


Recall: Linear Classifier

Deflnes a score function:

image features

o Image Credit: loannis (Yannis) Gkioulekas (CMU)



Recall: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

input image

02 |-05]| 01 | 2.0 515

15 | 13 | 21 | 00 231
0 |025| 0.2 | -0.3 24
W 2

L

1.1 -96.8 | cat score

3.2 | —» | 437.9 dog score

-1.2 61.95 ship score
b f(wi; W, b)

Image Credit: loannis (Yannis) Gkioulekas (CMU)



Linear Classification

® [et’s start by using 2 classes, e.g., bird and plane
® Apply labels (y) to training set:

-t T 85
a1 1B

® Use a linear model to regress y from x

- . . T
y = sign h = sign w- X,



2-class Linear Classification

® Separating hyperplane, projection to a line defined by w

plane

P ———
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s y = sign h = sign w- X,
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bird




N-class Linear Classification

® One hot regression = | vs all classifiers
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One-Hot Regression

® A better solution is to regress to one-hot targets = | vs all
classifiers _ -

0

| class 2 =
N ‘automobile’
— | 0

| class 4 =

‘cat’




One-Hot Regression

® Transpose (to match Project 3 notebook)

ﬁ L11  L12 L13

w ro1 T99 T3 ... W B

L3171 432 L33

() ... | auto
1 ...| cat

o O

o O
-

XW =T

® Solve regression problem by Least Squares



Regularized Classification

® Add regularization to CIFARIO linear classifier

P ‘ T 1
r - }
i " * N
: o <, L L W
- . B
¥y -* . , i o 4
“ i ‘7‘ -'" r » +

® Row | = overfitting, Row 3 = oversmoothing?

e = |XW — T|” + \|W|?



Under/Overfitting

® Jest error vs lambda

0.17
= training error
—test error
0.5
S
G 0.4
N
=
0.3
0.2 | | | | | ]
-12 0 -2 -4 -6 -8 -10

log lambda

® Training error always decreases as lambda is reduced

® Test error reaches a minimum, then increases = overfitting
10



Regularized Classification

® Add regularization to CIFARIO linear classifier
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® Row | = overfitting, Row 3 = oversmoothing?

e = |XW — T|” + \|W|?



Non-Linear Optimisation

® W/ith a linear predictor and L2 loss, we have a closed form
solution for model weights W

® How about this (non-linear) function
h = WQ maX(O, W1X>

® Previously (e.g., bundle adjustment), we locally linearised the
error function and iteratively solved linear problems

e = Z h,—t;|" ~ [JAW 41|

AW = —(J' D) J'r

&,

‘t Does this look like a promising approach!?

12



(Gradient descent one more time

13
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Vanilla Gradient Descent

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update

14
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Problem with vanilla GD

VWhat if loss changes quickly in one direction and slowly in another”?

VWhat does gradient descent do”?
Very slow progress along shallow dimension, jitter along steep direction

=

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

15
Stanford cs231n
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”

Lee et al, “Gradient Descent Only Converges to Minimizers”, JLMR Workshop and Conference Proceedings, 2016

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

18
Stanford cs231n
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Stochastic gradient descent

Our gradients come from mini-
pbatches so they can e noisy!

L(W) = ZL (i, yi, W

N
1
Vi L(W) = N Y VwLi(zi,yi, W)

Q: How would you remove the noise”

19
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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SGD + Momentum

SGD

Lt+1 — Lt — Oévf(f'?t)

while True:
= compute_gradient(x)
X += learning_rate * dx

d X

- B
q

Jild up “ve

NO gives 1

Stanford cs231n

SGD+Momentum

pvr + V f(x¢)

Li4+1 — Lt — QUL41

Uti1

vX = 0

while True:
dx = compute_gradient(x)
vX = rho * vx + dx
X += learning_rate * vX

OCIty” as a running mean of gradients

Ct

on’; typically r

20

N0=0.9 or 0.99
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SGD + Momentum

Gradient Noise

ocal Minima Saddle points

AN

2oor Conditioning

21
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Nesterov Momentum

_—— SGD+Momentum

= Nlesterov

22
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Nesterov Momentum

_—— SGD+Momentum

= Nlesterov

22
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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RMSProp

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

e oo

Q: What happens with RMSProp”?

