

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

(slide credits / thanks to Bob Woodham, Jim Little, Fred Tung, Leonid Sigal, and Matthew Brown)

Lecture 2: Image Formation

Waitlisted Students

All course materials will be on the public webpage, and there will be + no graded assessment before add drop deadline (Jan 17th)

🗾 😳 🖞 🕂

Kwang Moo Yi @ University of British Columbia Home Te	eam Publications	Teaching	Openings G	GitHub
Prerequisites				
MATH 200, MATH 221 and either (a) CPSC 221 or (b) CPSC 260, EECE 320.				
Textbook				
Recommended but NOT required.				
 Computer Vision: Algorithms and Applications, 2nd edition, by R. Szeliski, 20 Computer Vision: A Modern Approach, 2nd edition, by D.A. Forsyth and J. Pol 				
 Understanding Deep Learning, Simon J.D. Prince, 2023 				
Understanding Deep Learning, Simon J.D. Prince, 2023 Assignments				
Assignments Assignments are to be done individually by each student. We will be actively lookir zero-tolerance on any case, and will not make any distinctions between those who				
Assignments Assignments are to be done individually by each student. We will be actively lookir zero-tolerance on any case, and will not make any distinctions between those who it!		eceived help.	And frankly, it's no	ot worth
Assignments Assignments are to be done individually by each student. We will be actively lookir zero-tolerance on any case, and will not make any distinctions between those who it! Assignment		eceived help. Available	And frankly, it's no Due	ot worth
Assignments are to be done individually by each student. We will be actively lookir zero-tolerance on any case, and will not make any distinctions between those who it! Assignment Assignment 0: Introduction to Python for Computer Vision (optional)		eceived help. Available Jan 6	And frankly, it's no Due Jan 15 (optiona	ot worth
Assignments are to be done individually by each student. We will be actively lookin zero-tolerance on any case, and will not make any distinctions between those who it! Assignment Assignment 0: Introduction to Python for Computer Vision (optional) Assignment 1: Image Filtering and Hybrid Images		Available Jan 6 Jan 13	And frankly, it's no Due Jan 15 (optiona Jan 29	ot worth
Assignments are to be done individually by each student. We will be actively lookin zero-tolerance on any case, and will not make any distinctions between those who it! Assignment Assignment 0: Introduction to Python for Computer Vision (optional) Assignment 1: Image Filtering and Hybrid Images Assignment 2: Scaled Representations, Face Detection and Image Blending		Available Jan 6 Jan 13 Jan 27	And frankly, it's no Due Jan 15 (optiona Jan 29 Feb 12	ot worth
Assignments are to be done individually by each student. We will be actively lookin zero-tolerance on any case, and will not make any distinctions between those who it! Assignment Assignment 0: Introduction to Python for Computer Vision (optional) Assignment 1: Image Filtering and Hybrid Images Assignment 2: Scaled Representations, Face Detection and Image Blending Assignment 3: Texture Synthesis		Available Jan 6 Jan 13 Jan 27 Feb 12	And frankly, it's no Due Jan 15 (optiona Jan 29 Feb 12 Mar 5	ot worth

of the term, such as travel, moderate illness, conflicts with other courses, extracurricular obligations, job interviews, etc. Thus, additional late days will NOT be granted except under truly exceptional circumstances. If an assignment is submitted late and a student has used up all of her/his

https://www.cs.ubc.ca/~kmyi/teaching/cpsc425/

This Lecture

Topics: Image Formation

- Image Formation
- Cameras and Lenses

Readings:

- Next Lecture: Forsyth & Ponce (2nd ed.) 4.1, 4.5

- Projection

- Today's Lecture: Szeliski Chapter 2, Forsyth & Ponce (2nd ed.) 1.1.1 – 1.1.3

Lecture 2: Goal

To understand how images are formed

(and develop relevant mathematical concepts and abstractions)

What is **Computer Vision**?

Compute vision, broadly speaking, is a research field aimed to enable computers to process and interpret visual data, as sighted humans can.

Sensing Device

Interpreting Device

Interpretation

flamephoenix1991/8376271918

blue sky, trees, fountains, UBC, ...

5

Overview: Image Formation, Cameras and Lenses

source

The image formation process that produces a particular image depends on

- Lighting condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

Light and Color

- •Light is electromagnetic radiation in the 400-700nm band
- This is the peak in the spectrum of sunlight passing through the atmosphere
- Newton's Prism experiment showed that white light is composed of all frequencies
- Black is the absence of light!

