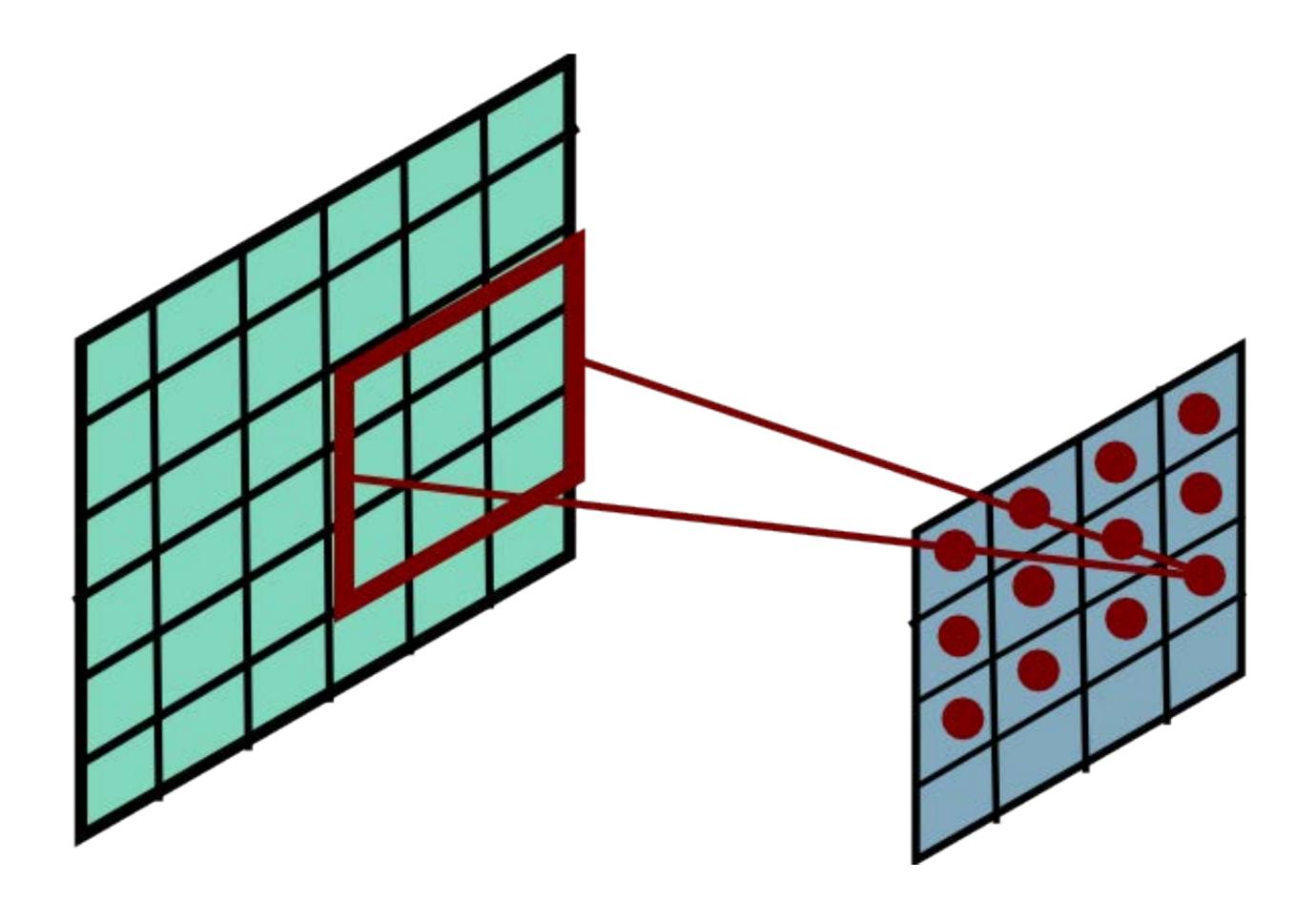


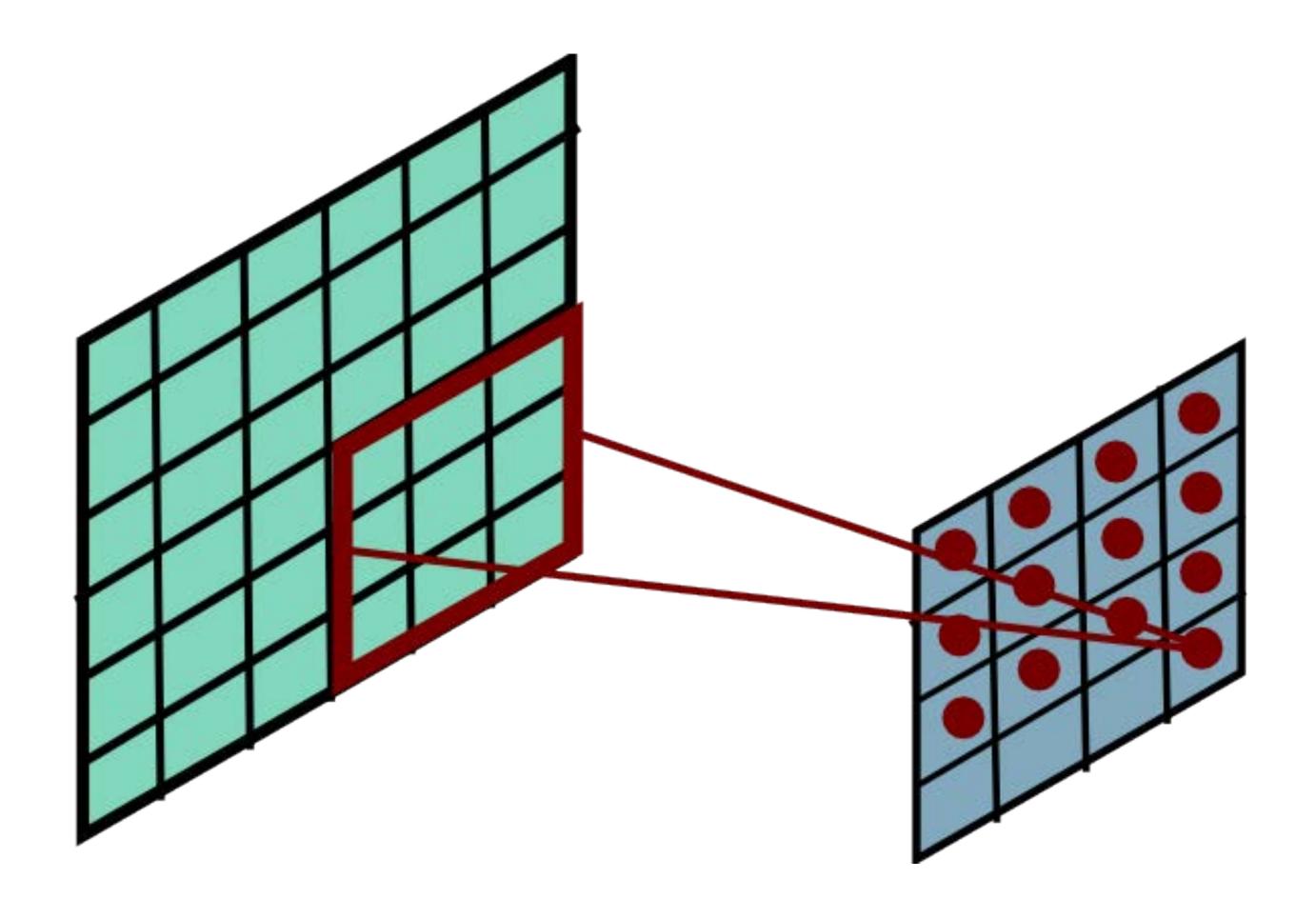


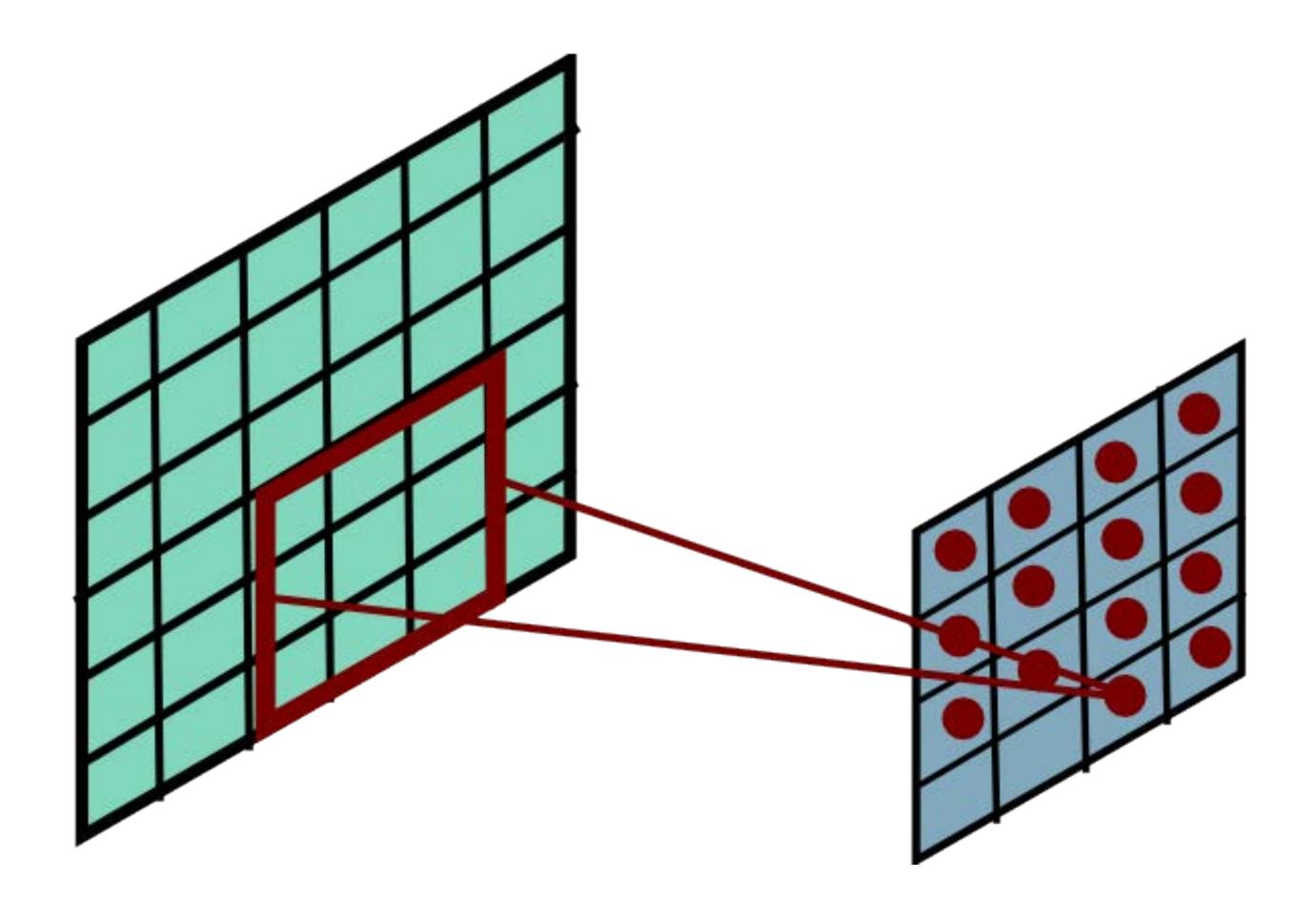


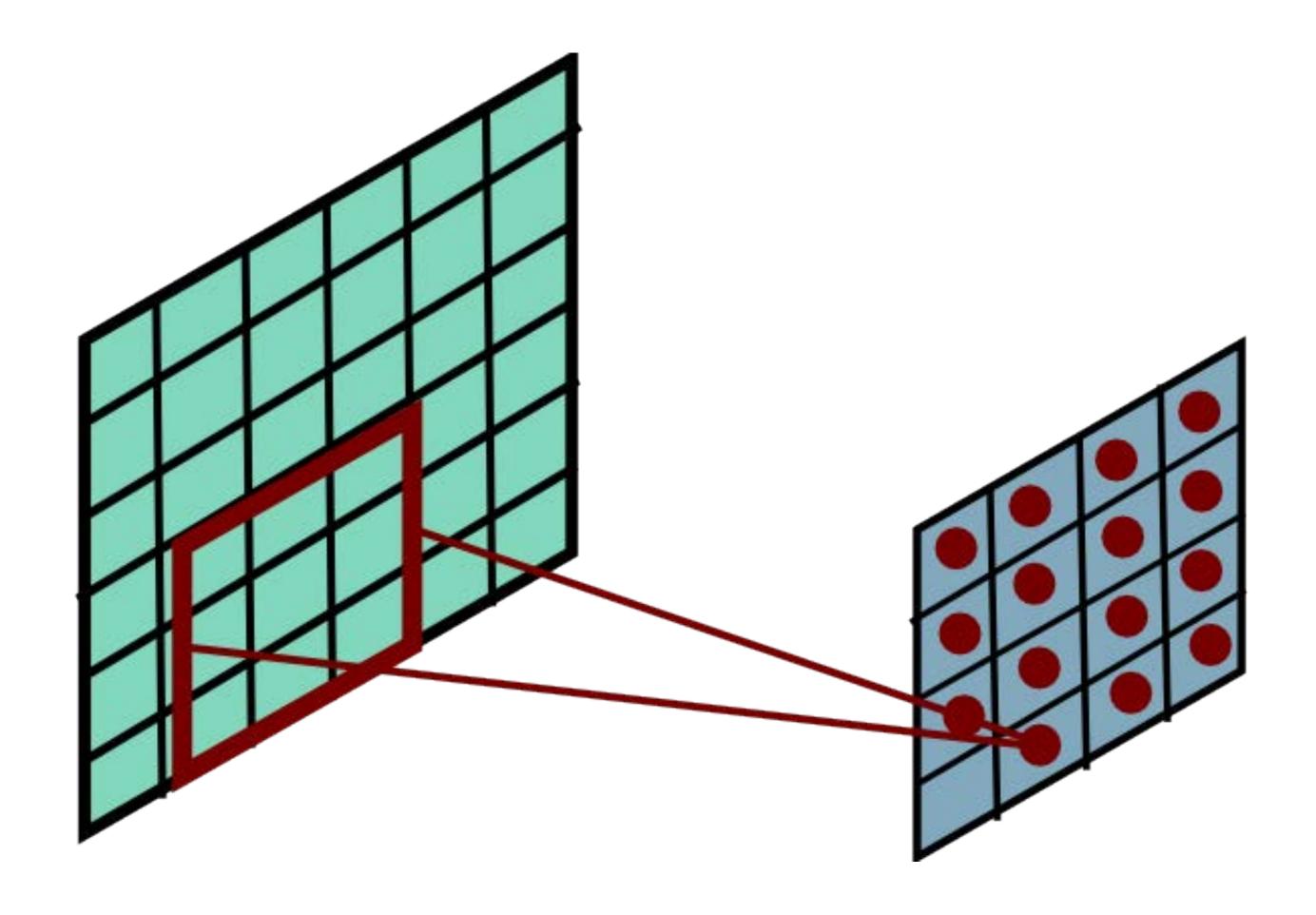


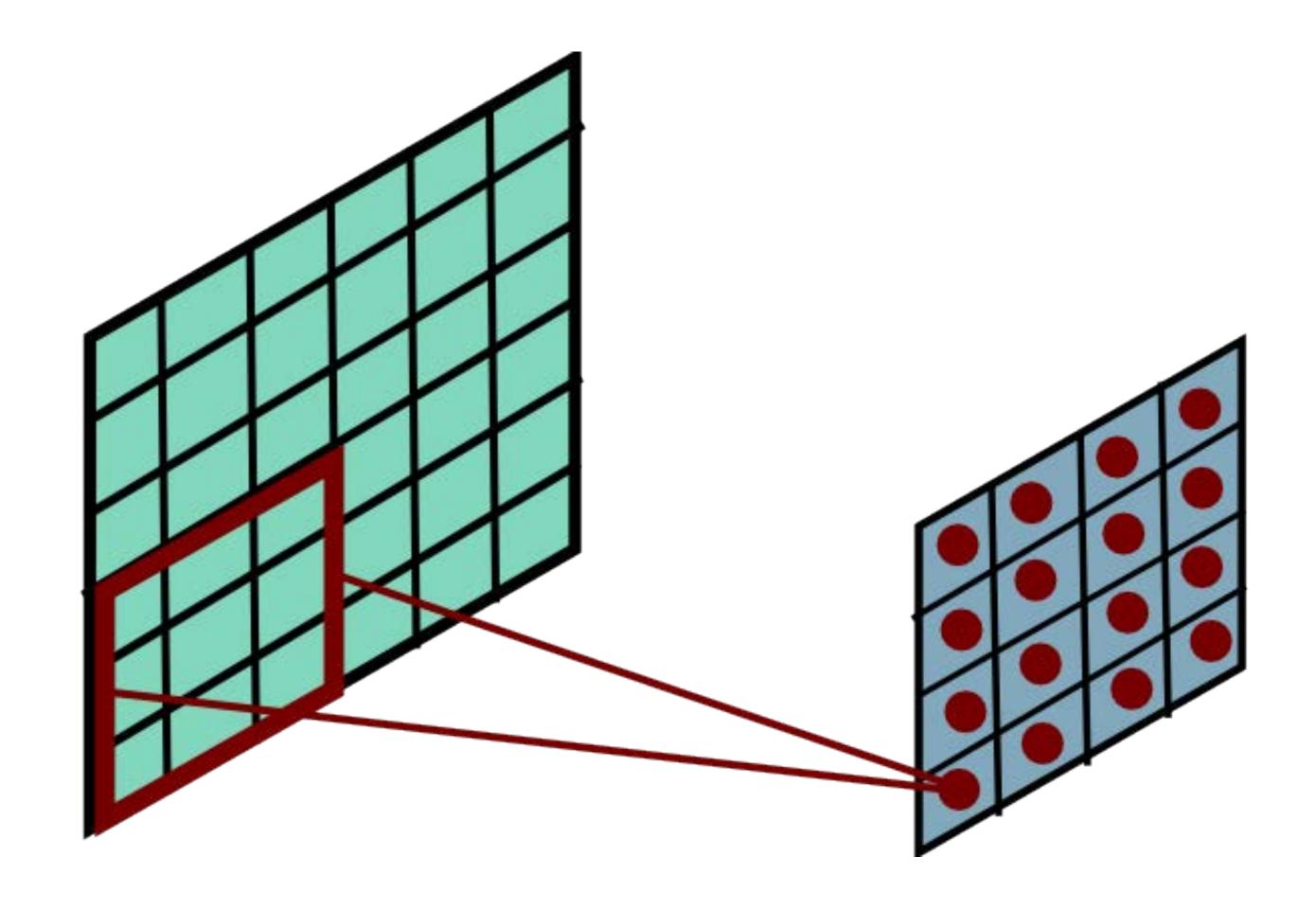


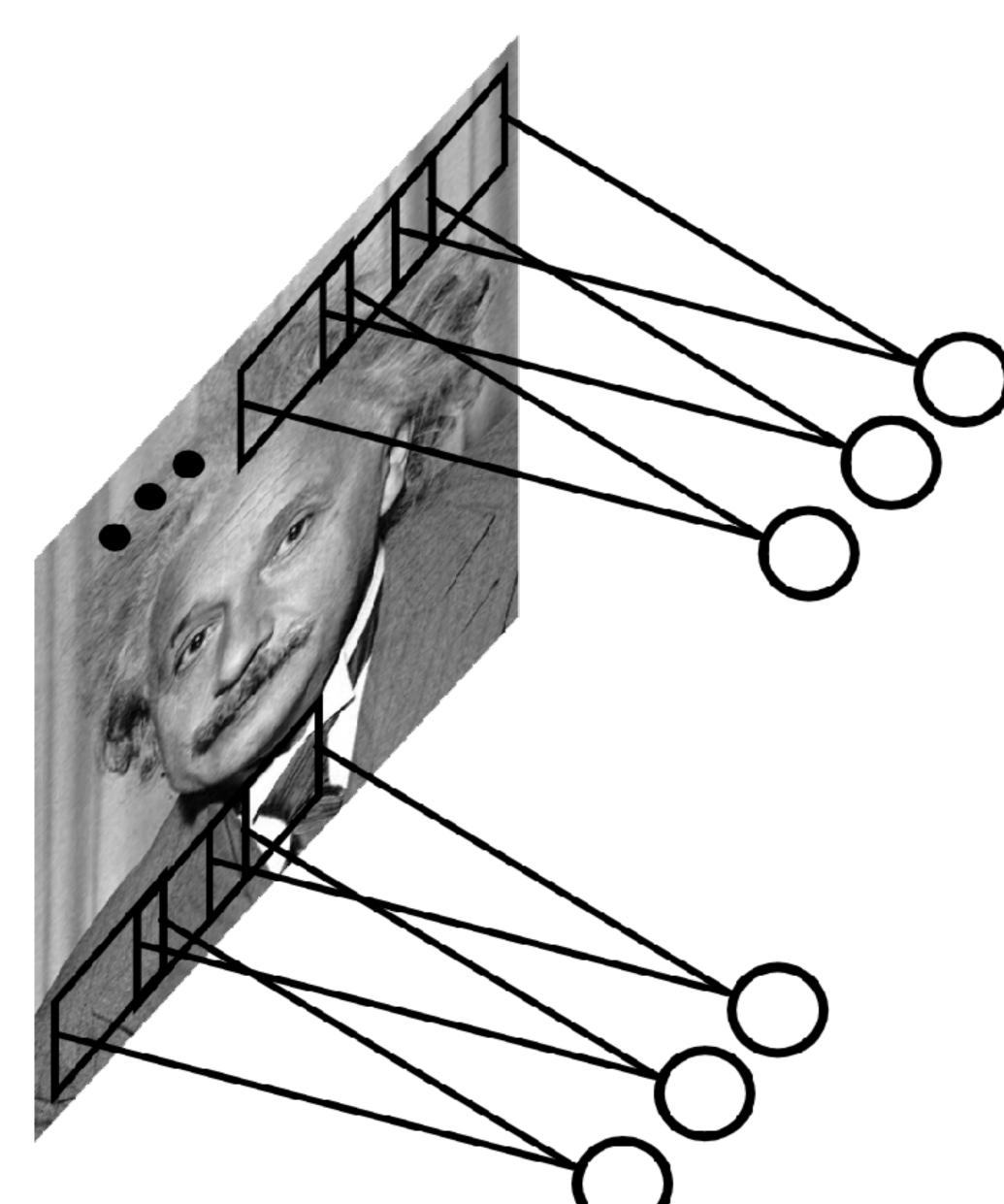












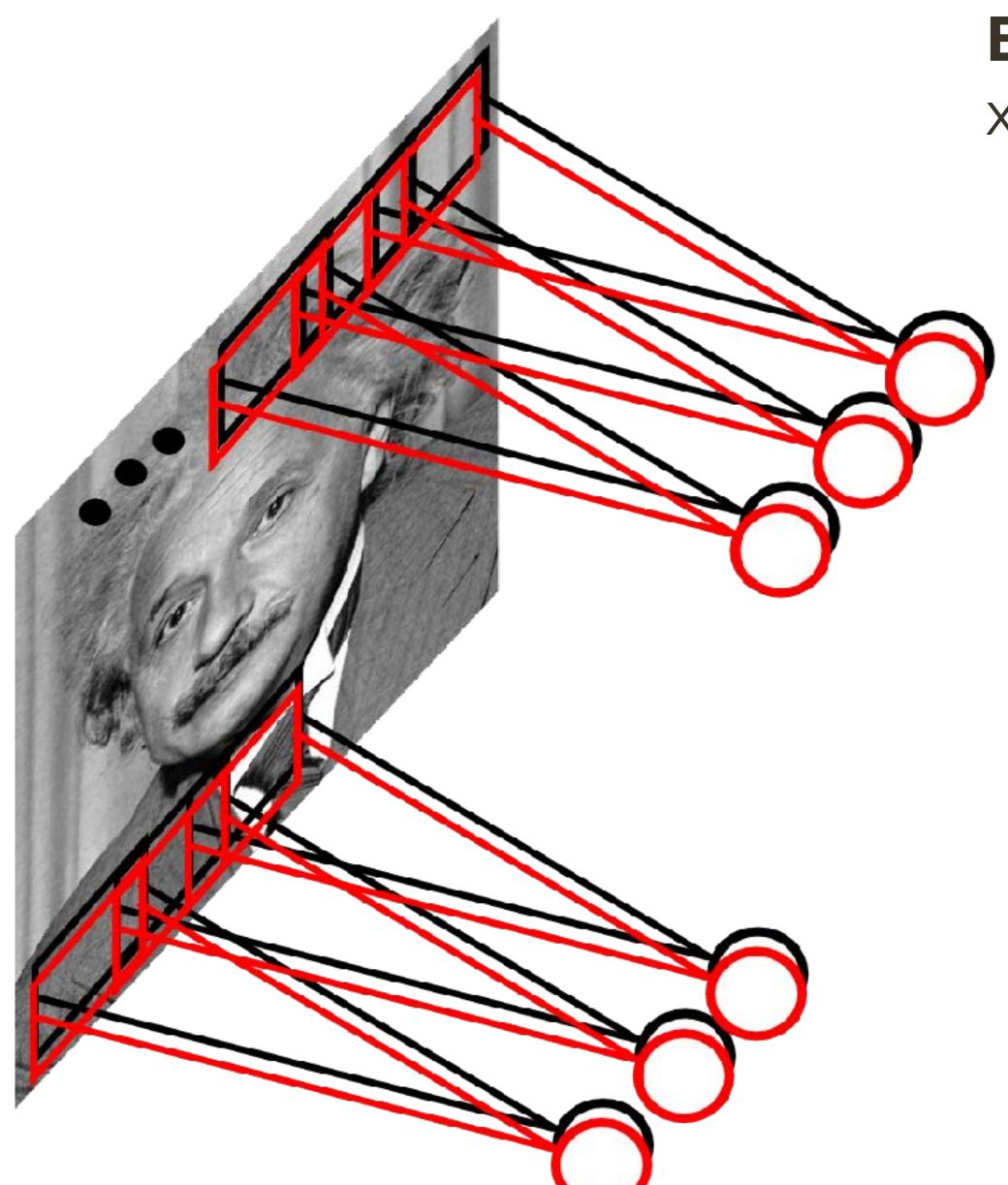
Example: 200 x 200 image (small) x 40K hidden units (same size)

Filter size: 10 x 10

