
Recap

1

image features

weights

Recall: Linear Classifier

2

f(xi,W,b) = Wxi + b

Defines a score function:

bias vector
(parameters)

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

3

Recall: Linear Classifier

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

• Let’s start by using 2 classes, e.g., bird and plane

• Apply labels (y) to training set:

4

• Use a linear model to regress y from x

Linear Classification

y = +1

y = -1

h = wTxq

ŷ = sign h = sign wTxq

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

2-class Linear Classification
• Separating hyperplane, projection to a line defined by w

5

plane

bird

wT

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

xq =
Query:

h = wTxq

ŷ = sign h = sign wTxq

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

N-class Linear Classification

6

plane

bird

car

cat

• One hot regression = 1 vs all classifiers

One-Hot Regression
• A better solution is to regress to one-hot targets = 1 vs all

classifiers

7

2

66664

0
1
0
0
...

3

77775

2

66664

0
0
0
1
...

3

77775

1

2

66664

0
1
0
0
...

3

77775

2

66664

0
0
0
1
...

3

77775

1

2

66664

x1
x2
x3
x4
...

3

77775

2

2

66664

x1
x2
x3
x4
...

3

77775

2

2

66664

0
1
0
0
...

3

77775

2

66664

0
0
0
1
...

3

77775

=

1

2

66664

0
1
0
0
...

3

77775

2

66664

0
0
0
1
...

3

77775

=

1

class 2 =
 ‘automobile’

class 4 =
‘cat’

⇥
0 1 0 0 ...

⇤

⇥
0 0 0 1 ...

⇤

⇥
x1 x2 x3 ...

⇤
W =

⇥
t1 t2 t3 ...

⇤

XW = T

2

4 WT

3

5

1

⇥
0 1 0 0 ...

⇤

⇥
0 0 0 1 ...

⇤

⇥
x1 x2 x3 ...

⇤
W =

⇥
t1 t2 t3 ...

⇤

XW = T

2

4 WT

3

5

1

One-Hot Regression
• Transpose (to match Project 3 notebook)

8

⇥
0 1 0 0 ...

⇤

⇥
0 0 0 1 ...

⇤

⇥
x1 x2 x3 ...

⇤
W =

⇥
t1 t2 t3 ...

⇤

XW = T
2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

⇥
0 1 0 0 ...

⇤

⇥
0 0 0 1 ...

⇤

⇥
x1 x2 x3 ...

⇤
W =

⇥
t1 t2 t3 ...

⇤

XW = T
2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

auto
cat

• Solve regression problem by Least Squares

Regularized Classification
• Add regularization to CIFAR10 linear classifier

9

• Row 1 = overfitting, Row 3 = oversmoothing?

e = |XW �T|2 + �|W|2

1

Under/Overfitting

10

• Training error always decreases as lambda is reduced

• Test error reaches a minimum, then increases ⇒ overfitting

• Test error vs lambda

Regularized Classification
• Add regularization to CIFAR10 linear classifier

11

• Row 1 = overfitting, Row 3 = oversmoothing?

e = |XW �T|2 + �|W|2

1

Non-Linear Optimisation
• With a linear predictor and L2 loss, we have a closed form

solution for model weights W

• How about this (non-linear) function

12

h = W2 max(0,W1x)

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

1

• Previously (e.g., bundle adjustment), we locally linearised the
error function and iteratively solved linear problems

Does this look like a promising approach?

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

�W = �(JTJ)�1JTr

h = W2 max(0,W1x)

h = �(WTx + b)

1

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

�W = �(JTJ)�1JTr

h = W2 max(0,W1x)

h = �(WTx + b)

1

Gradient descent one more time

13

Vanilla Gradient Descent

14

W_1

W_2

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

http://cs231n.stanford.edu/

Problem with vanilla GD

15
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

http://cs231n.stanford.edu/

Problem with vanilla GD

16
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

http://cs231n.stanford.edu/

Problem with vanilla GD

17
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

http://cs231n.stanford.edu/

Optimization: problem with SGD

18
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss
function has a
local minima or
saddle point?

