RANSAC: How many samples?

Let Po be the fraction of outliers (i.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

How many samples do we need to find a good solution”
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RANSAC: How many samples”? (Exact)

The original RANSAC paper [ 19] suggested to use
P, = p" (3)

for the all-inlier probability P, where p 1s the inlier ratio
and k the number of sampled measurements. This has since
become the standard approach for computing the required
number of iterations in RANSAC.

However, this only provides the approximate probabil-
ity P,, as drawing an inlier measurement for our sample
changes the inlier ratio when sampling another measure-
ment in the same iteration. Using uniform random sam-
pling, the exact probability . can be computed as the ratio
between the number of all-inlier samples and the number of

possible samples, i.e.
pn
P, = ((,‘i)) (4) h
k

Fe = — 1if pn > k and O otherwise, (5)
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proximate stopping criterion as N/, = =<~ to reach a target

success probability s = 0.99 with a sample size £ = 5. The ap-
proximation leads to severe undersampling in low inlier scenarios.
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RANSAC: How many samples”? (Exact)

Parameters AUC@5 AUC@10 AUC@20 Average Runtime
n s  Approx. Exact A Approx. Exact A Approx. Exact A Approx. Exact
Homography
20 0.95 2.99 331 +10.70% 5.87 6.48 +10.39% 9.94 1091 +976%  02ms  0.7ms

0.99 3.25 351 +8.00% 6.23 6.74  +8.19% 10.53 11.27 +7.03%  03ms  0.7ms
100 0.95 10.03 10.03  +0.00% 1732 17.33 +0.06% 25.19 2520 +0.04% 1.0ms  1.0ms
099 1010 10.13 +0.30% 17.51 17.53 +0.11% 2539 2539 +0.00% 1.0ms  1.0ms
200 0.95 11.69 11.70 +0.09% 19.79 19.80 +0.05% 28.18  28.18 +0.00% 1.2ms  1.2ms
099 11.72 11.72 +0.00% 19.82 19.82 +0.00% 28.14  28.14 +0.00% 1.2ms  1.2ms
1000 095 5849 5849 +0.00% 7644 7644  +0.00% 88.21 88.21 +0.00% 39ms  4.0ms
099 5878 58.78 +0.00% 76.55  76.55 +0.00% 88.27  88.27 +0.00%  43ms 4.3ms
Essential matrix
20 095 2527 2587 +2.37% 38.63 3942 +2.05% 52.15  53.02 +167%  04ms  0.8ms
099 2608 2663 +2.11% 39.66 4036 +1.77% 5326 5401 +141%  0.6ms 1.4ms
100 095 4578 4593 +0.33% 60.81 61.00 +0.31% 73.11 7329 +025%  20ms  2.1ms
099 46.77 46.89 +0.26% 61.86 6201 +0.24% 7407 7421 +0.19%  2.Ims  2.2ms
200 095 4989 4995 +0.12% 6439 6447 +0.12% 76.00 76.06 +0.08%  22ms  2.2ms
099 5073 50.76 +0.06% 6538 6541 +0.05% 7691 7694 +004%  23ms  2.3ms
1000 095 3788 3787 +003%  51.83 51.83 +0.00% 63.18 63.18 +0.00% 1.8ms  1.8ms
0.99 38.19 38.19 +0.00% 5248 5248 +0.00% 6397 6396 +-0.02% 20ms 2.0ms
Fundamental matrix
20 0.95 8.59 9.02 +5.01% 15.98 16.67 +4.32% 26,50 2744 +355%  02ms  0.5ms
0.99 8.98 936 +4.23% 16.60 17.22 +3.73% 2735 28.17 +3.00%  03ms  0.7ms
100 095 2462 2479 +0.69% 3732 37.56 +0.64% 5097 51.24 +0.53% l4ms  1.4ms
099 2538 2554 +0.63% 3835 3857 +0.57% 52.11 5236 +0.48% 1.5ms  1.5ms
200 095 3009 30.16 +0.23% 4354 43.63 +0.21% 57.08 57.17 +0.16% 19ms  1.9ms
099 3086 3093 +0.23% 4454 4462 +0.18% 5822 5831 +0.15% 3.Ims  2.0ms
1000 095 2637 2637 +0.00% 4042 4042 +0.00% 5485 5485 +0.00%  22ms 2.2ms
0.99 2657 2658 +0.04% 4044 4046 +0.05% 5437 5438 +0.02%  23ms  2.3ms

Table 4. Relative camera pose estimation. Two-view homography (k = 4), essential matrix (k = 5), fundamental matrix estimation
(k = 7T) results with varying number of measurements n and target success probability s reported as end-to-end AUC (higher is better)

with relative improvements A and runtime metrics.
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Learning Goals for Optical Flow

LINEARIZE

how do we find more equations”?



Flow at a pixel
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Optical Flow in 1D

Consider a 1D function moving at velocity v
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Optical Flow in 1D

Consider a 1D function moving at velocity v
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How do we compute ...

