
Lecture 21: Neural Networks 2

CPSC 425: Computer Vision 
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Menu for Today
Topics: 

— Neural Networks part 2 
— Linear + Convolutional layers

Readings: 

— Today’s Lecture:  Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS 
498/598                           

— Deep nets, AlexNet, VGG 

Reminders: 
—Quiz 6 April 7th 
—Assignment 6: due Apr 10th <— watch out! 
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Many slides from this lecture are from 

Justin Johnson, University of Michigan, EECS 498/598


https://web.eecs.umich.edu/~justincj/ 


https://web.eecs.umich.edu/~justincj/


4Justin	Johnson September	18,	2019

Image	Features:	Bag	of	Words	(Data-Driven!)

Lecture	5	- 16

Extract	random	
patches	

Cluster	patches	to	
form	“codebook”	
of	“visual	words”

Step	1:	Build	codebook

Fei-Fei and	Perona,	“A	bayesian hierarchical	model	for	learning	natural	scene	categories”,	CVPR	2005
Car	image is	CC0	1.0 public	domain
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Image	Features:	Bag	of	Words	(Data-Driven!)

Lecture	5	- 17

Extract	random	
patches	

Cluster	patches	to	
form	“codebook”	
of	“visual	words”

Step	1:	Build	codebook

Step	2:	Encode	images

Fei-Fei and	Perona,	“A	bayesian hierarchical	model	for	learning	natural	scene	categories”,	CVPR	2005



Classify Visual Word Histograms
• e.g., bird vs plane classifier as linear classifier in space of histograms

• Histograms of visual word frequencies = vector x, linear classifier w
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Example:	Winner	of	2011	ImageNet	challenge

Lecture	5	- 19

F.	Perronnin,	J.	Sánchez,	“Compressed	Fisher	vectors	for	LSVRC”,	PASCAL	VOC	/	ImageNet	workshop,	ICCV,	2011.
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1959
Hubel & Wiesel

1963
Roberts

1970s
David Marr

1979
Gen. Cylinders

1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
PASCAL

2009
ImageNet

The Image Classification Challenge:
1,000 object classes
1,431,167 images

Output:
Scale
T-shirt

Steel drum
Drumstick
Mud turtle

Deng et al, 2009
Russakovsky et al. IJCV 2015
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1959
Hubel & Wiesel

1963
Roberts

1970s
David Marr

1979
Gen. Cylinders

1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
PASCAL

2009
ImageNet

Enter Deep Learning

2012
AlexNet
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Image	Features	vs	Neural	Networks

Lecture	5	- 21

Feature	Extraction
f

training

training

10 numbers	giving	
scores	for	classes

Krizhevsky,	Sutskever,	and	Hinton,	“Imagenet	classification	
with	deep	convolutional	neural	networks”,	NIPS	2012.
Figure	copyright	Krizhevsky,	Sutskever,	and	Hinton,	2012.	
Reproduced	with	permission.

10 numbers	giving	
scores	for	classes
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1959
Hubel & Wiesel

1963
Roberts

1970s
David Marr

1979
Gen. Cylinders

1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
PASCAL

2009
ImageNet

2012
AlexNet

AlexNet: Deep Learning Goes Mainstream

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012



Backward Pass for Some Common Layers
Linear layers — fully connected

20.2



Fully Connected Layer

* slide from Marc’Aurelio Renzato 

Example: 200 x 200 image (small)  
x 40K hidden units (same size)

Spatial correlations are generally local

Waste of resources + we don’t have 
enough data to train networks this large 

= 1.6 Billion parameters (for one layer!)



Convolutional Layer

* slide adopted from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Share the same parameters across the 
locations (assuming input is stationary)

= 100 parameters
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Convolutional Layer

* slide adopted from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Share the same parameters across the 
locations (assuming input is stationary)

= 100 parameters



Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Learn multiple filters 
→ multiple output channels

# of filters: 20



Convolutional Layer

* slide from Marc’Aurelio Renzato 

Filter size: 10 x 10 

Example: 200 x 200 image (small) 
x 40K hidden units (same size)

Learn multiple filters 
→ multiple output channels

= 2000 parameters

# of filters: 20



Optional subtitle
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Convolution	Layer

Lecture	7	- 12

32

3

3x32x32 image: preserve	spatial	structure

width
depth	/	
channels

height32



Optional subtitle
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Convolution	Layer

Lecture	7	- 14

32

3

3x32x32 image

width

height

depth	/	
channels

3x5x5	filter

Filters	always	extend	the	full	
depth	of	the	input	volume

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

32



Optional subtitle
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Convolution	Layer

Lecture	7	- 15

32

3

3x32x32	image

3x5x5	filter

32
1	number:	
the	result	of	taking	a	dot	product	between	the	filter	
and	a	small	3x5x5	chunk	of	the	image
(i.e.	3*5*5	=	75-dimensional	dot	product	+	bias)



Optional subtitle

36Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 16

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

1x28x28	
activation	map

1

28

28
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Convolution	Layer

Lecture	7	- 17

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

two	1x28x28	
activation	map

1

28

1

28

28

Consider	repeating	with	
a	second	(green)	filter:
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Convolution	Layer

Lecture	7	- 18

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28

Consider	6	filters,	
each	3x5x5	

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!