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Lee et al, “Gradient Descent Only Converges to Minimizers”, JLMR Workshop and Conference Proceedings, 2016

http://cs231n.stanford.edu/

Stochastic gradient descent

19
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Our gradients come from mini-
batches so they can be noisy!

Q: How would you remove the noise?

http://cs231n.stanford.edu/

Stochastic gradient descent

19
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Our gradients come from mini-
batches so they can be noisy!

Q: How would you remove the noise?

http://cs231n.stanford.edu/

SGD + Momentum

20
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

http://cs231n.stanford.edu/

SGD + Momentum

21
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Local Minima Saddle points

Poor Conditioning

Gradient Noise

http://cs231n.stanford.edu/

SGD + Momentum

21
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Local Minima Saddle points

Poor Conditioning

Gradient Noise

http://cs231n.stanford.edu/

Nesterov Momentum

22
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

Nesterov

http://cs231n.stanford.edu/

Nesterov Momentum

22
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

Nesterov

http://cs231n.stanford.edu/

RMSProp

23
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Q: What happens with RMSProp?
Tieleman and Hinton, 2012

http://cs231n.stanford.edu/

RMSProp

24
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

RMSProp

http://cs231n.stanford.edu/

RMSProp

24
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

RMSProp

http://cs231n.stanford.edu/

Adam (almost)

25
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

RMSProp

RMSProp with momentum

Q: What happens at first the timestep?

http://cs231n.stanford.edu/

Adam (full form)

26
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-4
is a great starting point for many models!

http://cs231n.stanford.edu/

Adam

27
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

RMSProp

Adam

http://cs231n.stanford.edu/

Adam

27
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

RMSProp

Adam

http://cs231n.stanford.edu/

Learning rate: hyperparameter

28
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Iteration

http://cs231n.stanford.edu/

Lecture 20: Neural Networks 1

CPSC 425: Computer Vision

29

Menu for Today
Topics:

— Neural Networks introduction
— Activation functions softmax, relu

Readings:

— Today’s Lecture: Szeliski 5.1.3, 5.3-5.4, Justin Johnson Michigan EECS
498/598

— 2-layer fully connected net
— Backprop intro

Reminders:
—Assignment 5: due Apr 3rd
—Quiz 6 April 7th
—Assignment 6: due Apr 10th <— watch out!

Linear Classification

31

plane

bird

car

cat

w1T

w2T

w3T

w4T

…

2

66664

0
1
0
0
...

3

77775

2

66664

0
0
0
1
...

3

77775

1

2

66664

x1
x2
x3
x4
...

3

77775

2

2

66664

0
1
0
0
...

3

77775

2

66664

0
0
0
1
...

3

77775

=

1

2

66664

x1
x2
x3
x4
...

3

77775

2

2

66664

x1
x2
x3
x4
...

3

77775

2

one-hot

target

vectorized

input image

learned 1 vs all

classifiers

Softmax + Logistic Outputs
• Linear regression to one-hot targets is a bit strange..

• Output could be very large, and scores >>1 are penalised even
for the correct class, likewise for scores << 1 for incorrect

• How about restricting output scores to 0-1?

32

19.1

Softmax + Cross Entropy
• What is the gradient of the softmax linear classifier?

• We could use L2 loss, but we’ll use cross entropy instead

• This has a sound motivation — it is a measure of the difference
between probability distributions

• It also leads to a simple update rule

33

19.2

Note:

Try yourself!