= 100 parameters

Share the same parameters across the locations (assuming input is stationary)

* slide adopted from Marc'Aurelio Renzato

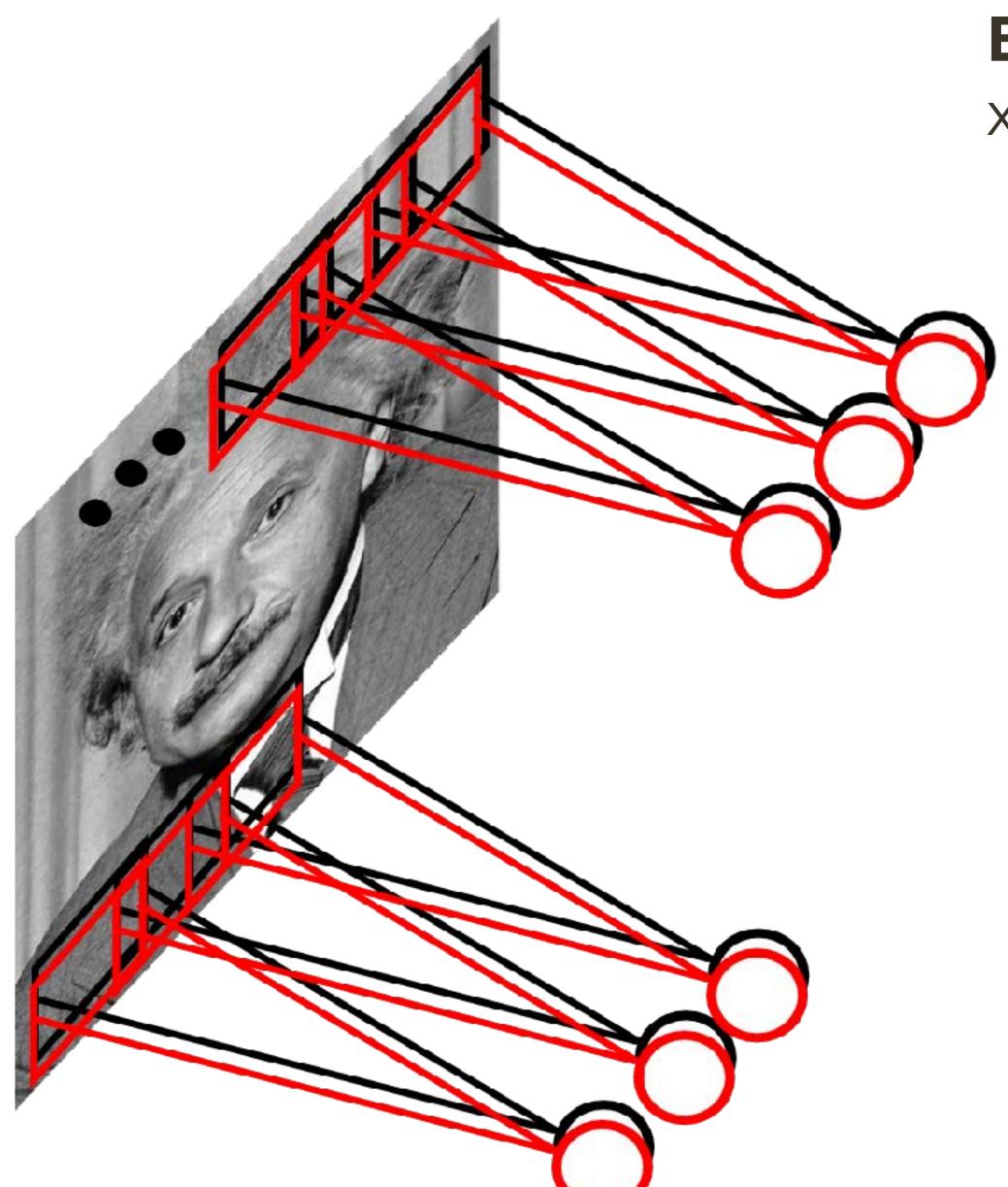


Example: 200 x 200 image (small) x 40K hidden units (same size)

Filter size: 10 x 10

of filters: 20

Learn multiple filters → multiple output channels



Example: 200 x 200 image (small) x 40K hidden units (same size)