Iwu—l—ly’v—l—ft =0

- 2 - 2
I — ol I — o1 I ol
= 9. YT O U = 7 t = 9t
\ spatial derivative ) optical flow temporal derivative
. y
Forward difference How do we solve for u and v? Frame differencing
Sobel filter

Scharr filter

9 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lucas-Kanade

Assumption: Locally constant motion

10



LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1I; =0

Suppose [z1,y1] = [z, y] is the (original) center point in the window. Let [z2, y2]
be any other point in the window. This gives us two equations that we can write

Lp,u+ 1,0 =—1
lp,u+ 1,0 = —1,

and that can be solved locally for v and v as

I, I,
Ly, I

U
U

1

Ly

2

orovided that u and v are the same In both equations and provided that the
required matrix inverse exists.
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LucaS‘Kanade Optical Flow Constraint Equation: [, u + va + 1I; =0

Considering all n points in the window, one obtains

[pu+ 1, v=—1
lp,u+ 1,,v=—1,

I, u+1, v=—1

which can be written as the matrix equation

Av=DL
IfL‘l Iyl | ]t1
IfL‘2 I?JQ Itz
where v =[u,v]', A=| .  |and b=—| |
]xn Iyn B ‘[tn

12



Lucas-Kanade
The standard least squares solution Is
v=(A"A)"'A'Db

Note that we can explicitly write down an expression for A* A as

Y2 S ILI
ATA: Z T LY
_ > 1.1, ZIyQ

# \Vhere have we seen this before?
e | Can this tell us something about where LK is likely to work well?

13



| ucas-Kanade Summary

A dense method to compute motion, |u, v], at every location in an image
Key Assumptions:

1. Motion Is slow enough and smooth enough that differential methods apply
(.e., that the partial derivatives, 1., I,,, I;, are well-defined)

dl(x,y,t
2. The optical flow constraint equation holds (i.e., (:; ty ) =0)

3. A window size is chosen so that motion, |u, v|. is constant in the window

4. \Windows are chosen s.t. that the rank of AT A is 2

14



Horn-Schunck Optical Flow

Assumption: Locally smooth motion

15



Optical Flow Smoothness Priors

The optical flow equation gives one constraint per pixel, but we need to
solve for 2 parameters u, v

Lucas Kanade adds constraints by adding more pixels

An alternative approach is to make assumptions about the smoothness of the
flow field, e.g., that there should not be abrupt changes in flow




Optical Flow Smoothness Priors

Many methods trade off a ‘departure from the optical flow constraint” cost with
a ‘departure from smoothness’ cost.

U, v —

min {Es(’i,j) + AEd(’i,j)}
1,7

e.g., the Horn Schunck objective function penalises the magnitude of velocity:

E://gxuﬂ-ywzt)zmmvu|\2+uvv\|2>

. [ Horn Schunck 1981, Szeliski p395 ]



Horn-Schunck Optical Flow

Brightness constancy Eq(t,7) = [Izui; + Lyvi; + Iy

Smoothness
o i
. 2 2 2 2
Es(i,5) = 7| (wij — wit1,5)" + (Uij — wij+1)” + (Vij — vit1,5)" + (V5 — vij41)
j+41 §+4+1 J+1 741
(wij — ii1,5) (wij — i511) (vij —viy1,5) (vij —vigi1)
e T e e R

2.7 — 1 i.j—1 .7 — 1 2,7 — 1

18 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Optical Flow Summary
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Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,
given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time t17?
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Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,
given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time t17?

Assuming Image intensity does not change as a conseguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ 1Lyo+ 1 =0

where |u, v|, is the 2-D motion at a given point, |z, y|, and I, 1, I; are the partial
derivatives of intensity with respect to x, y, and ¢

19



Optical Flow Summary

Motion, like binocular stereo, can be formulated as a matching problem. That is,

given a scene point located at (xg, yo) in an image acquired at time to, what is
its position, (z1,y1), in an image acquired at time t17?

Assuming Image intensity does not change as a conseguence of motion, we
obtain the (classic) optical flow constraint equation

lyu+ 1Lyo+ 1 =0

where |u, v|, is the 2-D motion at a given point, |z, y|, and I, 1, I; are the partial
derivatives of intensity with respect to x, y, and ¢

Lucas—-Kanade is a dense method to compute the motion, |u, v|, at every
location In an Image
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THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 17: Multiview Reconstruction

20



Menu for Today

Topics:

— Stereo, Optical Flow recap
— Multiview Reconstruction

— Today’s Lecture: Szeliski 11.4, 12.3-12.4, 9.3

Reminders:

— Assignment 4: due March 20th



| earning Goals

Putting It all together

22



2-view Rigid Matching

1D search, points constrained to lie along epipolar lines
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2-view Rigid Matching
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2-view Rigid Matching

1D search, points constrained to lie along epipolar lines
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2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]

24
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2-view Non-Rigid Matching

2D search, points can move anywhere in the image

[ vision.middlebury.edu/flow ]
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Optical Flow: Example 1