∂σ(x)
∂x

= σ(x)(1 − σ(x))

Linear + Softmax Regression
• We found the following gradient descent update rule

34

Wt+1 = Wt � ↵(h� t)xT

h = wTxq

ŷ = sign h = sign wTxq

2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

prediction targets data

• This applies to:

L2 lossh = WTx

h = �(WTx)

Wt+1 = Wt � ↵(h� t)xT

h = wTxq

ŷ = sign h = sign wTxq
2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

h = WTx

h = �(WTx)

Wt+1 = Wt � ↵(h� t)xT

h = wTxq

ŷ = sign h = sign wTxq
2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

cross-entropy loss

Linear regression

Softmax regression

• The same update rule with a binary prediction function

h = max(W
Tx)

h = WTx

h = �(WTx)

Wt+1 = Wt � ↵(h� t)xT

h = wTxq

ŷ = sign h = sign wTxq
1

implements the multiclass Perceptron learning rule

History of the Perceptron

35

• This machine (IBM 704) was used by Frank Rosenblatt to
implement the perceptron in 1958

• Based on his statements, the New York Times reported it as:
"the embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence.”

[I.B.M. Italia]

2-class Perceptron Classifier
• Classification function is

36

• Linear function of the data (x) followed by 0/1 activation

ŷ = sign(wTx)

• Update rule: present data x

- if correctly classified, do nothing

- if incorrectly classified, update the weight vector

wn+1 = wn + yixi

Example of Perceptron Learning

37

Example of Perceptron Learning

37

Example of Perceptron Learning

37

Example of Perceptron Learning

37

Example of Perceptron Learning

37

Example of Perceptron Learning

37

Example of Perceptron Learning

38

Example of Perceptron Learning

39

Example of Perceptron Learning

39

Example of Perceptron Learning

39

Example of Perceptron Learning

39

Example of Perceptron Learning

39

Example of Perceptron Learning

40

Example of Perceptron Learning

41

Example of Perceptron Learning

41

Example of Perceptron Learning

41

Example of Perceptron Learning

41

Example of Perceptron Learning

41

Example of Perceptron Learning

42

Two-class, linearly separable data

• Which linear decision boundary is better?

CS195-5 2006 – Lecture 14 13

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
nips, 8 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lineandballs, 3 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
fourclouds, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
squiggles, 4 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
twocircles, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 2 clusters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 3 clusters

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Rows of Y (jittered, randomly subsampled) for twocircles

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
two circles, 2 clusters (K−means)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
threecircles−joined, 3 clusters (connected components)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lineandballs, 3 clusters (Meila and Shi algorithm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
nips, 8 clusters (Kannan et al. algorithm)

Perceptron Limitations
• Perceptrons + linear + softmax regressors are limited to data

that are linearly separable, e.g.,

Not linearly separableLinearly separable

Could we extract features to make the data linearly separable?

CIFAR10 Feature Extraction
• So far, we used RGB pixels as the input to our classifier

• Feature extraction can improve results by a lot

• e.g., Coates et al. achieve 79.6% accuracy on CIFAR10 with a
features based on k-means of whitened image patches

44

An Analysis of Single-Layer Networks in Unsupervised Feature Learning

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using di↵erent learning algorithms.
Best viewed in color.

1 2 4 8
40

45

50

55

60

65

70

75

80

Stride between extracted features (pixels)

C
ro

ss
−V

al
id

at
io

n
Ac

cu
ra

cy
 (%

)

Performance vs. Feature Stride

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

40

45

50

55

60

65

70

75

80

Figure 4: E↵ect of stride.

Clustering algorithms have been applied successfully
to raw pixel inputs in the past [6, 29] but these appli-
cations did not use whitened input data. Our results
suggest that improved performance might be obtained
by incorporating whitening.

4.3 Number of features

Our experiments considered feature representations
with 100, 200, 400, 800, 1200, and 1600 learned fea-
tures.8 Figure 3 clearly shows the e↵ect of increasing

and K-means uses Euclidean distance.
8We found that training Gaussian mixture models with

more than 800 components was often di�cult and always
extremely slow. Thus we only ran this algorithm with up
to 800 components.