Filter size: 10 x 10

of filters: 20

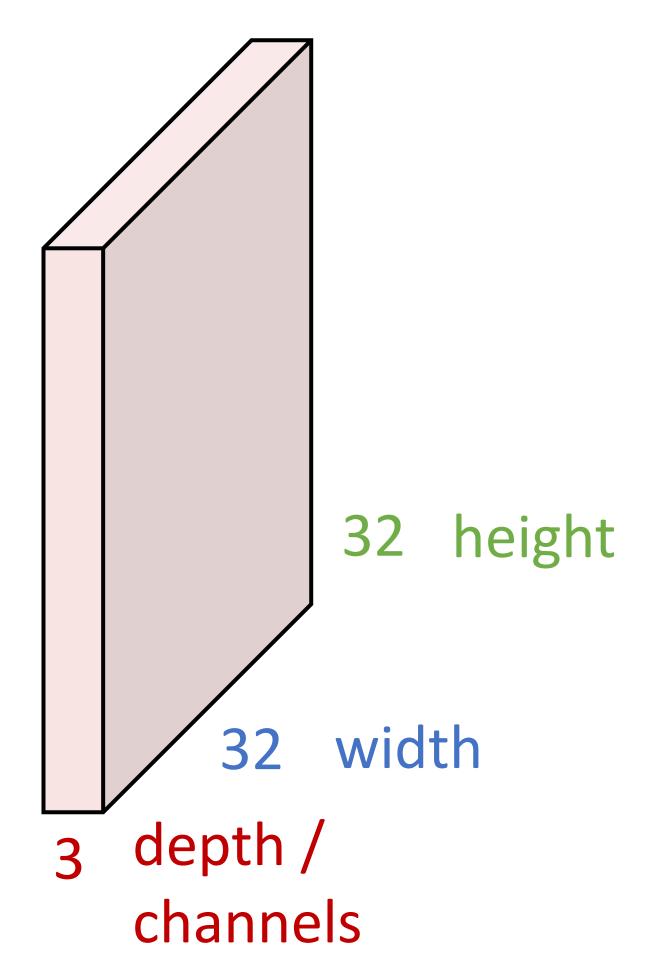
= 2000 parameters

→ multiple filters

* slide from Marc'Aurelio Renzato

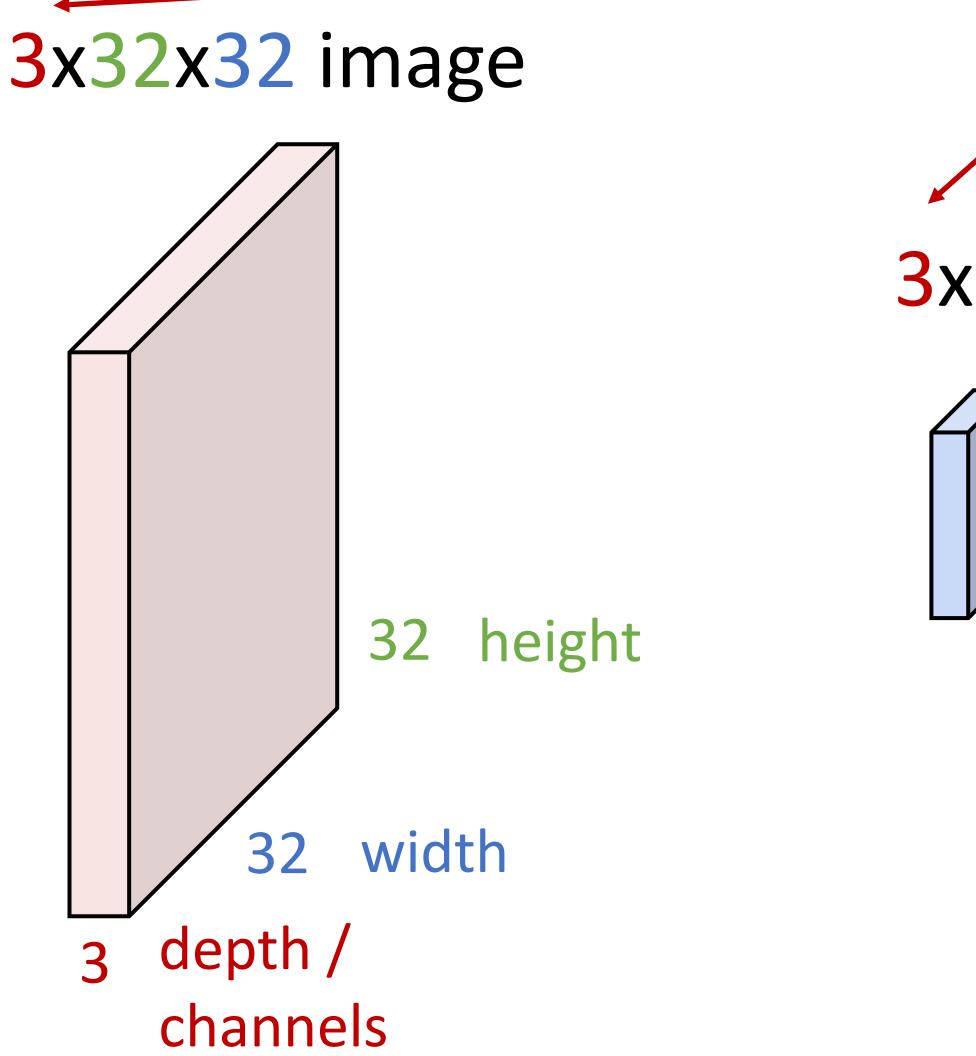
ato

3x32x32 image: preserve spatial structure



Justin Johnson

September 24, 2019



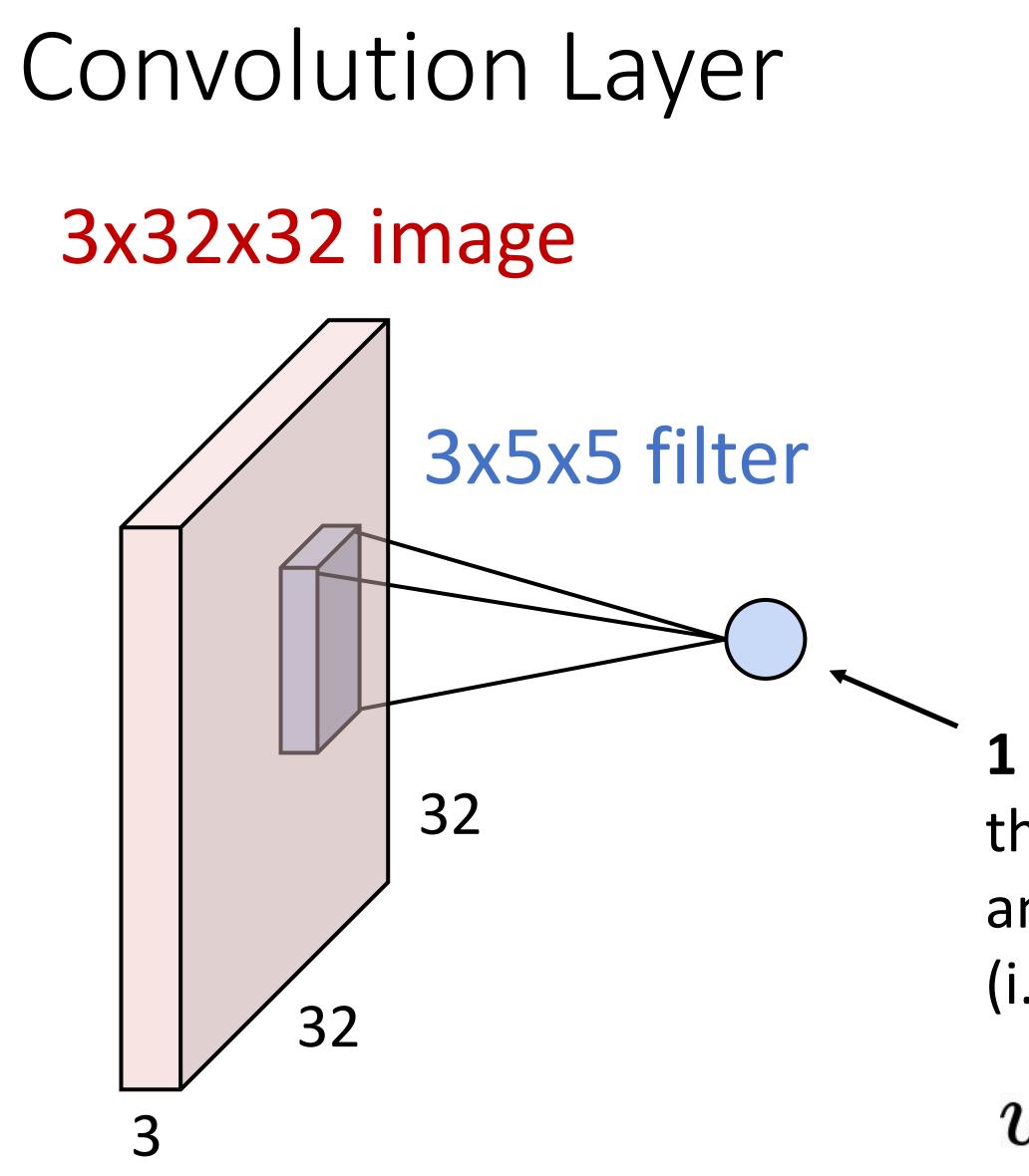
Justin Johnson

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

September 24, 2019



Justin Johnson

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

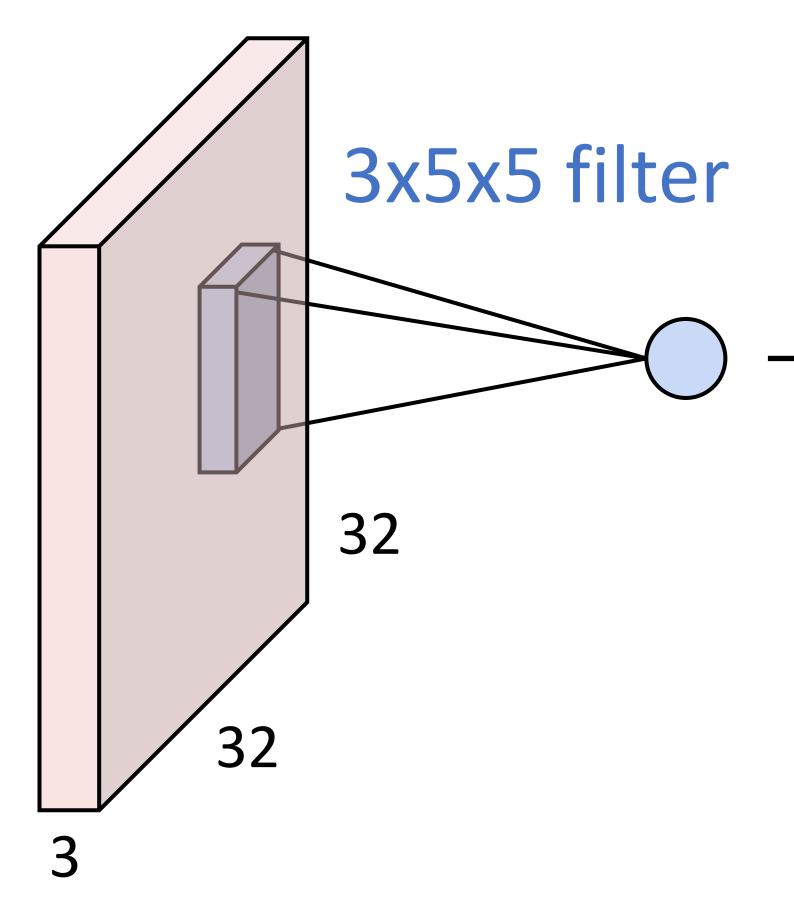
$$w^T x + b$$

Lecture 7 - 15

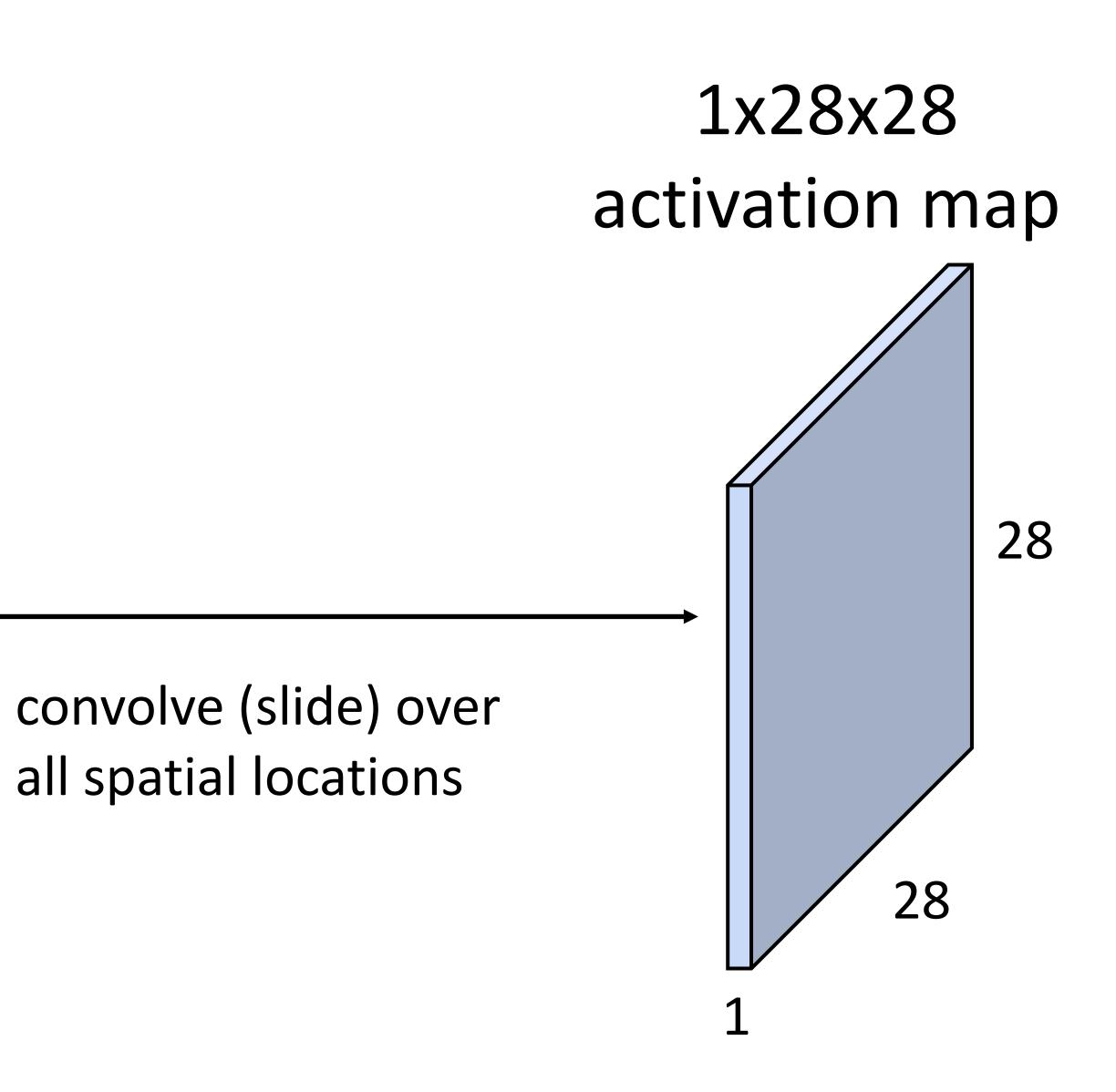
