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This Lecture
Topics: Image Formation 

— Image Formation 
— Cameras and Lenses

Readings: 

— Today’s Lecture:  Szeliski Chapter 2, Forsyth & Ponce (2nd ed.) 1.1.1 — 1.1.3  
— Next Lecture:       Forsyth & Ponce (2nd ed.) 4.1, 4.5 

— Projection 



Lecture 2: Goal

To understand how images are formed 
  

(and develop relevant mathematical 
concepts and abstractions)



What is Computer Vision?
Compute vision, broadly speaking, is a research field aimed to enable computers 
to process and interpret visual data, as sighted humans can.

blue sky,  
trees,  
fountains, 
UBC, …

Image (or video)

Sensing Device

Image Credit: https://www.flickr.com/photos/flamephoenix1991/8376271918

Interpreting Device

Interpretation
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https://www.flickr.com/photos/flamephoenix1991/8376271918


Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on 

— Lighting condition 

— Scene geometry 

— Surface properties  

— Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

source

surface 
element

normal

sensor

eye



Light and Color

•Light is electromagnetic radiation in the 
400-700nm band

•This is the peak in the spectrum of sunlight 
passing through the atmosphere

•Newton’s Prism experiment showed that white 
light is composed of all frequencies

•Black is the absence of light! 



Spectral Power Distribution
Sunlight Fluorescent

•The spectral distribution of energy in a light ray determines its colour

•Surfaces reflect light energy according to a spectral distribution as well

•The combination of incident spectra and reflectance spectra 
determines the light colour

[ scratchapixel.com ]



Spectral Reflectance Example

E(λ)

S(λ)

E(�)S(�)



Spectral Reflectance Example
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Our brains already knows this

https://en.wikipedia.org/wiki/The_dress



Our brains already knows this

https://en.wikipedia.org/wiki/The_dress Figure design by Kasuga~jawiki; vectorization by Editor at Large; "The dress" modification by Jahobr, CC-BY-SA 2.5 Generic

https://ja.wikipedia.org/wiki/User:Kasuga~jawiki
https://commons.wikimedia.org/wiki/User:Editor_at_Large
https://commons.wikimedia.org/wiki/User:Jahobr


Surface Reflectance

It also depends on surface properties, e.g., diffuse or specular

• Reflected intensity also depends on geometry: surface 
orientation, viewer position, shadows, etc.



Diffuse and Specular Reflection

• A pure mirror reflects light along a line symmetrical about the surface normal


• A pure diffuse surface scatters light equally in all directions

l n̂

✓i ✓r

l n̂

Lambertian Reflection 
(Diffuse)

Pure Mirror Reflection
✓i = ✓r

Specular surfaces directly reflect over a small angle



Diffuse and Specular Reflection
• A sphere lit with ambient, +diffuse, +specular reflectance

Ambient +Diffuse +Specular



Diffuse and Specular Reflection
• A motivating example that uses this model

[Video from https://machinelearning.apple.com/research/neural-3d-relightable reproduced for educational purposes]

https://machinelearning.apple.com/research/neural-3d-relightable


Diffuse Reflection
• Light is reflected equally in all directions (Lambertian surface)


• But the amount of light reaching unit surface area depends on the angle 
between the light and the surface...

2.1



Specular Reflection
• Light reflected strongly around the mirror reflection direction


• Intensity depends on viewer position 

�

2.2



Phong Illumination Model
• Includes ambient, diffuse and specular reflection

✓

�✓

Light Source

Surface Normal

Viewing Ray

Reflected Ray

I = kaia + kdid cos ✓ + ksis cos
↵ �



Overview: Image Formation, Cameras and Lenses

The image formation process that produces a particular image depends on 

— Lighting condition 

— Scene geometry 

— Surface properties  

— Camera optics and viewpoint

Sensor (or eye) captures amount of light reflected from the object

source

surface 
element

normal

sensor

eye

Coming back to here…



(small) Graphics Review

source

surface 
element

normal sensor



(small) Graphics Review

source

surface 
element

normal sensor



(small) Graphics Review

(✓i,�i)(✓r,�r)

source

surface 
element

normal sensor

(✓v,�v) = (✓r,�r)

Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 

(✓i,�i)(✓r,�r)
BRDF(✓i,�i, ✓v,�v) =

⇢d
⇡

(✓v,�v) = (✓r,�r)

BRDF(✓i,�i, ✓v,�v) =
⇢d
⇡

constant, called albedo

Lambertian surface: 

Slide adopted from: Ioannis (Yannis) Gkioulekas (CMU)
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Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 

(small) Graphics Review
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I(~i · ~n)



Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 
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Surface reflection depends on both the viewing              and illumination 
direction, with Bidirectional Reflection Distribution Function: 
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Reflectance in Vision



Reflectance in Graphics

[Video is from https://www.youtube.com/watch?v=AdTxrggo8e8 reproduced for educational purposes]

https://www.youtube.com/watch?v=AdTxrggo8e8


Cameras

Old school film camera
Digital CCD/CMOS camera



Let’s say we have a sensor …

digital sensor 
(CCD or 
CMOS)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Digital CCD/CMOS camera



… and the object we would like to photograph

digital sensor 
(CCD or 
CMOS)

real-world 
object

What would an image taken like this look like?

