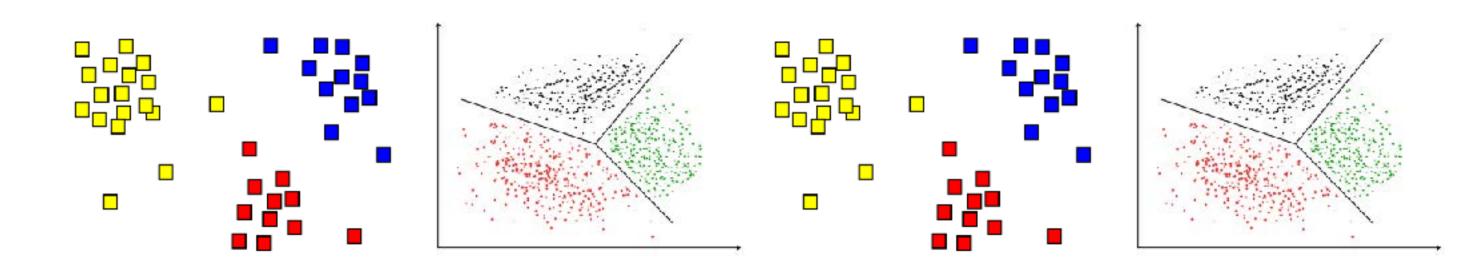
Please get your **iClickers** – Quiz 5: **6** questions

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 18: Visual Classification 1, Bag of Words

Menu for Today

Topics:

- Visual Classification

Readings:

- Today's Lecture: Szeliski 11.4, 12.3-12.4, 9.3, 5.1-5.2

Reminders:

- Assignment 4: due TOMORROW

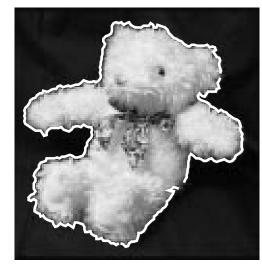
- Bag of Words, K-means

Learning Goals

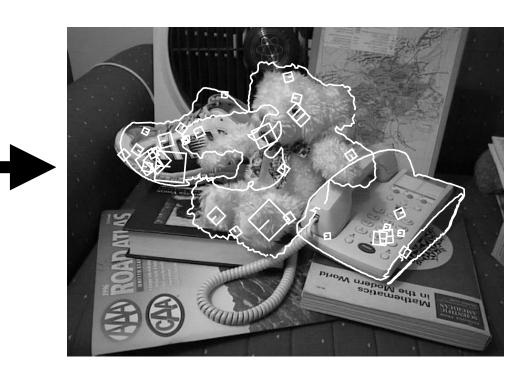
Understanding the visual classification "pipeline"

Object Recognition

• Object recognition with SIFT features [Lowe 1999]



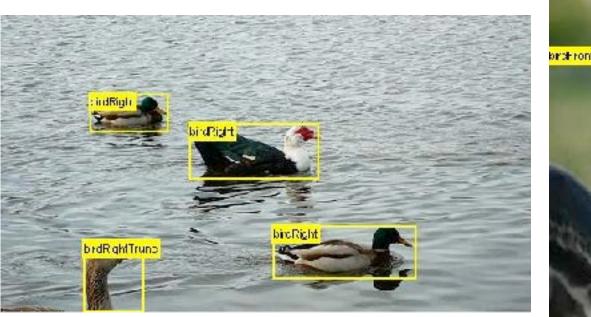
What is present? Where? What orientation?

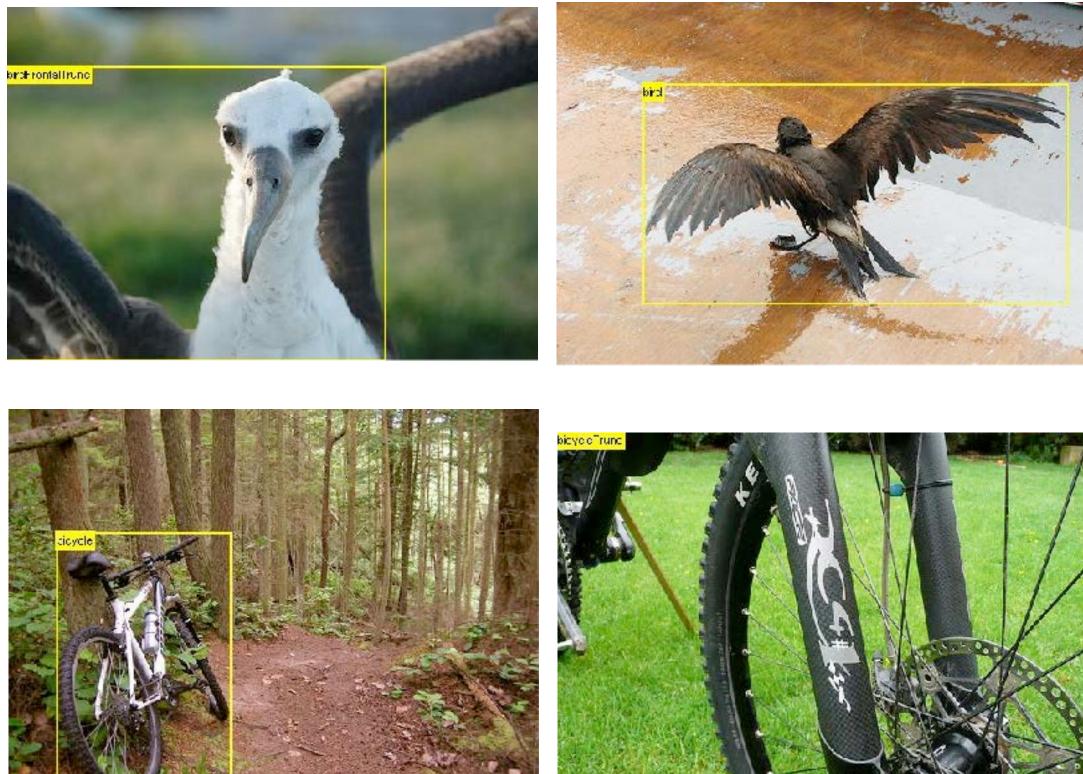


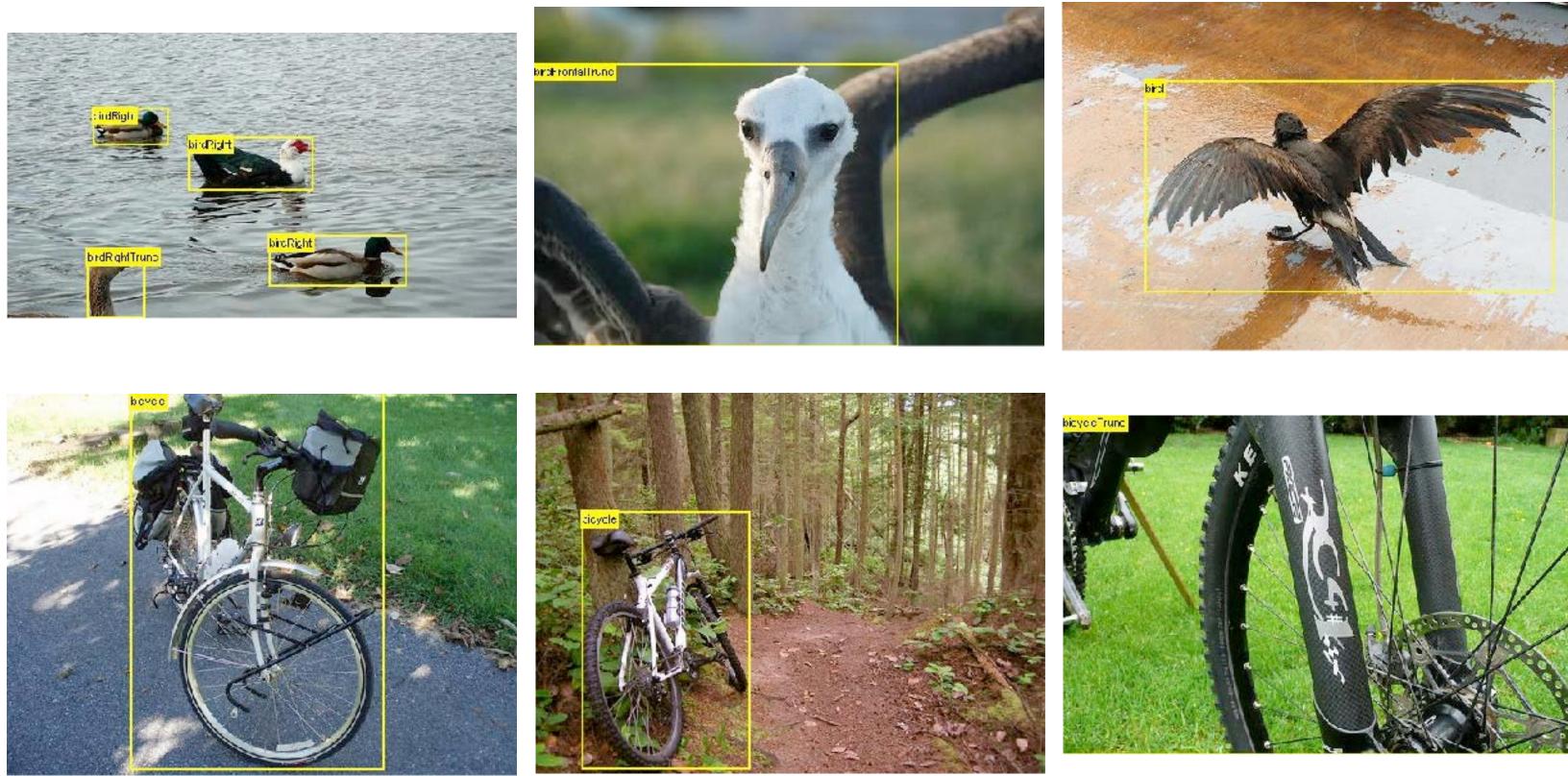
6

Object Recognition

• PASCAL Visual Object Classes Challenges [2005-2012]



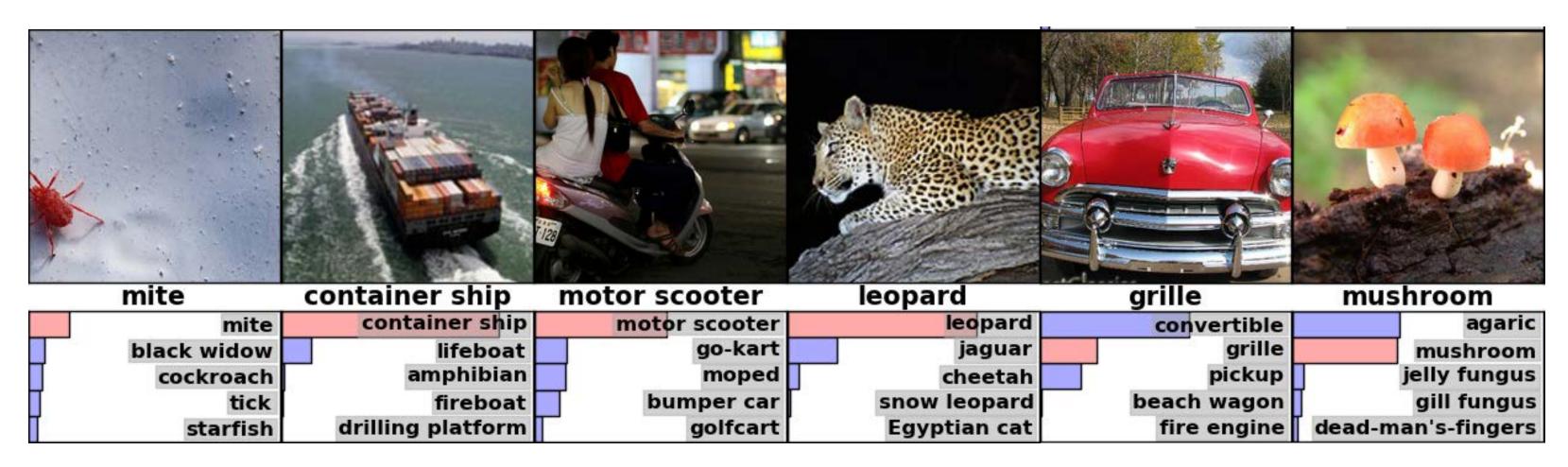




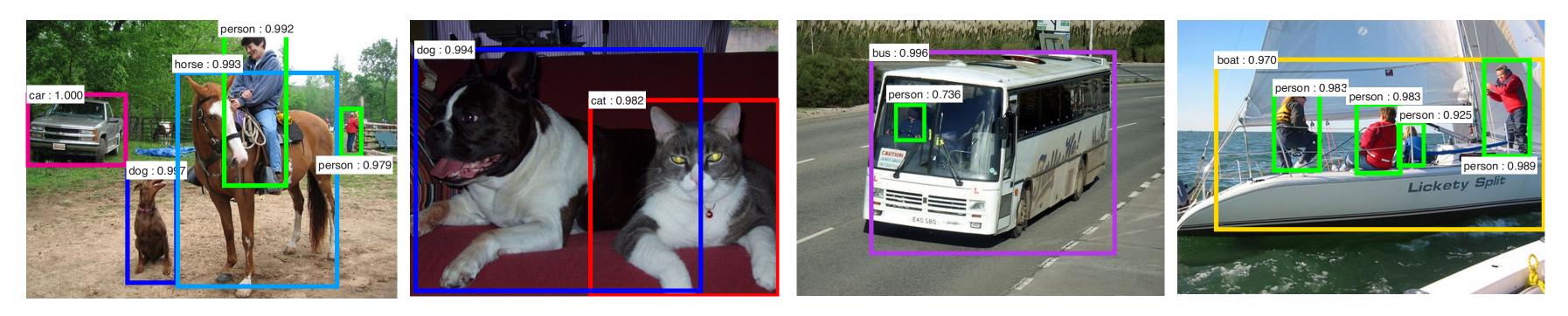
What is present? Where? What orientation?

Classification and Detection

• Classification: Label per image, e.g., ImageNet

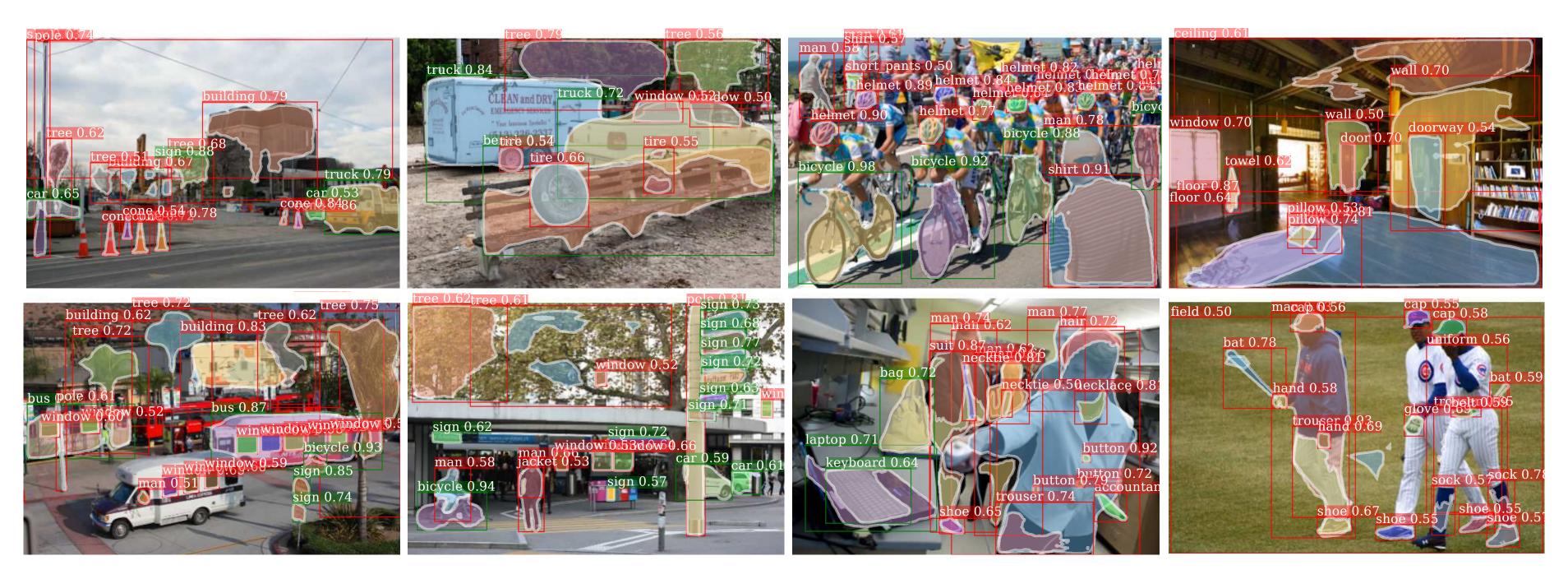


• Detection: Label per region, e.g., PASCALVOC



[Krizhevsky et al 2011][Ren et al 2016]

• Segmentation: Label per pixel, e.g., MS COCO

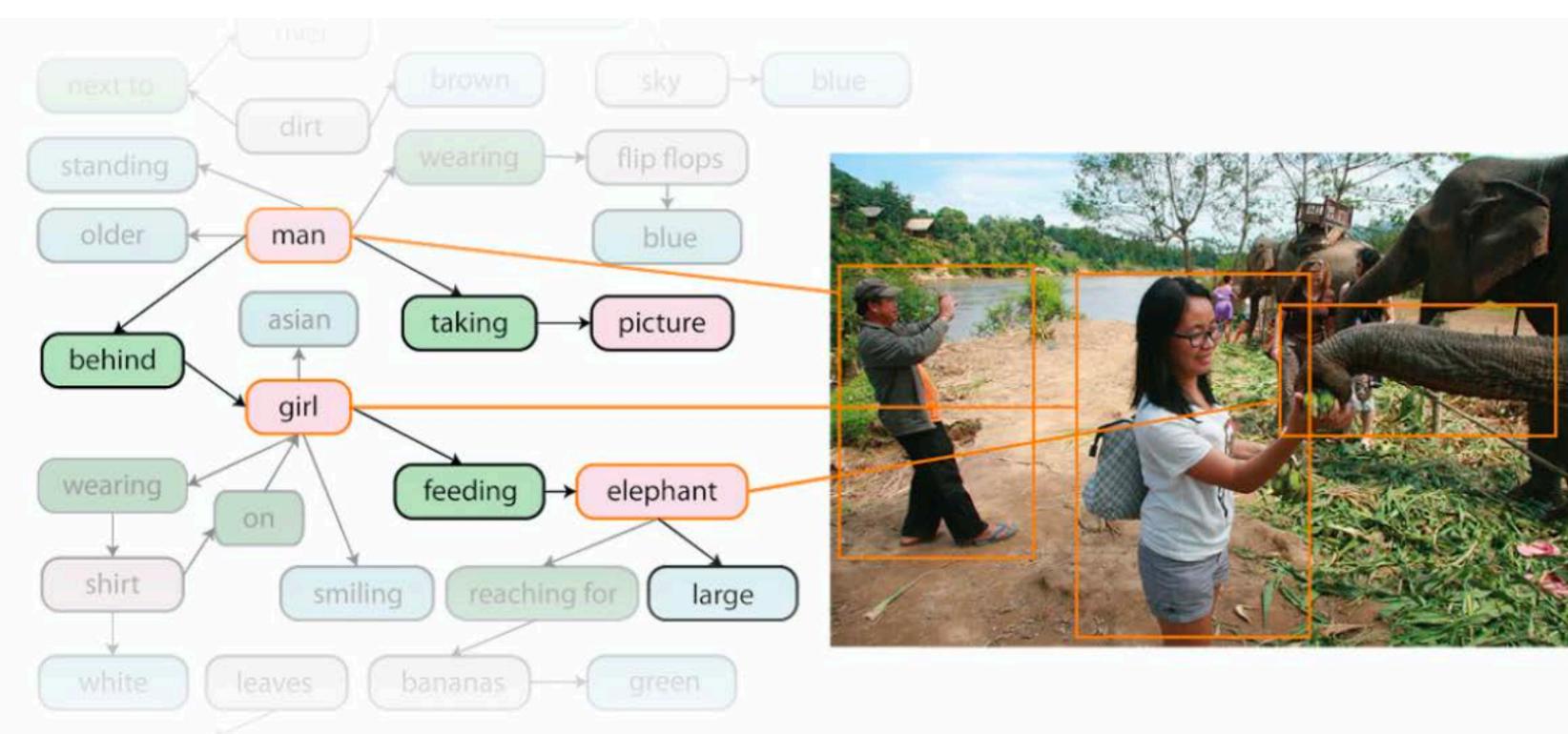


Segmentation

[Hu et al 2017] 9

Structured Image Understanding

• "Girl feeding large elephant" • "A man taking a picture behind girl"



visualgenome.org [Krishna et al 2017]

Shape + Tracking

• Other vision applications might need shape modelling (possibly

[SMPL Loper et al 2015]