September 24, 2019

Convolution Layer

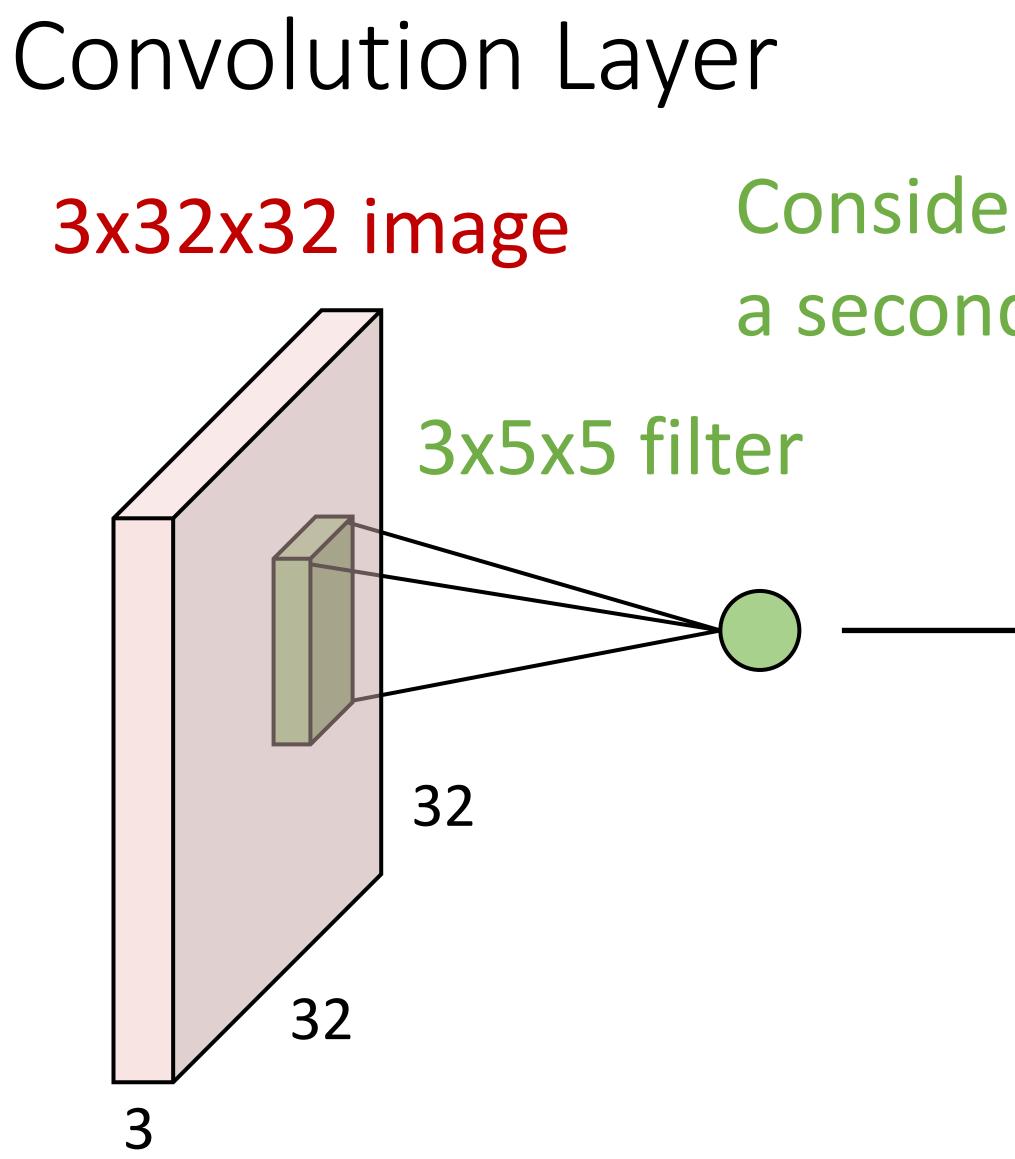
3x32x32 image



Justin Johnson



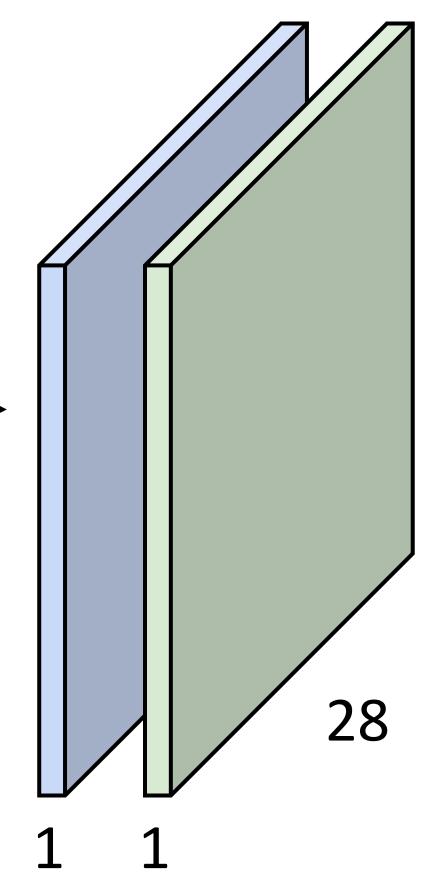
September 24, 2019

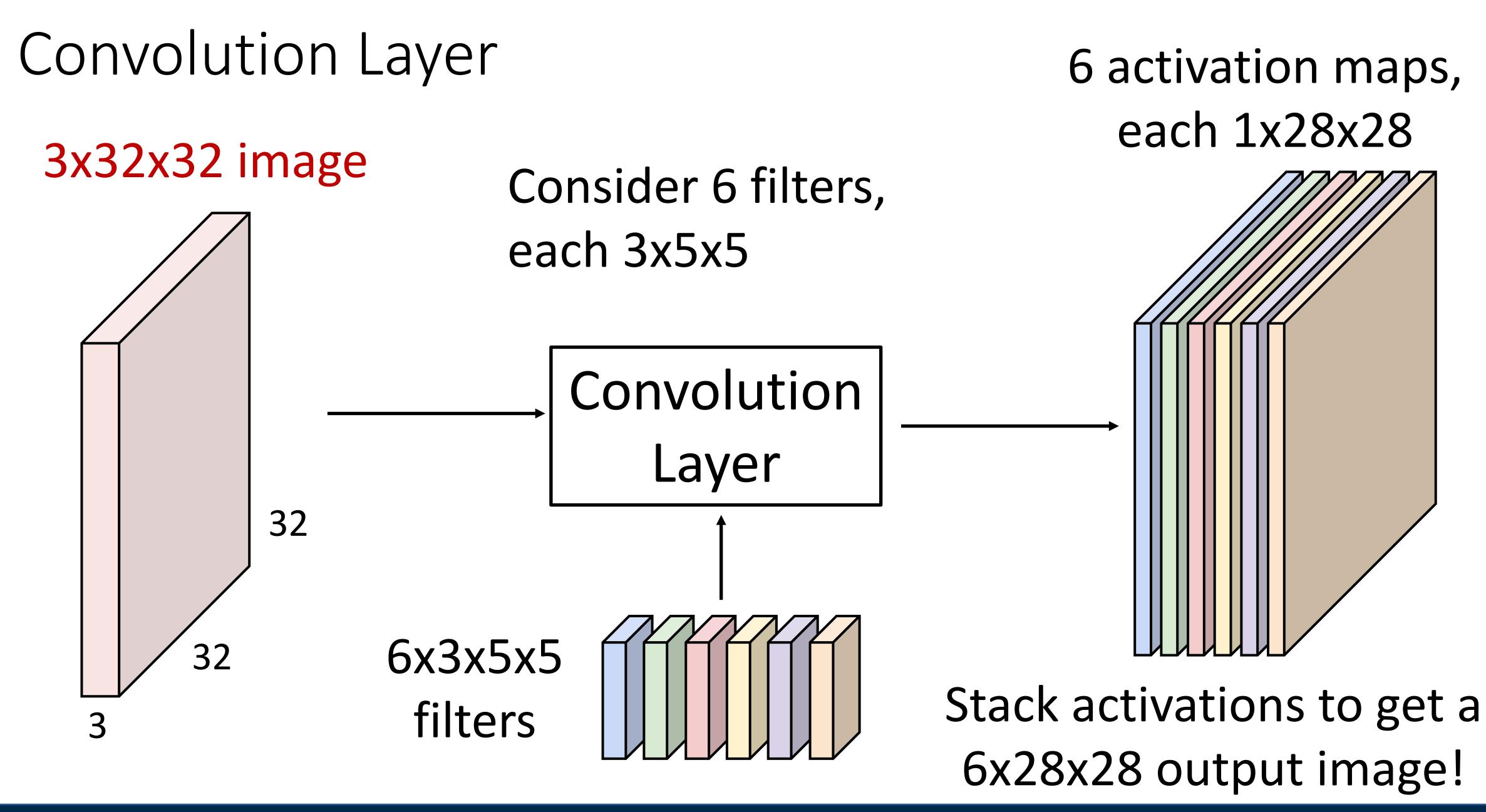


Consider repeating with a second (green) filter:

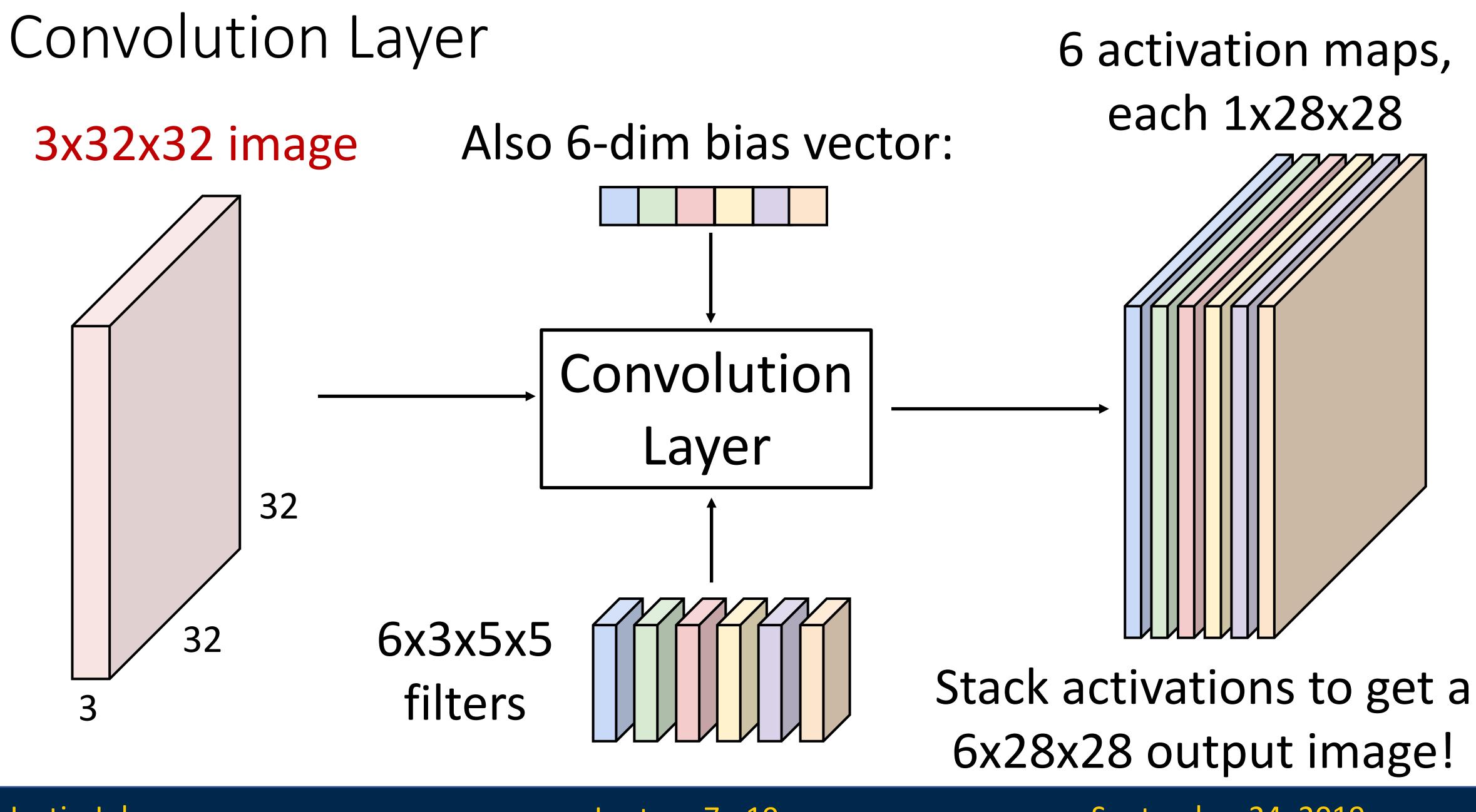
two 1x28x28 activation map

convolve (slide) over all spatial locations

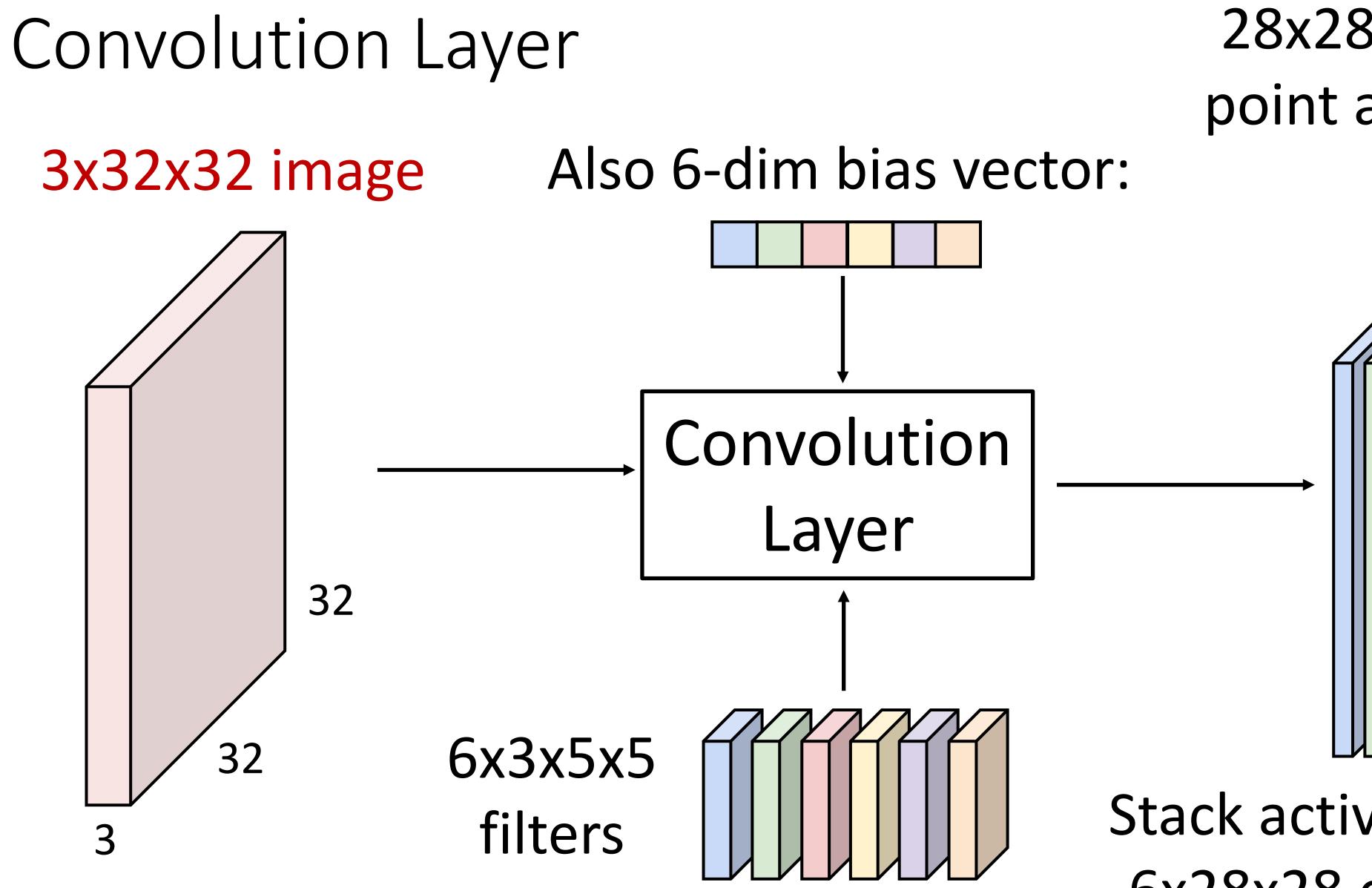




Lecture 7 - 18

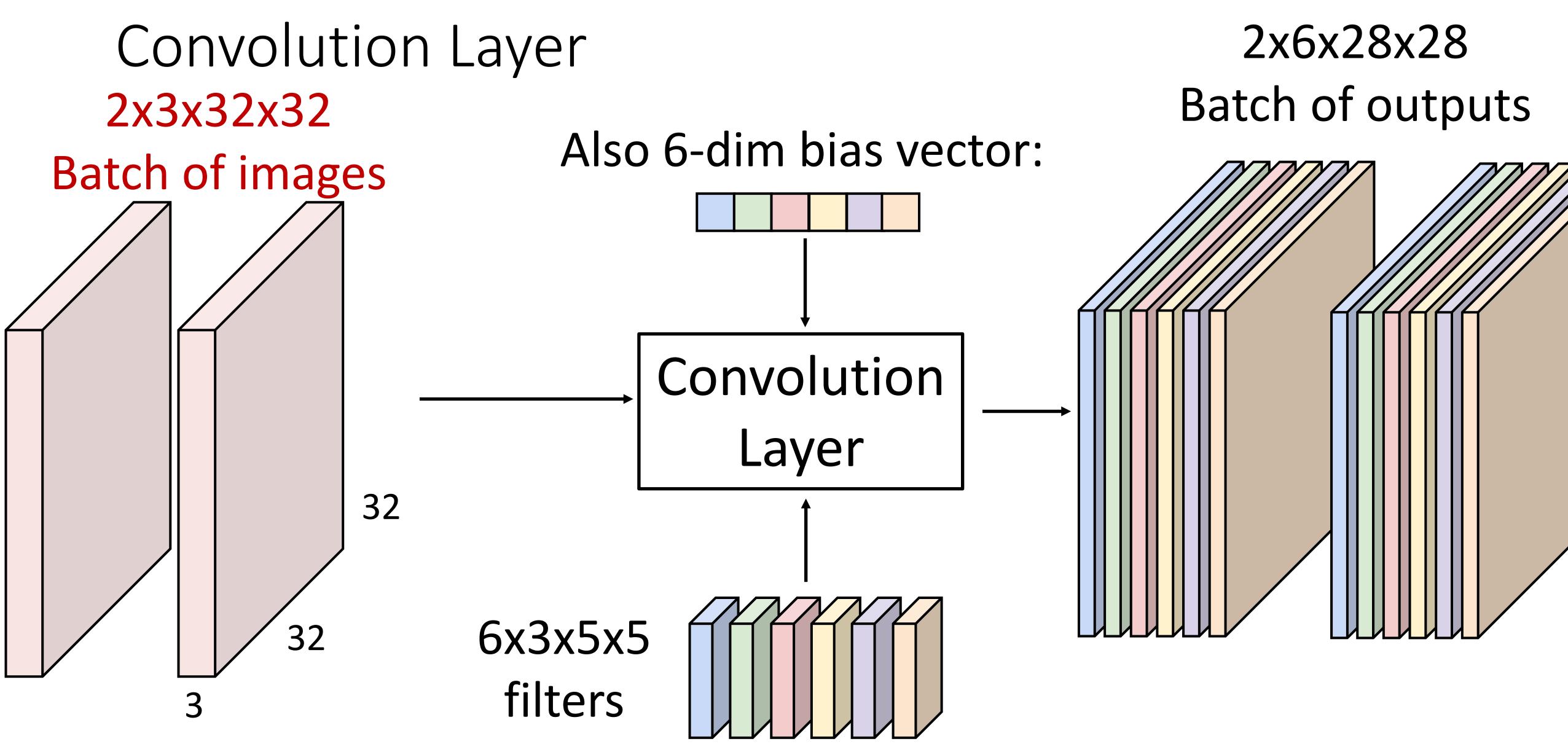


September 24, 2019

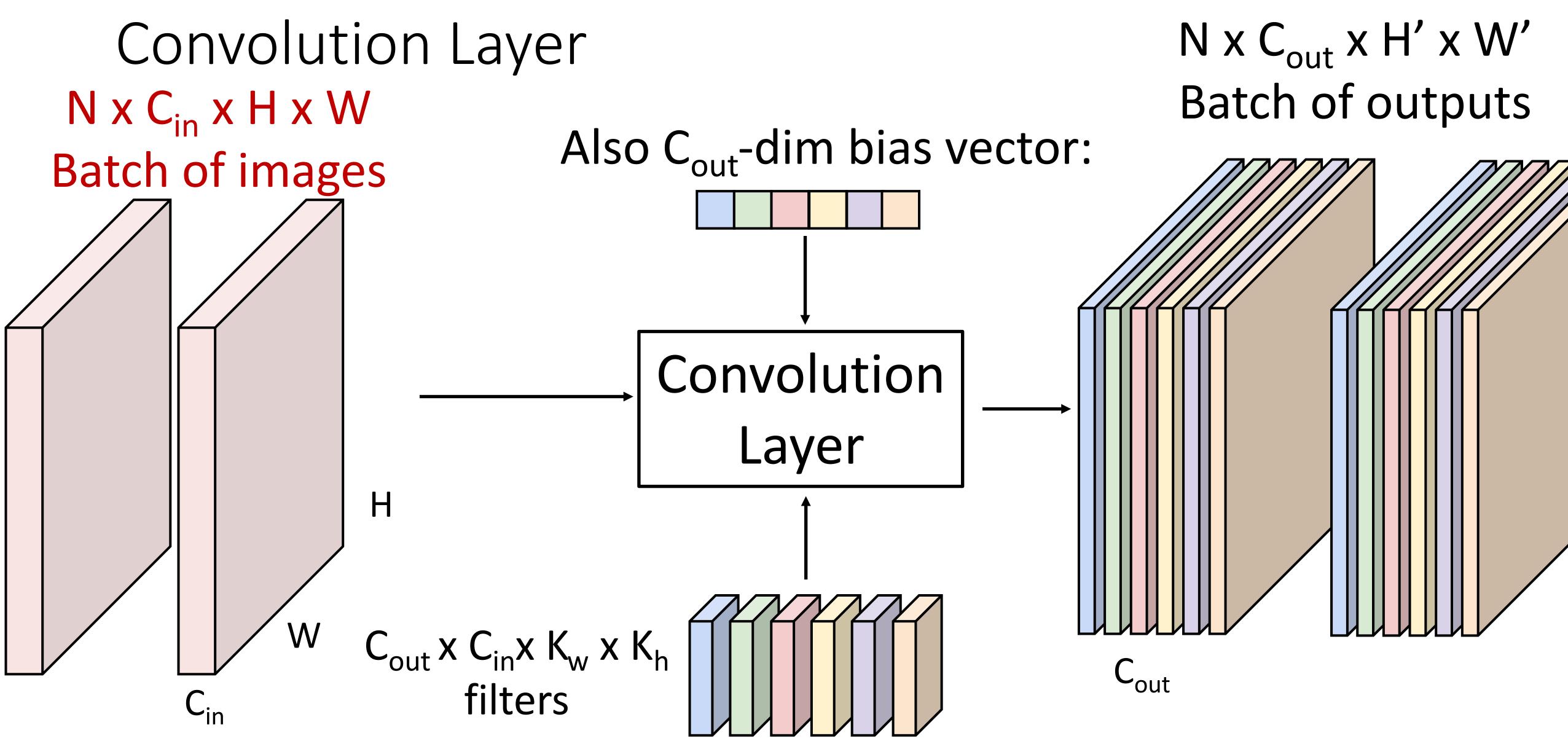


Stack activations to get a 6x28x28 output image!