Tieleman and Hinton, 2012

23
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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RMSProp

_— SGD+Momentum

— RMSProp

24
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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RMSProp

_— SGD+Momentum

— RMSProp

24
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = betaZ * second_moment + (1 - betaz) * dx * dx
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7))

SMSProp

RMSProp with momentum

Q: What happens at first the timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

25
Based on slides for Stanford ¢cs231n by Li, Jonson, and Young. Modified and reused with permission
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1l, num_iterations):
dx = compute_gradient(x) Nomentum
first moment = betal * first moment + (1 - betal) * dxX

second moment = beta2 * second moment + (1 - beta2) * dx * dxX

first_unbias = first_moment / (1 - betal ** t)

Sl1as correction

Sias correction for the fact that Adam with betal = 0.9,
first and second moment neta? = 0.999, and leaming_rate = 1e-4
estimates start at zero S a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

26
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Ada

SGD

SGD+Momentum

RMSProp

Adam

27
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission



http://cs231n.stanford.edu/

THE UNIVERSITY
OF BRITISH COLUMBIA

Ada

SGD

SGD+Momentum

RMSProp

Adam

27
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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|_earning rate: nyperparameter

loss

low learning rate

high learning rate

good learning rate

lteration

28
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Lecture 20: Neural Networks 1



Menu for Today
Topics:
— Neural Networks introduction — 2-layer fully connected net
— Activation functions softmax, relu — Backprop intro

— Today’s Lecture: Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS
498/598

Reminders:

—Assignment 5: due Apr 3rd
—Quiz 6 April 7th
—Assignment 6: due Apr 10th <— watch out!



Linear Classification

vectorized
Input Image
— W T il 0
L9 1
L3 — S
T4 :

. learned 1 vs all one-hot
classifiers target

31



Softmax + Logistic Outputs

® Linear regression to one-hot targets is a bit strange..

® QOutput could be very large, and scores >>1 are penalised even
for the correct class, likewise for scores << | for incorrect

® How about restricting output scores to 0-1?

4

32



Softmax + Cross Entropy

® What is the gradient of the softmax linear classifier?
® We could use L2 loss, but we'll use cross entropy instead

® This has a sound motivation — it is a measure of the difference
between probability distributions

® |t also leads to a simple update rule

& (192

do(x)
Note: = o(x)(1 — o(x))
0x

Try yourself! 33



Linear + Softmax Regression

® We found the following gradient descent update rule
Wt_|_1 — Wt — Oé(h — t)XT

/1N

prediction targets data
® This applies to:

Linear regression h = W'x L2 loss

Softmax regression h = o(W'x) cross-entropy loss

® The same update rule with a binary prediction function
h=1,.(W'x)

implements the multiclass Perceptron learning rule

34



History of the Perceptron

U ln 'ﬁ(" ll"l i/u.‘ q &y

lf u..l.i'.fl T il :“E{] U,|
m _ ' |
l- l[ li."lﬁ,,1

W]

%y

[ |.B.M. ltalia ]

® This machine (IBM 704) was used by Frank Rosenblatt to
implement the perceptron in 1958

® Based on his statements, the New York Times reported it as:

"the embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce itself

and be conscious of its existence.”’



2-class Perceptron Classifier

® (lassification function is

I

y = sign(w” x)

® |inear function of the data (x) followed by 0/ activation

® Update rule: present data x
- if correctly classified, do nothing
- if incorrectly classified, update the weight vector

Wpnt1 = Wy + Ui X

36



Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning

42



Perceptron Limitations

® Perceptrons + linear + softmax regressors are limited to data
that are linearly separable, e.g.,

e

0 Oo \C‘>\E . ++

O C\)‘i\ ,’l' " T 4 2:

o © E/\'\ + + )

Oyt 4
Linearly separable Not linearly separable

&,

& Could we extract features to make the data linearly separable?