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 

digital sensor 
(CCD or 
CMOS)

real-world 
object

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 

digital sensor 
(CCD or 
CMOS)

real-world 
object

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 

digital sensor 
(CCD or 
CMOS)

real-world 
object

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 

digital sensor 
(CCD or 
CMOS)

real-world 
object

All scene points contribute to all sensor pixels
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Bare-sensor imaging 

All scene points contribute to all sensor pixels
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



barrier (diaphragm)

pinhole 
(aperture)

digital sensor 
(CCD or 
CMOS)

real-world 
object

What would an image taken like this look like?

Pinhole Camera  

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



digital sensor 
(CCD or 
CMOS)

real-world 
object

Pinhole Camera  
most rays are 

blocked

one makes it 
through

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



digital sensor 
(CCD or 
CMOS)

real-world 
object

Pinhole Camera  

Each scene point contributes to only one sensor pixel

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Camera Obscura (latin for “dark chamber”)

Reinerus Gemma-Frisius observed an eclipse of the sun at Louvain on January 
24, 1544. He used this illustration in his book, “De Radio Astronomica et 
Geometrica,” 1545. It is thought to be the first published illustration of a camera 
obscura.  

Credit: John H., Hammond, “Th Camera Obscure, A Chronicle”

principles behind the pinhole camera or camera obscura were first 
mentioned by Chinese philosopher Mozi (Mo-Ti) (470 to 390 BCE)



First Photograph on Record

Credit: Nicéphore Niepce, 1822

La table servie 



Pinhole Camera

Forsyth & Ponce (2nd ed.) Figure 1.2 

A pinhole camera is a box with a small hole (aperture) in it 



Image Formation

Forsyth & Ponce (2nd ed.) Figure 1.1 

Credit: US Navy, Basic Optics and Optical Instruments. Dover, 1969 



Accidental Pinhole Camera

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Pinhole Camera

x’

x

zf’

image
plane

pinhole object

2.3



Perspective Projection
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Pinhole Camera 

x’

x

zf’

image
plane

pinhole object

f’ is the focal length of the camera 

Note: In a pinhole camera we can adjust the focal length, all this will do is change the size of the resulting image 



x’

x

zf’

image
plane

pinhole object

f’

x’

image
plane

Pinhole Camera 
It is convenient to think of the image plane being in front of the pinhole

What happens if object moves towards the camera? Away from the camera? 



Focal Length
• For a fixed sensor size, focal length determines the field of view (fov)

✓2

f2

✓1

f1

Q: What is the field of view of a full-frame (35mm) camera 
with a 50mm lens? 100mm lens?

2.5
Sensor size

Focal length



Focal Length



Perspective Projection: Matrix Form

Forsyth & Ponce (1st ed.) Figure 1.4 
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2.4



Perspective Effects 

Forsyth & Ponce (2nd ed.) Figure 1.3a 

Far objects appear smaller than close ones



Perspective Effects 

Forsyth & Ponce (2nd ed.) Figure 1.3a 

Far objects appear smaller than close ones

Size is inversely proportions to distance 



Perspective Effects 

Forsyth & Ponce (2nd ed.) Figure 1.3a 

Far objects appear smaller than close ones



Perspective Effects 

Forsyth & Ponce (1st ed.) Figure 1.3b 

Parallel lines meet at a point (vanishing point)



Vanishing Points 

Each set of parallel lines meets at a different point 

— the point is called the vanishing point  



Vanishing Points 

Each set of parallel lines meets at a different point 

— the point is called the vanishing point  

Sets of parallel lines on the same plane lead to collinear vanishing points 

— the line is called a horizon for that plane  



Vanishing Points

Slide Credit: David Jacobs 



Vanishing Points

Slide Credit: David Jacobs 



Vanishing Points

Slide Credit: David Jacobs 



Vanishing Points 

Each set of parallel lines meets at a different point 

— the point is called the vanishing point  

Sets of parallel lines on the same plane lead to collinear vanishing points 

— the line is called a horizon for that plane  

A good way to spot fake images 

— scale and perspective do not work 
— vanishing points behave badly 



Spotting fake images with Vanishing Points

[Sarkar et al., 2023, Image from https://projective-geometry.github.io/ reproduced for educational purposes.]

https://projective-geometry.github.io/


Perspective Projection: Matrix Form
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Aside: Camera Matrix

