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Standard Bag-of-Words Pipeling (for image classification)

Dictionary Learning:
Learn Visual Words using clustering

Encode:
build Bags-of-Words (BOW) vectors
for each image

Classify:
Train and test data using BOWs

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



K-Means Clustering

K-means clustering alternates between two steps:

1. Assume the cluster centers are known (fixed). Assign each point to
the closest cluster center.

2. Assume the assignment of points to clusters is known (fixed).
Compute the best center for each cluster, as the mean of the points assigned
to the cluster.

The algorithm is initialized by choosing K random cluster centers

K-means converges to a local minimum of the objective function
— Results are Initialization dependent



Expectation Maximization

A simpler version

The K-Means centers
Given a model repeat N\
1. Create an “expectation” of the (log-)likelihood with the current hypothesis
2. Update the hyp7;esis to one that maximizes the expectation above

Not exactly the hard assignments of K-Means



2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

What’s the best w ?

‘/“ support vectors

Want a hyperplane that is far away from ‘inner points’

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Support Vector Machines (SVM)

Find hyperplane w such that ...

/
minimize 1w |5
w, b
subject to yi(w x; —b)>1 Vie{l,...,n}
w m+b=0/ ““““““““““““““““““““““““““ % T o f./
wmhe O O /
- /

the gap between parallel hyperplanes Hi—H IS maximized

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Distance 1o the border

Becomes 1 because It’s the
. thing at the border (+1)

W g
\T‘ (Hsz /Wz

Maximize 5

Minimize  ||[W/|3

8



Support Vectors

® T[he active constraints are due to the data that define the
classification boundary, these are called support vectors

Final classifier can be
written in terms of the
support vectors:

y = sign (?ﬁo + Z Oéz'yz'XiTX)

a; >0




Non-Linear SVM

Replace inner product with kernel

x; X — &(x;) d(x) — k(xi, X)

(

Data are (ideally) linearly
separable in P(x)

But we don’t need to know
P(x), we just specify k(x,y)
Points with 0t>0 (circled) are
support vectors

Other data can be removed
& | without affecting classifier

10



Bag-of-Words Representation

Algorithm:

Initialize an empty K -bin histogram, where K is the number of codewords
Extract local descriptors (e.g. SIFT) from the image
For each local descriptor x

Map (Quantize) x to its closest codeword — ¢(x)
Increment the histogram bin for ¢(x)
Return histogram

We can then classify the histogram using a trained classifier, e.g. a support
vector machine or k-Nearest Neighbor classifier

11



Alexnet

® Won the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012 by a large margin

® Some ingredients: Deep neural net (Alexnet), Large dataset
(Imagenet), Lots of compute (2 GPU weeks), non-saturating
activation functions (ReLU)

30 28.2
25.8 Enter Deep Learning
25
20
tO P 5 16 4
15
10
5 . . -
; - B e
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevsky et al Zeiler & Simonyan & Szegedvetal Heetal Shao et al Huetal Russakovsky
Perronnin (AlexNet) Fergus  Zisserman (GoogleNet) (ResNet) (SENet) et al
(VGG)

[ ]. Johnson ]
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CPSC 425: Computer Vision
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Lecture 19: Visual Classification 2, Linear Classification
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Menu for Today

Topics:
— Nearest Neighbour, nearest mean — Bayesian classification

— Linear Classification

— Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2

Reminders:

— Assignment 5: Stereo and Optical Flow due Apr 3rd



Visual Classification 2

® Nearest neighbour, nearest mean
® Bayesian Classification, Gaussian distributions, priors

® Linear classification, CIFAR10 case study

15



CIFAR |0 Dataset

® Hand labelled set of 10 categories from Tiny Images dataset
® 60,000 32x32 images in 10 classes (50k train, |0k test)

airplane %% V..a.h-_:
automobile EEﬂH‘
=« EESENEREs P
deer .R. &ﬁ : F!

dog HE<Ae0rne
frog MEBEESES D ANE
ose RN IO RS E
sip  E R Bl e PU RS
ok o W A I P B o ) S

Good test set for visual recognition problems




CIFAR 10 Classification

® [et’s build an image classifier!

ASVEEEDTE:

airplane automobile bird deer horse ship truck

® Start by vectorizing the image data

32 x 32 x RGB (8 bit) image —
x =[65102335754...]