6 8 12
60

62

64

66

68

70

72

74

76

78

Receptive field size (pixels)

C
ro

ss
−V

al
id

at
io

n
Ac

cu
ra

cy
 (%

)

Performance vs. Receptive Field Size

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

60

62

64

66

68

70

72

74

76

78

Figure 5: E↵ect of receptive field size.

the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 E↵ect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use

k-means, whitened

An Analysis of Single-Layer Networks in Unsupervised Feature Learning

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using di↵erent learning algorithms.
Best viewed in color.

1 2 4 8
40

45

50

55

60

65

70

75

80

Stride between extracted features (pixels)

C
ro

ss
−V

al
id

at
io

n
Ac

cu
ra

cy
 (%

)

Performance vs. Feature Stride

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

40

45

50

55

60

65

70

75

80

Figure 4: E↵ect of stride.

Clustering algorithms have been applied successfully
to raw pixel inputs in the past [6, 29] but these appli-
cations did not use whitened input data. Our results
suggest that improved performance might be obtained
by incorporating whitening.

4.3 Number of features

Our experiments considered feature representations
with 100, 200, 400, 800, 1200, and 1600 learned fea-
tures.8 Figure 3 clearly shows the e↵ect of increasing

and K-means uses Euclidean distance.
8We found that training Gaussian mixture models with

more than 800 components was often di�cult and always
extremely slow. Thus we only ran this algorithm with up
to 800 components.

6 8 12
60

62

64

66

68

70

72

74

76

78

Receptive field size (pixels)

C
ro

ss
−V

al
id

at
io

n
Ac

cu
ra

cy
 (%

)

Performance vs. Receptive Field Size

 kmeans (tri)
 kmeans (hard)
 autoencoder
 rbm

60

62

64

66

68

70

72

74

76

78

Figure 5: E↵ect of receptive field size.

the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 E↵ect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use

k-means, raw RGB
[Coates et al. 2011]

Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

45

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1

Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

46

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1

Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

47

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1

Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

48

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1

Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is equivalent

to a fully connected layer in a neural network

49

x1
x2

x3
x4

x5

xN

...

...

airplane

automobile

bird

cat

• Typically, we’ll also add a bias term b

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

s1 (1)
s2 (2)
s3 (3)
s4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

h = �(WTx)

1

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

h = WTx

1

A Neuron

— The basic unit of computation in a neural network is a neuron.

— A neuron accepts some number of input signals, computes their weighted
sum, and applies an activation function (or non-linearity) to the sum.

— Common activation functions include sigmoid and rectified linear unit (ReLU)
50

inputs

weights

output

sum activation function

+b

y = f

NX

i=1

wixi + b

!

Activation Function: Sigmoid

Common in many early neural networks
Biological analogy to saturated firing rate of neurons
Maps the input to the range [0,1]

51

Figure credit: Fei-Fei and Karpathy

Maintains good gradient flow in networks, prevents vanishing gradient problem
Very commonly used in interior (hidden) layers of neural nets

Activation Function: ReLU (Rectified Linear Unit)

Figure credit: Fei-Fei and Karpathy

Why can’t we have linear activation functions?19.3

Neural Network

53

Connect a bunch of neurons together — a collection of connected neurons

‘one neuron’

Neural Network

54

Connect a bunch of neurons together — a collection of connected neurons

‘two neurons’

Neural Network

55

Connect a bunch of neurons together — a collection of connected neurons

‘three neurons’

Neural Network

56

Connect a bunch of neurons together — a collection of connected neurons

‘four neurons’

Neural Network

57

Connect a bunch of neurons together — a collection of connected neurons

‘five neurons’

Neural Network

58

Connect a bunch of neurons together — a collection of connected neurons

‘six neurons’

Neural Network: Terminology

59

‘input’ layer

Neural Network: Terminology

60

‘hidden’ layer
‘input’ layer

Neural Network: Terminology

61

‘output’ layer
‘hidden’ layer

‘input’ layer

Neural Network: Terminology

62

this layer is a
‘fully connected layer’

Neural Network: Terminology

63

so is this

64

How many neurons? 4+2 = 6

Neural Network

65

How many neurons? 4+2 = 6 How many weights?