9

Spectral Power Distribution

- •The spectral distribution of energy in a light ray determines its colour
- Surfaces reflect light energy according to a spectral distribution as well
- The combination of incident spectra and reflectance spectra determines the light colour

[scratchapixel.com]

Spectral Reflectance Example

 $E(\lambda)$

Spectral Reflectance Example

 $E(\lambda)$

Our brains already knows this

https://en.wikipedia.org/wiki/The_dress

Our brains already knows this

https://en.wikipedia.org/wiki/The_dress

Figure design by Kasuga~jawiki; vectorization by Editor at Large; "The dress" modification by Jahobr, CC-BY-SA 2.5 Generic

Surface Reflectance

• Reflected intensity also depends on geometry: surface orientation, viewer position, shadows, etc.

It also depends on surface properties, e.g., diffuse or specular

Diffuse and Specular Reflection

- A pure mirror reflects light along a line symmetrical about the surface normal A pure diffuse surface scatters light equally in all directions

Specular surfaces directly reflect over a small angle

Diffuse and Specular Reflection

• A sphere lit with ambient, +diffuse, +specular reflectance

Ambient

+Diffuse

Diffuse and Specular Reflection

• A motivating example that uses this model

View + Light Control

[Video from https://machinelearning.apple.com/research/neural-3d-relightable reproduced for educational purposes]

Diffuse Reflection

- Light is reflected equally in all directions (Lambertian surface)
- between the light and the surface...

But the amount of light reaching unit surface area depends on the angle

Specular Reflection

- Light reflected strongly around the mirror reflection direction
- Intensity depends on viewer position

Phong Illumination Model

Includes ambient, diffuse and specular reflection

$$I = k_a i_a + k_d i_a$$

 $d\cos\theta + k_s i_s\cos^{\alpha}\phi$

Overview: Image Formation, Cameras and Lenses Coming back to here...

- Lighting condition
- Scene geometry
- Surface properties
- Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

source

The **image formation process** that produces a particular image depends on

Surface reflection depends on both the **viewing** (θ_v, ϕ_v) and **illumination** (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

			Surface type	Typical value
			Fresh asphalt	0.03 - 0.04
			Open ocean	0.06
			Conifer forest (summer)	0.08 – 0.15
			Worn asphalt	0.12
			Deciduous trees	0.15 - 0.18
normal		Sand	0.15 – 0.45	
A			Tundra	0.18 - 0.25
		$(heta_v, \phi_v)$	Agricultural crops	0.18 - 0.25
		(0,0,0)	Bare soil	0.17
SUr) surface element		Green grass	0.20 - 0.25
			Dessert sand	0.30 - 0.40
			Snow	0.40 - 0.90
			Ocean ice	0.50 - 0.70
stant, called	albedo		Fresh snow	0.80 - 0.90

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF** $(\theta_i, \phi_i, \theta_v, \phi_v)$

Mirror surface: all incident light reflected in one directions $(\theta_v, \phi_v) = (\theta_r, \phi_r)$

Surface reflection depends on both the viewing (θ_v, ϕ_v) and illumination (θ_i, ϕ_i) direction, with Bidirectional Reflection Distribution Function: **BRDF**($\theta_i, \phi_i, \theta_v, \phi_v$)

Reflectance in Vision

Reflectance in Graphics

[Video is from https://www.youtube.com/watch?v=AdTxrggo8e8 reproduced for educational purposes]

Old school **film** camera

Digital CCD/CMOS camera

Let's say we have a sensor ...

Digital CCD/CMOS camera

digital sensor (CCD or CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

... and the **object** we would like to photograph

real-world object

What would an image taken like this look like?

digital sensor (CCD or CMOS)

real-world object

real-world object

real-world object

digital sensor (CCD or CMOS)

All scene points contribute to all sensor pixels

real-world object

digital sensor (CCD or CMOS)

Bare-sensor imaging

All scene points contribute to all sensor pixels

real-world object

barrier (diaphragm)

What would an image taken like this look like?

real-world object

most rays are blocked

Each scene point contributes to only one sensor pixel

Camera Obscura (latin for "dark chamber")

illum in tabula per radios Solis, quam in cœlo contingit: hoc eft, fi in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior deficere, vt ratio exigit optica.