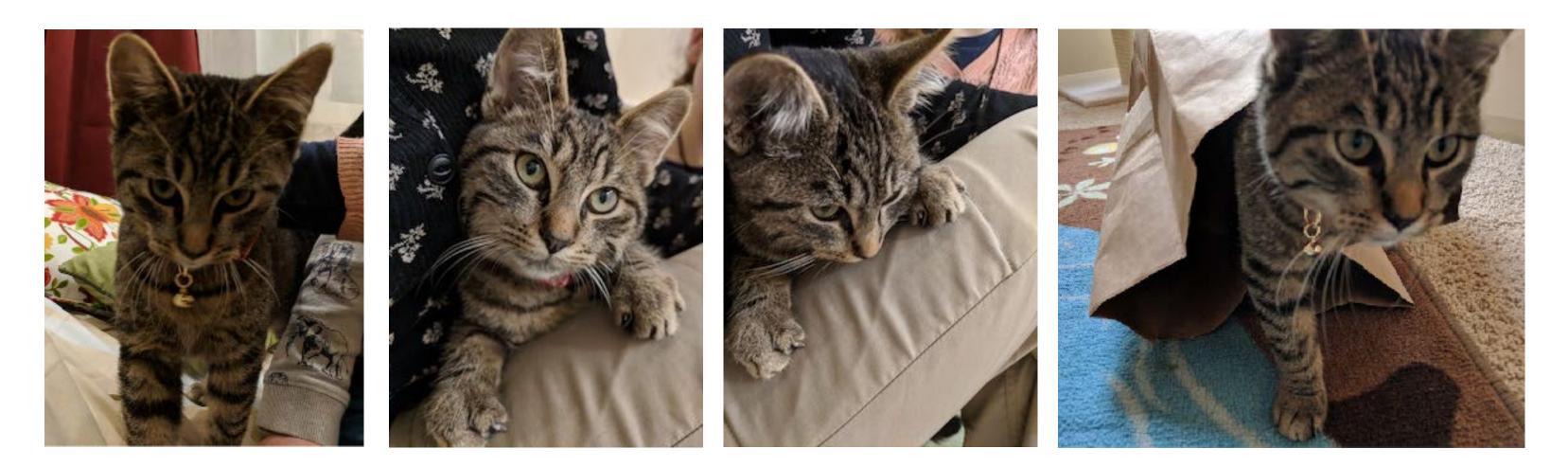
Classification: Instance vs Category

Instance of Aeroplane (Wright Flyer)

Category of Aeroplanes

[Caltech 101] 12

Classification: Instance vs Category



Instance of a cat

Category of domestic cats

Taxonomy of Cats

- → Mammals (Class Mammalia)
 - → Therians (Subclass Theria)
 - → Placental Mammals (Infraclass Placentalia)
 - → Ungulates, Carnivorans, and Allies (Superorder Laurasiatheria)
 - → Carnivorans (Order Carnivora)
 - → Felines (Family Felidae)
 - → Small Cats (Subfamily Felinae)
 - → Genus *Felis*
 - → Chinese Mountain Cat (Felis bieti)
 - → Domestic Cat (Felis catus)
 - \rightarrow Jungle Cat (Felis chaus)
 - → African Wildcat (Felis lybica)
 - → Sand Cat (Felis margarita)
 - → Black-footed Cat (Felis nigripes)
 - └→ European Wildcat (*Felis silvestris*)

Bengal Tiger [Omveer Choudhary]

Ocelot [Jitze Couperus]

European Wildcat [the wasp factory]

[<u>inaturalist.org</u>]¹⁴

WordNet

- We can use language to organise visual categories

- e.g., a "sail" is part of a "sailboat" which is a "watercraft"

• <u>S:</u> (n) sailboat, sailing boat (a small sailing vessel; usually with a single mast) <u>direct hyponym</u> / <u>full hyponym</u>

- Atlantic coast of the United States)
- part meronym
- o <u>direct hypernym</u> / <u>inherited hypernym</u> / <u>sister term</u>
 - wind; often having several masts)

we call it a "sail"?

• This is the approach taken in ImageNet [Deng et al 2009], which uses the WordNet lexical database [wordnet.princeton.edu] • As in language, visual categories have complex relationships

> • <u>S:</u> (n) <u>catboat</u> (a sailboat with a single mast set far forward) • <u>S:</u> (n) sharpie (a shallow-draft sailboat with a sharp prow, flat bottom, and triangular sail; formerly used along the northern

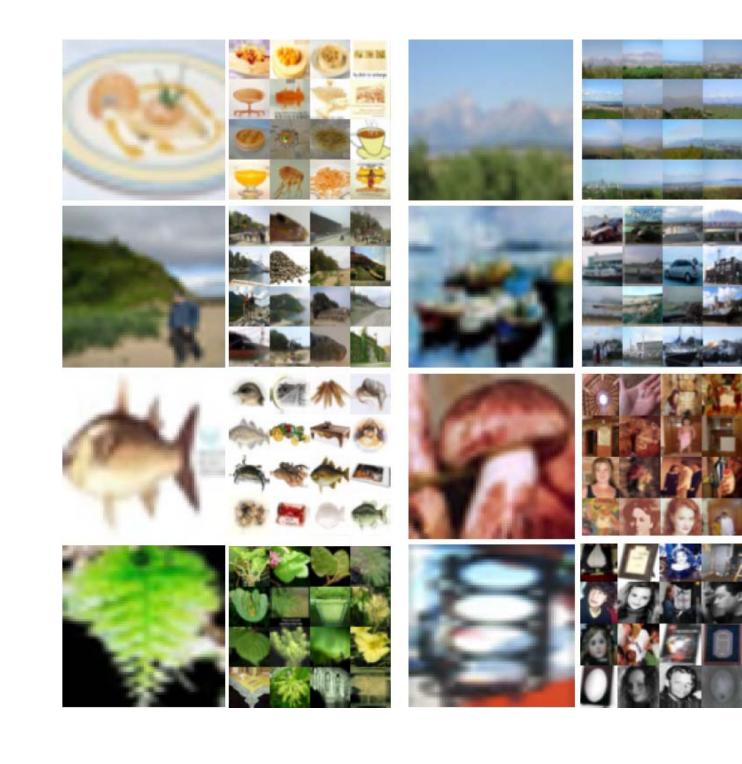
S: (n) trimaran (a fast sailboat with 3 parallel hulls)

• <u>S:</u> (n) <u>sailing vessel</u>, <u>sailing ship</u> (a vessel that is powered by the

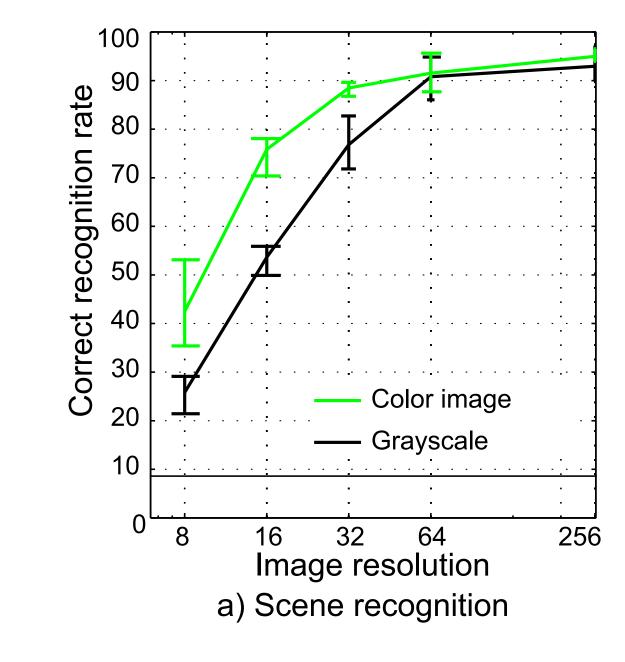
If we call a "sailboat" a watercraft, is this wrong? What if

Tiny Image Dataset

- Precursor to ImageNet and CIFAR10/100
- 75,062 noun synsets from WordNet (labels are noisy)



• 80 million images collected via image search circa 2008 using • Very small images (32x32xRGB) used to minimise storage • Note human performance is still quite good at this scale!



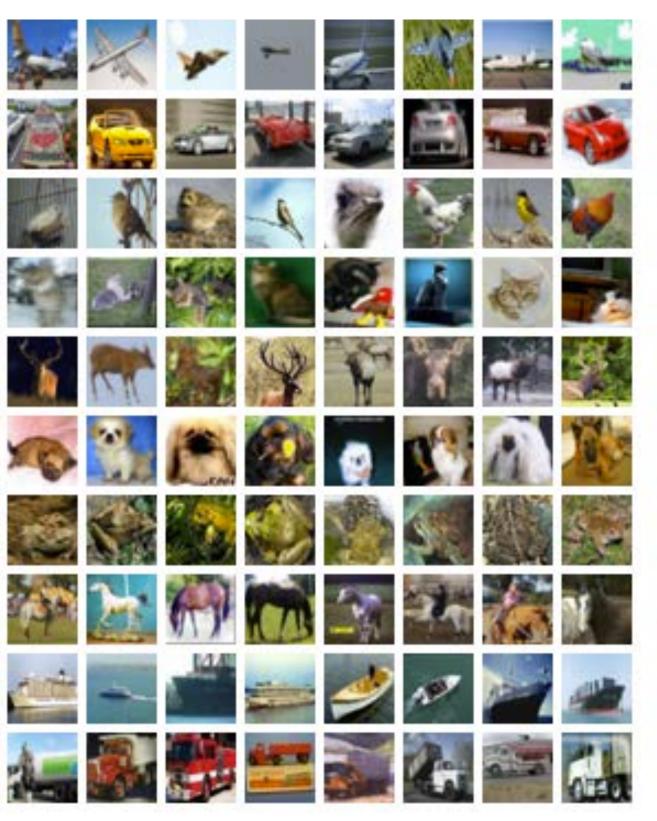
[Torralba Freeman Fergus 2008] 17

CIFARIO Dataset

airplane	
automobile	
bird	Se of
cat	
deer	
dog	W. A. 1
frog	
horse	- the set
ship	
truck	

Good test set for visual recognition problems

 Hand labelled set of 10 categories from Tiny Images dataset 60,000 32x32 images in 10 classes (50k train, 10k test)

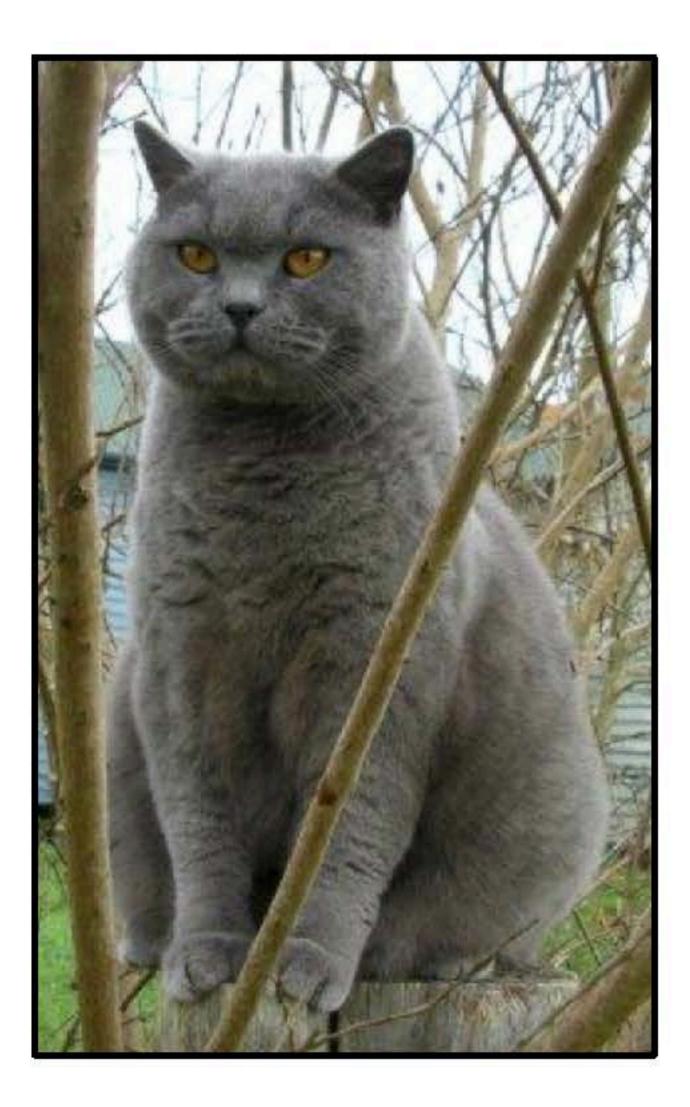


Problem:

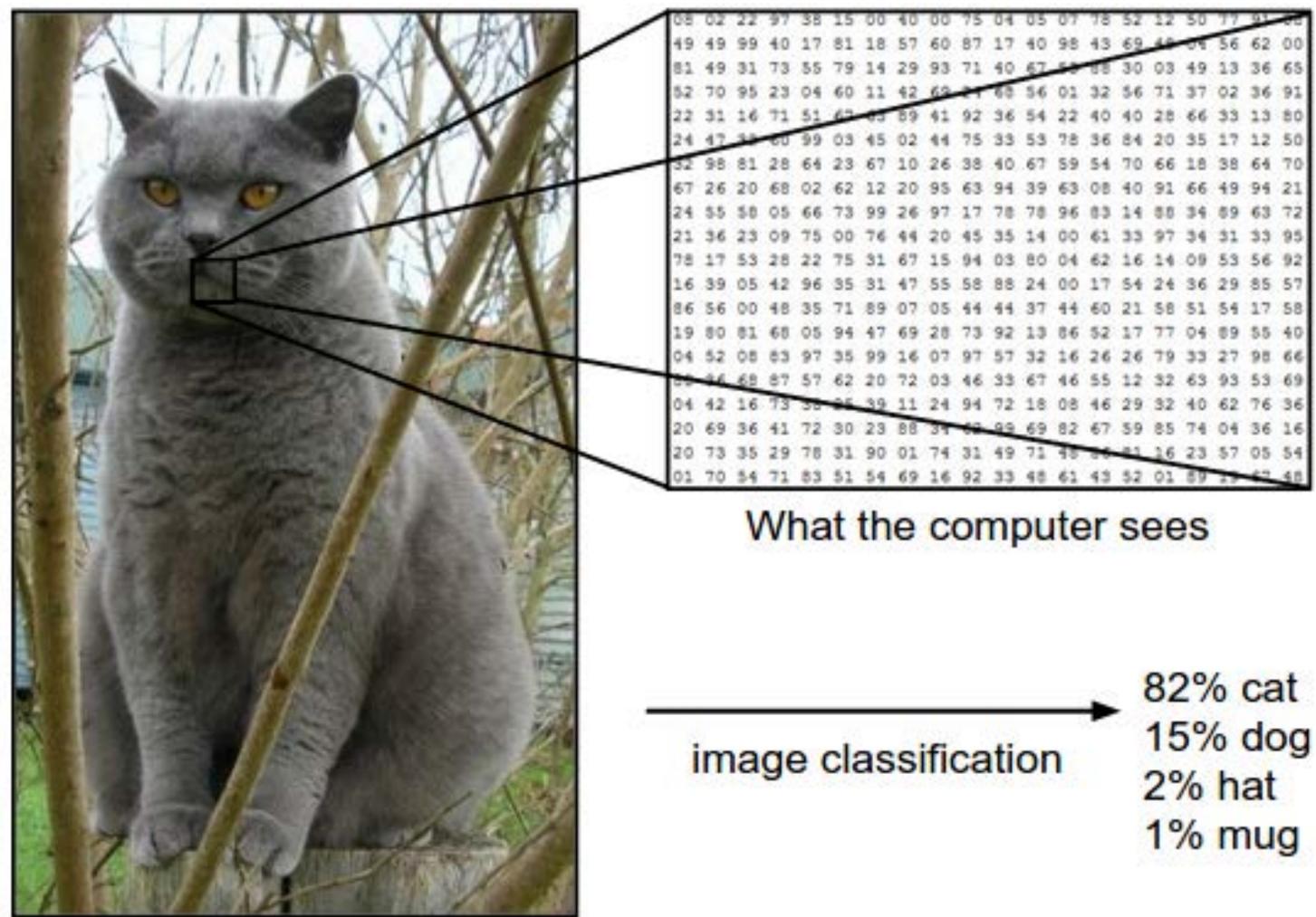
Assign new observations into one of a fixed set of categories (classes)

Key Idea(s):

Build a model of data in a given category based on observations of instances in that category



(assume given set of discrete labels) {dog, cat, truck, plane, ...}



5	00	40	00	75	04	05	07	78	52	12	50	77	91	20
1	18	57	60	87	17	40	98	43	69	44	11	36	62	00
9	14	29	93	71	40	67	-	88	30	03	49	13	36	65
0	11	42	62	-	68	56	01	32	56	71	37	02	36	91
2	03	89	41	92	36	54	22	40	40	28	66	33	13	80
3	15	02	44	75	33	53	78	36	84	20	35	17	12	50
3	67	10	26	38	40	67	59	54	70	66	18	38	64	70
2	12	20	95	63	94	39	63	08	40	91	66	49	94	21
3	99	26	97	17	78	78	96	83	14	88	34	69	63	72
0	76	44	20	45	35	14	00	61	33	97	34	31	33	95
5	31	67	15	94	03	80	04	62	16	14	09	53	56	92
5	31	47	55	58	88	24	00	17	54	24	36	29	85	57
1	89	07	05	44	44	37	44	60	21	58	51	54	17	58
4	47	69	28	73	92	13	86	52	17	77	04	89	55	40
5	99	16	07	97	57	32	16	26	26	79	33	27	98	66
2	20	72	03	46	33	67	16	55	12	32	63	93	53	69
ŝ,	39	11	24	94	72	18	80	16	29	32	40	62	76	36
0	23	88	31	-	99	69	82	67	59	85	74	04	36	16
1	90	01	74	31	49	71	45	-	41	16	23	57	05	54
1	54	69	16	92	33	48	61	43	52	01	69	-	47	48

A **classifier** is a procedure that acce a class **label**

Classifiers can be binary (face vs. not-face) or multi-class (cat, dog, horse, ...).

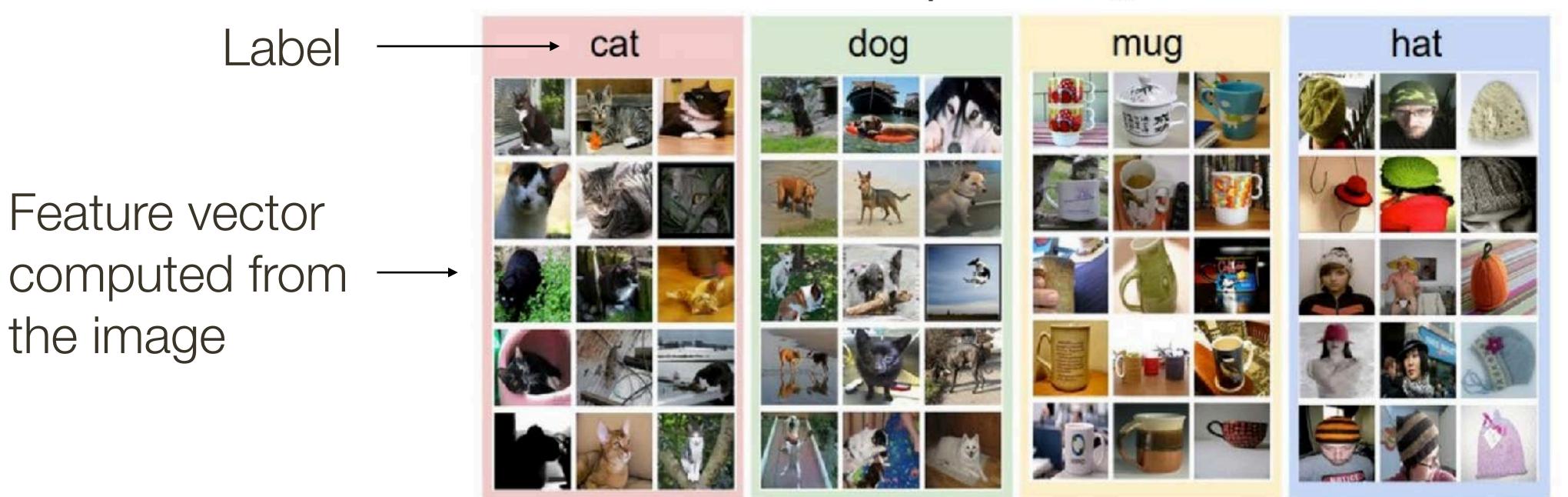
We build a classifier using a **training set** of labelled examples $\{(\mathbf{x}_i, y_i)\}$, where each \mathbf{x}_i is a feature vector and each y_i is a class label.

Given a previously unseen observation, we use the classifier to predict its class label.