September 24, 2019

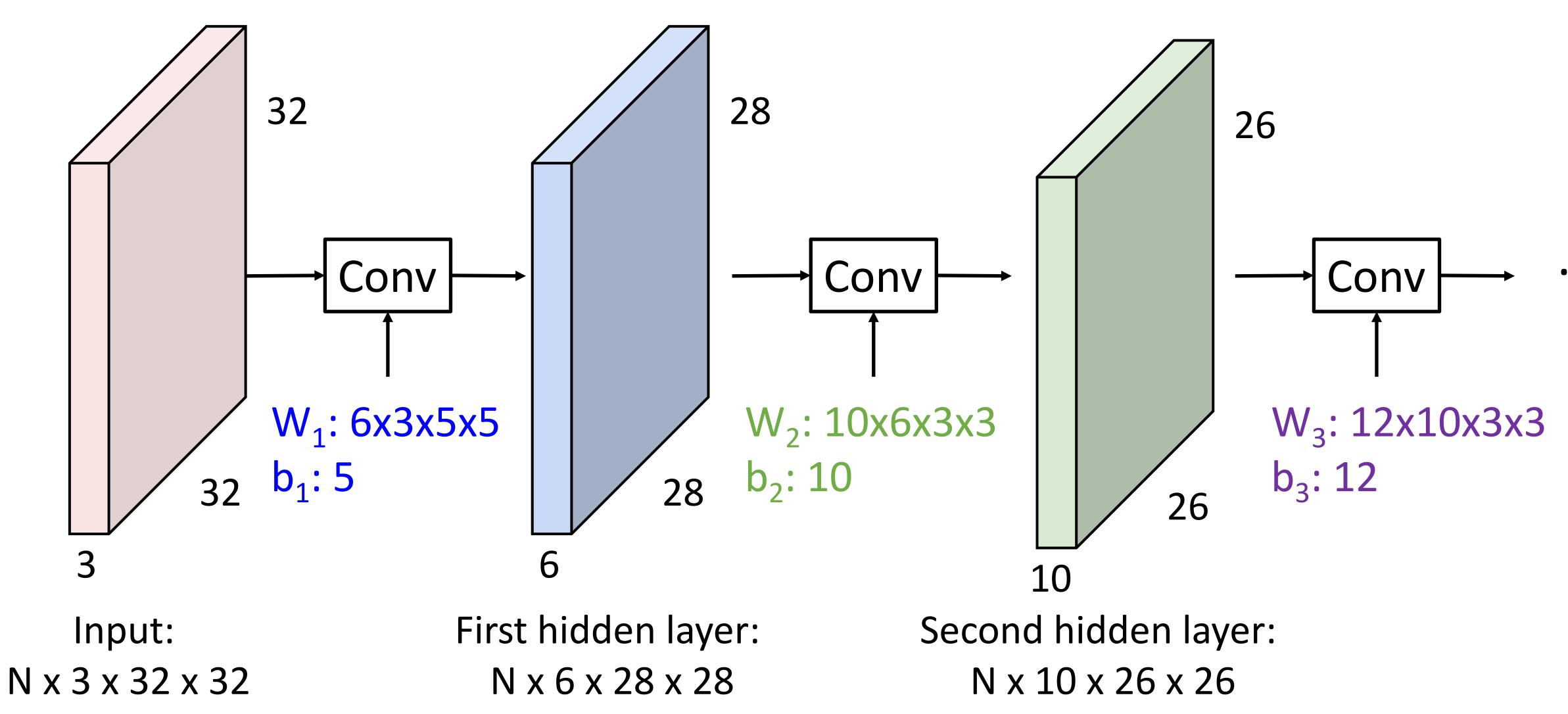


September 24, 2019



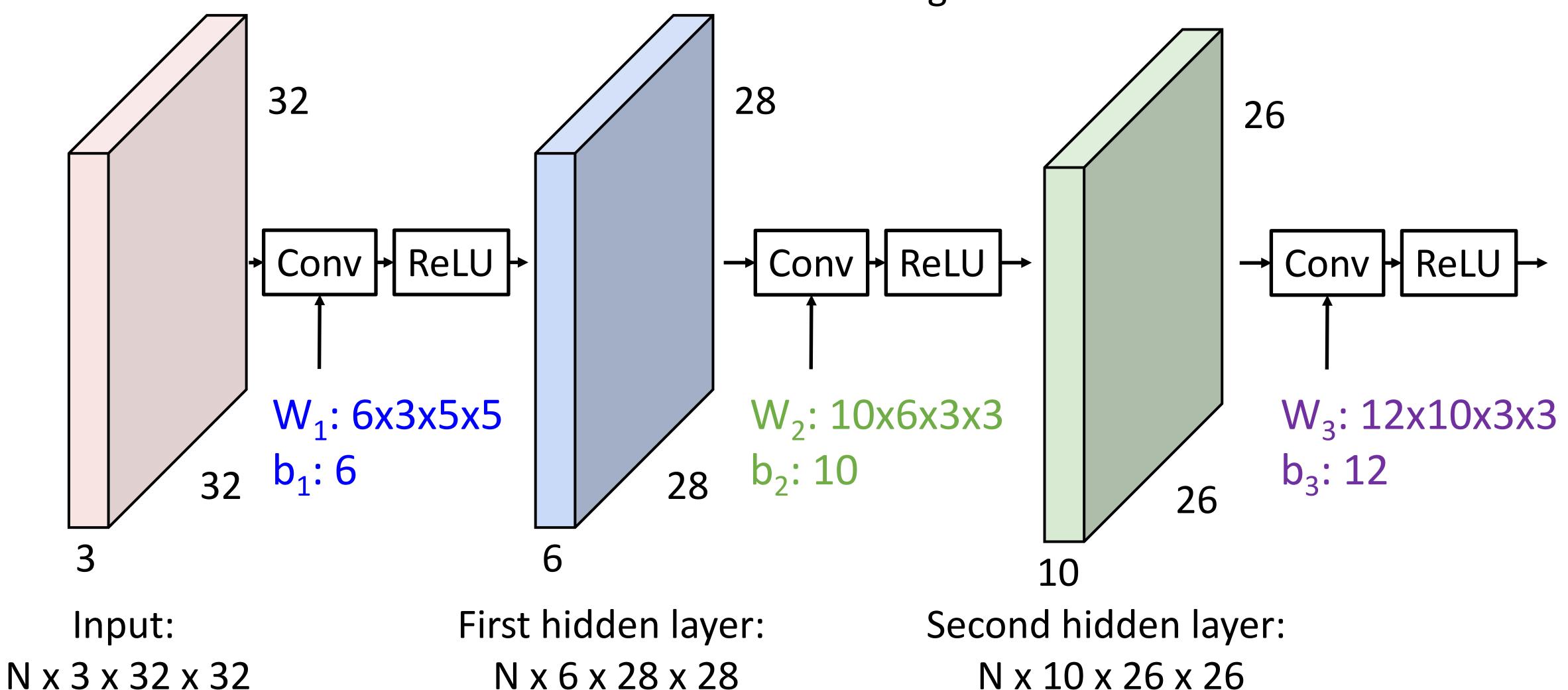
September 24, 2019

Stacking Convolutions



Lecture 7 - 23

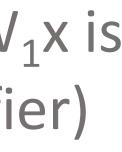
Stacking Convolutions



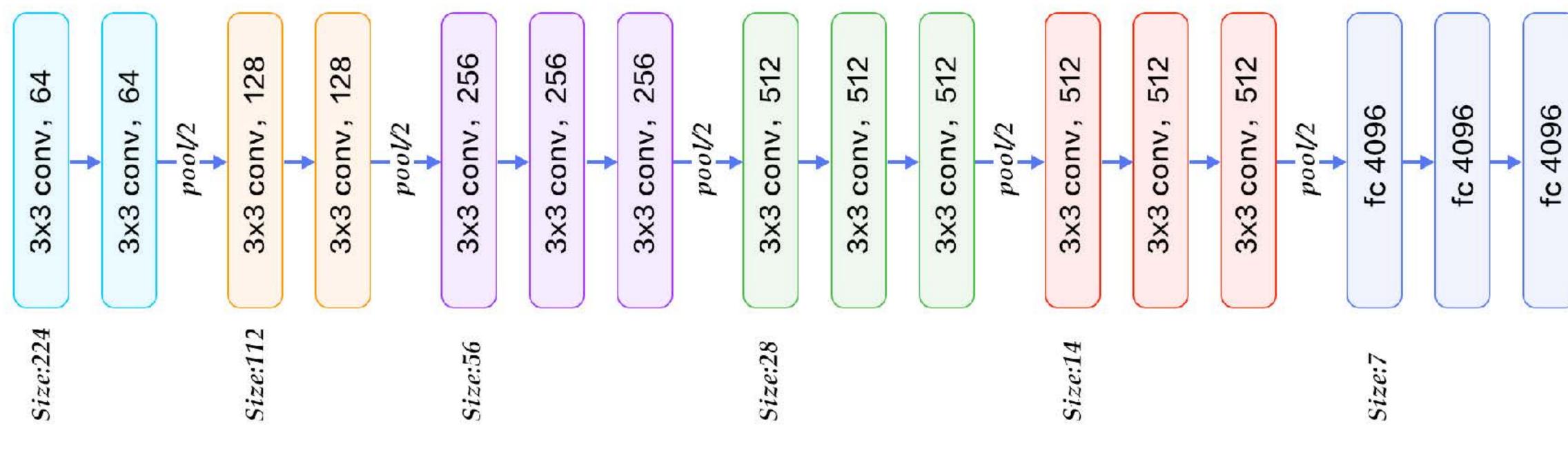
Justin Johnson

(Recall $y=W_2W_1x$ is **Q**: What happens if we stack a linear classifier) two convolution layers? **A**: We get another convolution!

Lecture 7 - 25



Convolutional Neural Networks



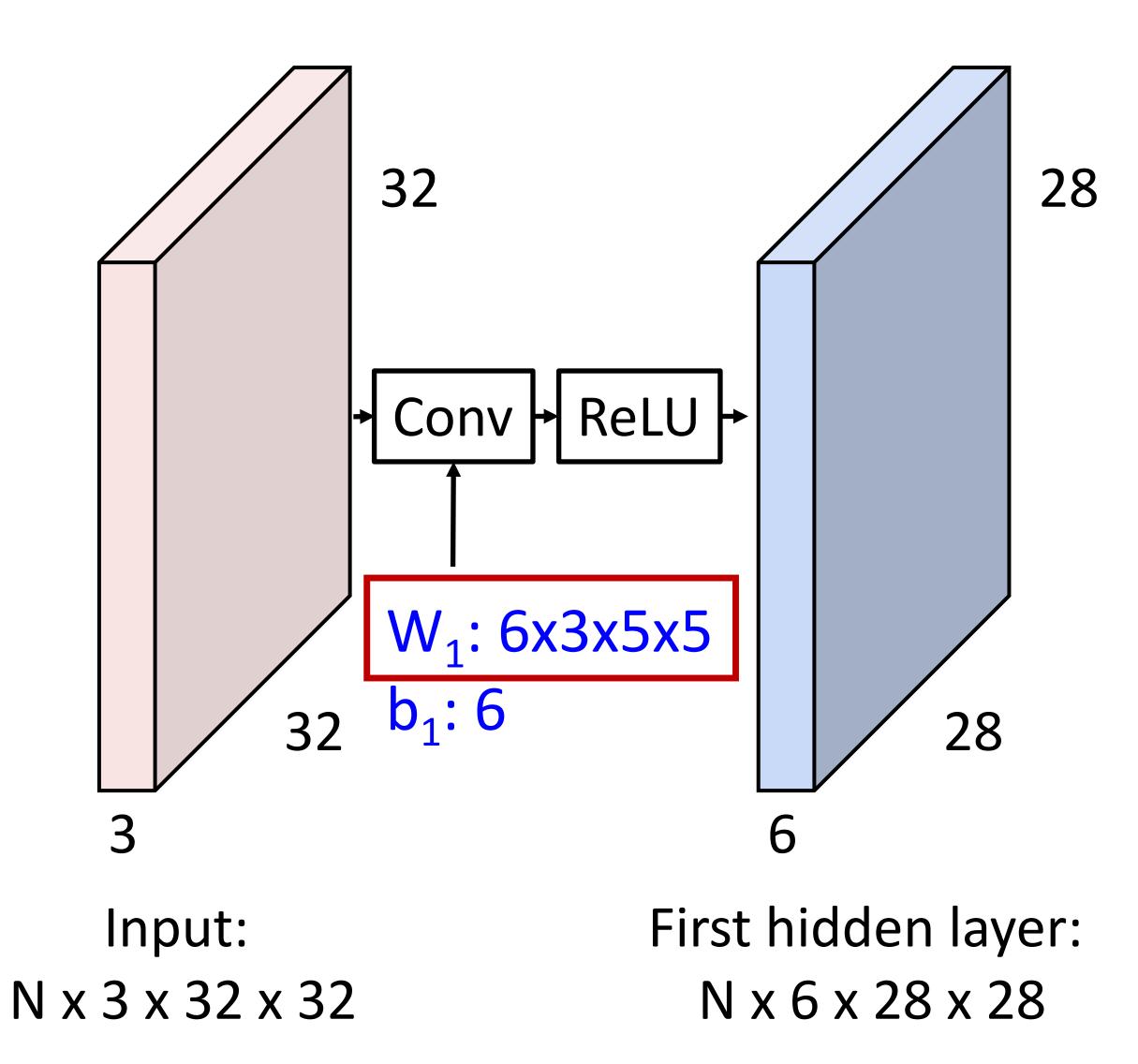
VGG-16 Network

Backward Pass for Some Common Layers

Convolutional layer



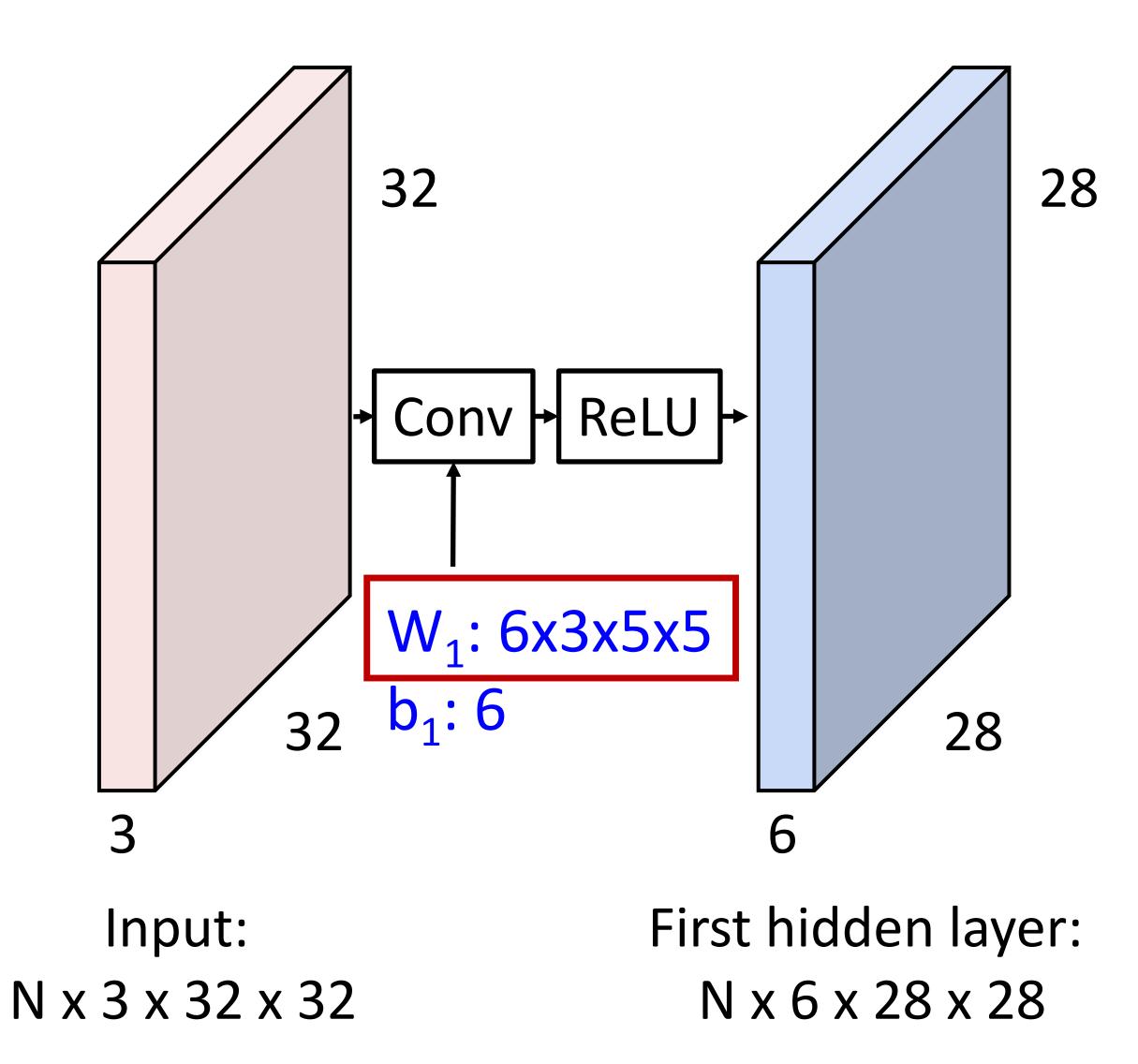
What do convolutional filters learn?