Optional subtitle
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Convolution	Layer

Lecture	7	- 19

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!



Optional subtitle
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Convolution	Layer

Lecture	7	- 20

32

3

3x32x32	image

32

28x28	grid,	at	each	
point	a	6-dim	vector

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 21

32

3

2x3x32x32
Batch	of	images

32

2x6x28x28
Batch	of	outputs

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters



Optional subtitle
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Convolution	Layer

Lecture	7	- 22

W

Cin

N	x	Cin x	H	x	W
Batch	of	images

H

N	x	Cout x	H’	x	W’
Batch	of	outputs

Also	Cout-dim	bias	vector:

Convolution	
Layer

Cout x	Cinx Kw x	Kh
filters

Cout



Optional subtitle
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32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?
A:	We	get	another	convolution!

(Recall	y=W2W1x	is	
a	linear	classifier)

ReLU Conv ReLU Conv ReLU



Convolutional Neural Networks

VGG-16 Network



Backward Pass for Some Common Layers
Convolutional layer

20.3



Optional subtitle
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

Linear	classifier:	One	template	per	class
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

First-layer	conv	filters:	local	image	templates
(Often	learns	oriented	edges,	opposing	colors)

AlexNet:	64	filters,	each	3x11x11



What filters do networks learn?

[ Zeiler and Fergus, 2013 ]
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Convolution	Example

Lecture	7	- 47

Input	volume:	3	x 32 x 32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	?
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Convolution	Example

Lecture	7	- 48

Input	volume:	3	x 32 x 32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	
(32+2*2-5)/1+1	=	32	spatially,	so
10 x	32 x 32



Optional subtitle
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Convolution	Example

Lecture	7	- 49

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	?
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Convolution	Example

Lecture	7	- 50

Input	volume:	3 x	32	x	32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Parameters	per	filter:	3*5*5	+	1	(for	bias)	=	76
10 filters,	so	total	is	10 *	76 =	760
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Convolution	Example

Lecture	7	- 51

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	?
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Convolution	Example

Lecture	7	- 52

Input	volume:	3 x	32	x	32
10	5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	768,000
10*32*32 =	10,240	outputs;	each	output	is	the	inner	product	
of	two	3x5x5	tensors	(75	elems);	total	=	75*10240	=	768K
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57Justin	Johnson September	24,	2019Lecture	7	- 43

Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3

In	general:
Input:	W
Filter:	K
Padding:	P
Stride:	S
Output:	(W	– K	+	2P)	/	S	+	1



Optional subtitle
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Pooling	Layers:	Another	way	to	downsample

Lecture	7	- 63

Hyperparameters:
Kernel	Size
Stride
Pooling	function
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Max	Pooling

Lecture	7	- 64

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single	depth	slice

x

y

Max	pooling	with	2x2	
kernel	size	and	stride	2 6 8

3 4

Introduces	invariance to	
small	spatial	shifts
No	learnable	parameters!
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Components	of	a	Convolutional	Network

Lecture	7	- 94

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization
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Convolutional	Networks

Lecture	7	- 67

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

Classic	architecture:	[Conv,	ReLU,	Pool]	x	N,	flatten,	[FC,	ReLU]	x	N,	FC

Example:	LeNet-5
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Example:	LeNet-5

Lecture	7	- 76

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

As	we	go	through	the	network:

Spatial	size	decreases	
(using	pooling	or	strided conv)

Number	of	channels	increases
(total	“volume”	is	preserved!)



Optical Character Recognition (OCR)
Technology to convert scanned documents to text  

(comes with any scanner now days) 

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition 

Yann 
LeCun

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
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Technology to convert scanned documents to text  

(comes with any scanner now days) 

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition 

Yann 
LeCun

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition


67Justin Johnson January 5, 2022Lecture 1 - 29

1959
Hubel & Wiesel

1963
Roberts

1970s
David Marr

1979
Gen. Cylinders

1986
Canny

1997
Norm. Cuts

AI Winter

2001
V&J

1999
SIFT

2007
PASCAL

2009
ImageNet

2012
AlexNet

AlexNet: Deep Learning Goes Mainstream

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012
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AI Winter
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Enter Deep Learning

2012
AlexNet



AlexNet on ImageNet

69

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Comparing Complexity

* adopted from Fei-Dei Li, Justin Johnson, Serena Yeung, cs231n Stanford



Summary

The parameters of a neural network are learned using backpropagation, which 
computes gradients via recursive application of the chain rule  

A convolutional neural network assumes inputs are images, and constrains the 
network architecture to reduce the number of parameters  

A convolutional layer applies a set of learnable filters 

A pooling layer performs spatial downsampling 

A fully-connected layer is the same as in a regular neural network  

Convolutional neural networks can be seen as learning a hierarchy of filters 

71


