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Standard Bag-of-Words Pipeline (for image classification)

Dictionary Learning:  
Learn Visual Words using clustering

Encode:  
build Bags-of-Words (BOW) vectors  

for each image

Classify: 
 Train and test data using BOWs

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



K-means clustering alternates between two steps:  

   1. Assume the cluster centers are known (fixed). Assign each point to  
the closest cluster center.  

	  2. Assume the assignment of points to clusters is known (fixed).  
Compute the best center for each cluster, as the mean of the points assigned 
to the cluster.  

The algorithm is initialized by choosing K random cluster centers  

K-means converges to a local minimum of the objective function  
— Results are initialization dependent 
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K-Means Clustering
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Expectation Maximization 

Given a model repeat 
1. Create an “expectation” of the (log-)likelihood with the current hypothesis 
2. Update the hypothesis to one that maximizes the expectation above 
 

A simpler version

The K-Means centers

Not exactly the hard assignments of K-Means



2. Histogram: count the number of visual word occurrences

2. Encode: build Bag-of-Words (BOW) vectors for each image

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Want a hyperplane that is far away from ‘inner points’

support vectors

What’s the best w ?

Support Vector Machines (SVM)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Find hyperplane w such that … 

the gap between parallel hyperplanes

margin

is maximized

Support Vector Machines (SVM)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Distance to the border

8

+1

Becomes 1 because it’s the 
thing at the border (+1)

Maximize

Minimize



SVM classification

α > 0 w

1/�w�

α > 0

α = 0

α = 0

α > 0

α > 0
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Support Vectors
• The active constraints are due to the data that define the 

classification boundary, these are called support vectors
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SVM: summary so far

• Assuming linearly separable case, we set up a quadratic program

max





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• Solving it for α we get the SVM classifier
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Final classifier can be 
written in terms of the 
support vectors:



Non-Linear SVM
• Replace inner product with kernel

10

SVM with RBF (Gaussian) kernels

• Why are some SV here not close to the boundary?..
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h(.) (1)
x (2)

✓, ⌧ (3)

xT
i x ! �(xi)

T�(x) ! k(xi,x)

h(✓, ⌧ ) = [⌧1 < ✓T [x, 1] < ⌧2]

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

�W = �(JTJ)�1JTr
1

• Data are (ideally) linearly 
separable in ɸ(x)

• But we don’t need to know 
ɸ(x), we just specify k(x,y)

• Points with ⍺>0 (circled) are 
support vectors

• Other data can be removed 
without affecting classifier



Bag-of-Words Representation

Algorithm:  

Initialize an empty K -bin histogram, where K is the number of codewords 
Extract local descriptors (e.g. SIFT) from the image 
For each local descriptor x  
          Map (Quantize) x to its closest codeword → c(x)  
          Increment the histogram bin for c(x)  
Return histogram  

We can then classify the histogram using a trained classifier, e.g. a support 
vector machine or k-Nearest Neighbor classifier 
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Alexnet
• Won the Imagenet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2012 by a large margin

• Some ingredients: Deep neural net (Alexnet), Large dataset 
(Imagenet), Lots of compute (2 GPU weeks), non-saturating 
activation functions (ReLU)
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Lecture 19: Visual Classification 2, Linear Classification

CPSC 425: Computer Vision 
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Menu for Today
Topics: 
— Nearest Neighbour, nearest mean 

— Linear Classification 

Readings: 

— Today’s Lecture:  Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2                            

— Bayesian classification 

Reminders: 
— Assignment 5: Stereo and Optical Flow due Apr 3rd 



Visual Classification 2

•Nearest neighbour, nearest mean 

•Bayesian Classification, Gaussian distributions, priors 

•Linear classification, CIFAR10 case study

15



CIFAR10 Dataset
• Hand labelled set of 10 categories from Tiny Images dataset

• 60,000 32x32 images in 10 classes (50k train, 10k test)

16
Good test set for visual recognition problems



CIFAR10 Classification
• Let’s build an image classifier!
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32 x 32 x RGB (8 bit) image → 

x = [65 102 33 57 54 … ]

• Start by vectorizing the image data

• x = 3072 element vector of 0-255

• Note this throws away spatial structure, we’ll bring it back 
later when we look at feature extraction and CNNs 



Nearest Mean Classification
• How about a single template per class
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Nearest Mean Classification
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• Find nearest mean and assign class

cq = argmin
i

|xq �mi|2
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• CIFAR 10 class means



Nearest Mean Classifier
• Suppose we have 2 classes of 2-dimensional data that are not 

linearly separable
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• A simple approach could be 
to assign to the class of the 
nearest mean

• Can we do better if we know 
about the data distribution??



Bayesian Classificaion
• A probabilistic view of classification models the likelihood of 

observing the data given a class/parameters
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e.g., we might assume that the 
distribution of data given the 
class is Gaussian

?