® X = 3072 element vector of 0-255

® Note this throws away spatial structure, we'll bring it back
later when we look at feature extraction and CNNs

17



Nearest Mean Classification

® How about a single template per class

plane

|18



Nearest Mean Classification

® Find nearest mean and assign class

Cq = argmin X, —

® C|FAR |0 class means

airplane automobile bird deer horse ship truck

19



Nearest Mean Classifier

Suppose we have 2 classes of 2-dimensional data that are not
linearly separable

12_ .......... f.rie eTelnAMIRIls elulstVaMIe sle o100 SR . ........... g il

® A simple approach could be
to assign to the class of the
nearest mean

® (Can we do better if we know
about the data distribution?

20



Bayesian Classificaion

® A probabilistic view of classification models the likelihood of
observing the data given a class/parameters

12_ .......... f.rie eTelnAMIRIls elulstVaMIe sle o100 SR . ........... g il

e.g., we might assume that the
distribution of data given the
class is Gaussian




Multi-dimensional Gaussian

® The Gaussian probability density is given by

1 1 T —1
—exXxp——=—(xX—m) X (x—m
orss &P 5 ) ( )

p(X‘m, Z) —

® TJo estimate from data (x)

1 N
Iil:— X4
v

N
1
= ;(Xi —1)(x; —m)’

® These estimates maximise the probability of the data x given
parameters m, 2

22



2-Class Gaussian Classifier

® Simple classification rule: choose class #1 if
p(x|c1) > p(x|cz)
® taking -2 x In of both sides (reverses sign)
—2Inp(x|c1) < —21Inp(x|co)

® negative log of Gaussian density

1 1
—2Inp(x) = —2In ors] exp —§(X —m)' X H(x — m)

= In(27?) +In |2+ (x —m?) X7 (x — m)

® decision rule becomes (class #1 if...)

N +(x-—m)'E (x—m;) <InXp + (x —my) 2, (x — my)

23



2-Class Gaussian Classifier

Suppose we’ve modelled our 2 classes with Gaussian
distributions

12_ .......... 8,85 eleeAveles ........... viTiee sty HOReieavielee suls g ereen SRS

p(x|c1) > p(x[c2)

classifier

® Qur decision rule, class 3

p(x[c1) = N(x;my, 3)
p(x|ca) = N(x;mg, Xo)

] if

is called a maximum likelihood

24



Incorporating Prior Knowledge

® What if red is more common than blue?

® Weight each likelihood by prior probabilities p(c1),p(c2)

® Decision rule (MAP classifier) choose class #1 if:

p(x|c1)p(cr) > p(x[c2)p(c2)

12_ .......... bt il sesrresenen Skl . ...........

25



Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.

- O
o O O 00
O O O
O O
o© o A
O O
O O
O O o Q
0 o ©
O O O

26 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Nearest Neighbor Classifier

Given a new data point, assign the label of nearest training example in feature
space.

- O
A
o O O 00
O O O
O O
o o
O O
O O
O O a Q
0 o ©
O O O

07 Image Credit: loannis (Yannis) Gkioulekas (CMU)



Nearest Neighbour Classification

® Find nearest neighbour in training set

iNN — argmin |Xq — Xf,;‘
)

® Assign class to class of the nearest neighbour

@(Xq) — y(XiNN)

| 2

N R
g ﬂ 4

M | A

! g.&"..

Bt vy ) R d{ 5
Calculate |x, — X
for all training data

28



Nearest Neighbour Classification

® We can view each image as a point in a high dimensional space

bird 29



Nearest Neighbour Classifier

(a) (b)

® What is the decision boundary for a nearest-neighbour
classifier?

¢ (&)

30



K-Nearest Neighbor (KNN) Classifier

We can gain some robustness to noise by voting over multiple neighbours.

Given a new data point, find the k nearest training examples. Assign the label
oy majority vote.

Simple method that works well if the distance measure correctly weights the
various dimensions

For large data sets, as k increases kNN approaches optimality in terms of
mMiNiMizing probability of error

31



Ik-NN Classifier

ldentify k nearest neighbours of the query
Assign class as most common class in set
k-NN decision boundaries:

k = | k = 3 k = 31

Good performance depends on suitable choice of k

32



K-Nearest Neighbor (kNN) Classifier

15-Nearest Neighbor Classifier
1-Nearest Neighbor Classifier

@ iiiiriiin: IIIIEIIiIiiIiiiiiin:

KNN decision boundaries respond to local clusters where one class dominates

Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)
33
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Tiny Image Recognition

® Recognition performance (categories vary in semantic level)

Geological
formation (32)

Animal Insect

(97)

Organism
(658)

detection rate

Precision

A O
QO

Recall

false alarm rate

50

Recall Recall Recall

100

Artifact

Flower
(98)

Plant life
(335)

Fish

Vehicle

(29)

(187)

false alarm rate false alarm rate false alarm rate false alarm rate

100

50 100 50

Recall Recall Recalll

Recall

(20)

false alarm rate

50 100
Recall

= 7900, red = 790,000, blue = 79,000,000

false alarm rate

10

s - - - - - -
5
260
]
a40 - -

20F - N e e -

00 50 100
Recall

Nearest neighbour becomes increasingly accurate as N increases,

but do we need to store a dataset of 80 million images?