Justin Johnson

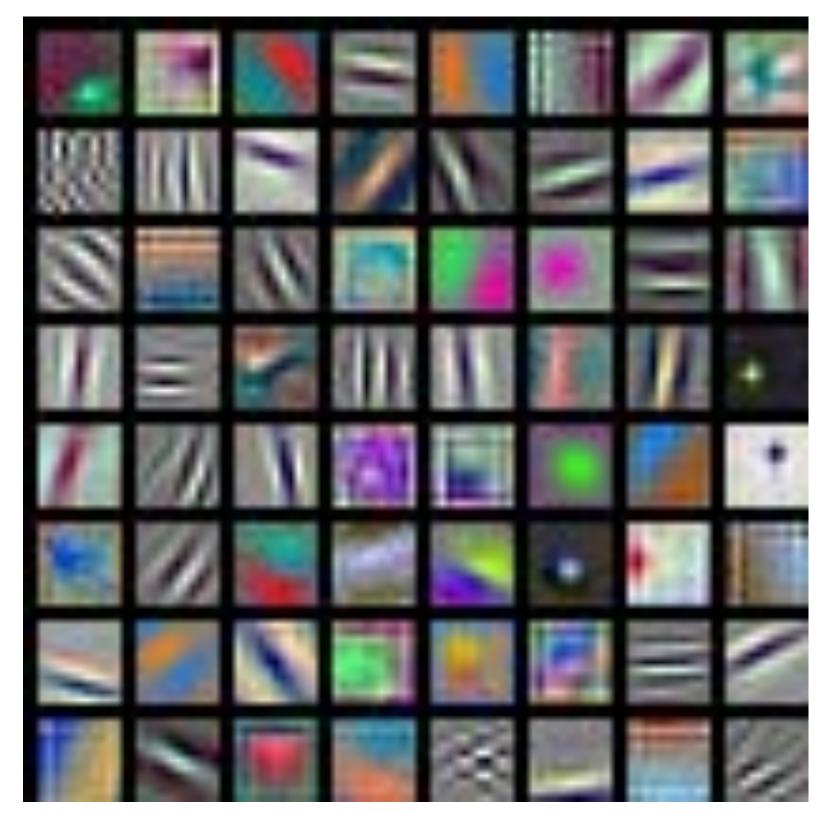
Linear classifier: One template per class

What do convolutional filters learn?



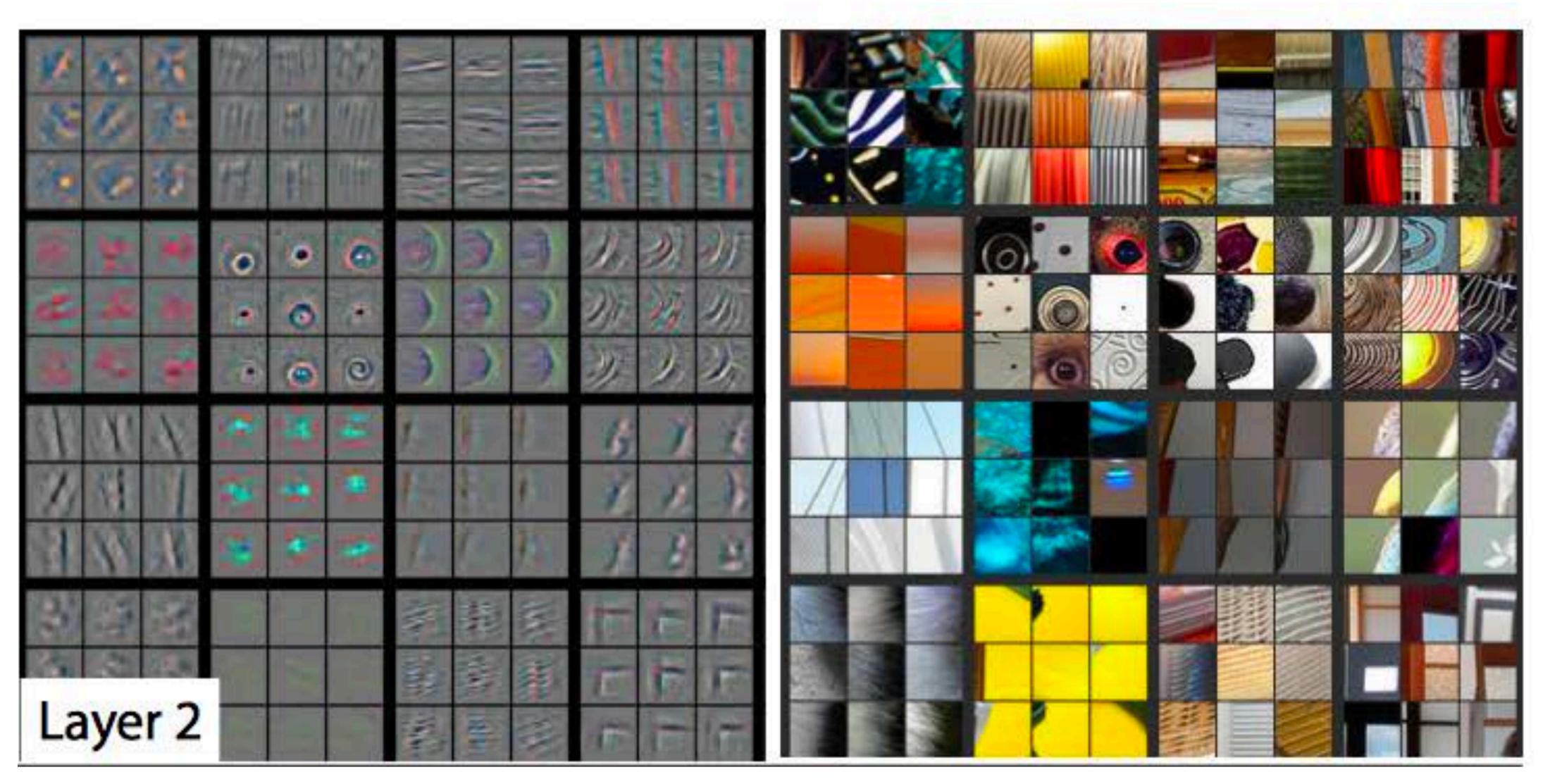
Justin Johnson

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

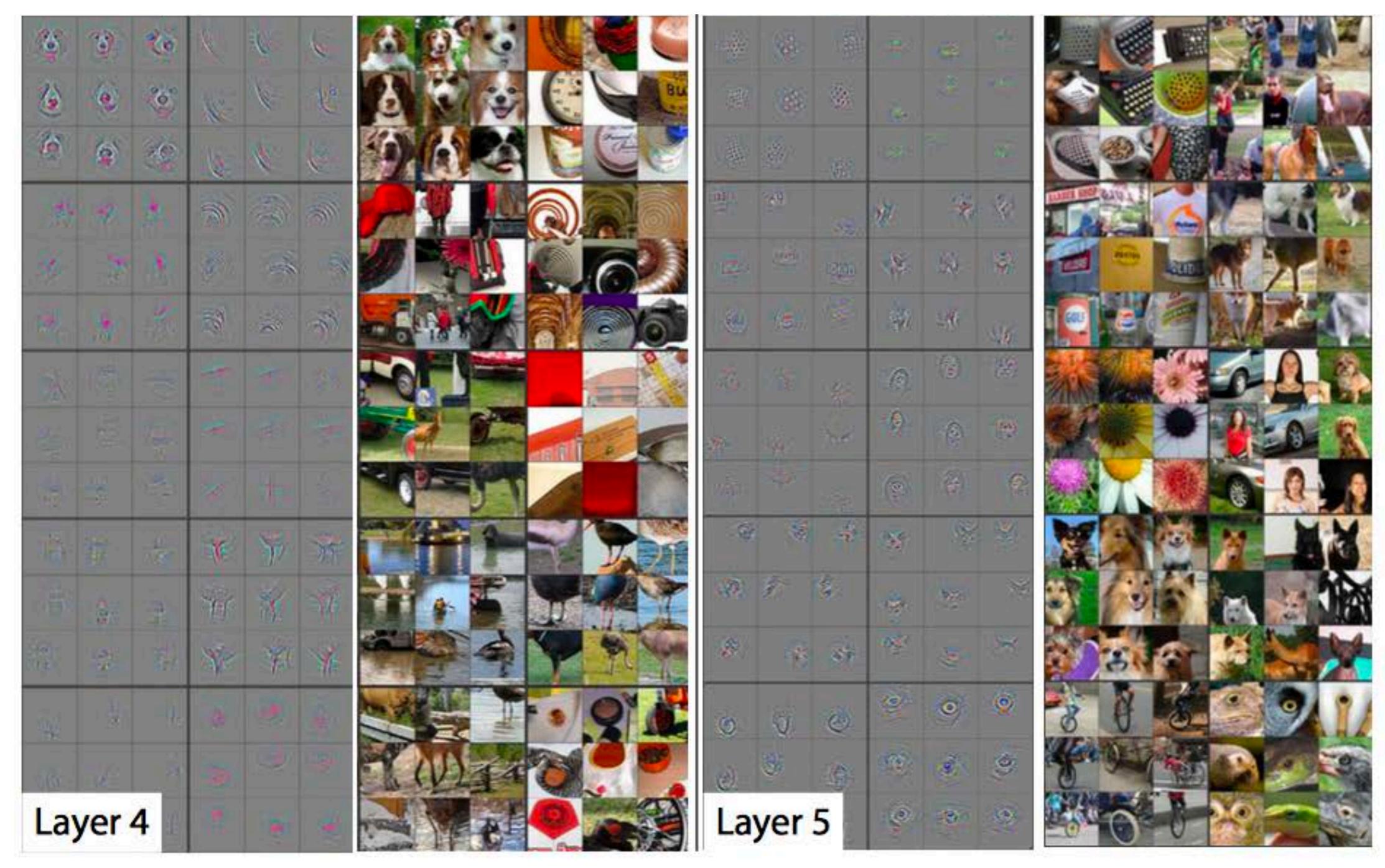


AlexNet: 64 filters, each 3x11x11

What filters do networks learn?

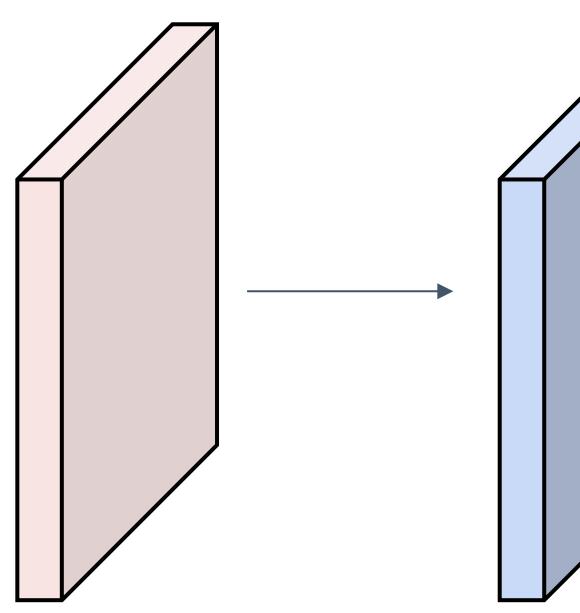


[Zeiler and Fergus, 2013]



Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

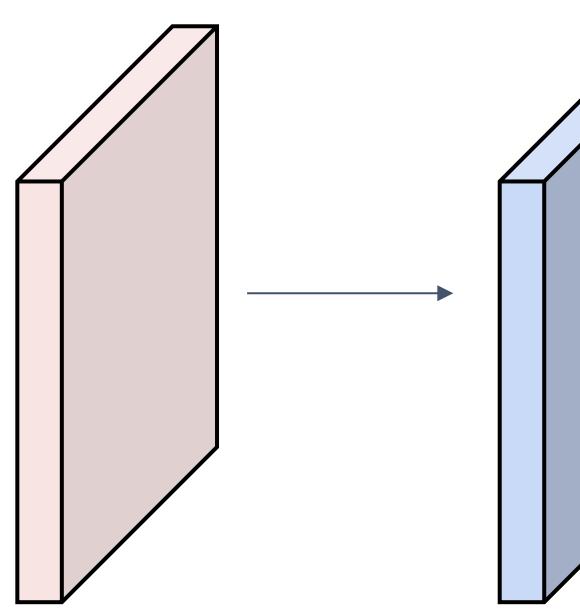
Output volume size: ?



Input volume: 3 x 32 x 32 **10 5x5** filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 10 x 32 x 32

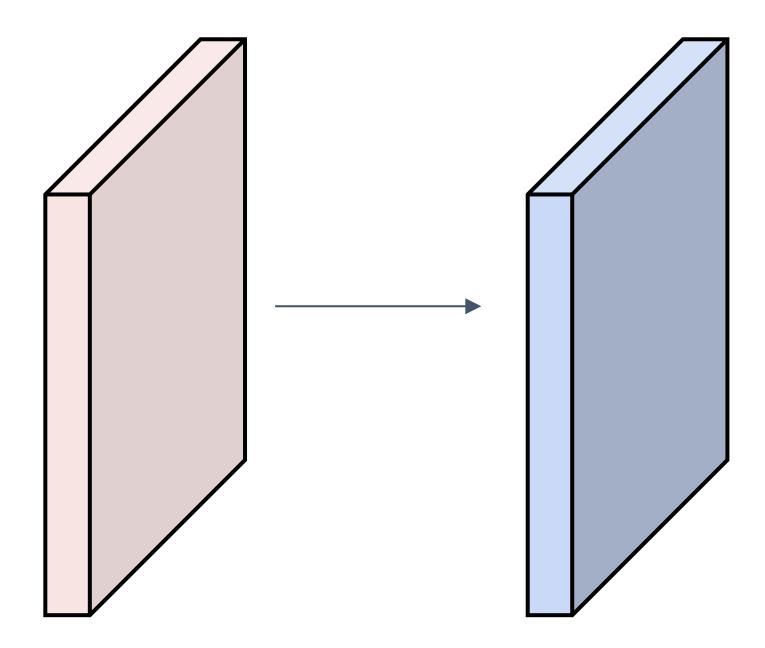
Justin Johnson



Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

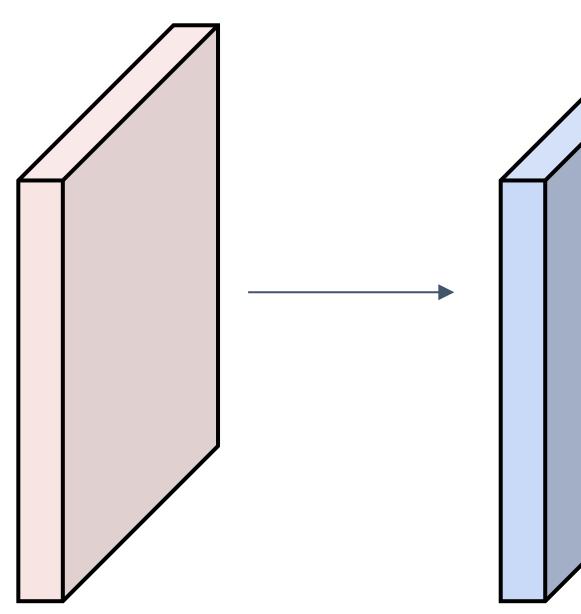
Output volume size: 10 x 32 x 32 Number of learnable parameters: ?

Justin Johnson



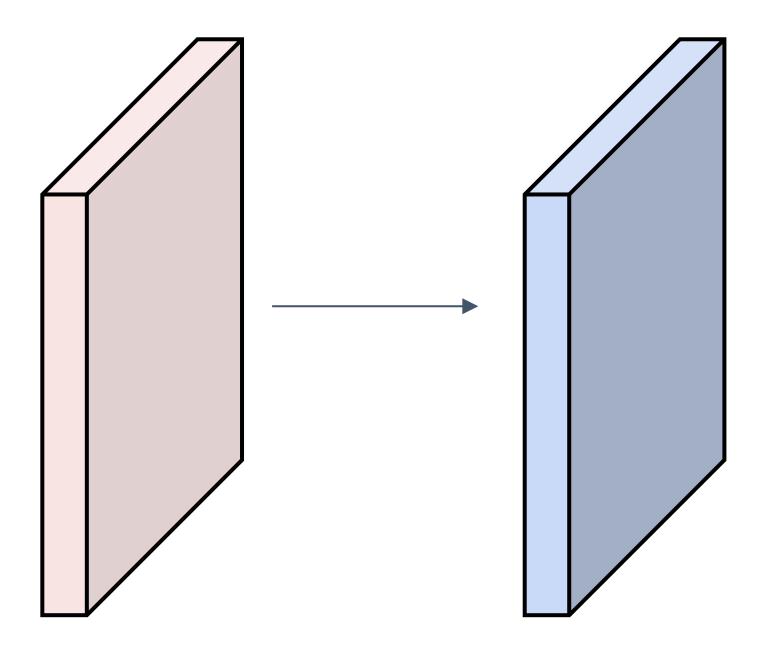
Input volume: 3 x 32 x 32 **10** 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Parameters per filter: 3*5*5 + 1 (for bias) = 76 **10** filters, so total is **10** * **76** = **760**



Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: ?