Multi-dimensional Gaussian
• The Gaussian probability density is given by

22

Multivariate Gaussian distributions

• Gaussian distribution of a random vector x in Rd:

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

�
−1

2
(x− µ)TΣ−1(x− µ)

�

• The 1
(2π)d/2|Σ|1/2 factor ensures it’s a

pdf (integrates to one).
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• To estimate from data (x)

Σ̂ =
1

N

N�

i=1

(xi − m̂)(xi − m̂)T

m̂ =
1

N

N�

i=1

xi

p(x|m,Σ) =
1

|2πΣ| 12
exp−1

2
(x−m)TΣ−1(x−m)

• These estimates maximise the probability of the data x given 
parameters m, Σ



2-Class Gaussian Classifier
• Simple classification rule: choose class #1 if 
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p(x|c1) > p(x|c2)

• taking -2 x ln of both sides (reverses sign)
−2 ln p(x|c1) < −2 ln p(x|c2)

• decision rule becomes (class #1 if...)
lnΣ1 + (x−m1)

TΣ−1
1 (x−m1) < lnΣ2 + (x−m2)

TΣ−1
2 (x−m2)

• negative log of Gaussian density

−2 ln p(x) = −2 ln
1

|2πΣ| 12
exp−1

2
(x−m)TΣ−1(x−m)

= ln(2πd) + ln |Σ|+ (x−mT )Σ−1(x−m)



2-Class Gaussian Classifier
• Suppose we’ve modelled our 2 classes with Gaussian 

distributions
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p(x|c1) = N(x;m1,Σ1)

p(x|c2) = N(x;m2,Σ2)

• Our decision rule, class #1 if

? p(x|c1) > p(x|c2)

is called a maximum likelihood 
classifier



Incorporating Prior Knowledge

25

• What if red is more common than blue?

• Decision rule (MAP classifier) choose class #1 if:
p(x|c1)p(c1) > p(x|c2)p(c2)

• Weight each likelihood by prior probabilities p(c1), p(c2)

p(c1) = 0.5

p(c2) = 0.5

p(c1) = 0.6

p(c2) = 0.4

p(c1) = 0.7

p(c2) = 0.3

p(c1) = 0.8

p(c2) = 0.2

p(c1) = 0.9

p(c2) = 0.1

p(c1) = 0.95

p(c2) = 0.05

p(c1) = 0.99

p(c2) = 0.01

?



Nearest Neighbor Classifier 
Given a new data point, assign the label of nearest training example in feature 
space. 

26 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Nearest Neighbor Classifier 
Given a new data point, assign the label of nearest training example in feature 
space. 

27 Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Nearest Neighbour Classification
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• Find nearest neighbour in training set

iNN = argmin
i

|xq − xi|

• Assign class to class of the nearest neighbour

ŷ(xq) = y(xiNN )

xqQuery

Result = 3

Calculate |xq − xi|
for all training data

1

2

3

4

5



Nearest Neighbour Classification
• We can view each image as a point in a high dimensional space
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Nearest Neighbour Classifier

30

x1

x2

(a)
x1

x2

(b)

• What is the decision boundary for a nearest-neighbour 
classifier?

18.1



k-Nearest Neighbor (kNN) Classifier 

We can gain some robustness to noise by voting over multiple neighbours.  

Given a new data point, find the k nearest training examples. Assign the label 
by majority vote.  

Simple method that works well if the distance measure correctly weights the 
various dimensions  

For large data sets, as k increases kNN approaches optimality in terms of 
minimizing probability of error  

31



k-NN Classifier
• Identify k nearest neighbours of the query

• Assign class as most common class in set

• k-NN decision boundaries:
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Good performance depends on suitable choice of k
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kNN decision boundaries respond to local clusters where one class dominates
Figure credit: Hastie, Tibshirani & Friedman (2nd ed.)

k-Nearest Neighbor (kNN) Classifier 
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What do nearest neighbours 
look like with 80 million images?

[ Torralba, Fergus, Freeman ‘08]
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Fig. 8. As we increase the size of the dataset, the quality of the retrieved set
increases dramatically. However, note that we need to increase the size of the
dataset logarithmically in order to have an effect. These results are obtained
using Dshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initialize I2 with the
warping parameters obtained after optimization of Dwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure. The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. For Dwarp and Dshift we show the closest manipulated
image to the target. Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target. Dshift further optimizes the warping provided by Dwarp
by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, using Dssd and Dshift. Both measures provide very good
matches, but Dshift returns closer images at the semantic level.
This observation will be quantified in Section V.
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Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found using Dshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found using Dshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the size of
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to 108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hence siblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION
A. Wordnet voting scheme
We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could
be adapted to work on 32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given