36



Linear Classification

® | inear classification, 2-class, N-class
® Regularization, softmax, cross entropy
® SGD, learning rate, momentum

37



Linear Classification

® [et’s start by using 2 classes, e.g., bird and plane
® Apply labels (y) to training set:

® Use a linear model to regress y from x

& (182

38



& (182

Linear Classification

39



2-class Linear Classification

® Separating hyperplane, projection to a line defined by w

plane

N\

y = sign h = sign W

T

Xq

40



N-class Linear Classification

® We could construct O(n?) | vs | classifiers

4|



N-class Linear Classification

® We could regress directly to integer class id,y = {0,1,2,3...9}

42



One-Hot Regression

® A better solution is to regress to one-hot targets = | vs all
classifiers _ -

0

| class 2 =
N ‘automobile’
— | 0

| class 4 =

‘cat’

43



One-Hot Regression

® Stack into matrix form

x| | 1 01]C
WT L9 L9 1 :
L3 L3 00 — ’ ’
X4 L4 ’ 1

class 2 =
‘automobile’

S K

class 4 =
‘cat’

44



One-Hot Regression

® Transpose

ﬁ L11  L12 L13

w To1 L9 93 W

L3171 432 L33

() ... | auto
1 ...| cat

o O
-
o O

XW =T

® Solve regression problem by Least Squares

45



N-class Linear Classification

® One hot regression = | vs all classifiers

plane

ey -
-
* K

car

&
IP
At

bird

46



One-Hot Regression

® Visualise class templates for the least squares solution

airplane automobile bird deer horse ship truck

® C(lassifier accuracy = 35% (not bad, c.f., nearest mean = 27%)

?_:_ What is happening here?

® |

———

47



Polynomial Fitting

® (Consider fitting a polynomial to some data by linear regression

14r

12

48



Polynomial Fitting

® Multiple data points (i, z:)

2 3
Y1 = Qo -+ a1 —+ a2:1:1 —+ aga:l

2 3
Yo = ag + A1T2 + A2T5 + A3T5

2 3
Ys = ag + a1T3 + A2T3 + A3T3

® |n matrix form

. 2 31T [ 4.
U1 L X1 L7 a4 ao
. 2 3
Yya1 |4 X2 o9 Lo a1
| 2 3
Y3 1 I3 L3 ILg a9
as
y = Ma

® Solve linear system by Gaussian elimination (if square) or
Least Squares (if overconstrained)



Polynomial Fitting

® Fit Nth order polynomial by least squares

.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

N =20

® Opverfitting

50



Validation

® Fit the model to a subset of data, and evaluate the fit on a held
out validation set

14r

1.2

| | | | | | | |
0 0.1 0.2 0.3 0.4 0.9 0.6 0.7 0.8 0.9 1

N

1 ~ N2
® (alculate rms error e, = N > (yi — i)

1

51



® Training error always decreases, but validation error has a

Validation

minimum for the best model order

'Mms error

0.45

0.4

0.35 ¢

0.3 F

0.25 |

0.2 |

0.15 F

0.1F

0.05 ¢

validation

training

| 1 | ! 1 I 1
4 B d 10 12 14 16

Polynomial Order (N)

18
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Polynomial Fitting

® For large N, coefficients become HUGE!

N=1 N=2 N=4 N=10
ag | 0.90 2.03 -2.88 48.50
a1 -1.54  29.76 -1294.90
a2 -07.43 14891.41
a3 31.86 -95161.10
a4 367736.34
as -885436.68
ag 1331063.41
a7 -1212056.89
ag 610930.32
a9 -130727.39

53



Regularization

® |2 penalty on polynomial coefficients

& (83

54



Regularized Linear Regression

® |0th order polynomial, prior on the coefficients weight A

14r
12T

1k
0.8

0.6

< | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.9 0.6 0.7 0.6 0.9 1

log lambda = 0

® Over-smoothing...



Under/Overfitting

® Jest error vs lambda

0.17
= training error
—test error
0.5
S
G 0.4
N
=
0.3
0.2 | | | | | ]
-12 0 -2 -4 -6 -8 -10

log lambda

® Training error always decreases as lambda is reduced

® Test error reaches a minimum, then increases = overfitting
56



Regularized Classification

® Add regularization to CIFARIO linear classifier

" v T 4‘
r'- )
) - " ‘.
‘ & " v of
® 3 . b L - ‘
“ i ' a ‘. r . t
| | 4 B s L .
b —— S

® Row | = overfitting, Row 3 = oversmoothing?