A classifier is a procedure that accepts as input a set of features and outputs

Collect a database of images with labels

- Use ML to train an image classifier
- Evaluate the classifier on test images



Example training set

Instance Recognition using Local Features

registration (2D) or camera pose estimation (3D):

- I. Detect Local Features (e.g., SIFT) in all images 2. Match Features using Nearest Neighbours (with Affine/Homography or Fundamental matrix)
- consistent matches > threshold

• Feature-based object instance recognition is similar to image

3. Find geometrically consistent matches using RANSAC

The final stage is to verify the match, e.g., require that #

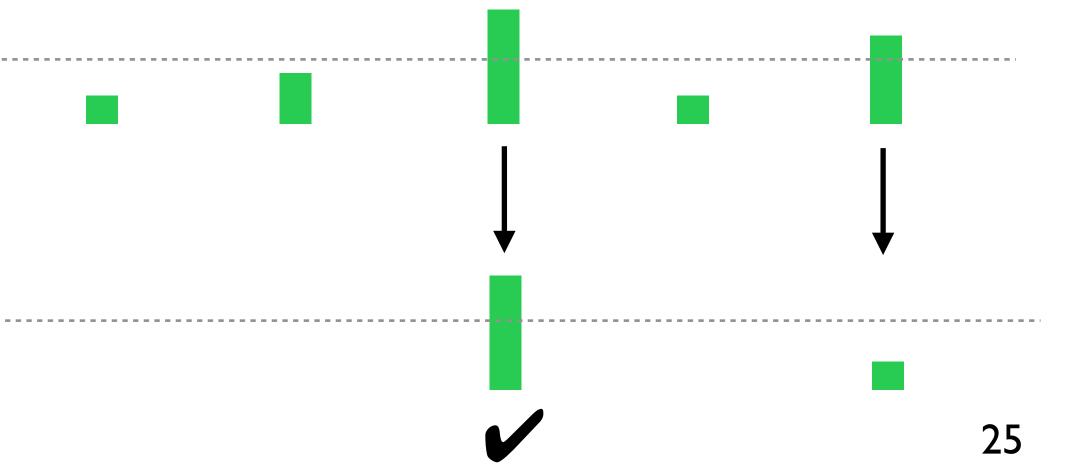
Scaling Local Feature Recognition

- To avoid performing all pairwise comparisons $O(n^2)$:

raw matches

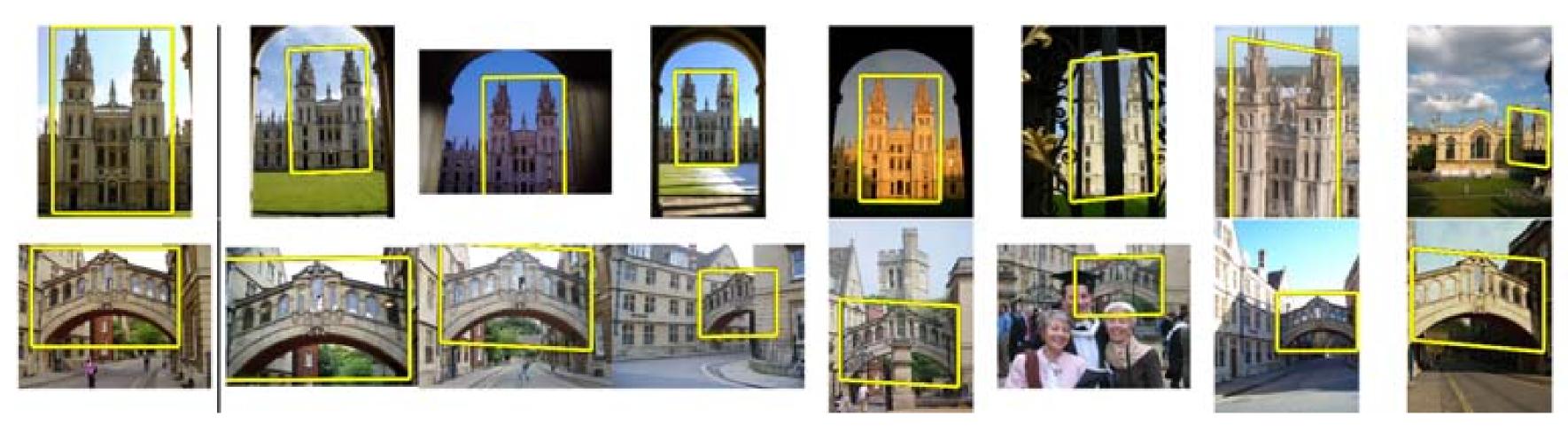
geometrical consistency

• Match query descriptors to entire database using k-d tree • Select subset with max # raw matches and check geometry



Application: Location Recognition

• Find photo in streetside imagery



[Schindler Brown Szeliski 2007]

[Philbin et al 2007] ²⁶

Local Feature Recognition Failures

most object categories and some instance problems

• Features + RANSAC fails with large appearance variation, e.g.,

Few correct matches

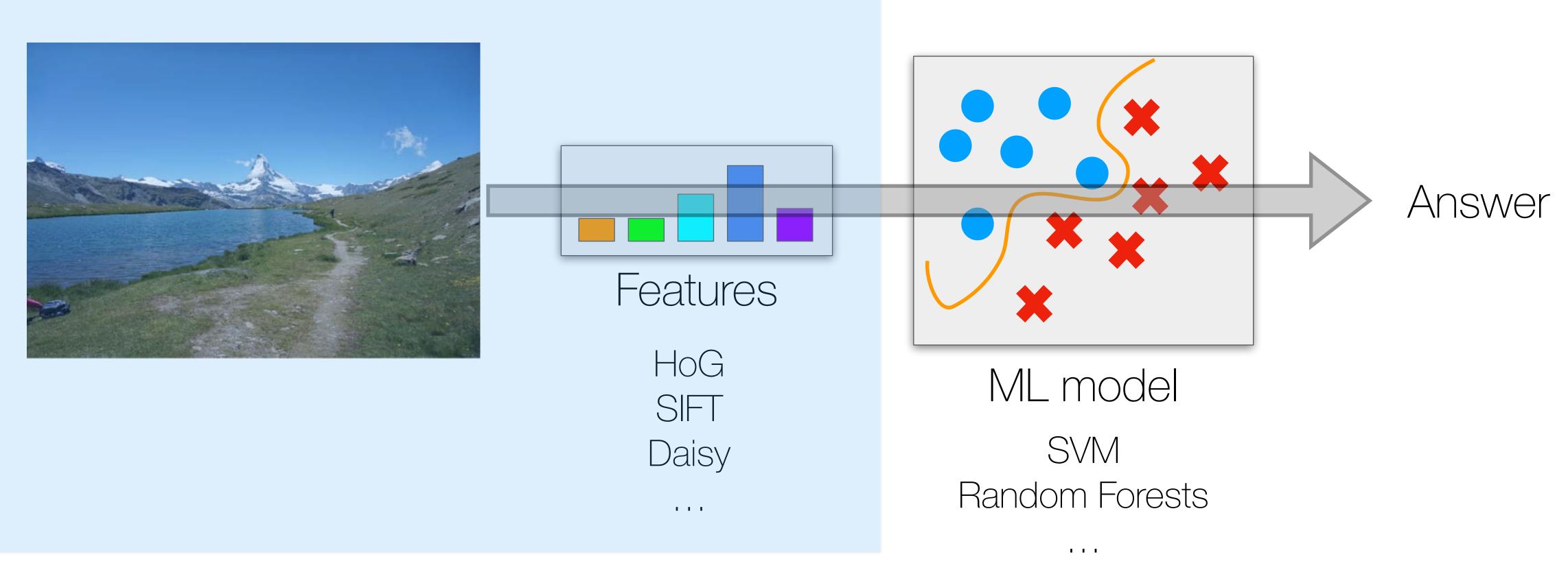
Local Feature Recognition Failures

most object categories and some instance problems

• Features + RANSAC fails with large appearance variation, e.g.,

No correct matches

Traditional Image Classification Pipeline



How do we then represent images?

Visual Words

Many algorithms for image classification accumulate evidence on the basis of **visual words**.

To classify a text document (e.g. as an article on sports, entertainment, business, politics) we might find patterns in the occurrences of certain words.

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979

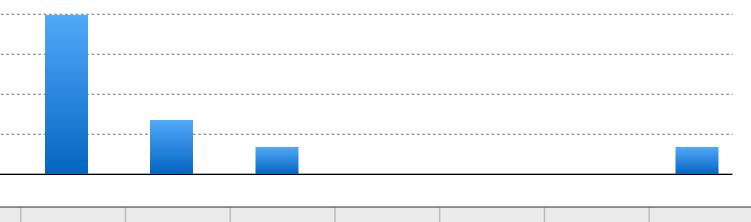
(PAMs), belt

0

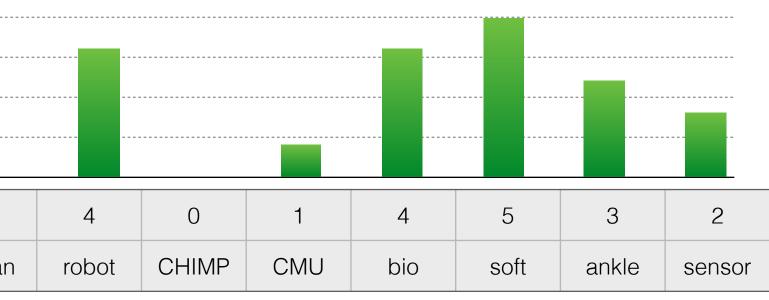
Tartan

http://www.fodey.com/generators/newspaper/snippet.asp

California, MIT and



1	6	2	1	0	0	0	1
Tartan	robot	CHIMP	CMU	bio	soft	ankle	sensor



Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

 $n(\cdot)$ counts the number of occurrences just a histogram over words

What is the similarity between two documents?

 $\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$

Vector Space Model

A document (datapoint) is a vector of counts over each word (feature)

 $n(\cdot)$ counts the number of occurrences

What is the similarity between two documents?

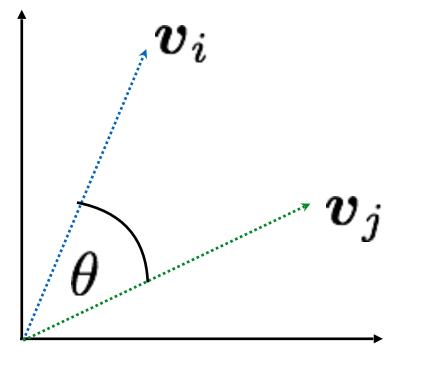
Use any distance you want but the cosine distance is fast and well designed for high-dimensional vector spaces:

$$egin{aligned} d(oldsymbol{v}_i,oldsymbol{v}_j) &= \cos heta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_i}{\|oldsymbol{v}_i\|} \end{aligned}$$

 $oldsymbol{v}_d = [n(w_{1,d}) \quad n(w_{2,d}) \quad \cdots \quad n(w_{T,d})]$

just a histogram over words

 \boldsymbol{v}_{j} $\|oldsymbol{v}_i\|\|oldsymbol{v}_j\|$



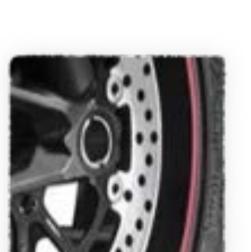
Visual Words

patch is described using a descriptor such as SIFT.

We construct a vocabulary or codebook of local descriptors, containing representative local descriptors.

In images, the equivalent of a **word** is a **local image patch**. The local image

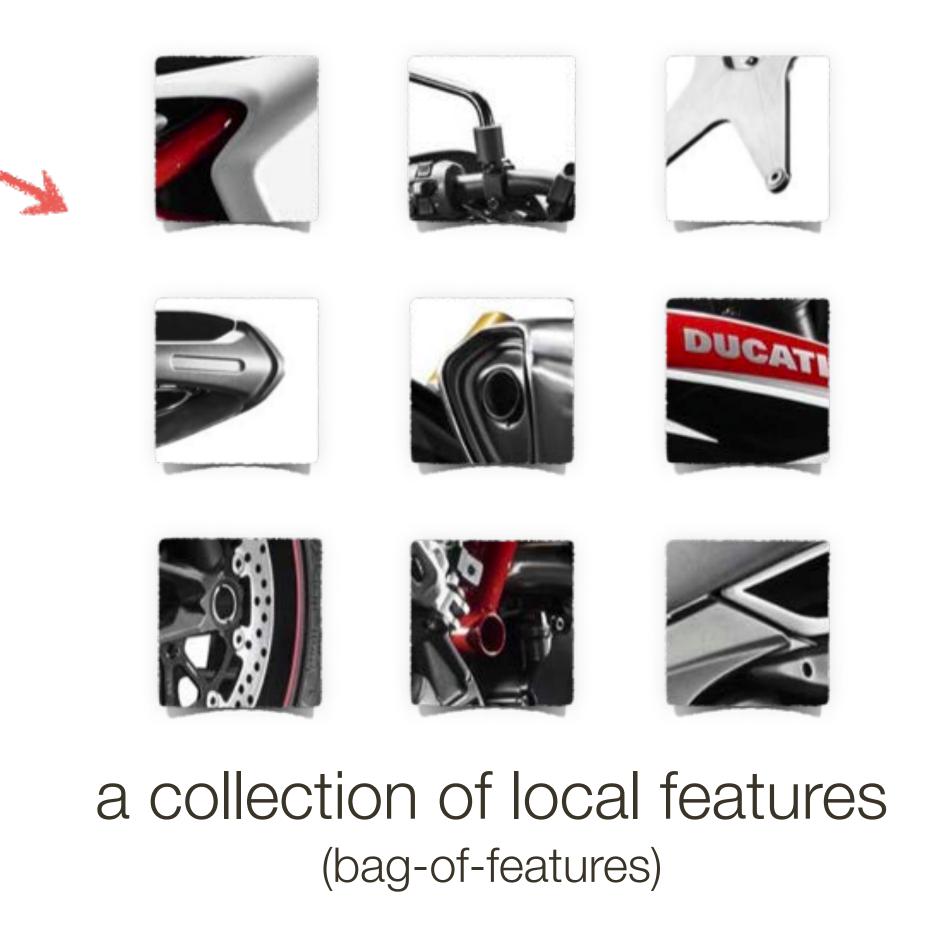
What **Objects** do These Parts Belong To?



0.40

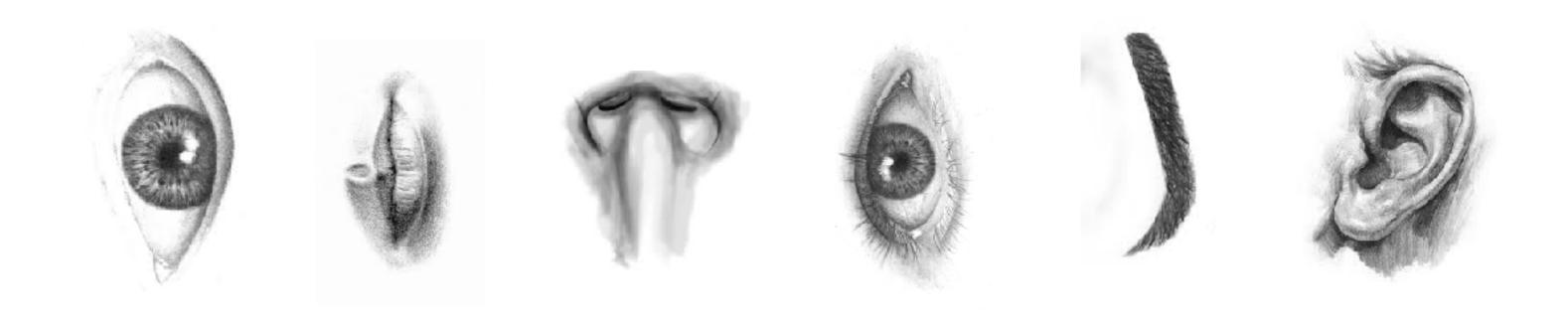
Some local feature are very informative

An object as



- deals well with occlusion
- scale invariant
- rotation invariant

(not so) Crazy Assumption



spatial information of local features can be ignored for object recognition (i.e., verification)

Standard **Bag-of-Words** Pipeline (for image classification)

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

Standard **Bag-of-Words** Pipeline (for image classification)

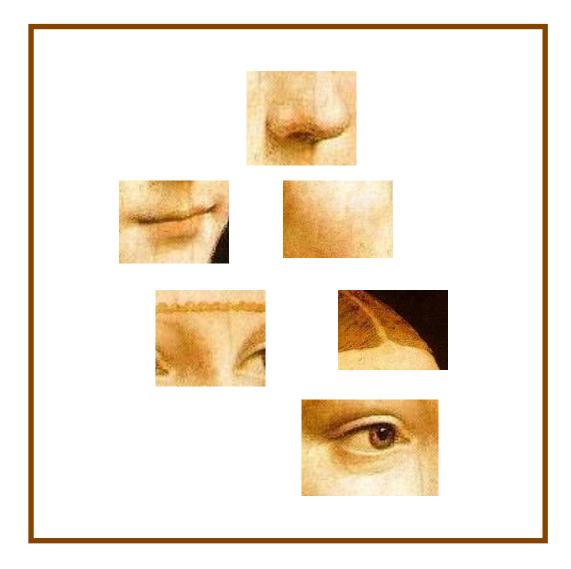
Classify: Train and test data using BOWs

Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

1. Dictionary Learning: Learn Visual Words using Clustering

1. Extract features (e.g., SIFT) from images

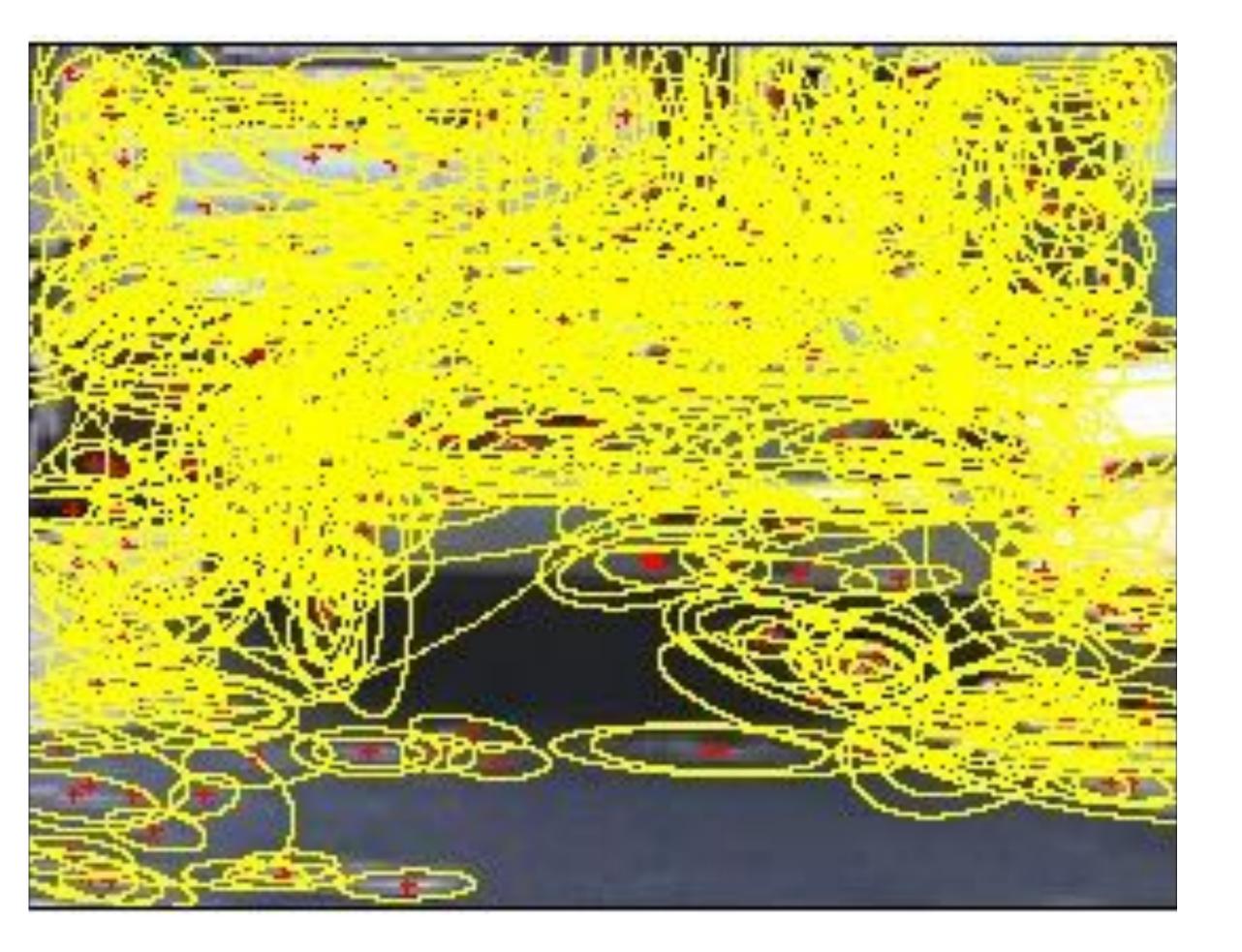


1. Dictionary Learning: Learn Visual Words using Clustering

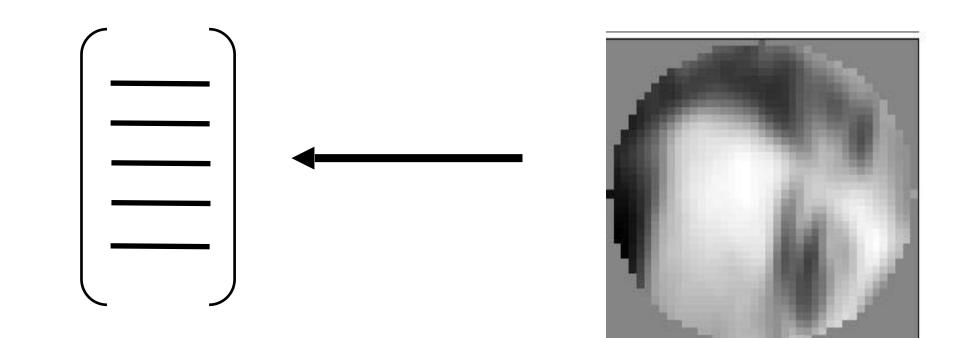
2. Learn visual dictionary (e.g., K-means clustering)

What **Features** Should We Extract?