7900

790,000

79,000,000

Query



Tiny Image Recognition
• Recognition performance (categories vary in semantic level)
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Fig. 20. Test images assigned to words at each semantic level. The images are ordered by voting confidence. The number indicates the total number of
positive examples in the test set out of the 1148 images. The color of the bounding box indicates if the image was correctly assigned (black) or not (red).
The middle row shows the ROC curves for three dataset sizes (red = 7,900 image training set; yellow = 790,000 images; blue = 79,000,000 images). The
bottom row shows the corresponding precision-recall graphs.
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colorization

Proposed
colorizations

Fig. 21. Automatic image colorization. From top to bottom, first row, gray scale input image, second row, 32×32 gray scale siblings, third row, corresponding
high resolution color siblings, fourth row, average of the color siblings, fifth row, input image with color from the average, sixth row, candidate colorizations
by taking the color information from four different siblings.

yellow = 7900, red = 790,000, blue = 79,000,000

Nearest neighbour becomes increasingly accurate as N increases,
but do we need to store a dataset of 80 million images?



Linear Classification

•Linear classification, 2-class, N-class 

•Regularization, softmax, cross entropy 

•SGD, learning rate, momentum

37



• Let’s start by using 2 classes, e.g., bird and plane

• Apply labels (y) to training set:

38

• Use a linear model to regress y from x

Linear Classification

18.2

y = +1

y = -1



• Let’s start by using 2 classes, e.g., bird and plane

• Apply labels (y) to training set:

39

• Use a linear model to regress y from x

Linear Classification
18.2

y = +1

y = -1



2-class Linear Classification
• Separating hyperplane, projection to a line defined by w
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N-class Linear Classification
• We could construct O(n2) 1 vs 1 classifiers
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N-class Linear Classification
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• We could regress directly to integer class id, y = {0,1,2,3…9}
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One-Hot Regression
• A better solution is to regress to one-hot targets = 1 vs all 

classifiers
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One-Hot Regression
• Stack into matrix form
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‘cat’

⇥
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⇤

⇥
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⇤

⇥
x1 x2 x3 ...

⇤
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⇥
t1 t2 t3 ...

⇤

XW = T

2

4 WT

3

5

1

… …



One-Hot Regression
• Transpose

45

⇥
0 1 0 0 ...

⇤

⇥
0 0 0 1 ...

⇤

⇥
x1 x2 x3 ...

⇤
W =

⇥
t1 t2 t3 ...

⇤

XW = T
2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

⇥
0 1 0 0 ...

⇤

⇥
0 0 0 1 ...

⇤

⇥
x1 x2 x3 ...

⇤
W =

⇥
t1 t2 t3 ...

⇤

XW = T
2

664

x11 x12 x13 ...
x21 x22 x23 ...
x31 x32 x33 ...

...

3

775

2

4 W

3

5 =

2

4
0 1 0 0 ...
0 0 0 1 ...

.. ..

3

5

1

auto
cat

• Solve regression problem by Least Squares



N-class Linear Classification

46

plane

bird

car

cat

• One hot regression = 1 vs all classifiers



One-Hot Regression
• Visualise class templates for the least squares solution

47

What is happening here?

• Classifier accuracy = 35% (not bad, c.f., nearest mean = 27%)



Polynomial Fitting
• Consider fitting a polynomial to some data by linear regression

48

18.4



Polynomial Fitting
• Multiple data points

49

(yi, xi)

y2 = a0 + a1x2 + a2x
2
2 + a3x

3
2

y1 = a0 + a1x1 + a2x
2
1 + a3x

3
1

y3 = a0 + a1x3 + a2x
2
3 + a3x

3
3

...

• In matrix form




y1
y2
y3
...



 =





1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

... ...









a0
a1
a2
a3





y = Ma

• Solve linear system by Gaussian elimination (if square) or 
Least Squares (if overconstrained)



Polynomial Fitting

50

• Fit Nth order polynomial by least squares

• Overfitting



Validation
• Fit the model to a subset of data, and evaluate the fit on a held 

out validation set

51

• Calculate rms error erms =

�
1

N

�

i

(yi − ŷi)
2

� 1
2



Validation

52

Polynomial Order (N)

rm
s 

er
ro

r

training

validation

• Training error always decreases, but validation error has a 
minimum for the best model order



Polynomial Fitting
• For large N, coefficients become HUGE!

53

N=1 N=2 N=4 N=10
a0 0.90 2.03 -2.88 48.50
a1 -1.54 29.76 -1294.90
a2 -57.43 14891.41
a3 31.86 -95161.10
a4 367736.84
a5 -885436.68
a6 1331063.41
a7 -1212056.89
a8 610930.32
a9 -130727.39

1



Regularization
• L2 penalty on polynomial coefficients

54

18.5



Regularized Linear Regression

55

λ

• Over-smoothing...