CIFAR IO Feature Extraction

® 50 far, we used RGB pixels as the input to our classifier
® [eature extraction can improve results by a lot

® ec.g,Coates et al.achieve 79.6% accuracy on CIFARIO with a
features based on k-means of whitened image patches

EENFESEEEE ERsiEEE™m:N
REERNRNEEERE 11070 a=).L
HElEGEEREESEI BT IR llaE
ElECiENNEE JIA8

NENEdlESEE "Fim

ENllaNEREEEL=E [i=e

sET AL L mel FERE = (B
HES=NEUHENEE SR ISOhREE
EREARNEENAE CHINIA=LEEA
HflEER=NESE I'Y I=FAFETE

k-means, whitened k-means, raw RGB

[ Coates etal. 2011 ] 44



Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is equivalent
to a fully connected layer in a neural network

® Typically, we'll also add a bias term b
h=0(W'x+b)

45
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® Note that our linear matrix multiplication classifier is equivalent
to a fully connected layer in a neural network
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Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is equivalent
to a fully connected layer in a neural network
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® Typically, we'll also add a bias term b

h=0(W'x+Db)
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Linear = Fully Connected Layer

® Note that our linear matrix multiplication classifier is equivalent
to a fully connected layer in a neural network

"3

® Typically, we'll also add a bias term b
h=0(W'x+b)

49



A Neuron

weights

activation function

Y output

&

N
y=17r (szl‘z an b)
i=1

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLLU)
50



Activation Function: Sigmoid

f(x)=1/(1+e™)

Figure credit: Fei-Fei and Karpathy

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0, 1]

51



Activation Function: ReLU (Rectified Linear Unit)

f(x) = max(0, x)

Figure credit: Fei-Fei and Karpathy

Maintains good gradient flow In networks, prevents vanishing gradient problem
Very commonly used in interior (hidden) layers of neural nets

o
% 19.3 .f Why can’t we have linear activation functions?



Neural Network

Connect a bunch of neurons together — a collection of connected neurons

/O ‘One neuron,

O

53



Neural Network

Connect a bunch of neurons together — a collection of connected neurons
/“ 'two neurons’

54



Neural Network

Connect a bunch of neurons together — a collection of connected neurons

0O



Neural Network

Connect a bunch of neurons together — a collection of connected neurons

O ‘four neurons’

560



Neural Network

Connect a bunch of neurons together — a collection of connected neurons

O ‘flve neurons’




Neural Network

Connect a bunch of neurons together — a collection of connected neurons

oA ~ <X
ISIOLAZ0) o

53
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Neural Network: Terminology

'nput’ [ayer




Neural Network: Terminology

‘hidden’ layer

layer
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Neural Network: Terminology

‘hidden’ layer
'Input’ layer ‘output’ layer




Neural Network: Terminology
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Neural Network: Terminology

(@)




Neural Network

=0

How many neurons?  4+2




Neural Network

How many neurons? 4+2 =06 How many weights®

O
@
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Neural Network

How many neurons? 4+2 =06 How many weights®
B3x4)+ (4 x2) =20

O
@
O



Neural Network

How many neurons? 4+2 =06 How many weights®

(3% 4) + (4 x2) =20

N\
/o

N /
N\

\ ‘
e '
=X >
N7 Q‘

)

¢

4/

~

How many learnable parameters?

O
@
O



Neural Network

How many neurons? 4+2 =06 How many weights®
B3x4)+ (4 x2) =20

20+4+2=20
How many learnable parameters? bias terms



Neural Network Intuition

* slide from Marc’Aurelio Renzato
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Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)
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Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...
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Neural Network Intuition

Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping”?

Answer: Compositions of simpler functions (a.k.a. layers)? \We will talk more
about what specific functions next ...

Question: \What does a hidden unit do?
Answer: |t can be thought of as classifier or a feature.

Question: Why have many layers?