- Regular grid Vogel & Schiele, 2003 Fei-Fei & Perona, 2005
- Interest point detector Csurka et al. 2004 Fei-Fei & Perona, 2005 Sivic et al. 2005
- Other methods Random sampling (Vidal-Naquet & Ullman, 2002) Segmentation-based patches (Barnard et al. 2003)



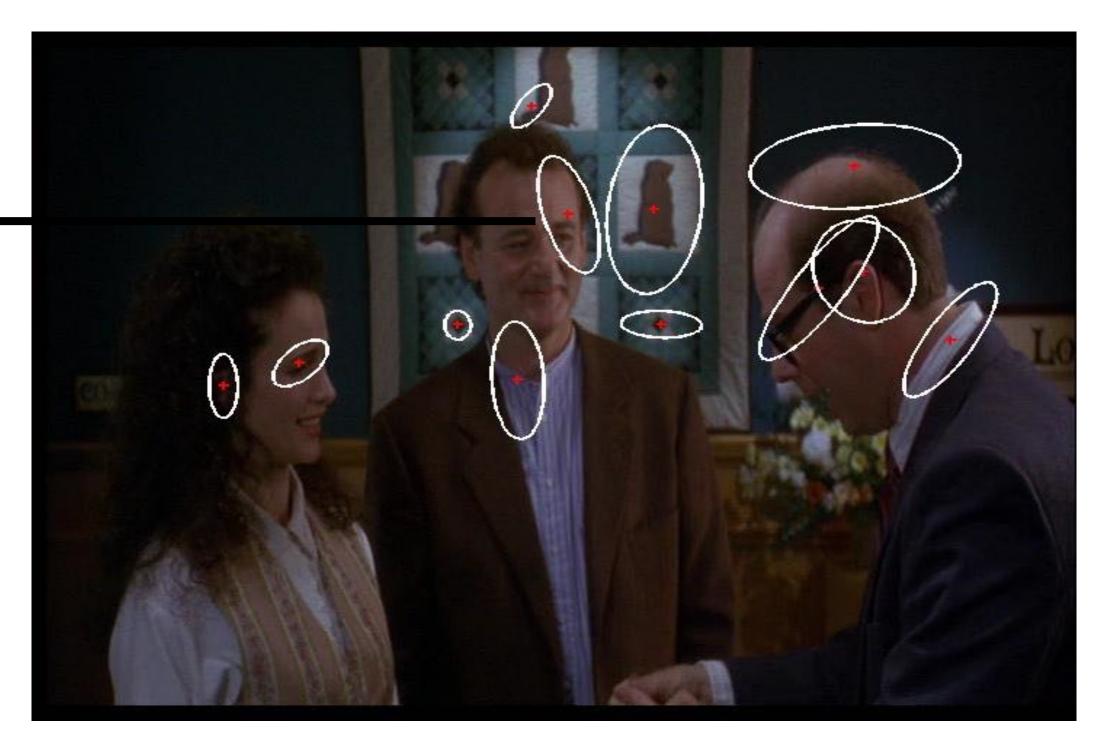
Extracting SIFT Patches



Compute SIFT descriptor

[Lowe'99]

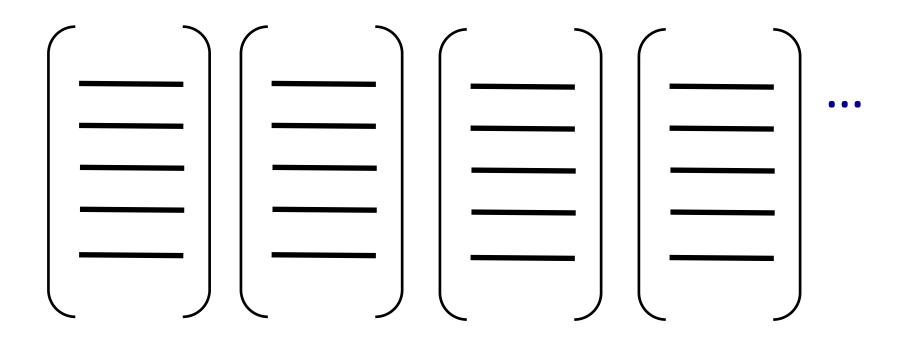
Normalize patch

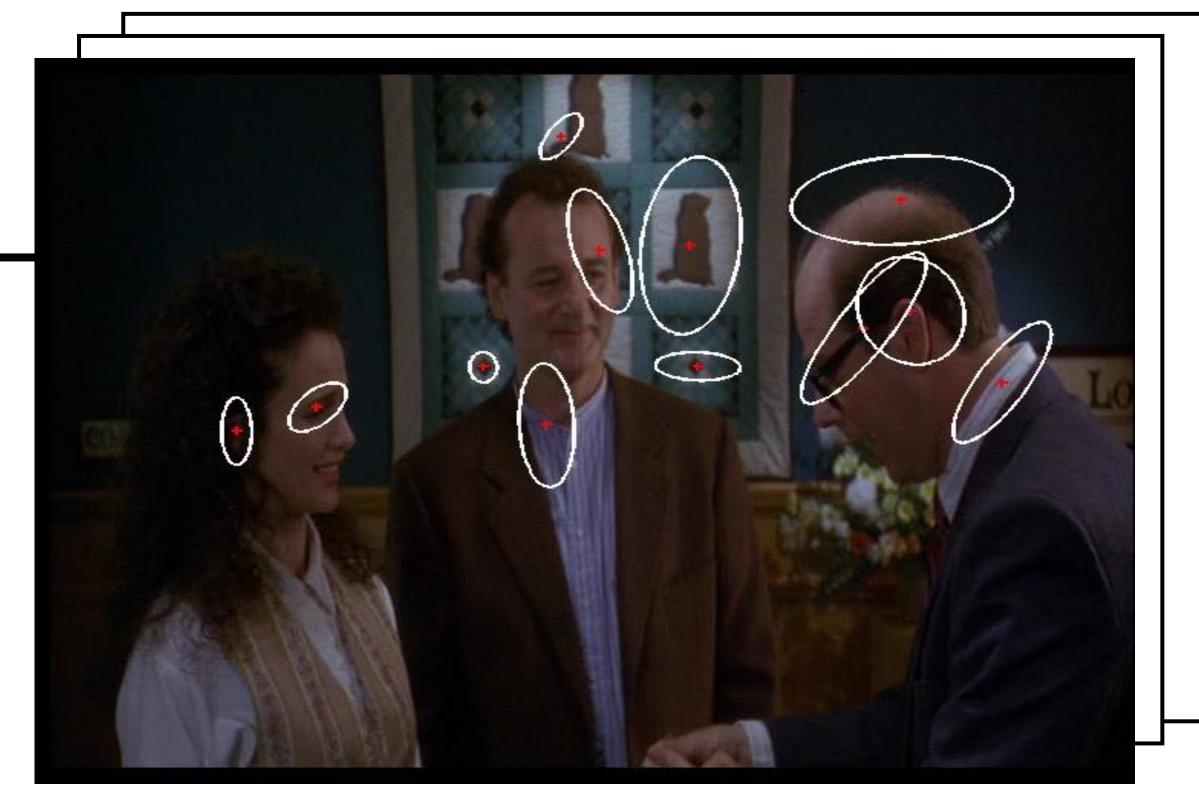


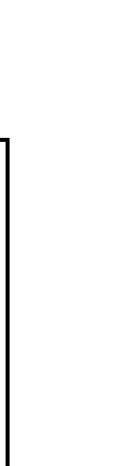
Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