• 10th order polynomial, prior on the coefficients weight 



Under/Overfitting

56

• Training error always decreases as lambda is reduced

• Test error reaches a minimum, then increases ⇒ overfitting 

• Test error vs lambda



Regularized Classification
• Add regularization to CIFAR10 linear classifier

57

• Row 1 = overfitting, Row 3 = oversmoothing?



Non-Linear Optimisation
• With a linear predictor and L2 loss, we have a closed form 

solution for model weights W

• How about this (non-linear) function

58

h = W2 max(0,W1x)

h = �(WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

1

• Previously (e.g., bundle adjustment), we locally linearised the 
error function and iteratively solved linear problems

Does this look like a promising approach?

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

�W = �(JTJ)�1JTr

h = W2 max(0,W1x)

h = �(WTx + b)

1

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

�W = �(JTJ)�1JTr

h = W2 max(0,W1x)

h = �(WTx + b)

1



Vanilla Gradient Descent

59

W_1

W_2

Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

http://cs231n.stanford.edu/


Problem with vanilla GD

60
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another? 
What does gradient descent do? 
Very slow progress along shallow dimension, jitter along steep direction 

http://cs231n.stanford.edu/


Problem with vanilla GD

61
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another? 
What does gradient descent do? 
Very slow progress along shallow dimension, jitter along steep direction 

http://cs231n.stanford.edu/


Problem with vanilla GD

62
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if loss changes quickly in one direction and slowly in another? 
What does gradient descent do? 
Very slow progress along shallow dimension, jitter along steep direction 

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large

http://cs231n.stanford.edu/


Optimization: problem with SGD

63
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss 
function has a 
local minima or 
saddle point? 

http://cs231n.stanford.edu/


Optimization: problem with SGD

64
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss 
function has a 
local minima or 
saddle point? 

Image by Oleg Alexandrov is in the public domain

http://cs231n.stanford.edu/
https://commons.wikimedia.org/wiki/File:Saddle_point.png
https://commons.wikimedia.org/wiki/User:Oleg_Alexandrov


Optimization: problem with SGD

65
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss 
function has a 
local minima or 
saddle point? 

http://cs231n.stanford.edu/


Optimization: problem with SGD

66
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss 
function has a 
local minima or 
saddle point? 

Zero gradient, 
gradient 
descent gets 
stuck

http://cs231n.stanford.edu/


Optimization: problem with SGD

67
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss 
function has a 
local minima or 
saddle point? 

Saddle points 
much more 
common in 
high dimension 

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

http://cs231n.stanford.edu/


Optimization: problem with SGD

68
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

What if the loss 
function has a 
local minima or 
saddle point? 

Or not? 

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Lee et al, “Gradient Descent Only Converges to Minimizers”, JLMR Workshop and Conference Proceedings, 2016

"We show that gradient descent converges to a local minimizer, 
almost surely with random initialization. This is proved by 
applying the Stable Manifold Theorem from dynamical systems 
theory.”

http://cs231n.stanford.edu/


Stochastic gradient descent

69
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Our gradients come from mini-
batches so they can be noisy!

Q: How would you remove the noise?

http://cs231n.stanford.edu/


SGD + Momentum

70
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD SGD+Momentum

- Build up “velocity” as a running mean of gradients 
- Rho gives “friction”; typically rho=0.9 or 0.99 

http://cs231n.stanford.edu/


SGD + Momentum

71
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Local Minima Saddle points

Poor Conditioning

Gradient Noise

http://cs231n.stanford.edu/


SGD + Momentum

72
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983 
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004 
Sutskever et al, “On the importance of initialization and momentum in deel learning”, ICML 2013

http://cs231n.stanford.edu/


SGD + Momentum

73
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983 
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004 
Sutskever et al, “On the importance of initialization and momentum in deel learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

http://cs231n.stanford.edu/


Nesterov Momentum

74
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

Nesterov

http://cs231n.stanford.edu/


RMSProp

75
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Q: What happens with RMSProp?
Tieleman and Hinton, 2012

http://cs231n.stanford.edu/


RMSProp

76
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

RMSProp

http://cs231n.stanford.edu/


Adam (almost)

77
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

RMSProp

RMSProp with momentum

Q: What happens at first the timestep?

http://cs231n.stanford.edu/


Adam (full form)

78
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9,  
beta2 = 0.999, and learning_rate = 1e-4 
is a great starting point for many models! 

http://cs231n.stanford.edu/


Adam

79
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

SGD

SGD+Momentum

RMSProp

Adam

http://cs231n.stanford.edu/


Learning rate: hyperparameter

80
Based on slides for Stanford cs231n by Li, Jonson, and Young. Modified and reused with permission

Iteration

http://cs231n.stanford.edu/