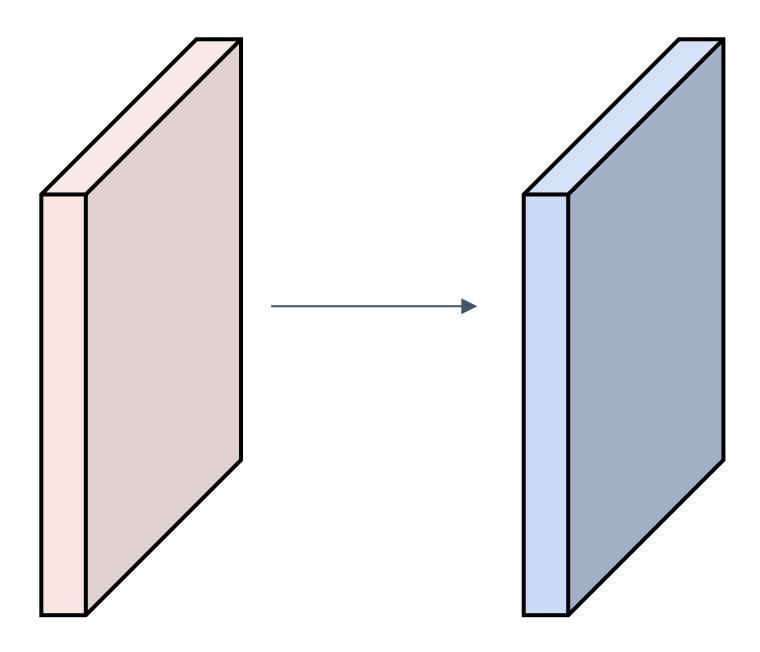


Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: 768,000

September 24, 2019

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K



Justin Johnson

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson

Input: 7x7 Filter: 3x3 Output: 3x3 Stride: 2

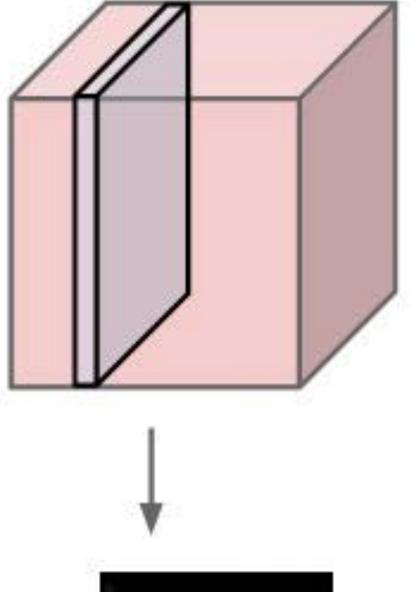
Justin Johnson

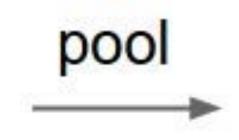
Input: 7x7 Filter: 3x3 Output: 3x3 Stride: 2 In general: Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Lecture 7 - 46

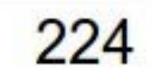
Pooling Layers: Another way to downsample





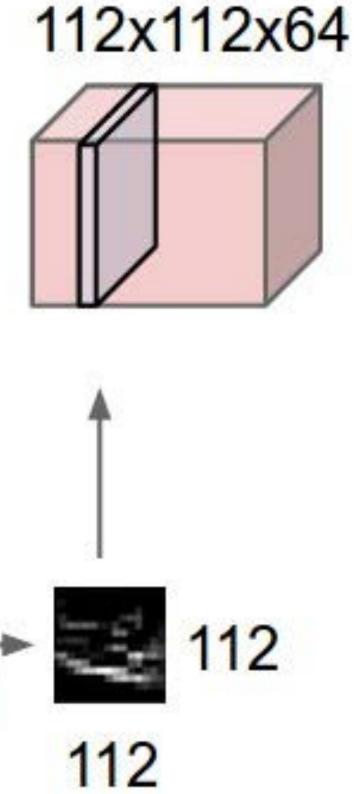






Justin Johnson

224



Hyperparameters: Kernel Size Stride Pooling function

Max Pooling

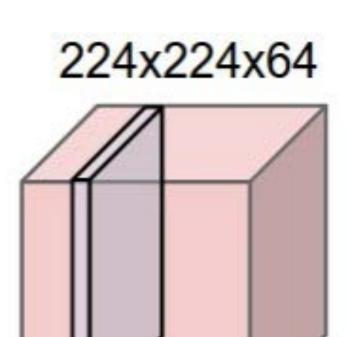
Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Y

Justin Johnson

X



Max pooling with 2x2 kernel size and stride 2

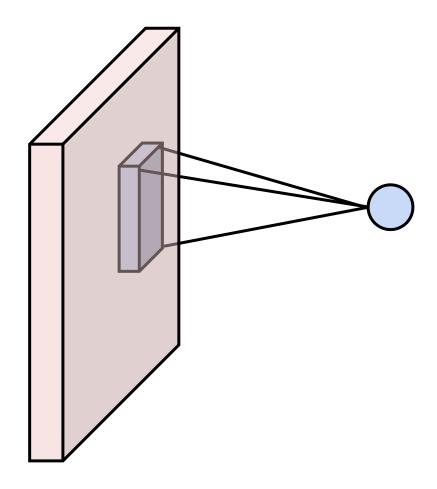
6	8
3	4

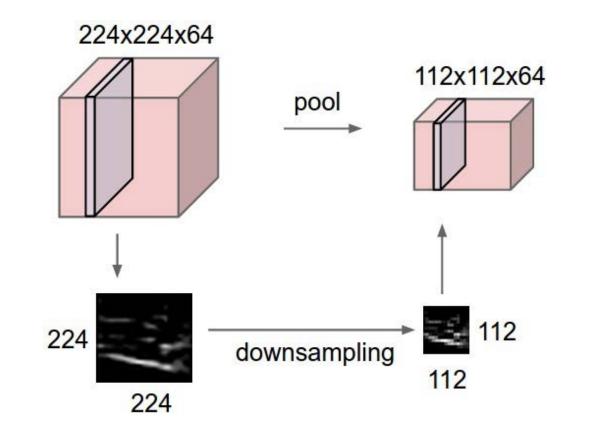
Introduces invariance to small spatial shifts No learnable parameters!

Lecture 7 - 64

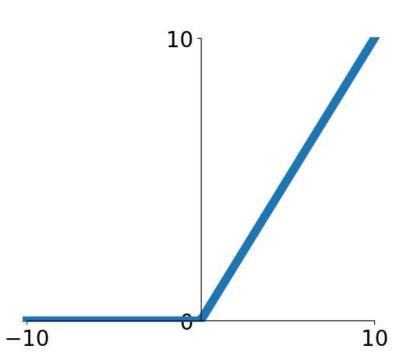
Components of a Convolutional Network

Convolution Layers





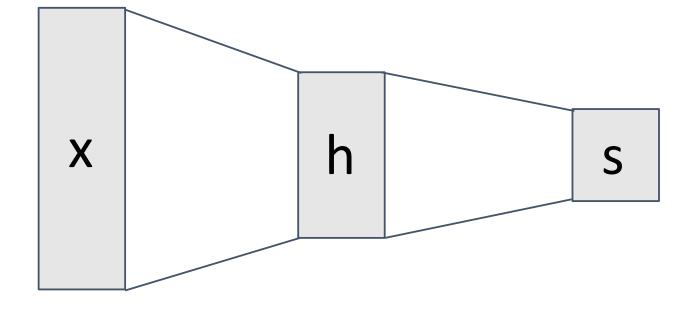
Activation Function



Justin Johnson

Pooling Layers

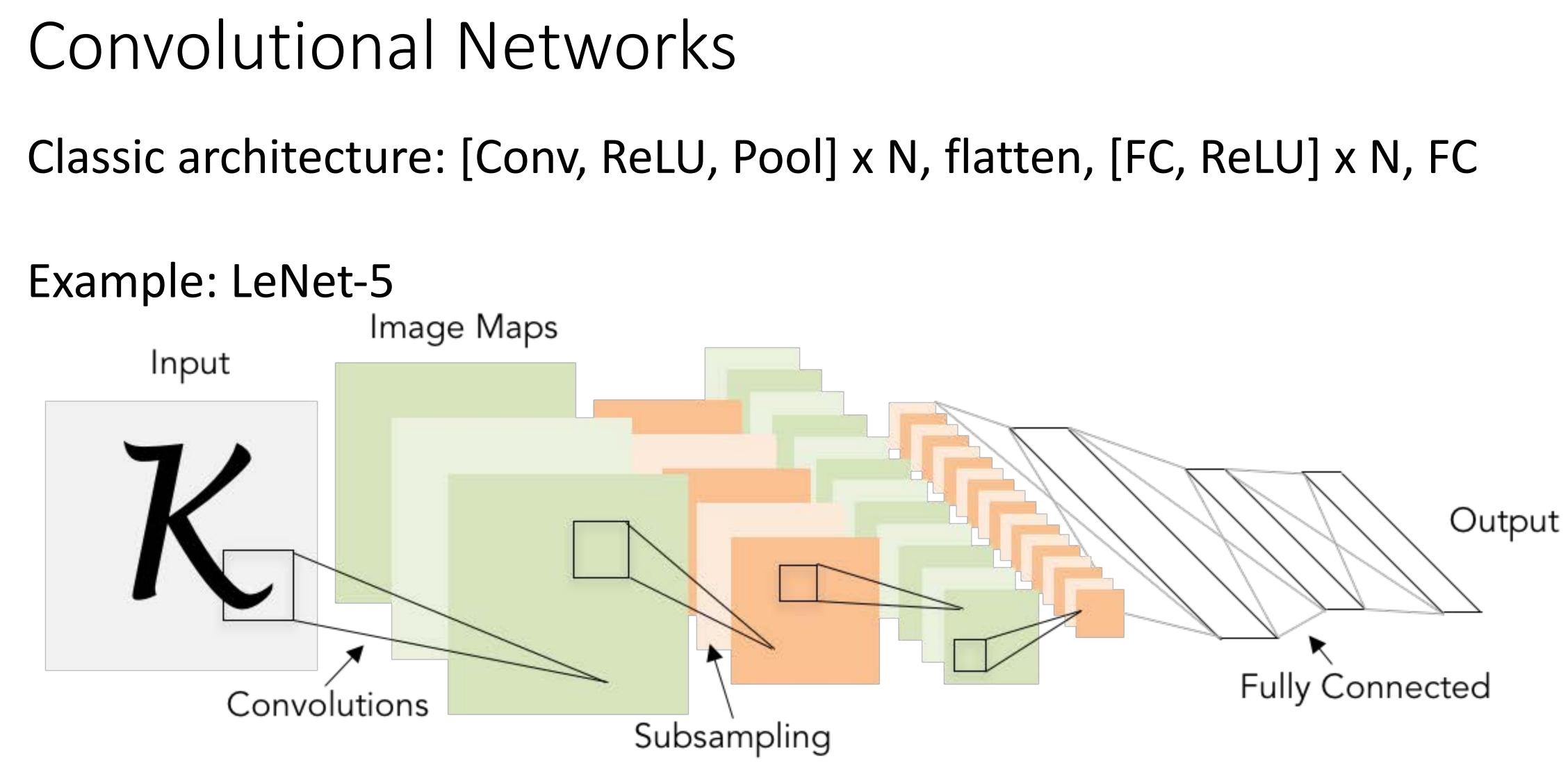
Fully-Connected Layers



Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

September 24, 2019



Lecun et al, "Gradient-based learning applied to document recognition", 1998

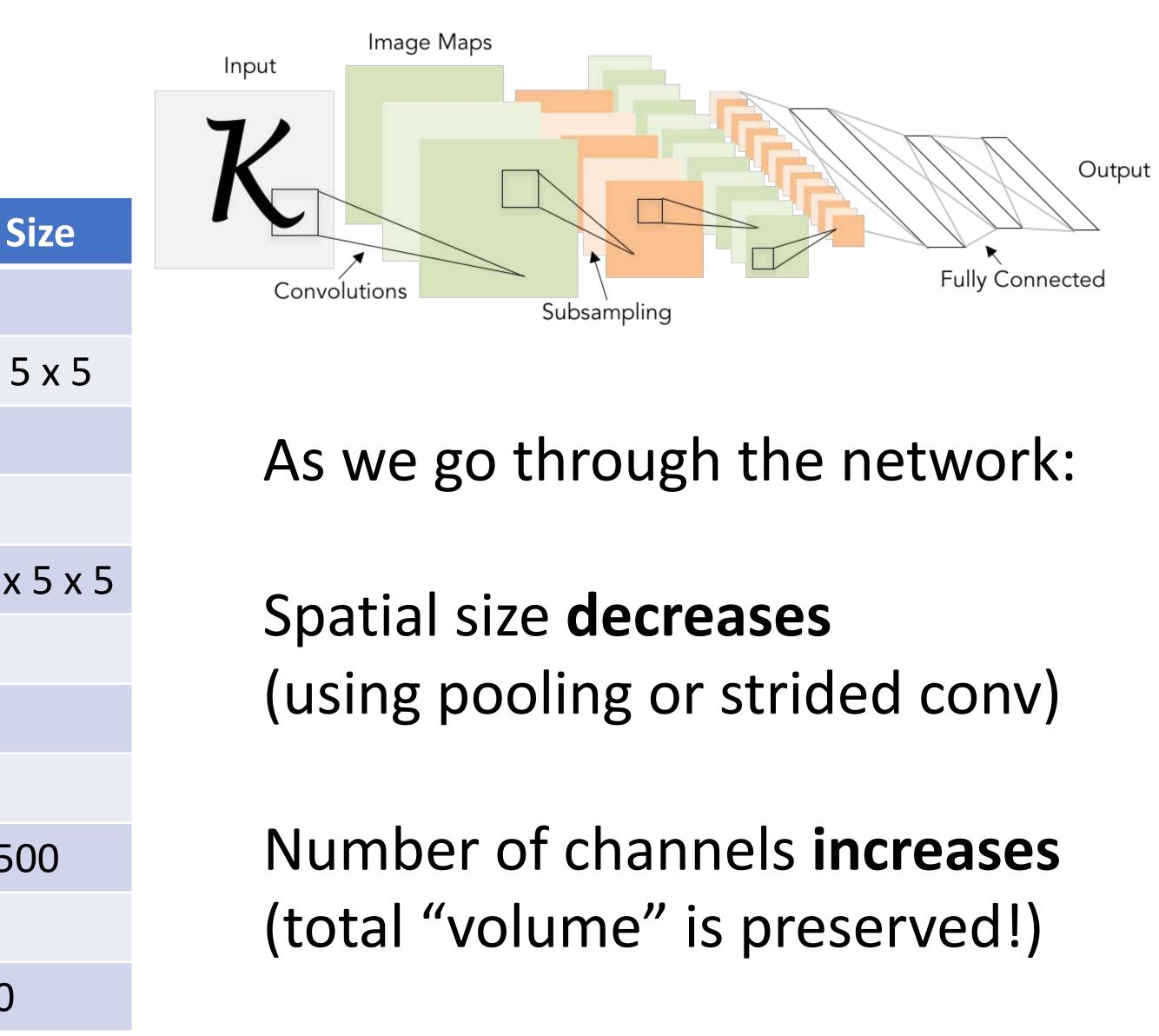
Justin Johnson

Example: LeNet-5

Layer	Output Size	Weight S
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 5
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Lecun et al, "Gradient-based learning applied to document recognition", 1998

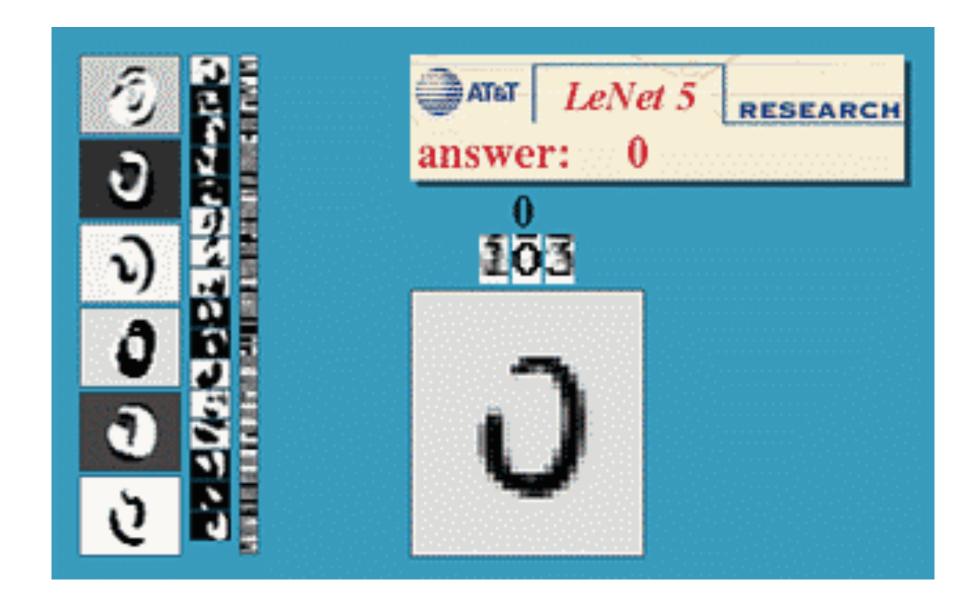
Justin Johnson



Lecture 7 - 76

Optical Character Recognition (OCR)