Neural Network

66

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

Neural Network

67

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?

Neural Network

68

How many neurons? 4+2 = 6 How many weights?
(3 x 4) + (4 x 2) = 20

How many learnable parameters?
20 + 4 + 2 = 26

bias terms

Neural Network

Neural Network Intuition

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

* slide from Marc’Aurelio Renzato

Neural Network Intuition
Question: What is a Neural Network?
Answer: Complex mapping from an input (vector) to an output (vector)

Question: What class of functions should be considered for this mapping?
Answer: Compositions of simpler functions (a.k.a. layers)? We will talk more
about what specific functions next …

Question: What does a hidden unit do?
Answer: It can be thought of as classifier or a feature.

Question: Why have many layers?
Answer: 1) More layers = more complex functional mapping

 2) More efficient due to distributed representation
* slide from Marc’Aurelio Renzato

2-Layer Neural Network

70

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

“bird”

“plane”

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

1

input data
activations

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e.g.,
w(1)

00 w(1)
23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

targets

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

19.4

2-Layer Neural Network

71

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

“bird”

“plane”

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

1

input data
activations

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e.g.,
w(1)

00 w(1)
23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

targets

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

19.4

2-Layer Neural Network — n hidden, 1 input/output

72

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

1

input data
activations

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

targets

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

2-Layer Neural Network — n hidden, 1 input/output

73

3 hidden units

2-Layer Neural Network — n hidden, 1 input/output

74

4 hidden units

2-Layer Neural Network — n hidden, 1 input/output

75

6 hidden units

2-Layer Neural Network — n hidden, 1 input/output

76

8 hidden units

2-Layer Neural Network — n hidden, 1 input/output

77

20 hidden units

78

Non-linear activation is required to provably make the Neural Net a universal
function approximator

Neural Network as Universal Approximator

78

Non-linear activation is required to provably make the Neural Net a universal
function approximator

Intuition: with ReLU activation, we
effectively get a linear spline approximation to
any function.

Optimization of neural net parameters =
finding slops and transitions of linear pieces

The quality of approximation depends on the
number of linear segments

Neural Network as Universal Approximator

Neural Network as Universal Approximator

d+ 1 d

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the width
goes to infinity. [Hornik et al., 1989]

Neural Network as Universal Approximator

d+ 1 d

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the width
goes to infinity.

Universal Approximation Theorem (revised): A network of infinite depth with a
hidden layer of size neurons, where is the dimension of the input space,
can approximate any continuous function.

[Hornik et al., 1989]

Neural Network as Universal Approximator

[Lu et al., NIPS 2017]

d+ 1 d

Universal Approximation Theorem: Single hidden layer can approximate any
continuous function with compact support to arbitrary accuracy, when the width
goes to infinity.

Universal Approximation Theorem (revised): A network of infinite depth with a
hidden layer of size neurons, where is the dimension of the input space,
can approximate any continuous function.

Universal Approximation Theorem (further revised): ResNet with a single
hidden unit and infinite depth can approximate any continuous function.

[Hornik et al., 1989]

Neural Network as Universal Approximator

[Lin and Jegelka, NIPS 2018]

[Lu et al., NIPS 2017]

d+ 1 d

2-Layer Neural Network — n hidden, 1 input/output

80

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

1

input data
activations

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

targets

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

How to compute the gradients? e.g.,

2-Layer Neural Network — 1 hidden, 1 input/output

81

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

1

input data activations
w(1)