Solis delignium Anno (hrish 15 4.4. Die 24: Januari

Sic nos exacté Anno . 1544 . Louanii celipfim Solis observauimus, inuenimusq; deficere paulo plus g dex-

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 24, 1544. He used this illustration in his book, "De Radio Astronomica et Geometrica," 1545. It is thought to be the first published illustration of a camera obscura.

principles behind the pinhole camera or camera obscura were first mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)

Credit: John H., Hammond, "Th Camera Obscure, A Chronicle"

First Photograph on Record

La table servie

Credit: Nicéphore Niepce, 1822

A pinhole camera is a box with a small hole (aperture) in it

Forsyth & Ponce (2nd ed.) Figure 1.2

Image Formation

Forsyth & Ponce (2nd ed.) Figure 1.1

Credit: US Navy, Basic Optics and Optical Instruments. Dover, 1969

Accidental Pinhole Camera

Perspective Projection

3D object point

$$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Forsyth & Ponce (1st ed.) Figure 1.4 projects to 2D image point $P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$ where

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image

It is convenient to think of the **image plane** being in front of the pinhole

What happens if object moves towards the camera? Away from the camera?

Focal Length

• For a fixed sensor size, focal length determines the field of view (fov)

Sensor size Q: What is the field of view of a full-frame (35mm) camera

Focal Length

28 mm

50 mm

35 mm

70 mm

Perspective Projection: Matrix Form

3D object point

Camera Matrix

Forsyth & Ponce (1st ed.) Figure 1.4

pint
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $\mathbf{S}P' = \mathbf{C}P$

(s is a scale factor)

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a

Far objects appear smaller than close ones

Size is **inversely** proportions to distance

Forsyth & Ponce (2nd ed.) Figure 1.3a

Far objects appear smaller than close ones

Forsyth & Ponce (2nd ed.) Figure 1.3a

Parallel lines meet at a point (vanishing point)

Forsyth & Ponce (1st ed.) Figure 1.3b

- Each set of parallel lines meets at a different point
- the point is called the **vanishing point**

Each set of parallel lines meets at a different point - the point is called the **vanishing point**

Sets of parallel lines on the same plane lead to **collinear** vanishing points - the line is called a **horizon** for that plane

Draw a horizon line.

Slide Credit: David Jacobs

Slide Credit: David Jacobs

Each set of parallel lines meets at a different point - the point is called the **vanishing point**

Sets of parallel lines on the same plane lead to **collinear** vanishing points — the line is called a **horizon** for that plane

A good way to **spot fake images** scale and perspective do not work vanishing points behave badly

Spotting fake images with Vanishing Points

Generated Image

Shadow Errors

Detected Shadow Errors

[Sarkar et al., 2023, Image from https://projective-geometry.github.io/ reproduced for educational purposes.]

Vanishing Point Errors

Detected Perspective Errors

Perspective Projection: Matrix Form

3D object point

Camera Matrix

Forsyth & Ponce (1st ed.) Figure 1.4

pint
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $\mathbf{S}P' = \mathbf{C}P$

(s is a scale factor)

3D object point

 ${\mathcal X}$ $egin{array}{c} y \ z \end{array}$ P =

projects to 2D image po

Forsyth & Ponce (1st ed.) Figure 1.4

pint
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Camera Matrix

$\mathbf{C} = \begin{bmatrix} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Camera Matrix

projects to 2D image

$$P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- $\mathbf{C} = \left[\begin{array}{cccc} f' & 0 & 0 & 0 \\ 0 & f' & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$
- Pixels are squared / lens is perfectly symmetric
 - Sensor and pinhole perfectly aligned
 - Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Camera Matrix

$\mathbf{C} = \begin{bmatrix} f'_x & 0 & 0 & 0 \\ 0 & f'_y & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

- Pixels are squared / lens is perfectly symmetric
 - Sensor and pinhole perfectly aligned
 - Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

 $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ projects to 2D image } \mathfrak{r}$

- Pixels are squared / lens is perfectly symmetric
 - Sensor and pinhole perfectly aligned
 - Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

$$\begin{bmatrix} 0 & 0 & c_x \\ f'_y & 0 & c_y \\ 0 & 1 & 0 \end{bmatrix} \mathbb{R}_{4 \times 4}$$

Pixels are squared / lens is perfectly symmetric

Sensor and pinhole perfectly aligned

Coordinate system centered at the pinhole

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Camera Matrix

$$P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

projects to 2D image projects

$\mathbf{C} = \begin{bmatrix} f'_{x} & 0 & 0 & c_{x} \\ 0 & f'_{y} & 0 & c_{y} \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbb{R}_{4 \times 4}$