Technology to convert scanned documents to text (comes with any scanner now days)

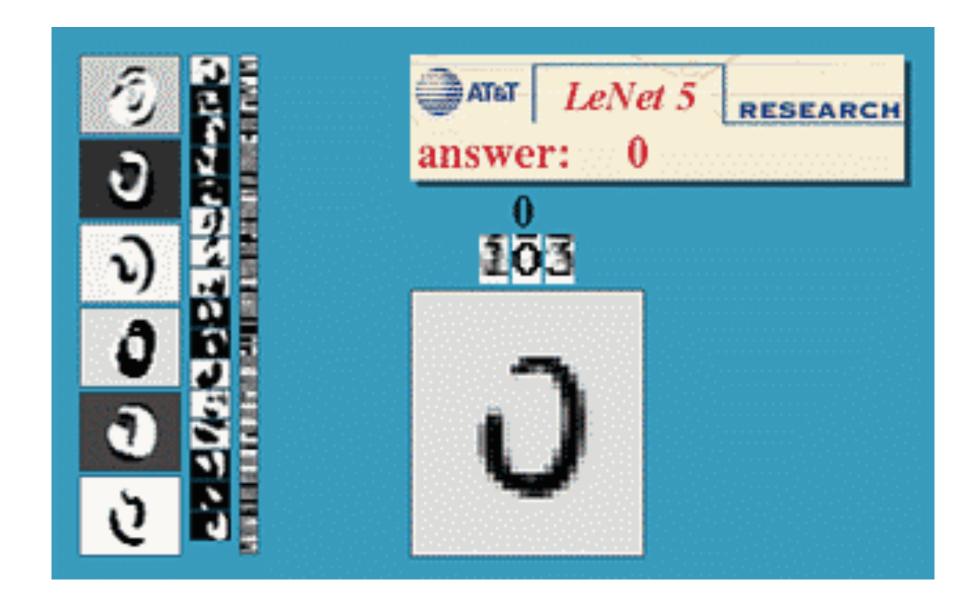


Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition Yann LeCun

Optical Character Recognition (OCR)

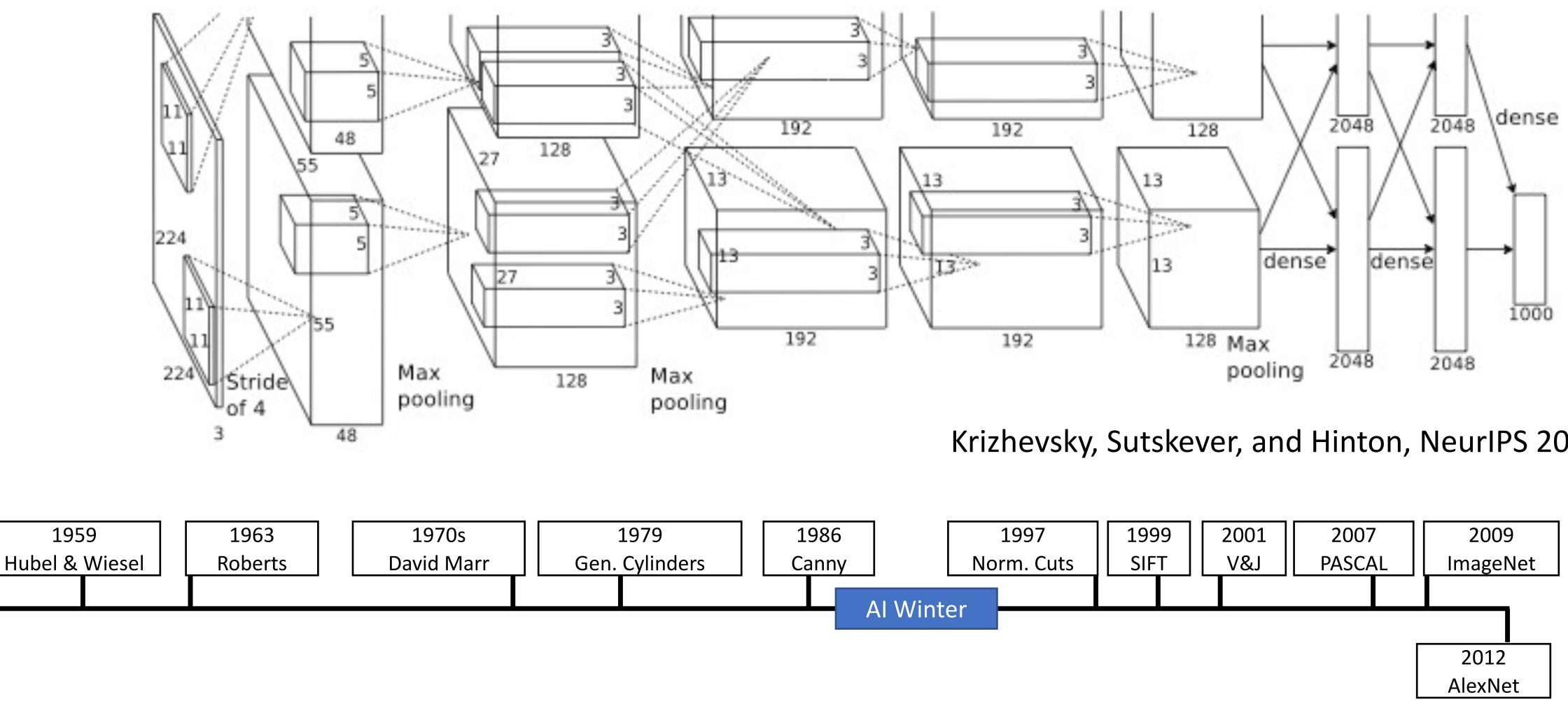
Technology to convert scanned documents to text (comes with any scanner now days)



Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition Yann LeCun

AlexNet: Deep Learning Goes Mainstream

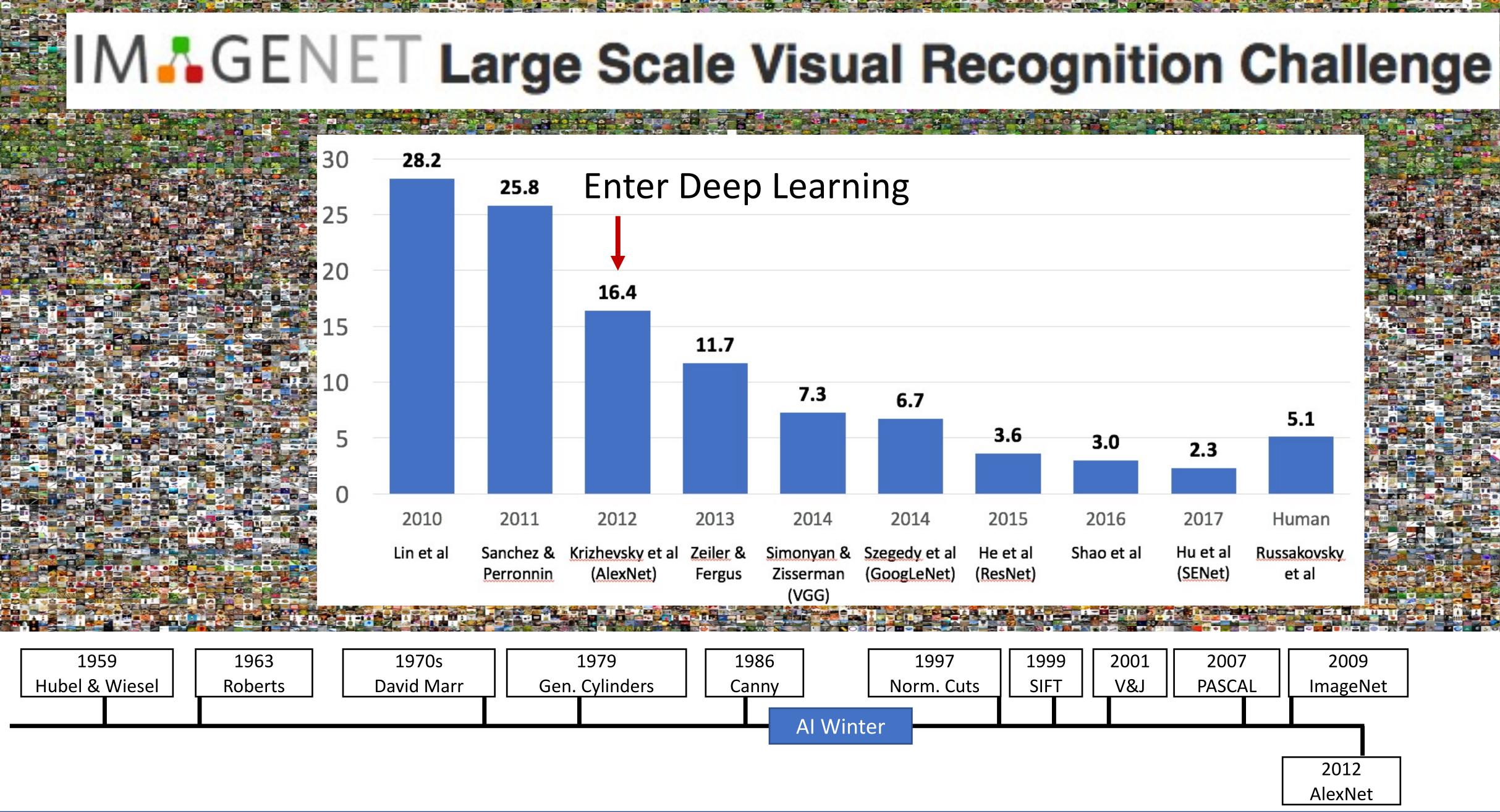


Justin Johnson

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Lecture 1 - 29

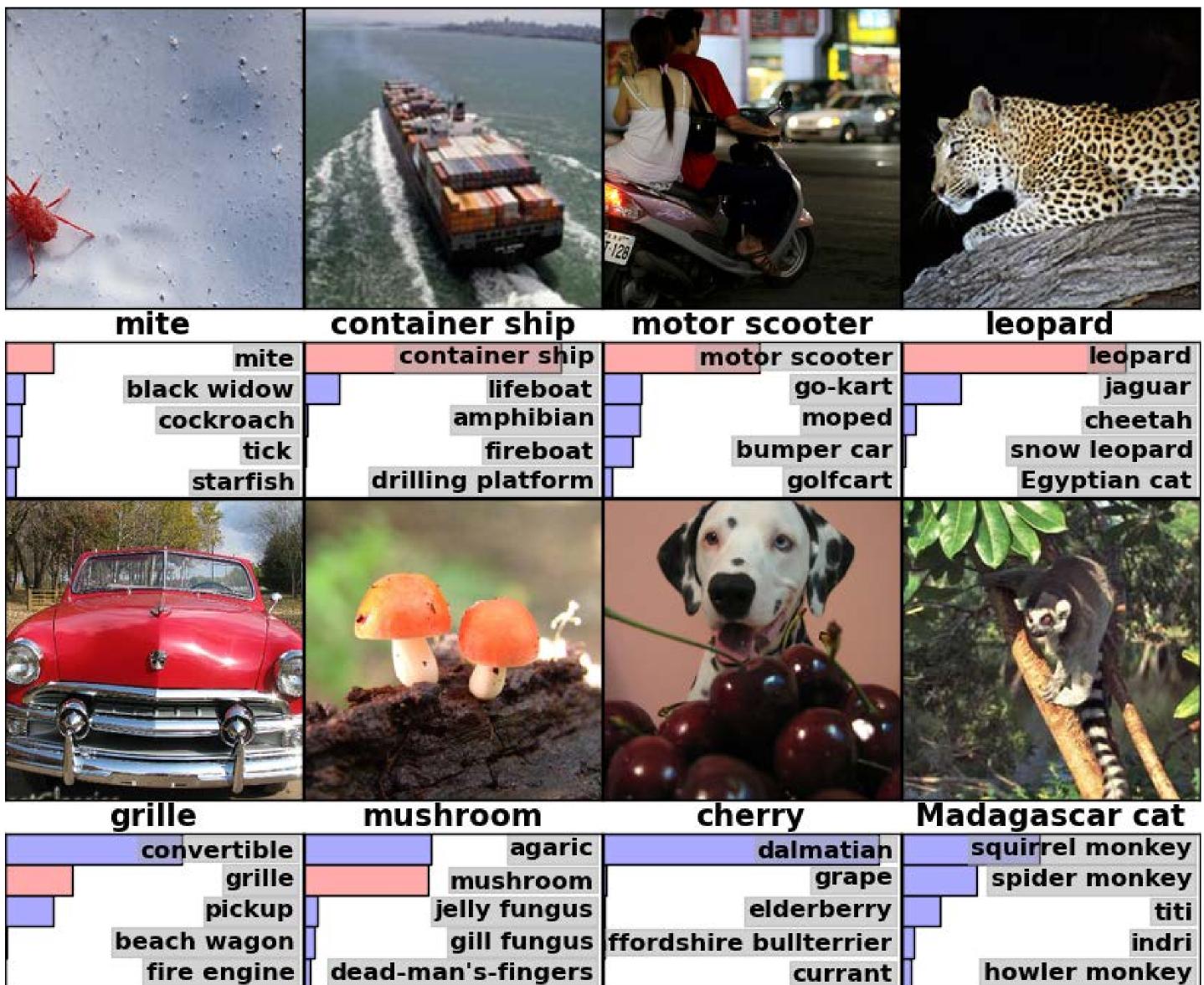
January 5, 2022



Lecture 1 - 28

January 5, 2022

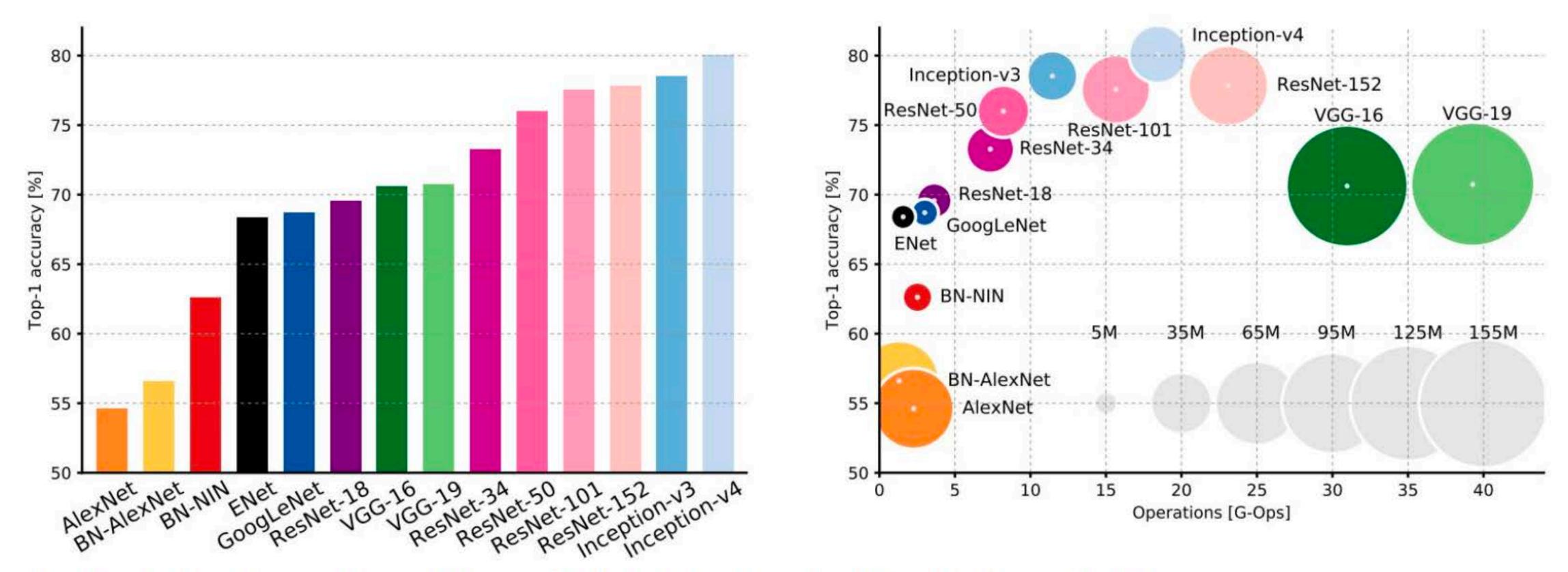
AlexNet on ImageNet



container s	mite
container	mite
life	black widow
amph	cockroach
fire	tick
drilling plat	starfish
The second second second	A Property and the second
45%	
The second	
V Toronto and	
mushroon	grille

ag	convertible
mushre	grille
jelly fun	pickup
gill fun	beach wagon
ead-man's-fing	fire engine

Comparing **Complexity**



An Analysis of Deep Neural Network Models for Practical Applications, 2017.

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Summary

computes gradients via recursive application of the chain rule

network architecture to reduce the number of parameters

A convolutional layer applies a set of learnable filters

A pooling layer performs spatial downsampling

A fully-connected layer is the same as in a regular neural network

Convolutional neural networks can be seen as learning a hierarchy of filters

- The parameters of a neural network are learned using **backpropagation**, which
- A convolutional neural network assumes inputs are images, and constrains the