00 w(1)
23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

targets

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

2-Layer Neural Network — 1 hidden, 1 input/output

82

19.5

Optimise by gradient descent

How to compute the gradients? e.g.,

2-Layer Neural Network — 1 hidden, 1 input/output

83

Alternative: build a
computational graph to

apply the chain rule

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

84

1 3 1 2 -5

Initial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 2 -5

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 4 2 -5

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 4 2 -54

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 4 2 -54 3

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 4 2 -54 3

3

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 4 2 -54 3

3 2

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

85

1 3 1 4 2 -54 3

3 2 4

Forward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

1

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

14

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

4

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

44

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

416 4

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

416 4
8

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

8

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

86

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward passInitial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

87

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward passInitial weightsInput +
/target

1

Gradient =

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

87

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward passInitial weightsInput +
/target

1

Gradient =
8
8

16
4

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

88

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput +
/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

88

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput +

3
1
2

-5

/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

88

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput +

1/4
3
1
2

-5

/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

88

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput +

1/4
3
1
2

-5

1
-1
-2
-6

=

/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

88

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput +

1/4
3
1
2

-5

1
-1
-2
-6

=

1 -1 -2 -6

 + update weights

/target

1

19.6

2-Layer Neural Network — 1 hidden, 1 input/output

88

1 3 1 4 2 -54 3

3 2 4

144

416 4
88

88

Forward pass Backward pass

8
8

16
4

Gradient descent step

Initial weightsInput +

1/4
3
1
2

-5

1
-1
-2
-6

=

1 -1 -2 -6

 + update weights
Repeat: +Input/target, Forward,

Backward, Update until convergence!

/target

1

19.6

Optional subtitle

89Justin Johnson September 23, 2019Lecture 6 - 27

f

Optional subtitle

90Justin Johnson September 23, 2019Lecture 6 - 28

f

Upstream
gradient

Optional subtitle

91Justin Johnson September 23, 2019Lecture 6 - 29

f
Local

gradients

Upstream
gradient

Optional subtitle

92Justin Johnson September 23, 2019Lecture 6 - 30

f
Local

gradients

Upstream
gradient

Downstream
gradients

Optional subtitle

93Justin Johnson September 23, 2019Lecture 6 - 31

f
Local

gradients

Upstream
gradient

Downstream
gradients

Backward Pass for Some Common Layers

Softmax/Xent

L2

ReLU

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

1

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

1

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

[You will do this for Assignment 6]

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

�(s) =
esP
i e

si

s
t

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

�(s) =
esP
i e

si

x
a

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

�(s) =
esP
i e

si

x
a

e =
1

2
|s� t|2

@e

@s
= s� t

e = � log
esyP
i e

si

1

�(s) =
esP
i e

si

x
a

e =
1

2
|s� t|2

@e

@s
= s� t

@e

@s
= �(s)� t

1

2-Layer Neural Network

95

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

“bird”

“plane”

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

1

input data
activations

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e.g.,
w(1)

00 w(1)
23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

w(1)
00 w(1)

23

w(2)
00 w(2)

31
...

2

targets

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

2-Layer Neural Network — multiple inputs

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

input data
activations

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

2-Layer Neural Network — multiple inputs

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

input data
activations

weights

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

t0 t1 e

t0
t1

�
=


1
0

�

1

2-Layer Neural Network — multiple outputs

97

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

“bird”

“plane”

activations

19.7

2-Layer Neural Network — multiple outputs

97

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

e = |XW�T|2+�|W|2

e = |W2 max(0,W1x)�T|2
x0 x1 x2
a0 a1 a2 a3

h0 h1

1

“bird”

“plane”

activations

19.7

98Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 28

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

Linear	classifier:	One	template	per	class

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

99Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 29

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Neural	net:	first	layer	is	bank	of	templates;
Second	layer	recombines	templates

W1 W2

100Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 30

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Can	use	different	templates	to	
cover	multiple	modes	of	a	class!

W1 W2

101Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 31

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

“Distributed	representation”:	
Most	templates	not	interpretable!

W1 W2