Answer: 1) More layers = more complex functional mapping

2) More efficient due to distributed representation

* slide from Marc’Aurelio Renzato



2-Layer Neural Network ¢

activations
INput data a

O Oy

To X
52
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2-Layer Neural Network ¢

activations
INput data a




2-Layer Neural Network — n hidden, 1 input/output

activations
INput data a

(1) (2)
CCCDO u 9% 4l targets
€ — t()

weights

(2



2-Layer Neural Network — n hidden, 1 input/output
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0.5 -

0.0 A

=107

6

4 hidden units
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2-Layer Neural Network — n hidden, 1 input/output
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Neural Network as Universal Approximator

Non-linear activation is required to provably make the Neural Net a universal
function approximator

/3



Neural Network as Universal Approximator

Non-linear activation is required to provably make the Neural Net a universal
function approximator

10

Intuition: with RelLU activation, we
effectively get a linear spline approximation to
any function.

05

05

Optimization of neural net parameters =

-10

finding slops and transitions of linear pieces S ——

The quality of approximation depends on the
number of linear segments

/3
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Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the width

goes to infinity. [ Hornik et al., 1989 |




Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate ar
uous function with compact support to arbitrary accuracy, when the widt
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y
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goes to infinity. [ Hornik et al., 1989 |

Universal Approximation Theorem (revised): A network of infinite depth with a
hidden layer of size d 4+ 1 neurons, where { Is the dimension of the input space,
can approximate any continuous function.

Lu et al., NIPS 2017 ]



Neural Network as Universal Approximator

Universal Approximation Theorem: Single hidden layer can approximate ar
uous function with compact support to arbitrary accuracy, when the widt

contir

y
N

goes to infinity. [ Hornik et al., 1989 |

Universal Approximation Theorem (revised): A network of infinite depth with a
hidden layer of size d 4+ 1 neurons, where { Is the dimension of the input space,
can approximate any continuous function.

Lu et al., NIPS 2017 ]

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

[ Lin and Jegelka, NIPS 2018 |



2-Layer Neural Network — n hidden, 1 input/output

activations
INnput data a

(1) (2)
(ZCS u 9% 4 targets
€ — to

weights

Oe

O How to compute the gradients? e.q.,

30
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2-Layer Neural Network — 1 hidden, 1 input/output

Input data | activations ,
T wéo> ) wéo) targets

O O O-»%to

weights

81



2-Layer Neural Network — 1 hidden, 1 input/output

y = wo(max(0, w1z + b1)) + b L=(y—t)

Optimise by gradient descent

oL

by . b1 dby
—

W9 Wo oL

bg bg Owa

oL

Oba

oL

% 19.5] How to compute the gradients? e.g., Sepe
w1

82



2-Layer Neural Network — 1 hidden, 1 input/output ¢

Y — wz(ma,x(O,wlx + b1)) + bg L = (y — t)2

11 a
T —> .xw1—|—b1 i—» max(0,0) i—» CX’(UQ‘l—bz |—>y

19 Alternative: build a
Y —J o — 1 ;' o’ |—> L

computational graph to
apply the chain rule

83



2-Layer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights
/target

3 1 2 5

(3] a
T —>» .xfwl—|—b1 i—» max(0,0) i—» QX’(Uz‘l—bz |—>y
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2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass
/target

3 1 2 5

(3] a
T —>» .xw1—|—b1 i—» max(0,0) i—» 0X1U2+b2 |—>y
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2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass
/target

3 1 4 2 -5

(3] a
T —>» .xw1—|—b1 i—» max(0,0) i—» 0X1U2+b2 |—>y
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2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass
/target

3 1 4 4 2 -5

(3] a
T —>» .xw1—|—b1 i—» max(0,0) i—» 0X1U2+b2 |—>y
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2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass
/target

3 1 4 4 2 -5 3

(3] a
T —>» .xw1—|—b1 i—» max(0,0) i—» 0X1U2+b2 |—>y

89



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass
/target

3 1 4 4 2 -5 3

(3] a
T —>» .xw1—|—b1 i—» max(0,0) i—» 0X1U2+b2 |—>y
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2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass
/target