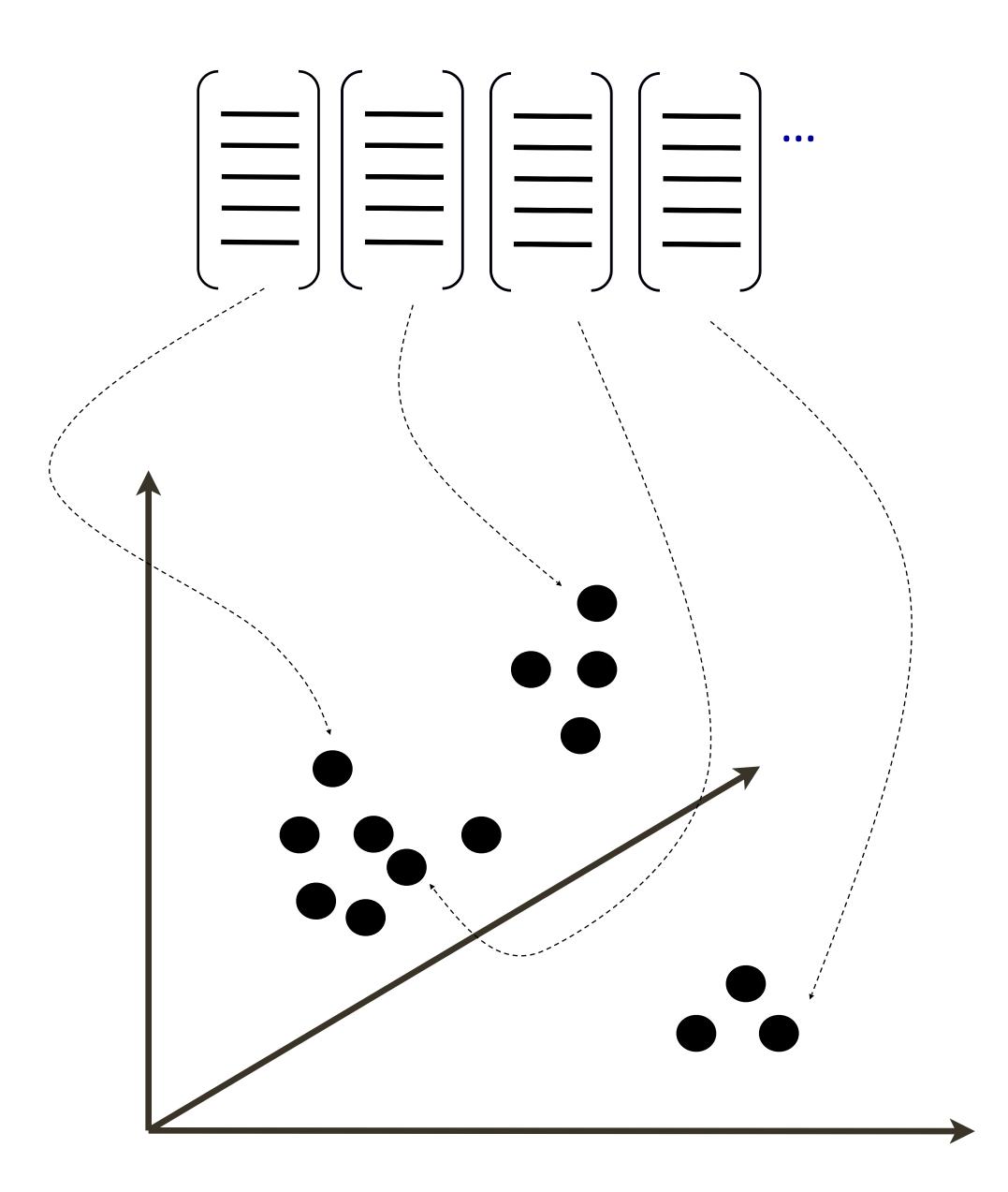
Extracting SIFT Patches



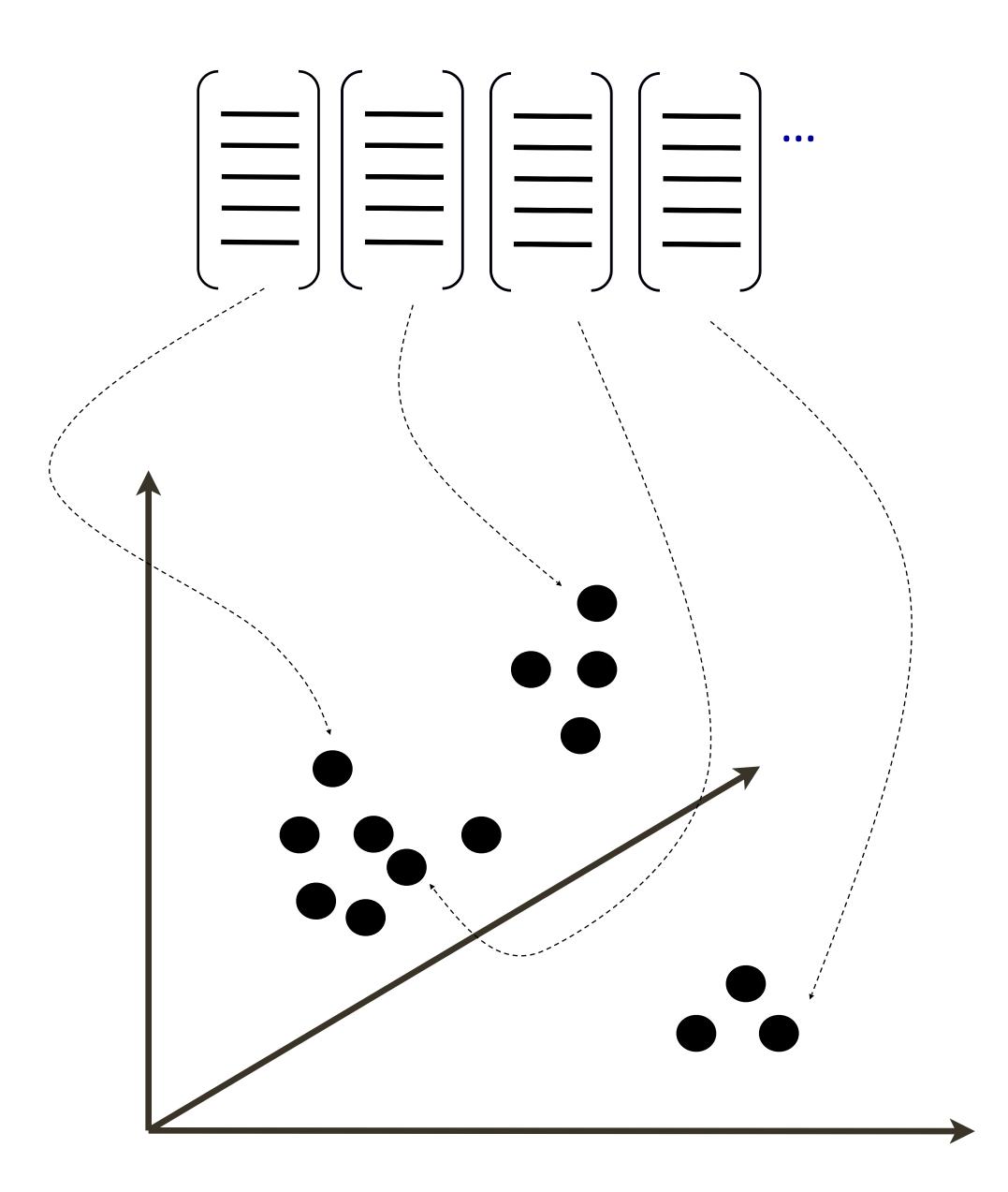


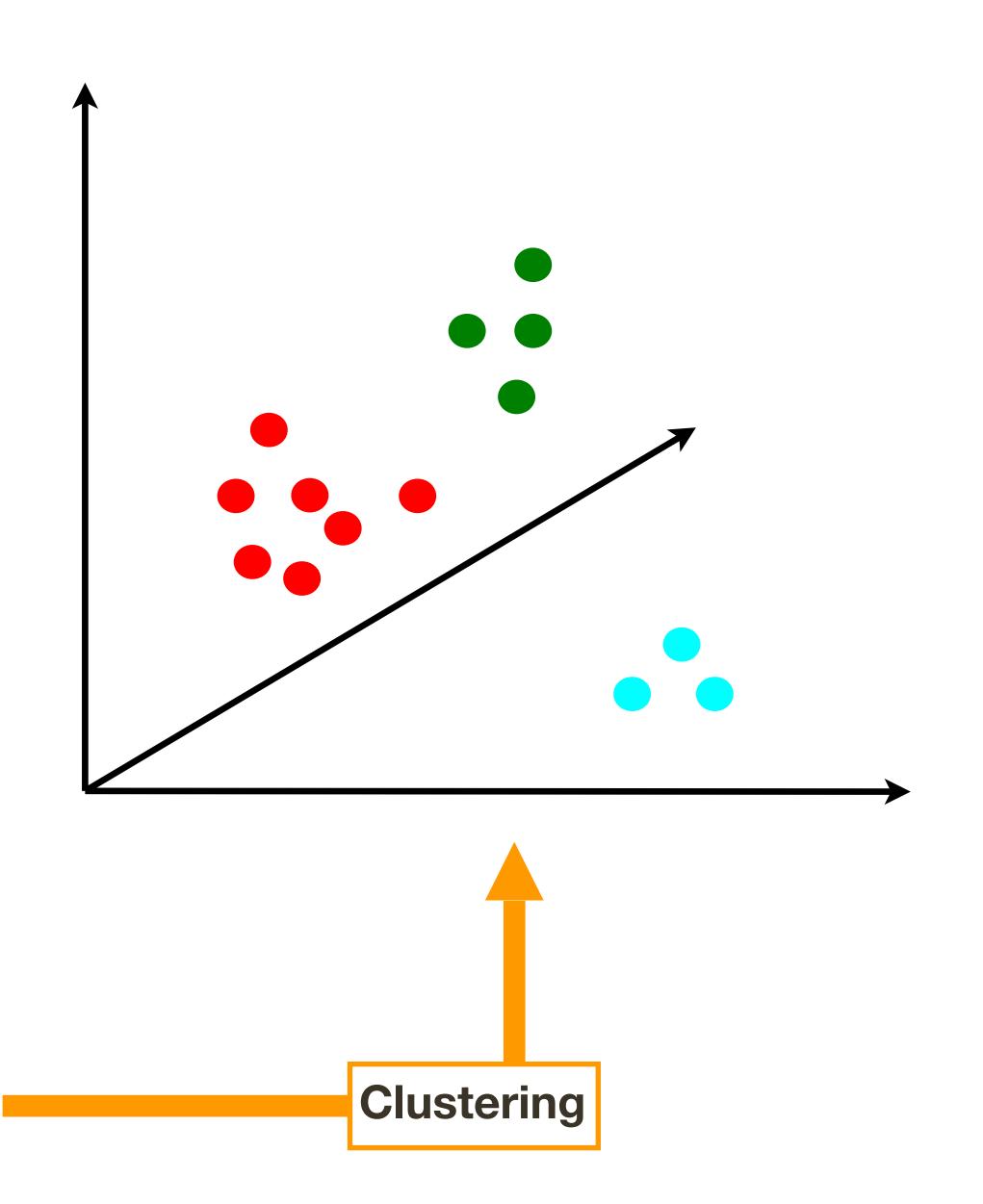


Creating **Dictionary**

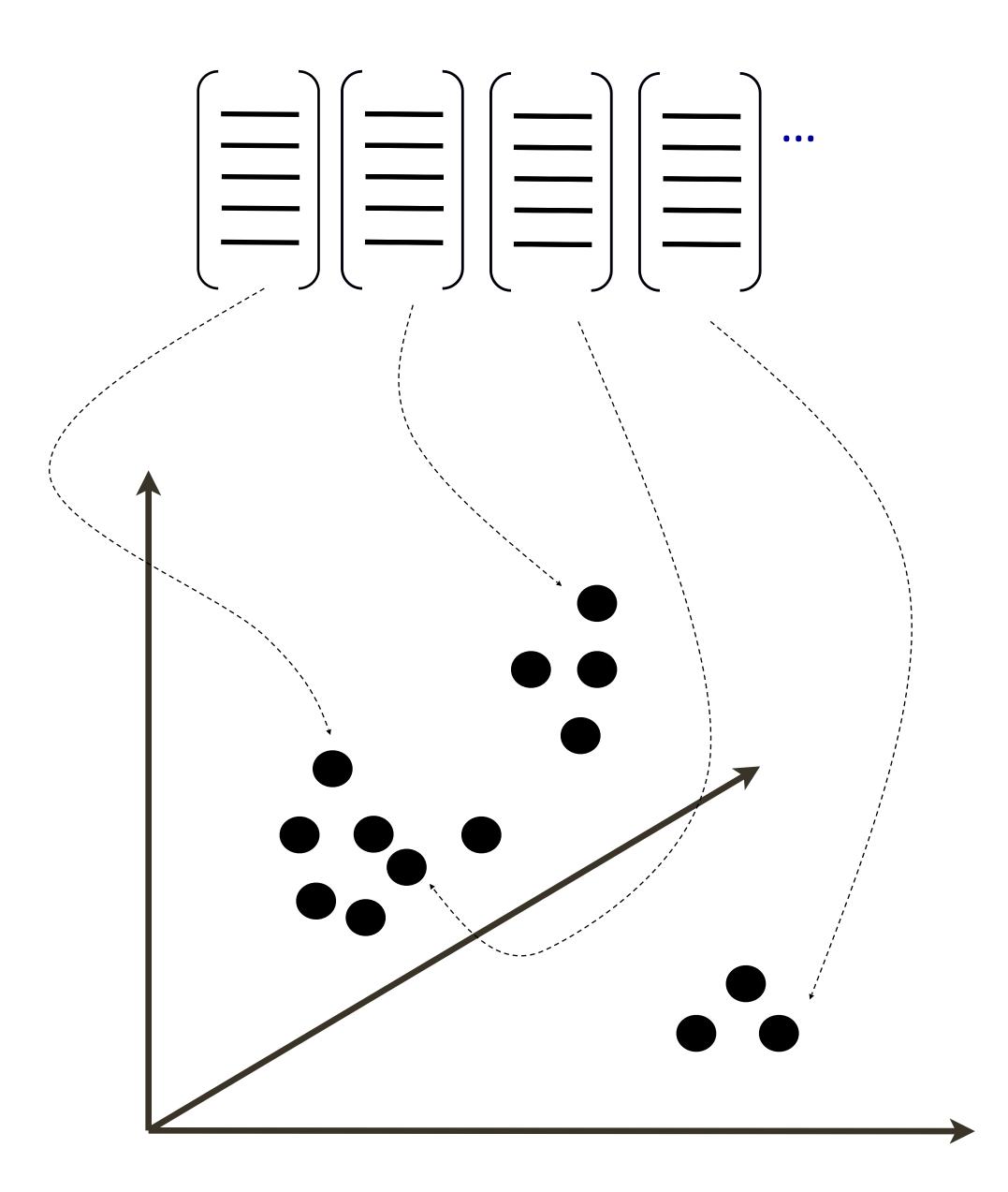


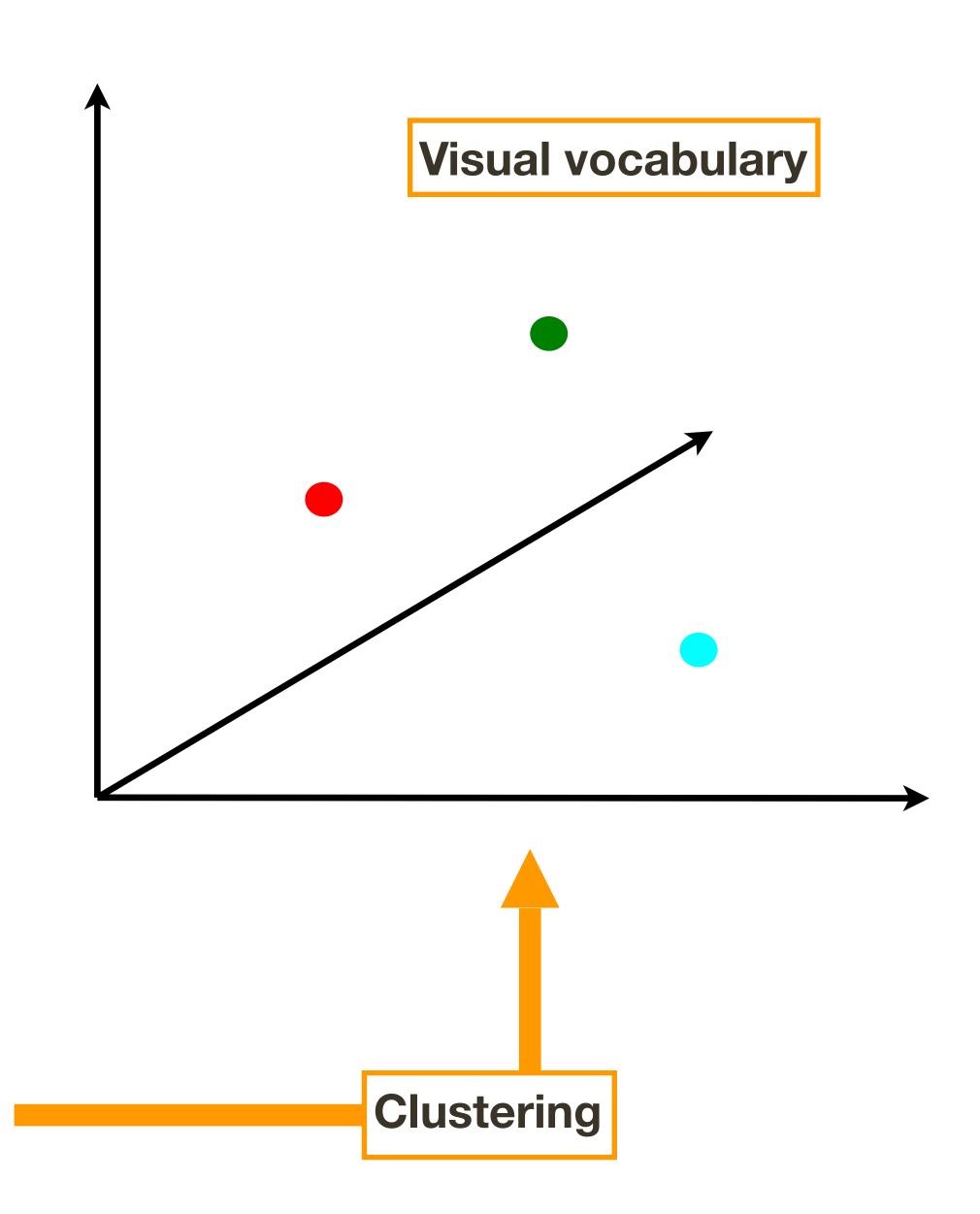
Creating **Dictionary**





Creating **Dictionary**





K-means clustering

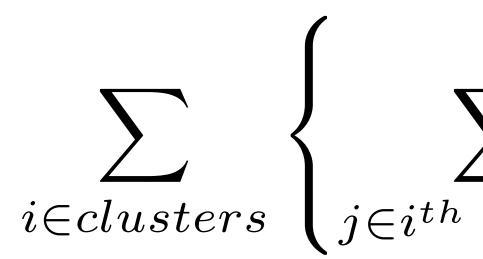
K-Means Clustering

Assume we know how many clusters there are in the data - denote by K

Each cluster is represented by a cluster center, or mean

letting each data point be represented by some cluster center

Minimize



- Our objective is to minimize the representation error (or quantization error) in

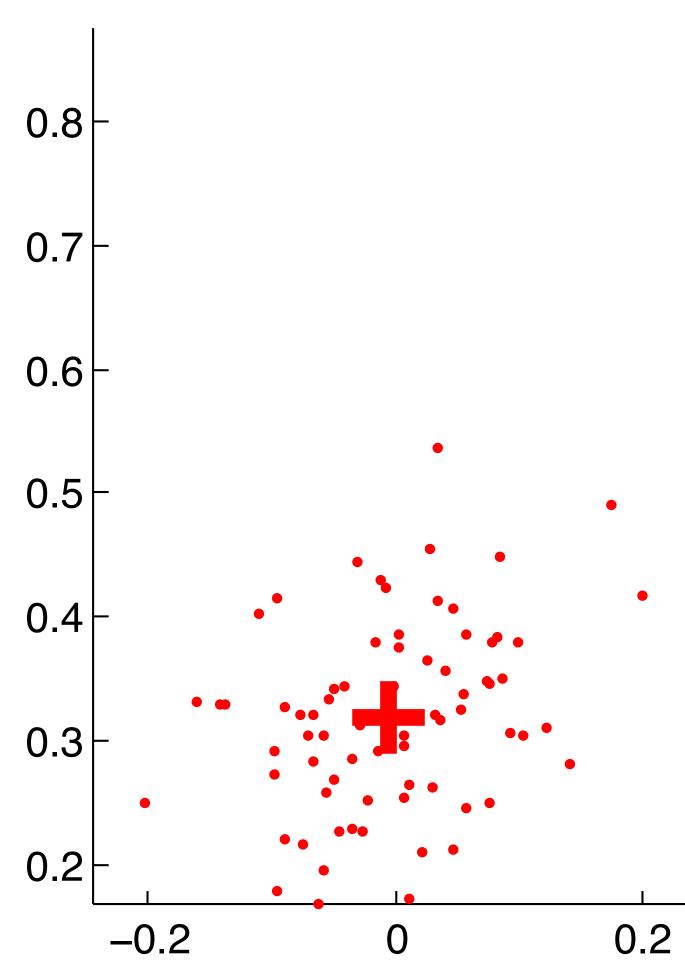
$$\sum_{h \ cluster} ||x_j - \mu_i||^2 \bigg\}$$

K-Means Clustering

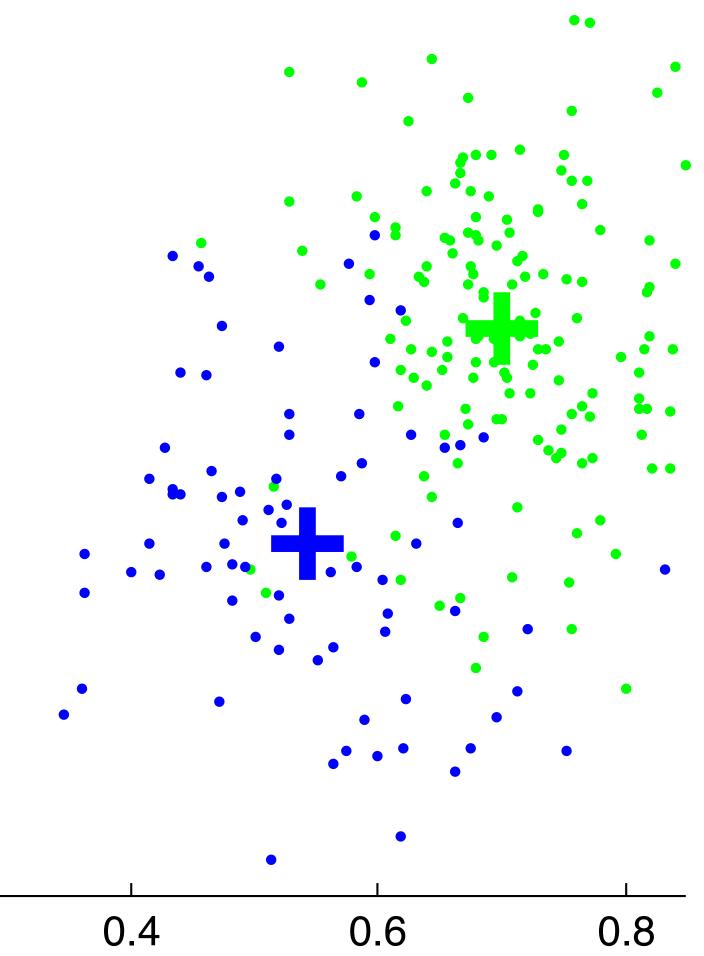
K-means clustering alternates between two steps:

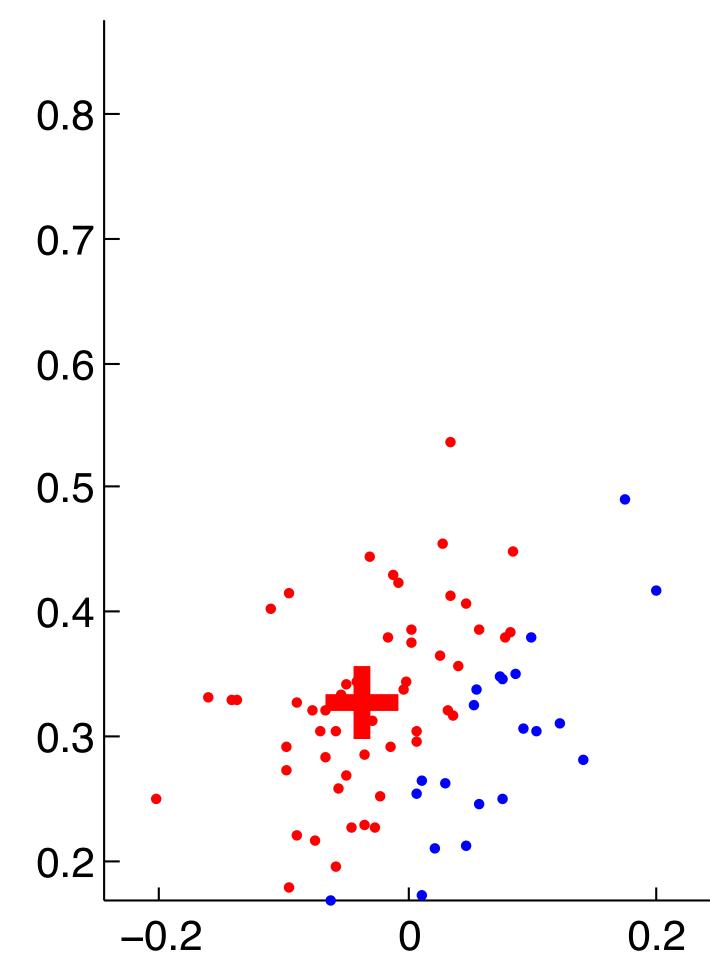
- **1**. Assume the cluster centers are known (fixed). Assign each point to the closest cluster center.
- **2.** Assume the assignment of points to clusters is known (fixed). to the cluster.
- The algorithm is initialized by choosing K random cluster centers
- K-means converges to a local minimum of the objective function Results are initialization dependent

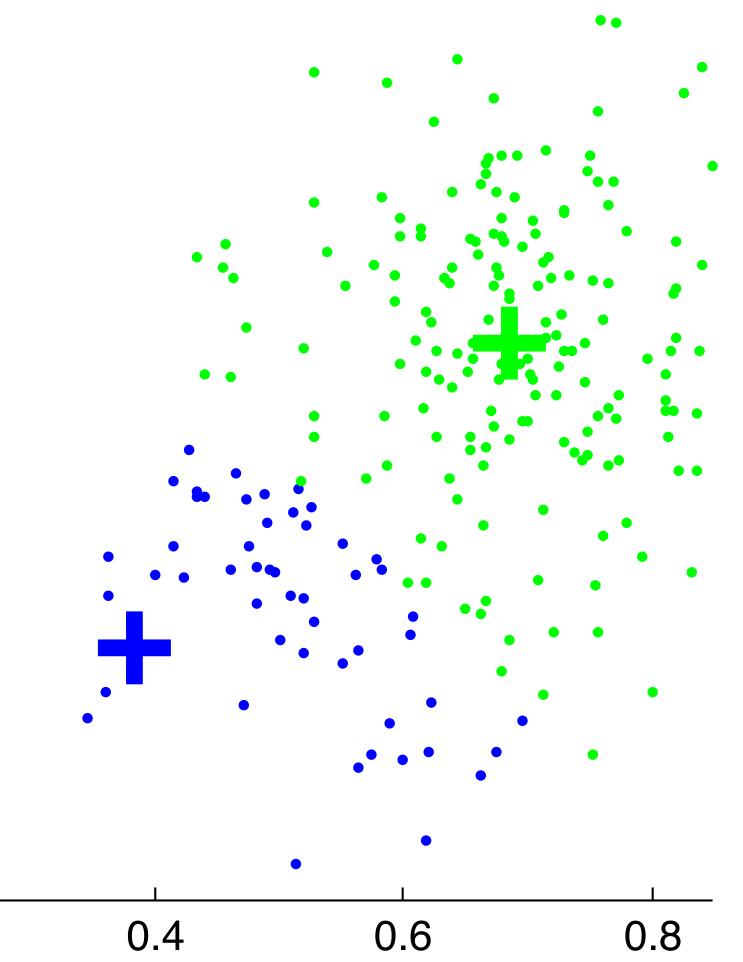
Compute the best center for each cluster, as the mean of the points assigned