57



Non-Linear Optimisation

® W/ith a linear predictor and L2 loss, we have a closed form
solution for model weights W

® How about this (non-linear) function
h = WQ maX(O, W1X>

® Previously (e.g., bundle adjustment), we locally linearised the
error function and iteratively solved linear problems

e = Z h,—t;|" ~ [JAW 41|

AW = —(J' D) J'r

&,

‘t Does this look like a promising approach!?

58
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Vanilla Gradient Descent

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # perform parameter update

59
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Problem with vanilla GD

VWhat if loss changes quickly in one direction and slowly in another”?

VWhat does gradient descent do”?
Very slow progress along shallow dimension, jitter along steep direction

=

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

60
Stanford cs231n



http://cs231n.stanford.edu/

UBC| THE UNIVERSITY

P ————

"Wﬂ OF BRITISH COLUMBIA

Problem with vanilla GD

VWhat if loss changes quickly in one direction and slowly in another”?

VWhat does gradient descent do”?
Very slow progress along shallow dimension, jitter along steep direction

e >

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

61
Stanford cs231n
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OF BRITISH COLUMBIA
Problem with vanilla GD

VWhat if loss changes quickly in one direction and slowly in another”?

VWhat does gradient descent do”?
Very slow progress along shallow dimension, jitter along steep direction

= =

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

62
Stanford cs231n
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”

.: ..‘{;'t \ .‘A. \
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-\’l *, AN o > v 5 p o o .
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.
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”

Zero gradient,

gradient

descent gets e
stuck
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”

Saddle points

much more

common In e
high dimension

X optimization”,
67
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Optimization: problem with SGD

What If the loss
function has a
local minima or
saddle point”

Or not?

"We show that gradient descent converges to a local minimizer,
almost surely with random initialization. This is proved by
applying the Stable Manifold Theorem from dynamical systems
theory.”

Lee et al, “Gradient Descent Only Converges to Minimizers”, JLMR Workshop and Conference Proceedings, 2016

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

68
Stanford cs231n
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Stochastic gradient descent

Our gradients come from mini-
pbatches so they can e noisy!

L(W) = ZL (i, yi, W

N
1
Vi L(W) = N Y VwLi(zi,yi, W)

Q: How would you remove the noise”

69
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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SGD + Momentum

SGD

Lt+1 — Lt — Oévf(f'?t)

while True:
= compute_gradient(x)
X += learning_rate * dx

d X

- B
q

Jild up “ve

NO gives 1

Stanford cs231n

SGD+Momentum

pvr + V f(x¢)

Li4+1 — Lt — QUL41

Uti1

vX = 0

while True:
dx = compute_gradient(x)
vX = rho * vx + dx
X += learning_rate * vX

OCIty” as a running mean of gradients

Ct

on’; typically r

/0

N0=0.9 or 0.99
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SGD + Momentum

Gradient Noise

ocal Minima Saddle points

AN

2oor Conditioning

71
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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SGD + Momentum

Momentum update:

Velocity

actual step

>

Gradient

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deel learning”, ICML 2013

72
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SGD + Momentum

Momentum update: Nesterov Momentum

g Gradient

Velocity Velocity .

actual step actual step

>

Gradient

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k*2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deel learning”, ICML 2013

73
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Nesterov Momentum

_—— SGD+Momentum

= Nlesterov

74
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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RMSProp

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

e oo

Q: What happens with RMSProp”?

Tieleman and Hinton, 2012

75
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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RMSProp

_— SGD+Momentum

— RMSProp

76
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Adam (almost)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = betaZ * second_moment + (1 - betaz) * dx * dx
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7))

SMSProp

RMSProp with momentum

Q: What happens at first the timestep?

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

77
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(1l, num_iterations):
dx = compute_gradient(x) Nomentum
first moment = betal * first moment + (1 - betal) * dxX

second moment = beta2 * second moment + (1 - beta2) * dx * dxX

first_unbias = first_moment / (1 - betal ** t)

Sl1as correction

Sias correction for the fact that Adam with betal = 0.9,
first and second moment neta? = 0.999, and leaming_rate = 1e-4
estimates start at zero S a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

/8
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission
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Ada

SGD

SGD+Momentum

RMSProp

Adam

79
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|_earning rate: nyperparameter

loss

low learning rate

high learning rate

good learning rate

lteration

80
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