3 1 4 4 2 -5 3

(3] a
T —>» .xw1—|—b1 i—» max(0,0) i—» 0X1U2+b2 |—>y

89



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

Input + Initial weights Forward pass

/target
1 3 1 4 4 2 -5 3
11 a
L —> OX’w1—|—b1|—> max(0,0)|—>o><’w2—|-bz |—>y
3 L 4

89



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
1 a
L —> wal+b1|—> maX(0,0)|—>QXw2_|_b2|_>y

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
1 a
L —> wal+b1|—> maX(0,0)|—>QXw2_|_b2|_>y

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
1 a
L —> wal+b1|—> maX(0,0)|—>QXw2_|_b2|_>y

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
1 a
L —> .le—|—b1|—> max(0,0)|—>.xw2_|_bzl_,y

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -D 3
3 a
r —>» .le—|—b1|—> max(0,0)|—>.xw2_|_bzl_,y
4

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -D 3
3 a
r —>» .le—|—b1|—> max(0,0)|—>.xw2_|_bzl_,y
4

4

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -D 3
3 a
r —>» .le—|—b1|—> max(0,0)|—>.xw2_|_bzl_,y
4

16 4
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2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -D 3
3 a
r —>» .le—|—b1|—> max(0,0)|—>.xw2_|_bzl_,y
. 4

16 4

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
by (0, ) i—»a by |— ¥
T —» max (0,
‘X’w1+1|—8> o oxw2+2|—>4

16 4

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
by (0, ) i—»a by |— ¥
T —» max (0,
‘X’w1+1|—8> o oxw2+2|—>4
S 16 4
3 1 2 4

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
by (0, ) i—»a by |— ¥
r —» max (0,
‘Xw1‘|‘1|—8’ » oxwz+2|—>4
5 8 16 4
3 1 2 4

36



2-| ayer Neural Network — 1 hidden, 1 input/output ¢
Input + Initial weights Forward pas oL
Pt pass Backward pass = e
3 1 4
:c1—> e X wi;+ b iL» max(0, e) i—a4> —— 3
1 , ® ® X W b
: : 3 q 2 1 02 — Y
16 4 °
3 1 2
4 OL
Y B o —1{ & o’ |—> L i)ulj;l
4 4 1 Gradient = | 2

OL
Owo

oL
b2

87



2-| ayer Neural Network — 1 hidden, 1 input/output ¢
" . oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
b iL' (0, ) i—a> +by =Y
— max (0,
T ® X Wy + 01 3 o ® X Wy 5 I_,4
5 8 16 4
1T 2
3 o 4
Y _J o — 1 ;» .2 |—> [, 8
4 4 1 Gradient = | &

10
4

87



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
3 1 4 4 2 -5 3
| by (0,0) — b
L —> max(0, e
.Xw1+1|—8’ |—8'0X’UJ2+2|—>4y
8 8 16 4
1 o Gradient descent step
3 o 4
y _J o — 1 ;V '2 i—» L
4 4 1

38
38
10
4

33



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 A 4 2 -5 3
01 a
LI —> oxw1—|—b1|—> max(0,0)|—>.xw2_|_b2|_,y
38 e A
5 8 16 4
3 1 D A Gradient descent step
Y —J o —1 &, .2 i_, I ’l;))l :13 g
4 4 1 1 B
w| 2|7 |16

by -9 4

33



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
1 a
LI —> wal+b1|—> max(0,0)|—>.xw2_|_bzl_,y
38 e A
5 8 16 4
3 1 D A Gradient descent step
Y —J o — 1| 2;2, '2 i_, I w1 3 » 8
4 4 1 b1 s ] 0 3
(19 2 16

by -9 4

33



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

OL
Input + Initial weights Forward pass  Backward pass = P
/target °
1 3 1 4 4 2 -5 3
3 a
LI — oxw1—|—b1|—> max(0,0)|—>.xw2_|_b2|_,y
38 e A
5 8 16 4
3 1 D A Gradient descent step
Y —J o — 1| 2;2, o> i_, I (V03] 3 8 1
4 4 1 b | | _131 8| |-
W2 2 161 |-2