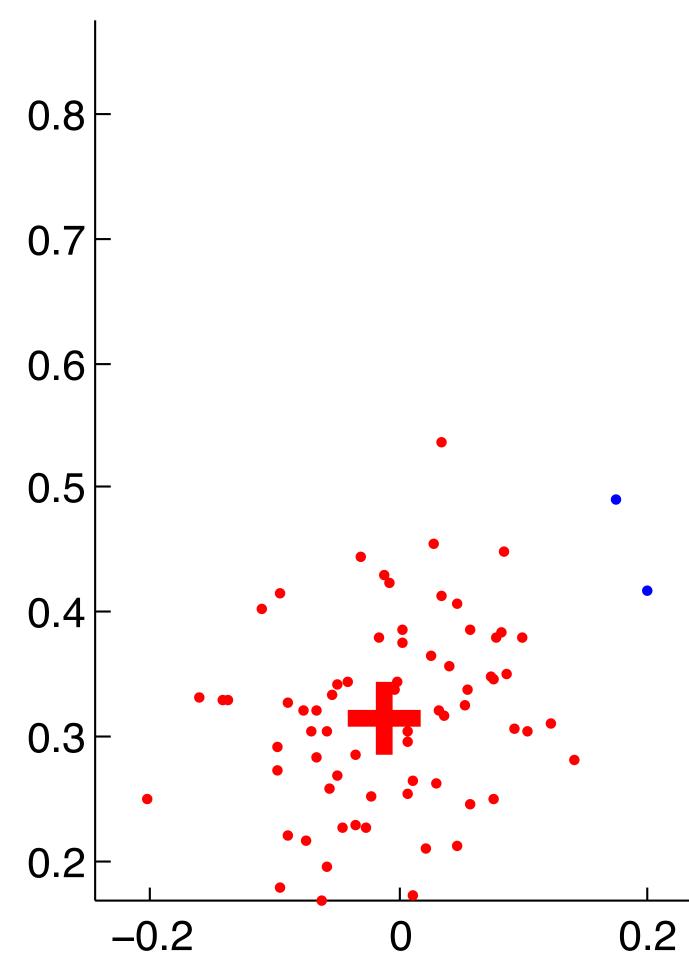


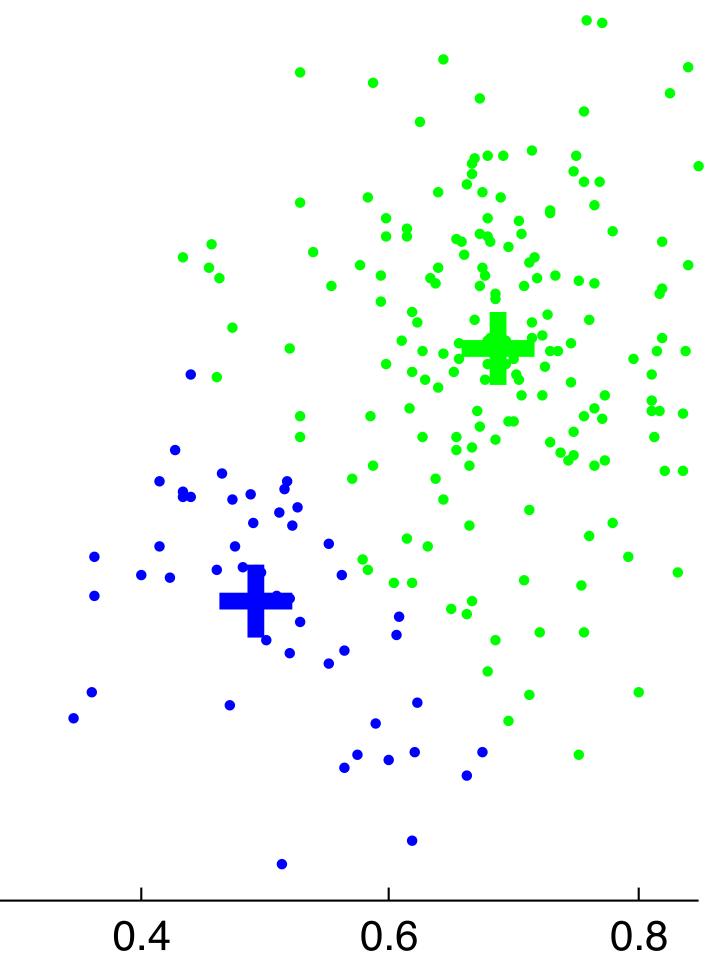
True Clusters

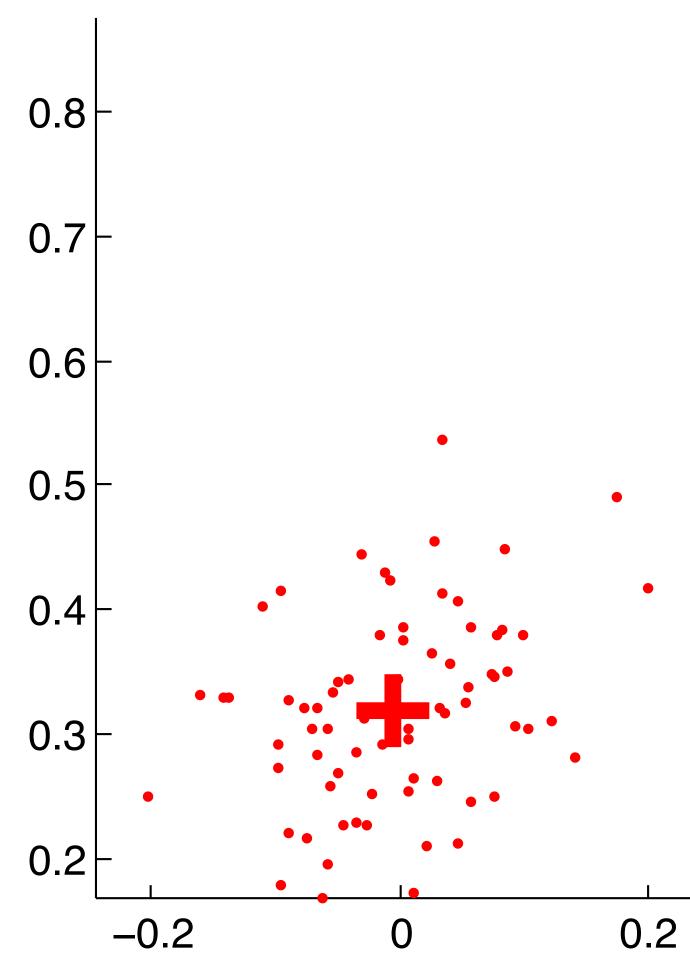


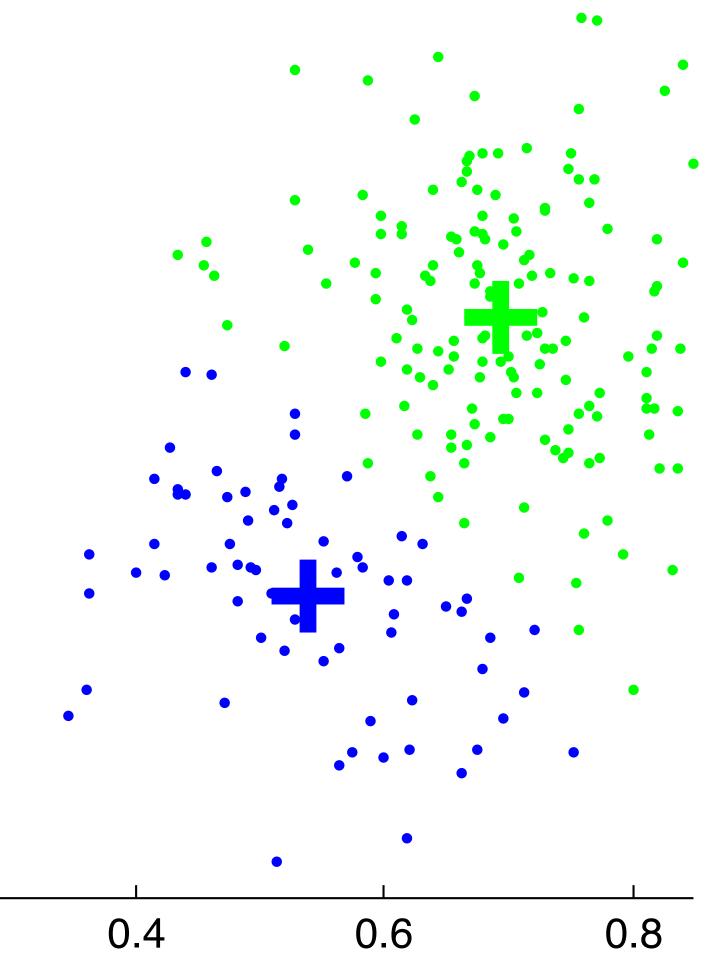


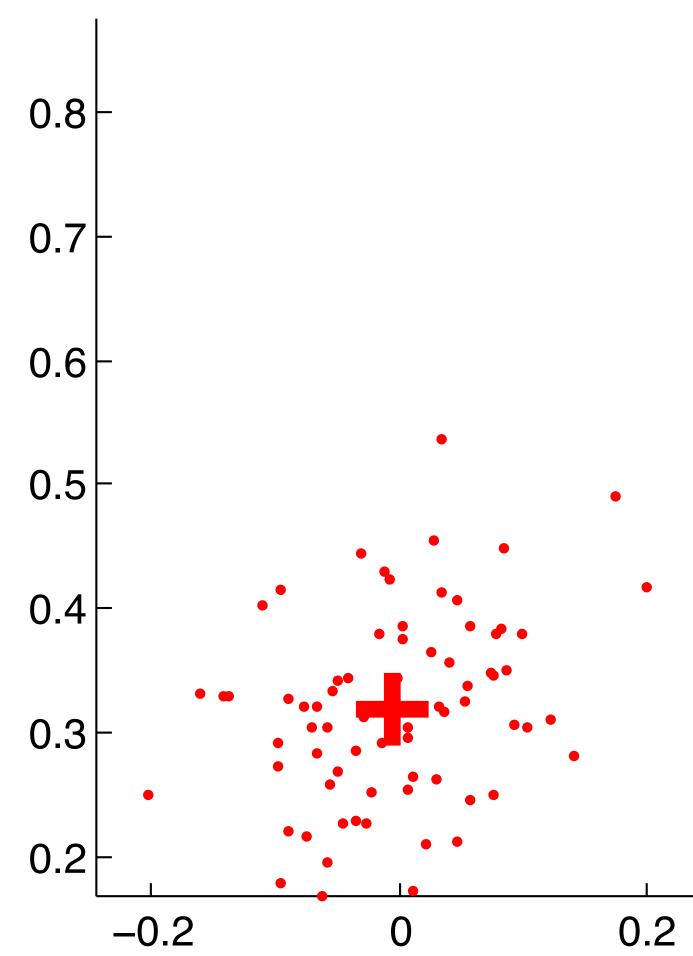


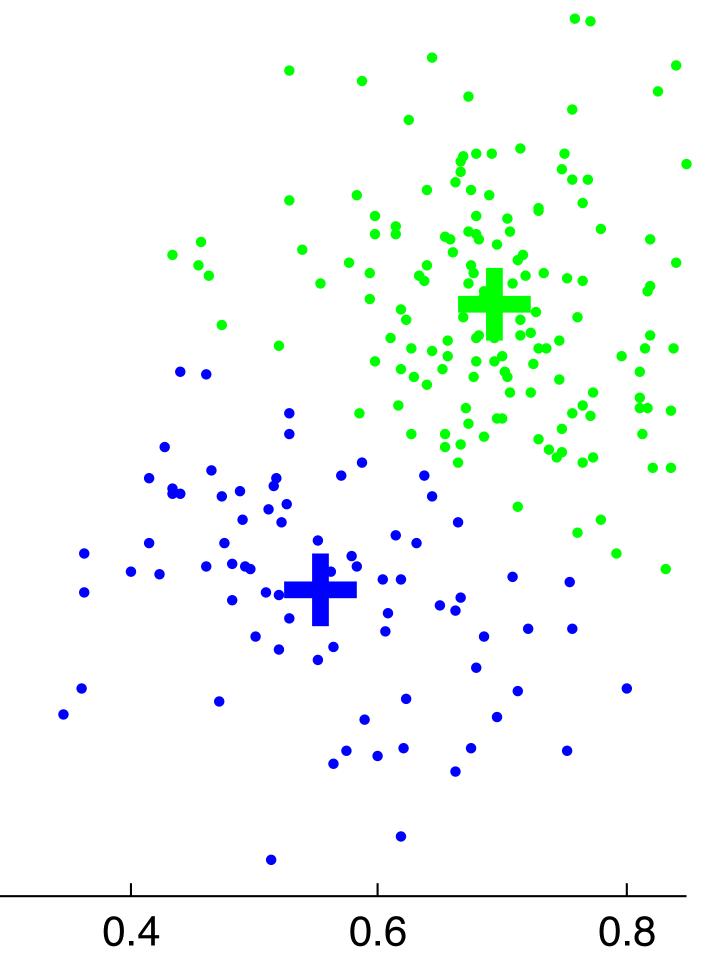












Expectation Maximization

Description [edit]

The symbols [edit]

unknown parameters is determined by maximizing the marginal likelihood of the observed data

$$L(oldsymbol{ heta};\mathbf{X}) = p(\mathbf{X} \mid oldsymbol{ heta}) = \int p(\mathbf{X},\mathbf{Z} \mid oldsymbol{ heta}) \, d\mathbf{Z} = \int p(\mathbf{X} \mid oldsymbol{ heta})$$

However, this quantity is often intractable since \mathbf{Z} is unobserved and the distribution of \mathbf{Z} is unknown before attaining $\boldsymbol{\theta}$.

The EM algorithm [edit]

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying these two steps:

Expectation step (E step): Define $Q(\theta \mid \theta^{(t)})$ as the expected value of the log likelihood function of θ , with respect to the current conditional distribution of ${f Z}$ given ${f X}$ and the current estimates of the parameters ${m heta}^{(t)}$:

$$Q(oldsymbol{ heta} \mid oldsymbol{ heta}^{(t)}) = \mathrm{E}_{\mathbf{Z} \sim p(\cdot \mid \mathbf{X}, oldsymbol{ heta}^{(t)})}[\log p(\mathbf{X}, \mathbf{Z} \mid oldsymbol{ heta})]$$

Maximization step (M step): Find the parameters that maximize this quantity: $oldsymbol{ heta}^{(t-1)} = rg \max Q(oldsymbol{ heta} \mid oldsymbol{ heta}^{(t)})$

More succinctly, we can write it as one equation:

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{Z} \sim p(\cdot | \mathbf{X}, \boldsymbol{\theta}^{(t)})} [\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})]$$

Given the statistical model which generates a set X of observed data, a set of unobserved latent data or missing values Z, and a vector of unknown parameters θ , along with a likelihood function $L(\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z} \mid \theta)$, the maximum likelihood estimate (MLE) of the

 $\mathbf{Z}, \boldsymbol{\theta}) p(\mathbf{Z} \mid \boldsymbol{\theta}) d\mathbf{Z}$

Expectation Maximization

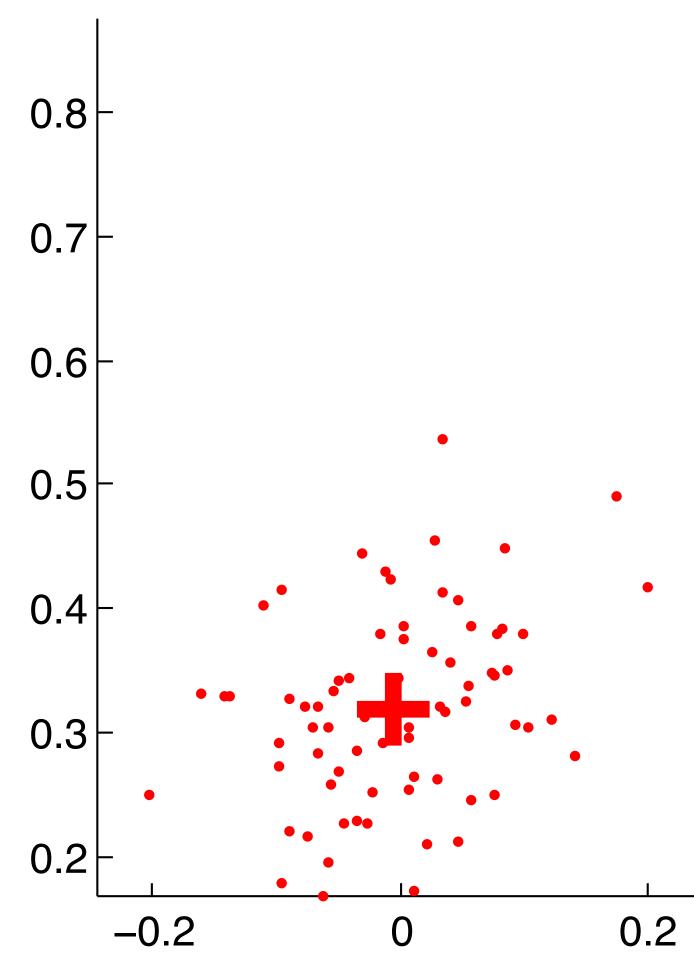
A simpler version

Given a model repeat

The K-Means centers 1. Create an "expectation" of the (log-)likelihood with the current hypothesis 2. Update the hypothesis to one that **maximizes** the expectation above

Not exactly the hard assignments of K-Means

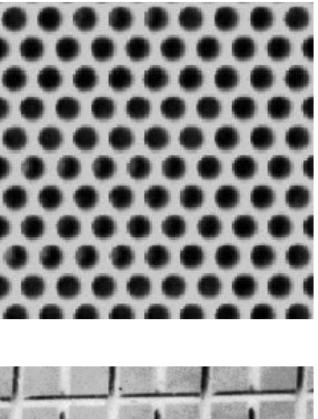
Clusters at iteration 13

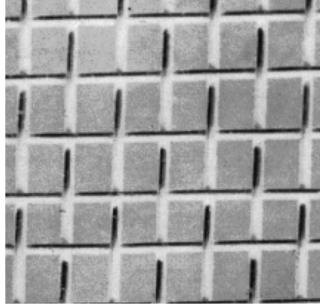


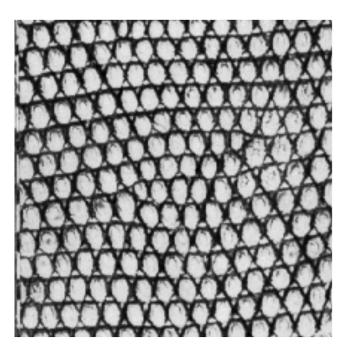
... An EM algorithm that behaves similarly ^{0.6} would consider this 0.4 as Gaussian Mixture

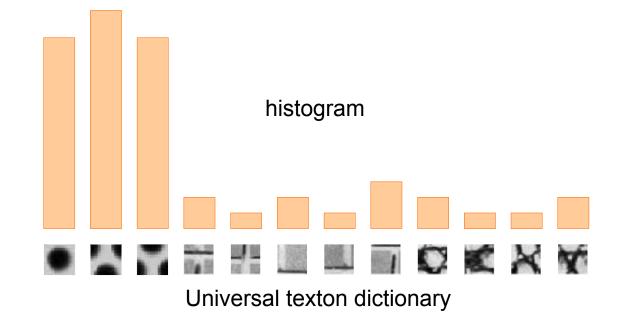
Recall: Texture Representation

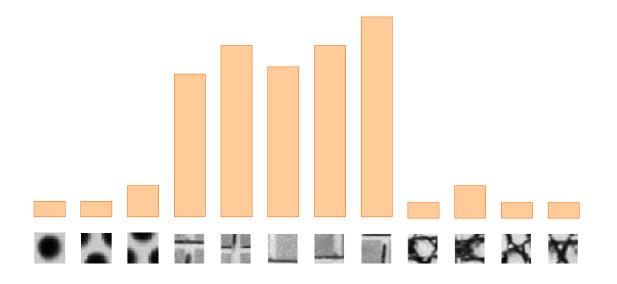
Now we know how to create this

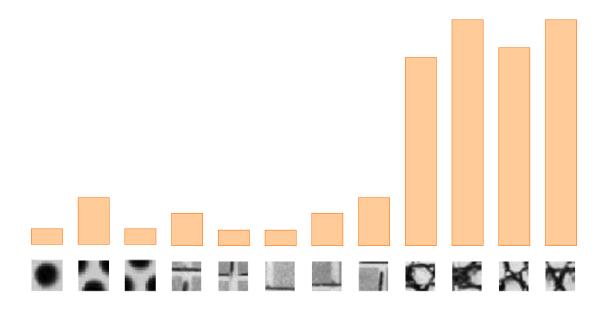




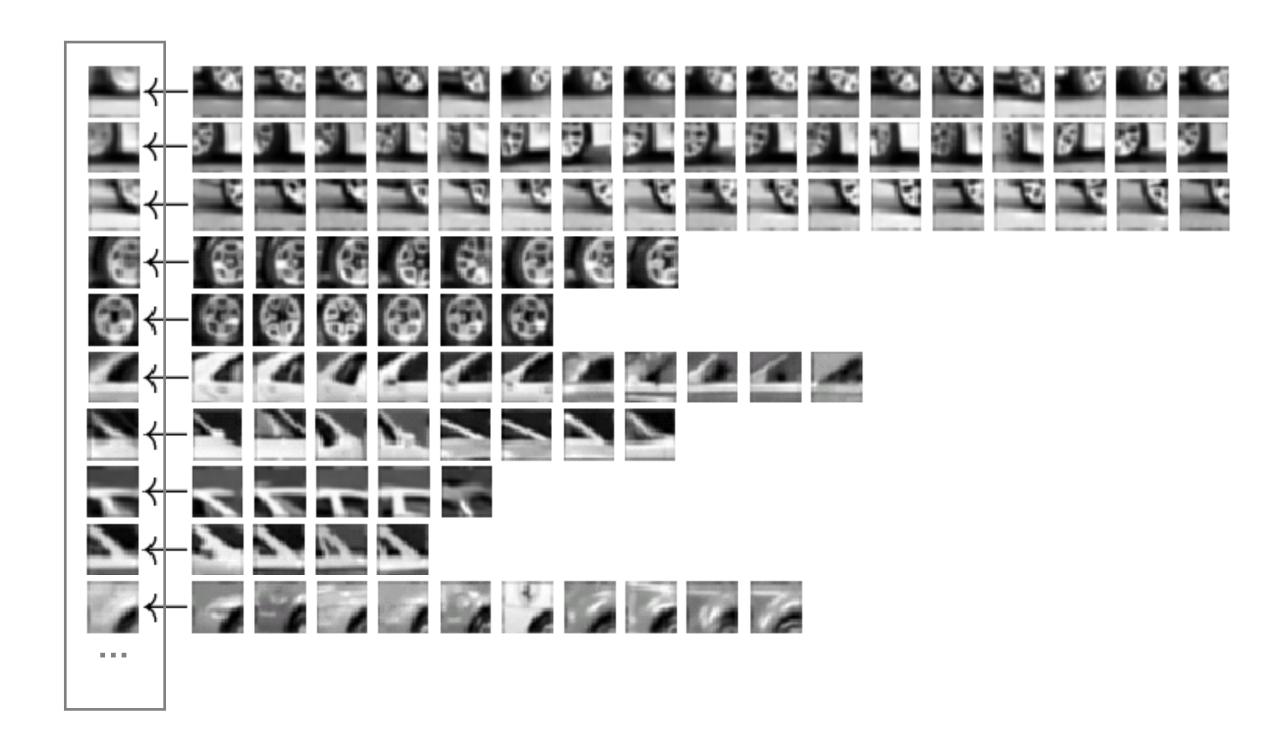






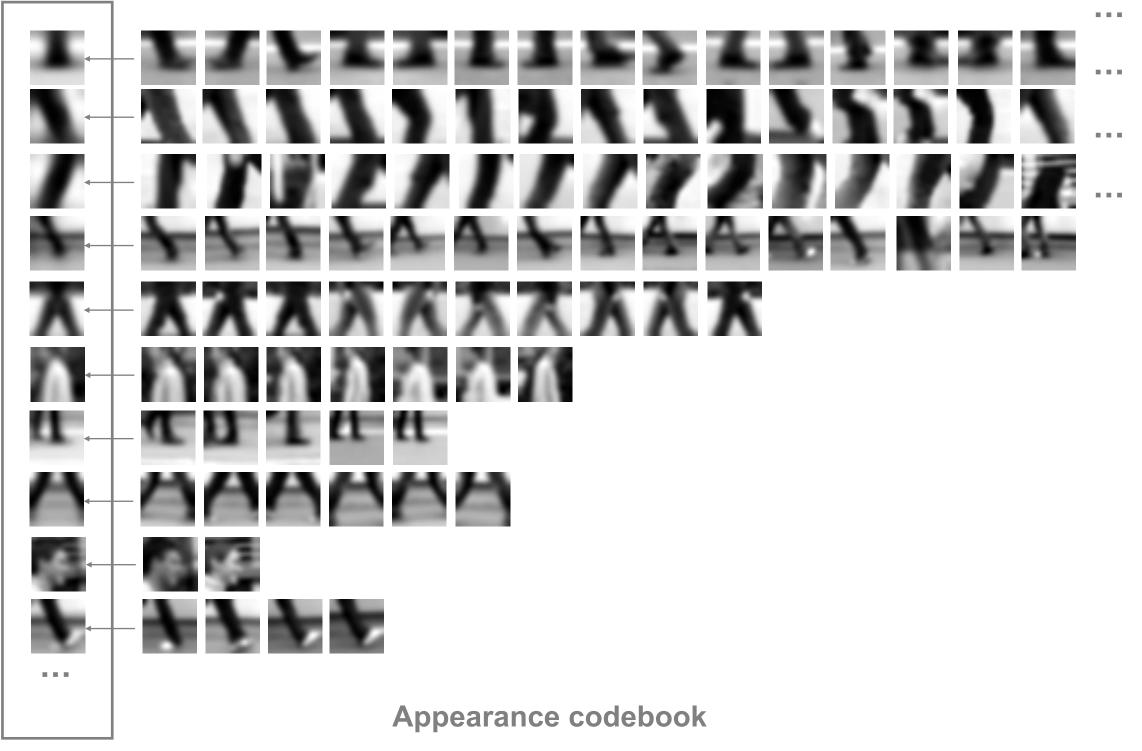


Example Visual Dictionary



Source: B. Leibe

Example Visual Dictionary



Source: B. Leibe

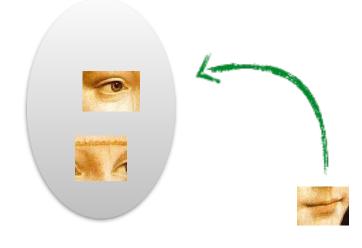
Standard **Bag-of-Words** Pipeline (for image classification)

Classify: Train and test data using BOWs

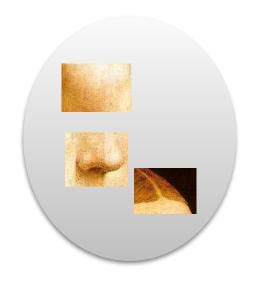
Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