Camera calibration is the process of estimating the parameters of the 
camera matrix based on a set of 3D-2D correspondences  

(usually requires a pattern whose structure and size are known)



Perspective Projection
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Forsyth & Ponce (1st ed.) Figure 1.4 

Note: this assumes world coordinate frame at the optical center (pinhole) and aligned with the image plane, image 
coordinate frame aligned with the camera coordinate frame
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Orthographic Projection
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Forsyth & Ponce (1st ed.) Figure 1.6 



Weak Perspective 

Forsyth & Ponce (1st ed.) Figure 1.5 
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Summary of Projection Equations 
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Projection Models: Pros and Cons

Weak perspective (including orthographic) has simpler mathematics 

— accurate when object is small and/or distant 
— useful for recognition 

Perspective is more accurate for real scenes 

When maximum accuracy is required, it is necessary to model additional 
details of a particular camera 
— use perspective projection with additional parameters (e.g., lens distortion) 
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Projection Illusion

Our brains also know this perspective model very well!



Why Not a Pinhole Camera?

– If pinhole is too big then many directions are 
averaged, blurring the image  

– If pinhole is too small then diffraction 
becomes a factor, also blurring the image  

– Generally, pinhole cameras are dark, 
because only a very small set of rays from a 
particular scene point hits the image plane  

– Pinhole cameras are slow, because only a 
very small amount of light from a particular 
scene point hits the image plane per unit time 

Image Credit: Credit: E. Hecht. “Optics,” Addison-Wesley, 1987 78



Reason for Lenses

circle of  
confusion 

(blur)

point  
in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane



Reason for Lenses

circle of  
confusion 

(blur)

point  
in focus

A real camera must have a finite aperture to get enough light, but this causes 
blur in the image

Solution: use a lens to focus light onto the image plane

The role of a lens is to capture more light while preserving, as much as 
possible, the abstraction of an ideal pinhole camera.



Snell’s Law

n1 sin↵1 = n2 sin↵2
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Snell’s Law

n1 sin↵1 = n2 sin↵2

Index of refraction
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Lens Basics
• A lens focuses rays from infinity at the focal length of the lens


• Points passing through the centre of the lens are not bent

• We can use these 2 properties to find the thin lens equation

from 1

f0

To focus closer,  
we have to move  

the image plane back

2.6



Lens Basics
• A 50mm lens is focussed at infinity. It now moves to focus on something 5m 

away. How far does the lens move?

2.6



Pinhole Model with Lens

x’

x

z

image
plane

objectlens

z’
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Lens Basics

• Objects off the plane are blurred depending on distance

Plane of 

focus

In focus

blur

• Lenses focus all rays from a plane in the world



Effect of Aperture Size

defocus 
blur

smaller 
blur

Smaller aperture ⇒ smaller blur,  larger depth of field



Depth of Field
• Photographers use large apertures to give small depth of field

Aperture size = f/N, ⇒ large N = small aperture



Real Lenses

• Real Lenses have multiple stages of 
positive and negative elements with 
differing refractive indices


• This can help deal with issues such as 
chromatic aberration (different colours 
bent by different amounts), vignetting 
(light fall off at image edge) and sharp 
imaging across the zoom range



Spherical Aberration

Forsyth & Ponce (1st ed.) Figure 1.12a 
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Spherical Aberration



Vignetting
Vignetting in a two-lens system

The shaded part of the beam never reaches the second lens  

Forsyth & Ponce (2nd ed.) Figure 1.12 
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Vignetting

Image Credit: Cambridge in Colour93



Chromatic Aberration 
— Index of refraction depends on wavelength, λ, of light  

— Light of different colours follows different paths 

— Therefore, not all colours can be in equal focus  

Image Credit: Trevor Darrell
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Lens Distortion 

Szeliski (1st ed.) Figure 2.13 

Fish-eye Lens

Lines in the world are no longer lines on the image, they are curves! 
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Other (Possibly Significant) Lens Effects 
Scattering at the lens surface 
— Some light is reflected at each lens surface  

There are other geometric phenomena/distortions   
— pincushion distortion 
— barrel distortion 
— etc 
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https://www.flickr.com/photos/sorenragsdale/3192314056/ 
Image is cc-by 2.0Image from [Schöps et al., 2019]. Reproduced for educational purposes.

Parametric calibration errors [Schöps et al., 2020]

https://www.flickr.com/photos/sorenragsdale/3192314056/


Lecture Summary

— We discussed a “physics-based” approach to image formation. Basic 
abstraction is the pinhole camera.  

— Lenses overcome limitations of the pinhole model while trying to preserve 
it as a useful abstraction  

— Projection equations: perspective, weak perspective, orthographic  

— Thin lens equation  

— Some “aberrations and distortions” persist (e.g. spherical aberration, vignetting) 
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