b, -9 4 -0

33



2-| ayer Neural Network — 1 hidden, 1 input/output ¢

oL
Input + Initial weights Forward pass  Backward pass = P
/target 1 1 b °
1 g 1 .4 4 Z B 3
1 a
- aX 0, i—»
X oxw1+b1|—8> 11) ( ‘) ] ® X wy + by |—’i/
8 8 16 4
3 1 2 A Gradient descent step
Y _J o —1{ & o> |—> I, w1 3 3 1
4 4 1 b | | _151 8| |-
Wo 2 16 |-2
b, -9 4 -0

88 + update weights



2-| ayer Neural Network — 1 hidden, 1 input/output ¢
. . oL
Input + Initial weights Forward pass  Backward pass = P
/target . | P °
; 3 X 4 4 2 B 3
11 a
— 0, i—»
X .le—|—b1|—8> ma.X( .) q .X’lﬂ2+b2 |—>4y
8 8 16 4
; 1 o A Gradient descent step
Y ) o —1{ & o’ |—> L Wi 3 . 1
W9 2 16 B -2
Repeat: +Input/target, Forward, bo -5 4 -6

- |
Backward, Update until Converge;ce. + update weights
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0z
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Local
gradients

Lecture 6 - 29
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Upstream
gradient
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&<

Downstream 6)8 f
radients 0z 4
5 — Local 0L

% gradients aZ
Q% —— Upstream
. @ 07 gradient

Justin Johnson Lecture 6 - 30 September 23, 2019
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Downstream 6)8 f
radients 0z 4
5 — Local 0L

% gradients aZ
Q% —— Upstream
. @ 07 gradient

Justin Johnson Lecture 6 - 31 September 23, 2019



Backward Pass for Some Common Layers

t
2 e
S — L2 e=—|s—t
t
! e
e =—10
X —> a | You will do this for Assignment © |



2-Layer Neural Network

activations
INput data a

O Oy

(
52
(2)
weights ”LU%) O W31



2-Layer Neural Network — multiple inputs

activations
INnput data a




2-Layer Neural Network — multiple inputs

activations

N ()




2-Layer Neural Network — multiple outputs

activations
o “bird”
Os—_ 8
Ny
“plane”

97



2-Layer Neural Network — multiple outputs

activations
o OL  “pirg”

O% &2
O

OL
6h1 hl
“tlane”

97



Neural Networks

(Before) Linear score function:

Linear classifier: One template per class (NOW) Z_Iayer Neural Network

plane car bird cat deer
. ' . Input' [
fr horse ship truck . X W W
- 3 ~ 3072 1 h 2 >
s
-a Hidden layer:
100

r e RP Wy, € REXP W, e RV*H

Justin Johnson Lecture 5 - 28 September 18, 2019



Neural Networks

Neural net: first layer is bank of templates;

Second layer recombines templates (Before) Linear score function:

(Now) 2-layer Neural Network

''''' Input: |
X | W W
3077 1 h 2 S
Output: 10
Hidden layer: P
100

r € RP W, e REXP W, e RO*H

Justin Johnson Lecture 5 - 29 September 18, 2019




Neural Networks

Can use different templates to

cover multiple modes of a class! (Before) Linear score function:

(Now) 2-layer Neural Network

''''' Input: |
X | W W
3077 1 h 2 S
Output: 10
Hidden layer: P
100

r € RP W, e REXP W, e RO*H

Justin Johnson Lecture 5 - 30 September 18, 2019




Neural Networks

“Distributed representation”:

Most templates not interpretable! (Before) Linear score function:

(Now) 2-layer Neural Network

''''' Input: |
X | W W
3077 1 h 2 S
Output: 10
Hidden layer: P
100

r € RP W, e REXP W, e RO*H

Justin Johnson Lecture 5 - 31 September 18, 2019