2. Encode: build Bag-of-Words (BOW) vectors for each image

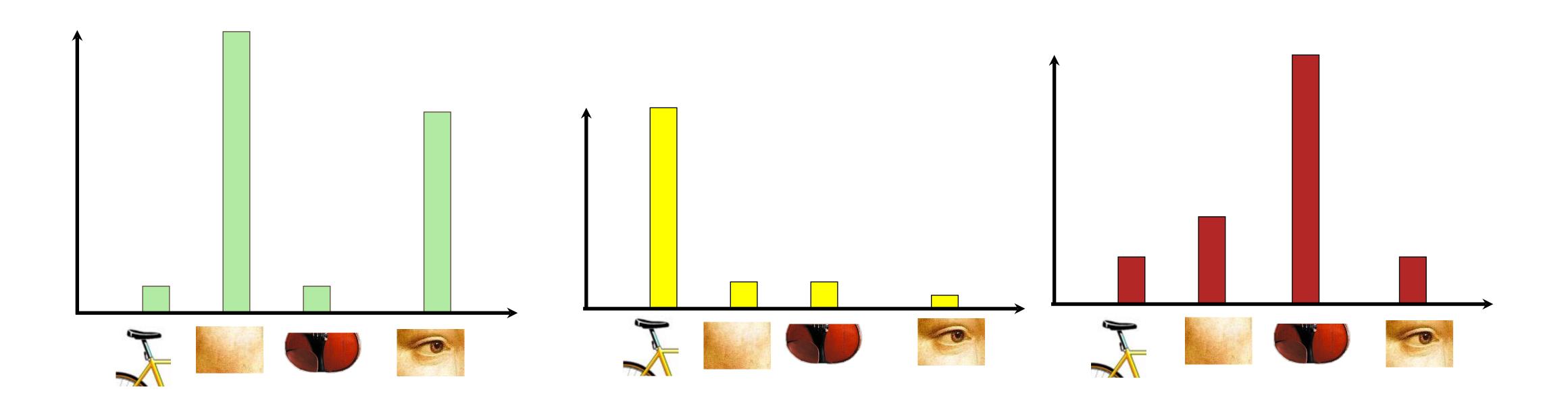


1. Quantization: image features gets associated to a visual word (nearest cluster center)

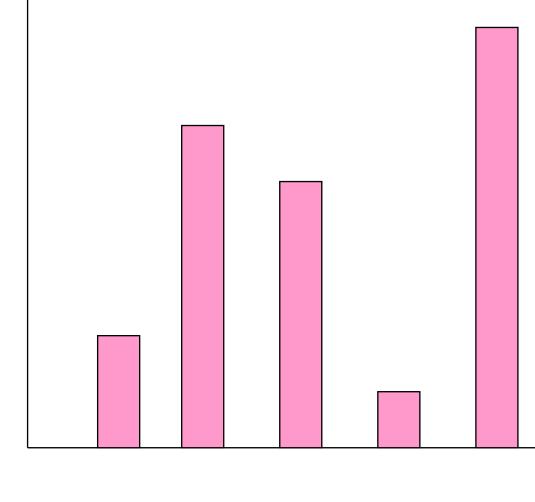


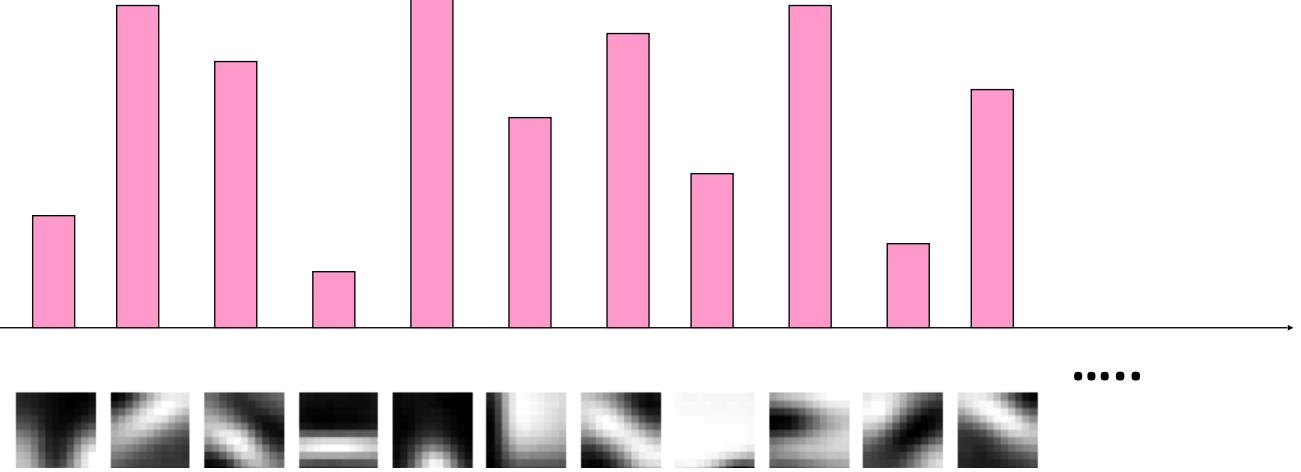
2. Encode: build Bag-of-Words (BOW) vectors for each image

2. Histogram: count the number of visual word occurrences



2. Encode: build Bag-of-Words (BOW) vectors for each image





frequency

codewords

Standard **Bag-of-Words** Pipeline (for image classification)

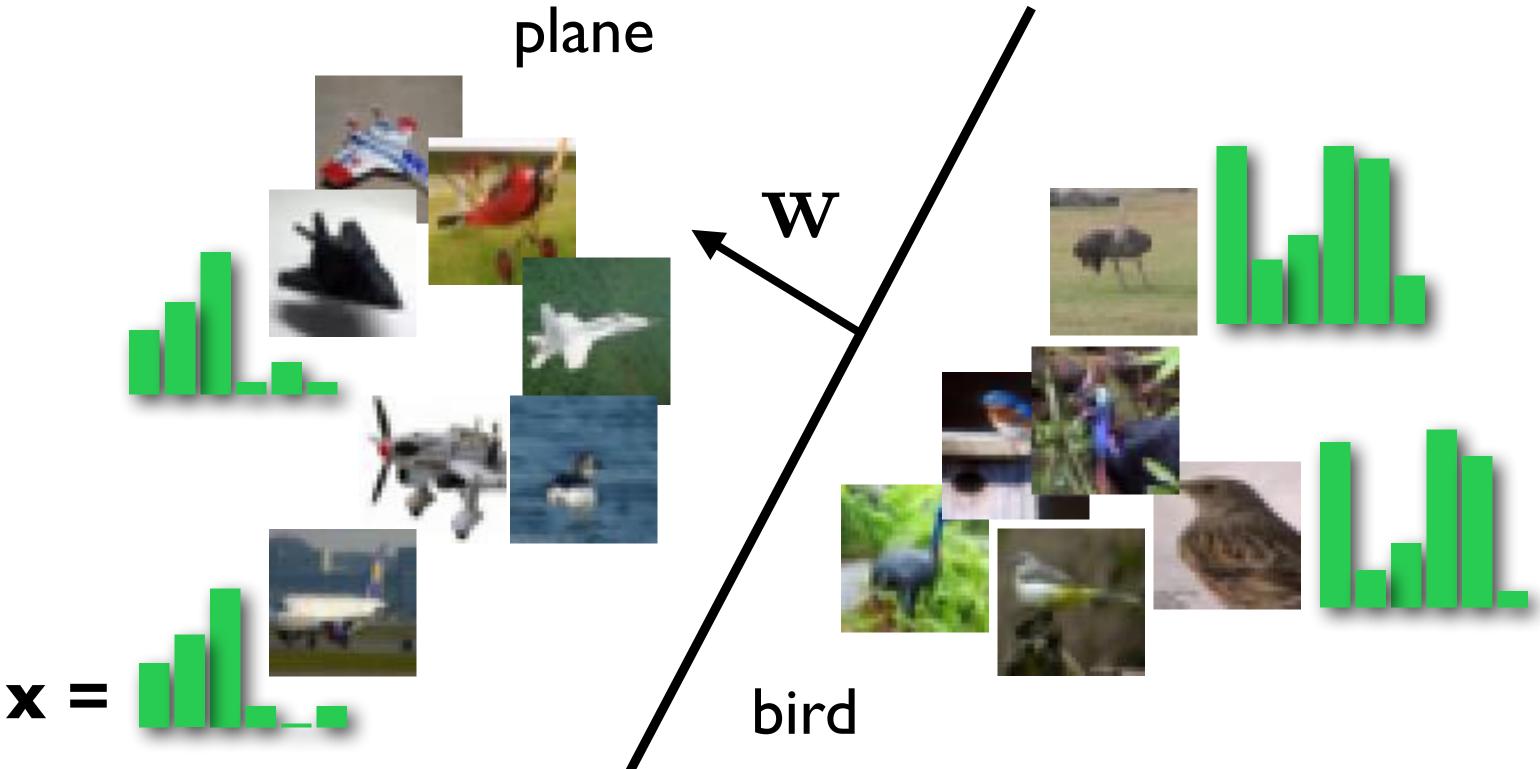
Classify: Train and test data using BOWs

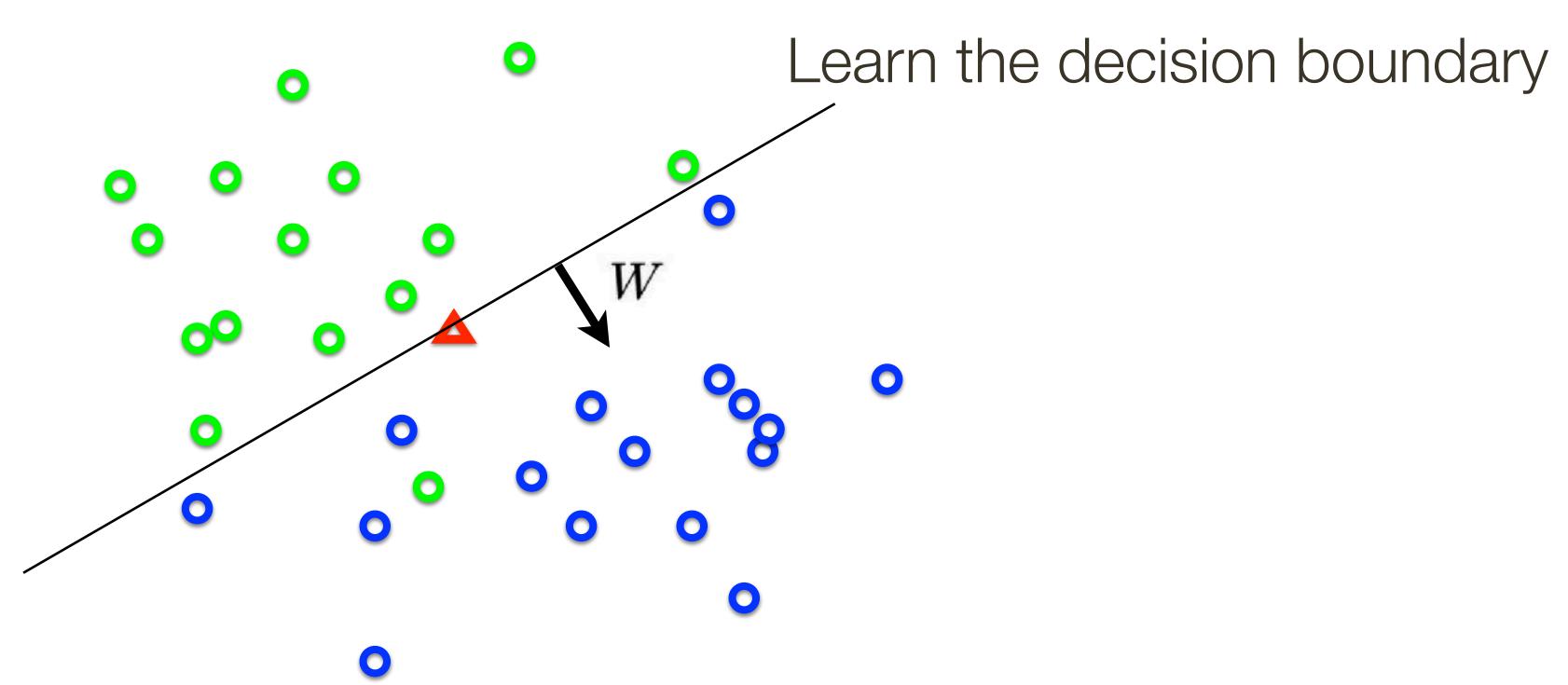
Dictionary Learning: Learn Visual Words using clustering

Encode: build Bags-of-Words (BOW) vectors for each image

Classify Visual Word Histograms

e.g., bird vs plane classifier as linear classifier in space of histograms Histograms of visual word frequencies = vector **x**, linear classifier **w**

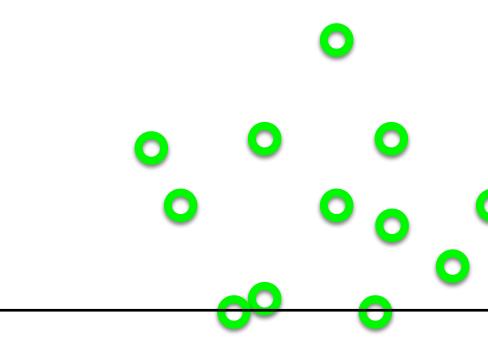




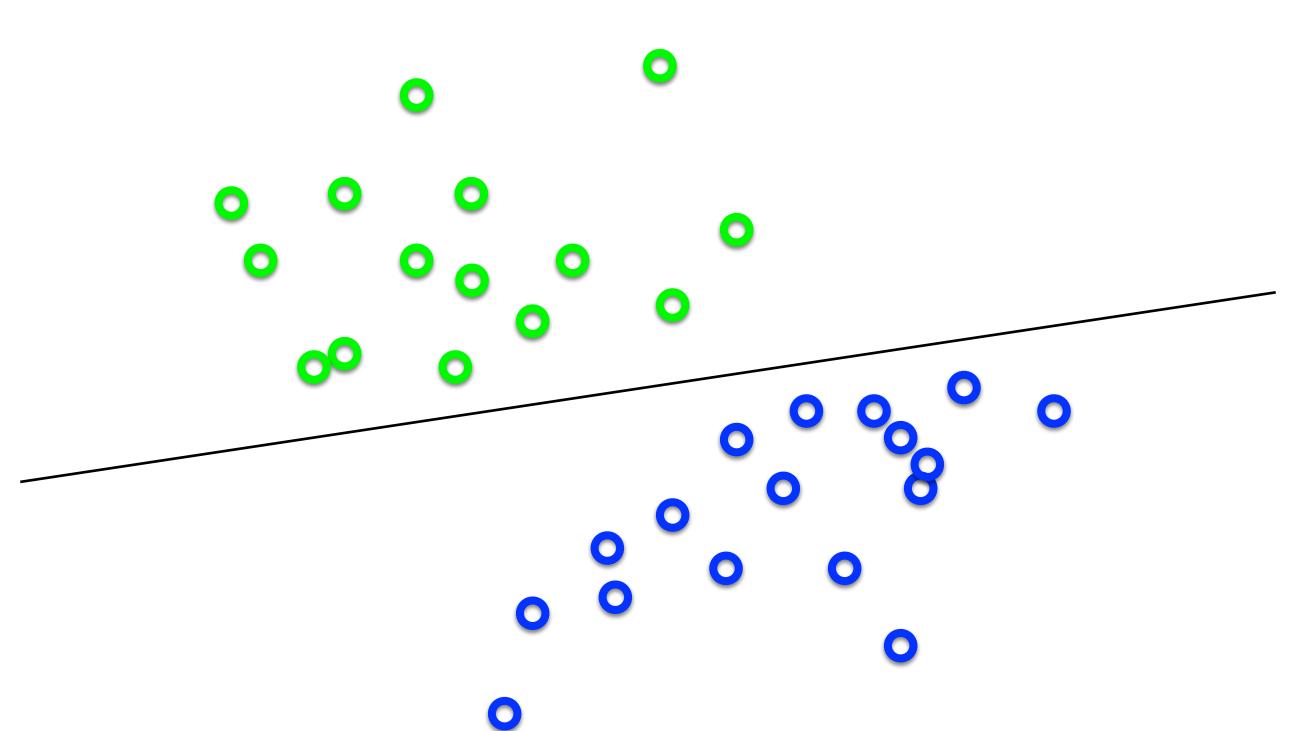
What's the best w?

O O

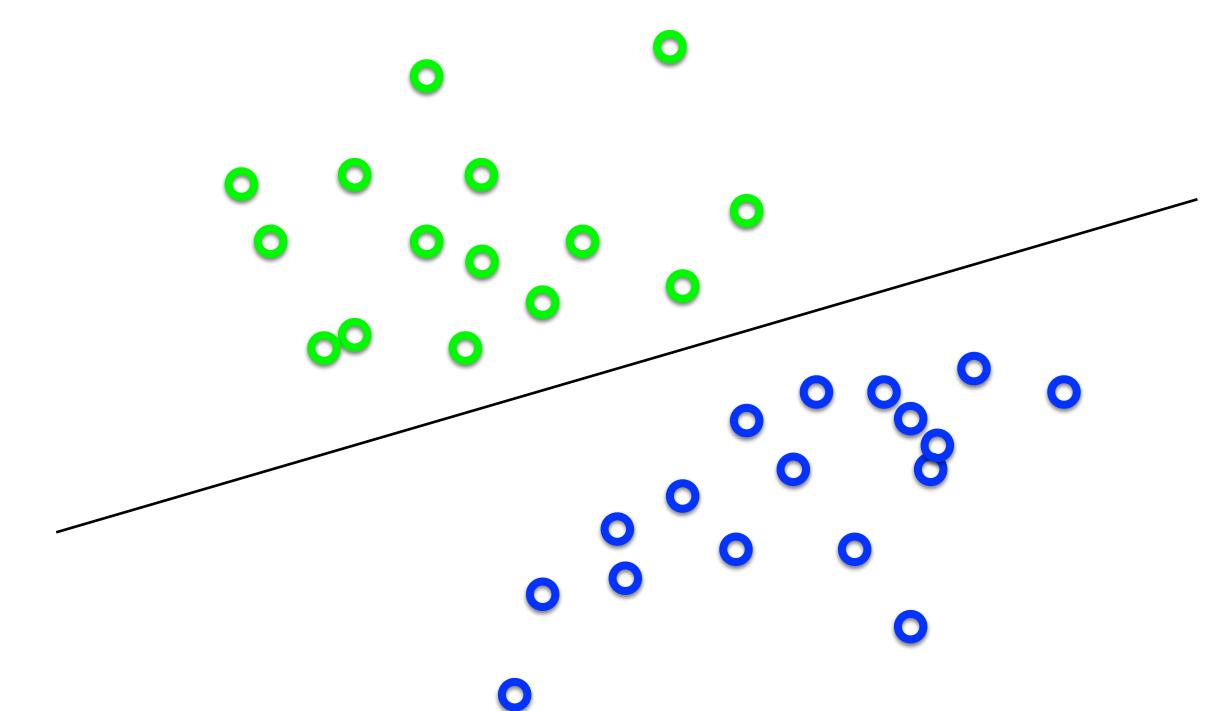
What's the best w?



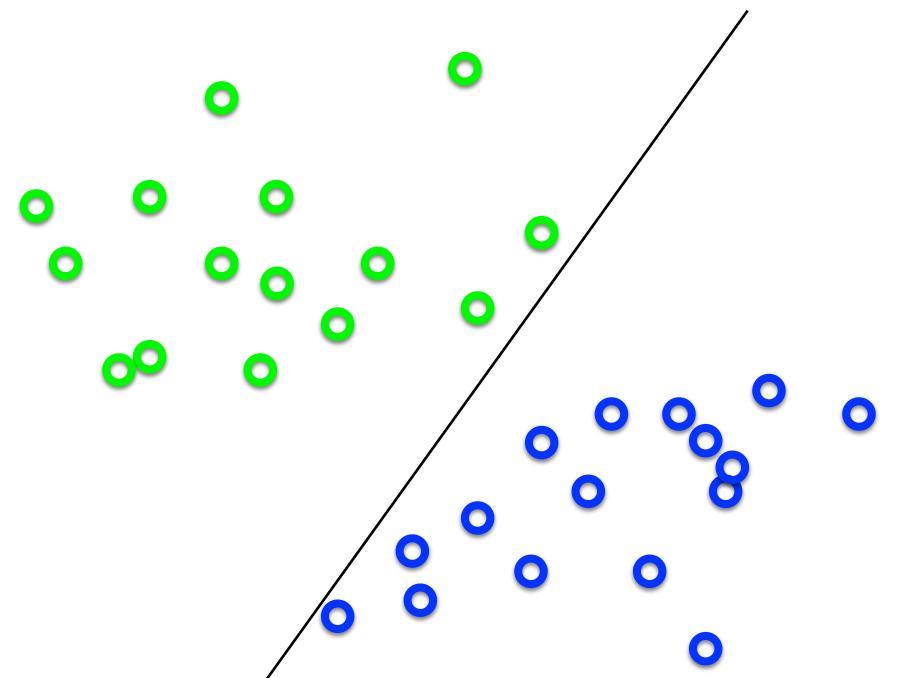
What's the best w?

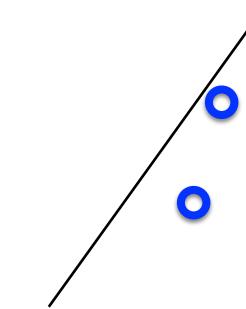


What's the best w?

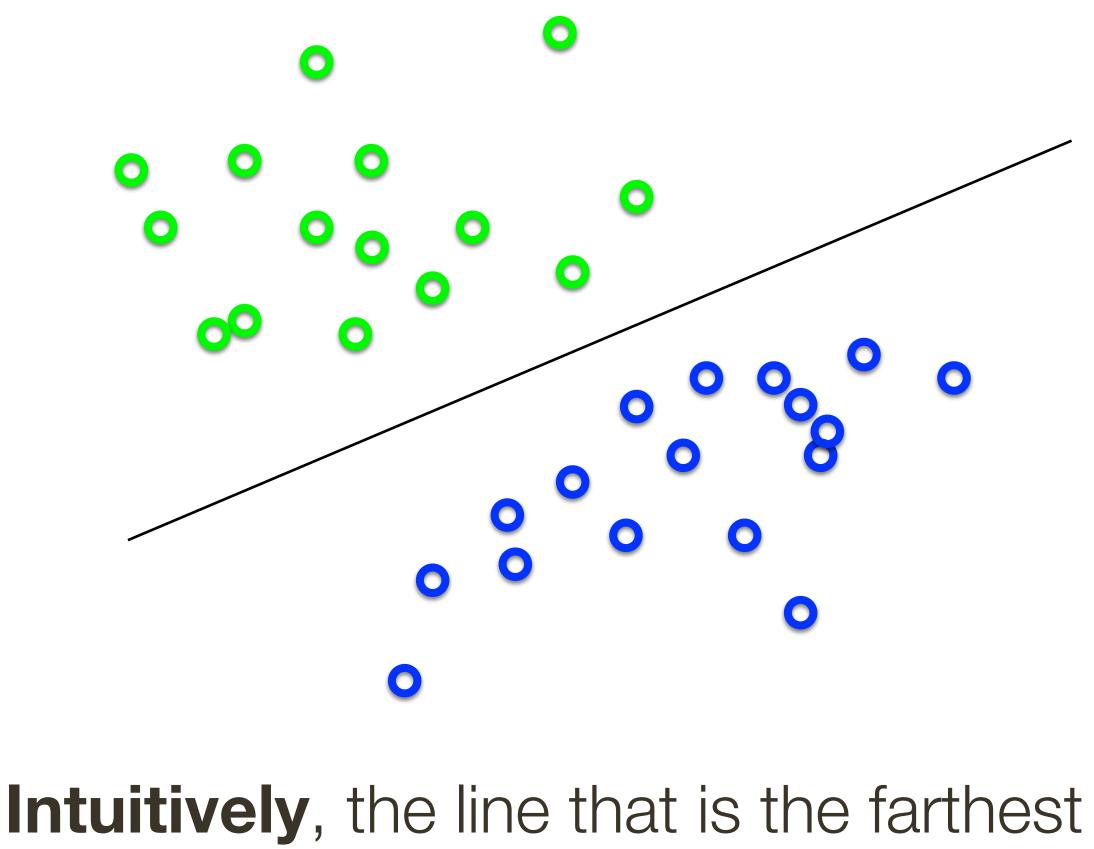


What's the best w?