Camera calibration is the process of estimating the parameters of the camera matrix based on a set of 3D-2D correspondences (usually requires a pattern whose structure and size are known)

point
$$P' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$
 where $P' = \mathbf{C}P$

Perspective Projection

3D object point

 $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ projects to 2D image point $P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$ where

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image coordinate frame aligned with the camera coordinate frame

Forsyth & Ponce (1st ed.) Figure 1.4

Orthographic Projection

3D object point
$$P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 projects to 2D image point $P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$

where

Forsyth & Ponce (1st ed.) Figure 1.6

Weak Perspective

Forsyth & Ponce (1st ed.) Figure 1.5

Summary of Projection Equations

3D object point $P = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ projects t

Perspective

Weak Perspective

Orthographic

to 2D image point
$$P' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
 where

$$x' = f' \frac{x}{z}$$

$$y' = f' \frac{y}{z}$$

$$x' = mx$$

$$m = \frac{f'}{z_0}$$

$$y' = my$$

$$x' = x$$

$$y' = y$$

Projection Models: Pros and Cons

- Weak perspective (including orthographic) has simpler mathematics accurate when object is small and/or distant
- useful for recognition

Perspective is more accurate for real scenes

details of a particular camera

- When **maximum accuracy** is required, it is necessary to model additional
- use perspective projection with additional parameters (e.g., lens distortion)

Projection Illusion

Our brains also know this perspective model very well!

Why **Not** a Pinhole Camera?

- If pinhole is **too big** then many directions are averaged, blurring the image
- If pinhole is **too small** then diffraction becomes a factor, also blurring the image
- Generally, pinhole cameras are **dark**, because only a very small set of rays from a particular scene point hits the image plane
- Pinhole cameras are **slow**, because only a very small amount of light from a particular scene point hits the image plane per unit time

Image Credit: Credit: E. Hecht. "Optics," Addison-Wesley, 1987

Reason for Lenses

A real camera must have a finite aperture to get enough light, but this causes blur in the image

Solution: use a lens to focus light onto the image plane

Reason for **Lenses**

A real camera must have a finite aperture to get enough light, but this causes blur in the image

The role of a lens is to capture more light while preserving, as much as possible, the abstraction of an ideal pinhole camera.

Solution: use a **lens** to focus light onto the image plane

Snell's Law

$$n_1 = n_2 \sin \alpha_2$$

Snell's Law

 $n_1 \sin lpha_1$

$$n_1 = n_2 \sin \alpha_2$$

82

Lens Basics

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent

• We can use these 2 properties to find the **thin** lens equation

Lens Basics

away. How far does the lens move?

• A 50mm lens is focussed at infinity. It now moves to focus on something 5m

Pinhole Model with Lens

Lens Basics

• Objects off the plane are blurred depending on distance

Smaller aperture \Rightarrow smaller blur, larger **depth of field**

Depth of Field

• Photographers use large apertures to give small depth of field

Aperture size = f/N, \Rightarrow large N = small aperture

Real Lenses

- Real Lenses have multiple stages of positive and negative elements with differing refractive indices
- This can help deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a

Spherical Aberration

Un-aberrated image

Image from lens with Spherical Aberration

Vignetting

Vignetting in a two-lens system

Forsyth & Ponce (2nd ed.) Figure 1.12

The shaded part of the beam never reaches the second lens

Vignetting

Image Credit: Cambridge in Colour

Chromatic Aberration

- Index of **refraction depends on wavelength**, λ , of light
- Light of different colours follows different paths
- Therefore, not all colours can be in equal focus

Image Credit: Trevor Darrell

Lens **Distortion**

Lines in the world are no longer lines on the image, they are curves! 95

Fish-eye Lens

Szeliski (1st ed.) Figure 2.13

Other (Possibly Significant) Lens Effects Scattering at the lens surface — Some light is reflected at each lens surface There are other geometric phenomena/distor — pincushion distortion

- harrel distortion

Parametric calibration errors

Image from [Schöps et al., 2019]. Reproduced for educational purposes.

[Schöps et al., 2020]

<u>nragsdale/3192314056/</u>

Lecture Summary

— We discussed a "physics-based" approach to image formation. Basic abstraction is the **pinhole camera**.

 Lenses overcome limitations of the pinhole model while trying to preserve it as a useful abstraction

- Projection equations: **perspective**, weak perspective, orthographic
- Thin lens equation
- Some "aberrations and **distortions**" persist (e.g. spherical aberration, vignetting)