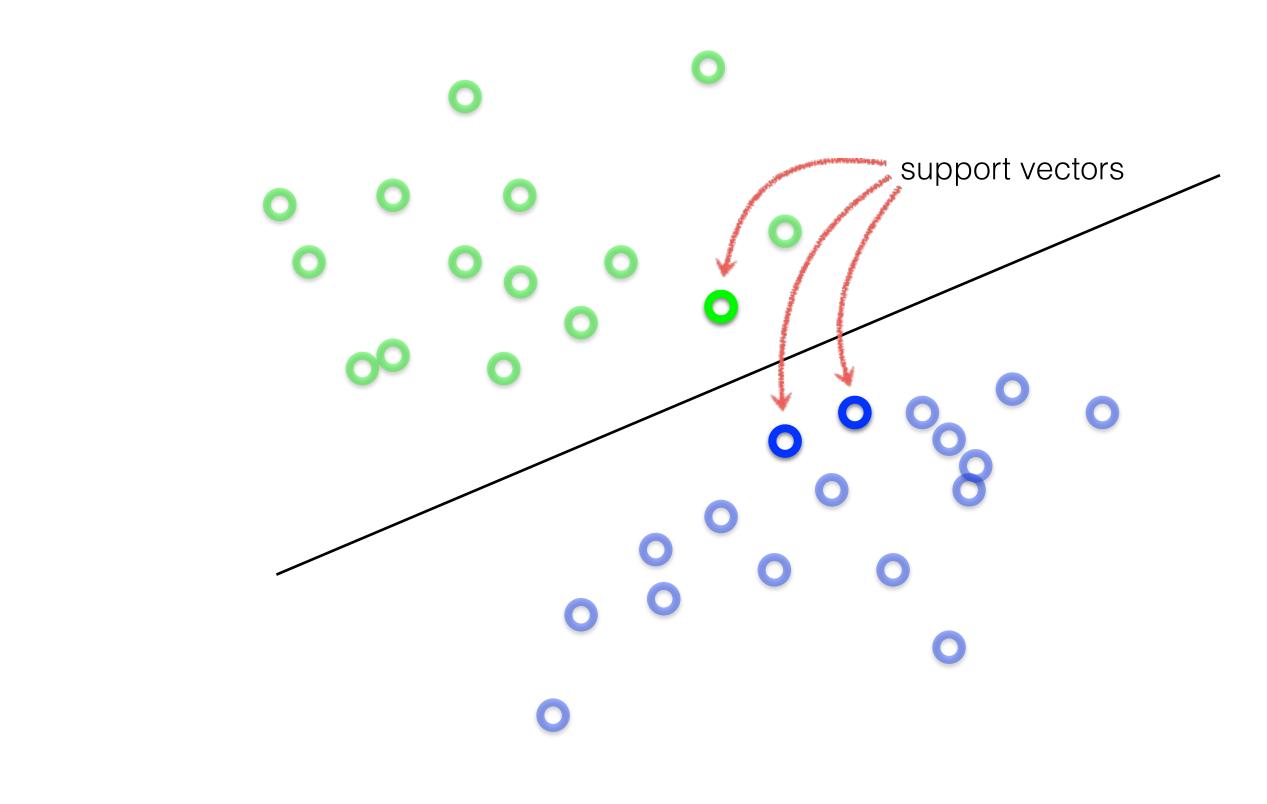


What's the best w?



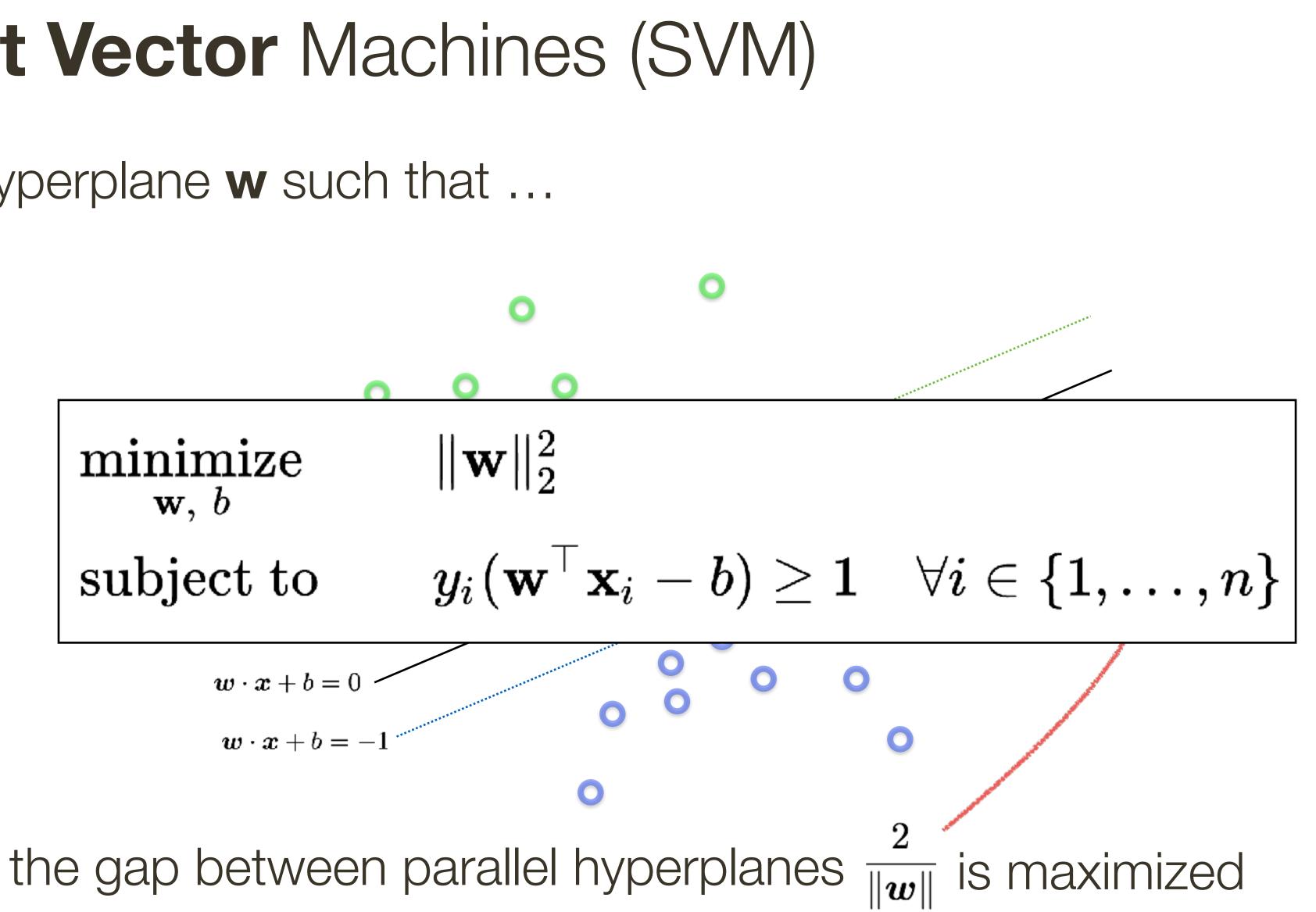
from all interior points

What's the best w?

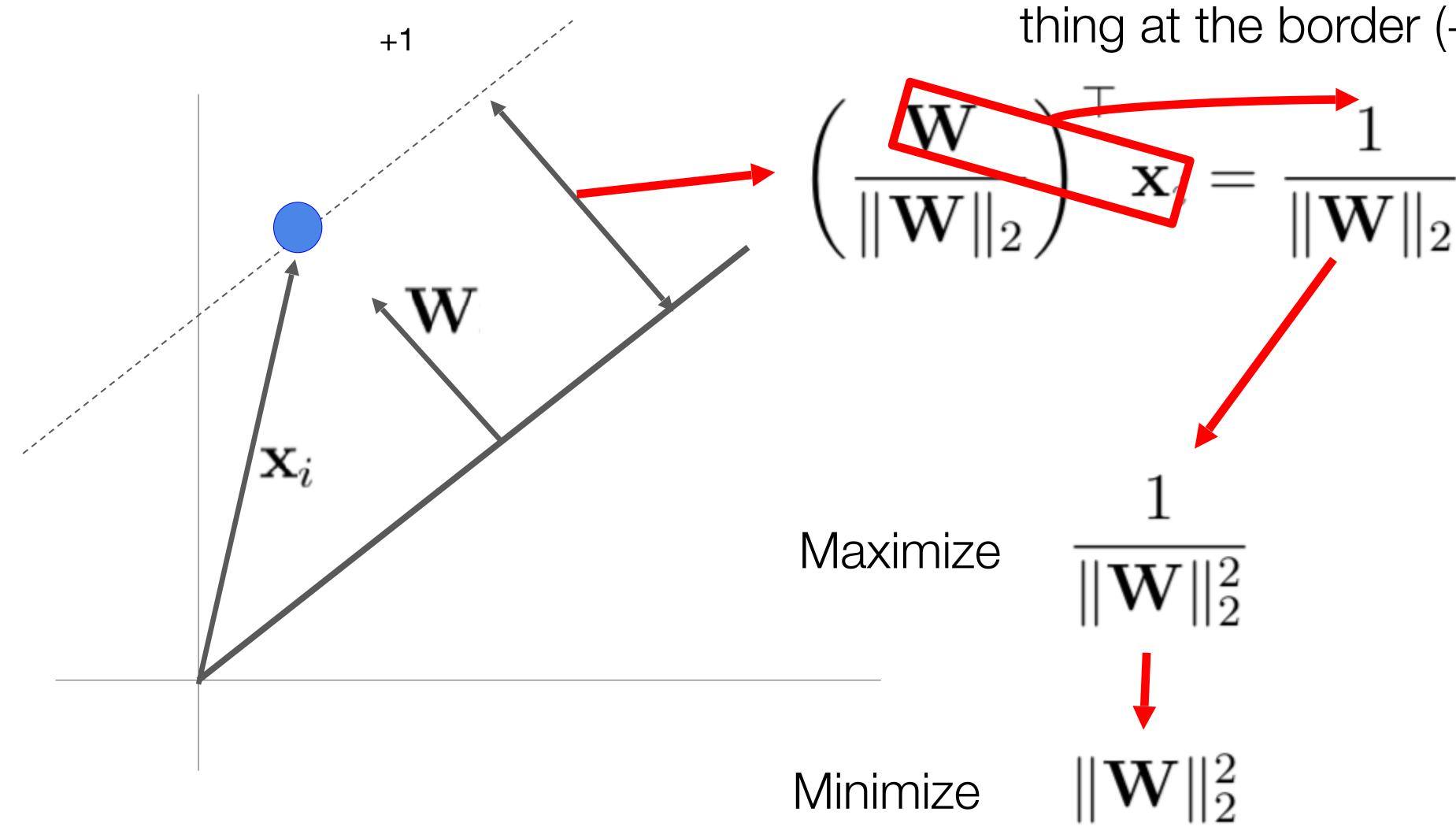


Want a hyperplane that is far away from 'inner points'

Find hyperplane w such that ...

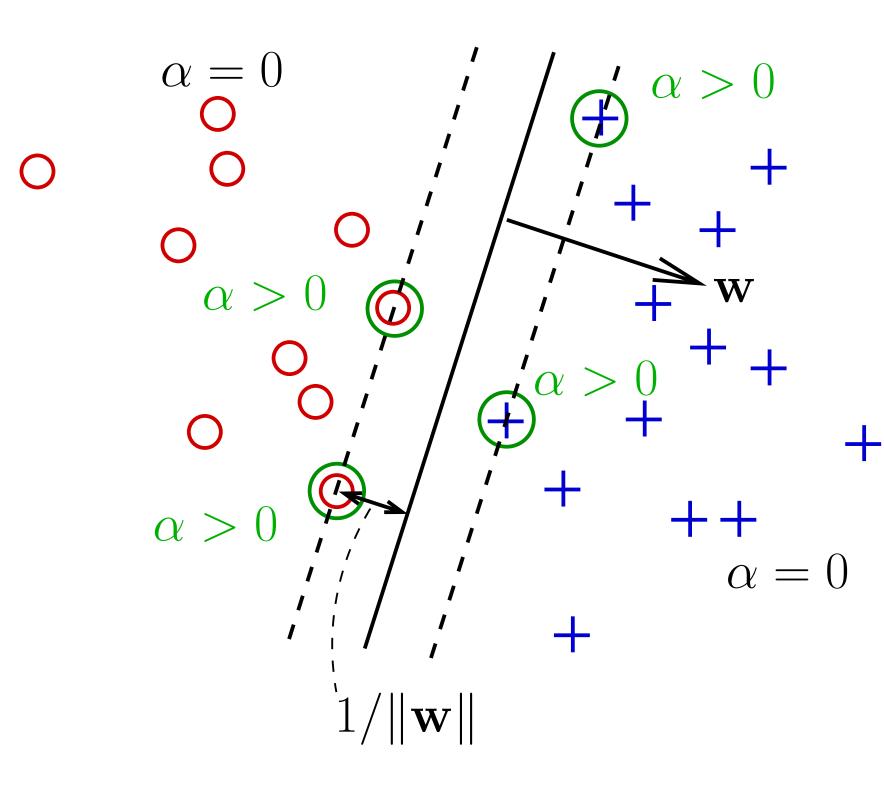


Distance to the border



Becomes 1 because it's the thing at the border (+1)

Support Vectors



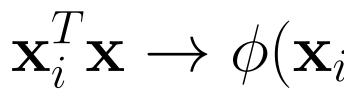
• The active constraints are due to the data that define the classification boundary, these are called support vectors

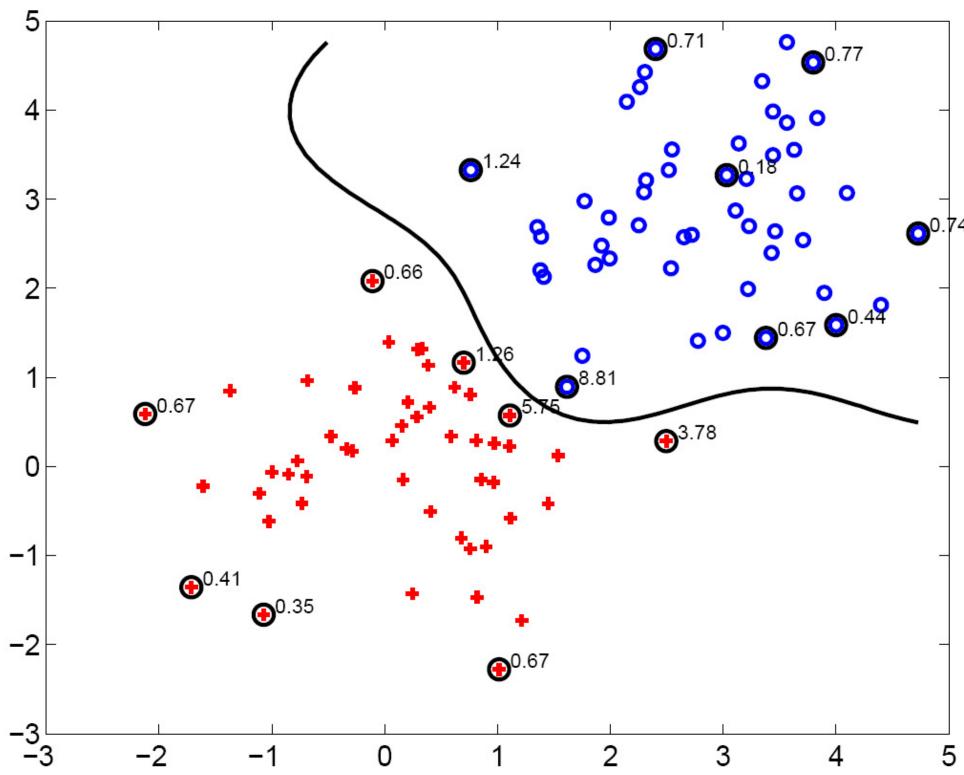
> Final classifier can be written in terms of the support vectors:

$$\hat{y} = \operatorname{sign} \left(\hat{w}_0 + \sum_{\alpha_i > 0} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} \right)$$

Non-Linear SVM

Replace inner product with kernel





- $\mathbf{x}_i^T \mathbf{x} \to \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) \to k(\mathbf{x}_i, \mathbf{x})$
 - Data are (ideally) linearly separable in $\Phi(x)$ **0**^{0.74} But we don't need to know $\phi(x)$, we just specify k(x,y)Points with $\alpha > 0$ (circled) are support vectors Other data can be removed without affecting classifier

Bag-of-Words Representation

Algorithm:

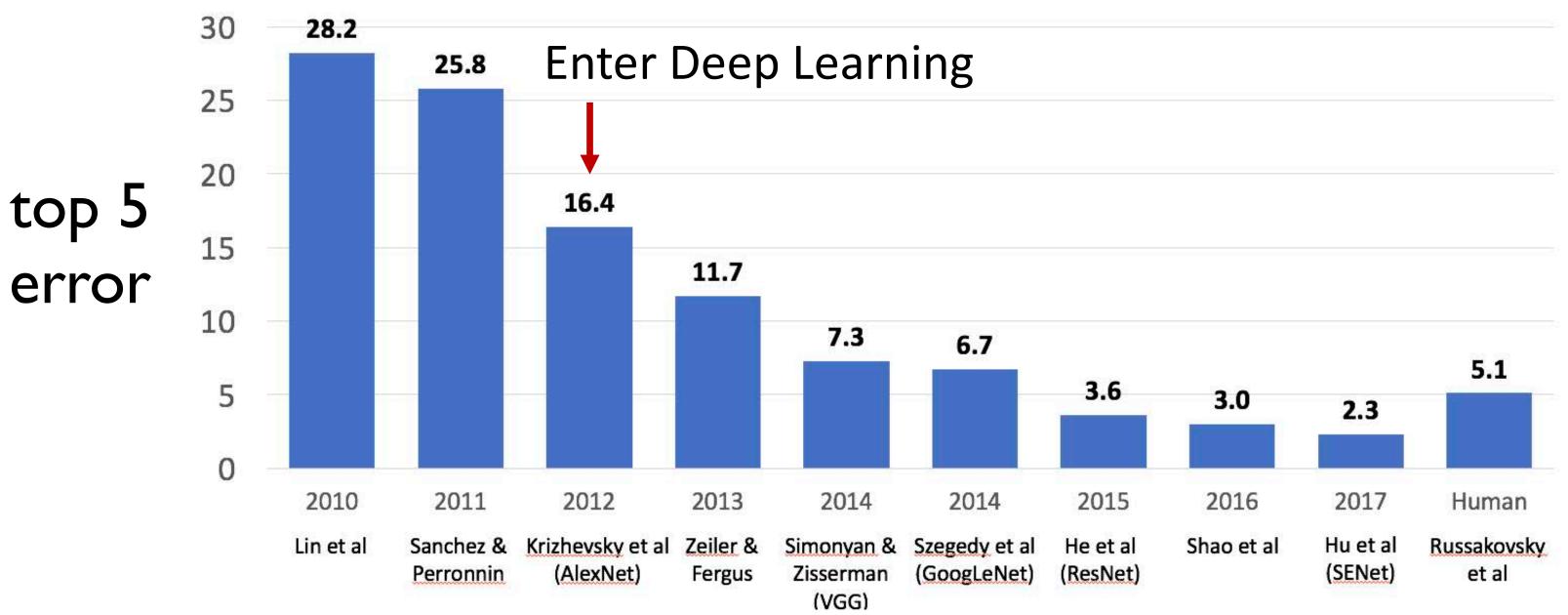
Initialize an empty K -bin histogram, where K is the number of codewords Extract local descriptors (e.g. SIFT) from the image For each local descriptor **x**

Map (Quantize) **x** to its closest codeword \rightarrow **c**(**x**) Increment the histogram bin for c(x)Return histogram

We can then classify the histogram using a trained classifier, e.g. a support vector machine or k-Nearest Neighbor classifier

- Won the Imagenet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 by a large margin
- Some ingredients: Deep neural net (Alexnet), Large dataset

(Incompate) I and a factor (1 (DI) and a contraction of the second seco IM GENET Large Scale Visual Recognition Challenge



Alexnet

[J. Johnson] 82

Summary

Factors that make image classification hard — intra-class variation, viewpoint, illumination, clutter, occlusion...

A codebook of **visual words** contains representative local patch descriptors — can be constructed by clustering local descriptors (e.g. SIFT) in training images

The **bag of words** model accumulates a histogram of occurrences of each visual word

An supervised classifier, such as a **Su** used to classify the word histograms

An supervised classifier, such as a Support Vector Machine (SVM) is then