Optical Flow: Example 2

27 [ Brox Malik 201 | ]



Multiview + Sparse SFM

® Multiview Image Alignment, Residuals, Error Function
® Structure from Motion (SFM)

® Bundle Adjustment, Pose Estimation, Triangulation

| Szelis£<8i 1 1.4 ]



Multiview Image Alignment

— - —

Align a set of images given a motion model (e.qg., planar affine)

29



Multiview Image Alignment

Align a set of images given a motion model (e.g., pl
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Step 1: Find all matches between images using SIFT
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Multiview Image Alignment

anar affine)
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Step 1: Find all matches between images using SIFT
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Multiview Image Alignment

Align a set of images given a motion model (e.qg., Pl

anar affine)
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Step 1: Find all matches between images using SIFT

Step 2: Remove incorrect matches using RANSAC
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Multiview Image Alignment

| |
l, 3 At

~

y

[—

Step 1: Find all matches between images using SIFT
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Multiview Image Alignment

Align a set of images given a motion model (e.g., pl
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Step 1: Find all matches between images using SIFT

Step 2: Remove incorrect matches using RANSAC
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Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points
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Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),

4 outliers (blue, light blue, purple, pink)



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

choose light blue, purple
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Recap: Image Alignment + RANSAC

check match distances



mage Alignment + RANSAC

Recap

larity Transform (2 points)
check match distances

1M

RANSAC solution for S



Recap:

RANSAC

mage Alignment + RANSAC

check match distances

N Y |

tinliers = 2




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

choose pink, blue



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

warp image



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances
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Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances
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Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

check match distances

H

Hinliers = 2




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

choose red, orange



Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

¢ ‘¥
check match distanc
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RANSAC solution for Similarity Transform (2 points)
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Recap: Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

¢ ¢
check match distanc

Hinliers = 4
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Planar Image Alighment

® Given a clean set of correspondences, align all images

43









Multiview Image Alignment

Residual = vector between observed feature and projection
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Multiview Image Alignment

Residual = vector between observed feature and projection




Multiview Image Alignment

Residual = vector between observed feature and projection




Multiview Image Alignment

Residual = vector between observed feature and projection




Panorama Recognition
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Panorama Recognition
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Panorama Recognition




Panorama Recognition




Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama
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Bullding a panorama
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Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Matthew Brown and David Lowe

Figure Cred



Bullding a panorama
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Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Panorama Stitching

® We can concatenate pairwise homographies, but over time
multiple pairwise mappings accumulate errors

® We use global alighment (bundle adjustment) to close the gap

59
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Panorama Stitching

® We can concatenate pairwise homographies, but over time
multiple pairwise mappings accumulate errors

® We use global alighment (bundle adjustment) to close the gap
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Panorama Stitching

® We can concatenate pairwise homographies, but over time
multiple pairwise mappings accumulate errors

® We use global alignment (bundle adjustment) to close the gap

59



Structure from Motion

Given an (unordered) set of input images, compute
cameras and 3D structure of the scene

60



Structure from Motion

61



Structure from Motion

61



2-view Structure from Motion

® We can use the combination of SIFT/RANSAC and
triangulation to compute 3D structure from 2 views

O‘\ "pg
Sy’ 0

RANSAC for Epipolar Geom
Extract R, t

Triangulate to 3D Point Cloud

62



Global Alignment

® (Concatenation of pairwise R, t estimates results in drift, e.g.,

YA\
Db Adﬂ DD dﬂ

V4 v OV \V4
< > < P
4A A <« N
> A A A\

Py 4 DDVQQ

Pairwise alignment Global alignment



Global Alignment
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Global Alignment
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Global Alignment
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Global Alignment

® (Concatenation of pairwise R, t estimates results in drift, e.g.,

Pairwise alignment Global alignment

64



Global Alignment

® |n robotic navigation frame-frame alignment also causes drift

We can use bundle adjustment to close the gap

| Kaess Dellaert 2010 ]
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Feature Tracking

® Form feature tracks by combining pairwise feature matches

® Tracked features become individual 3D points in the
reconstruction

® Features matched across 3 or more views provide strong
constraints on the 3D reconstruction
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Bundle Adjustment
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® Minimise errors projecting 3D
points into all images

e Z Z ‘rz’j(RiativXj)‘Q

1€1mages jEpoints

[ Szeliski | 1.4 ]



Bundle Adjustment

® Full bundle adjustment (optimise all cameras and points):

e — Z Z ‘rij(Riat%XjHZ

1 €1mages 7 € points

® Triangulation (optimise points, fixed cameras):

e = Z Z |rz’j<Ri7ti7Xj)‘2

1 € 1Images 9 € points

® Pose estimation for camera i:

e= Y (R, t, X))

9 € points

(optimised parameters are shown in red)
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Bundle Adjustment

® |nitialization with 3 views

Joint optimization of cameras and structure
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Bundle Adjustment

Initialization with 3 views
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Bundle Adjustment

Initialization with 3 views

Joint optimization of cameras and structure
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Bundle Adjustment

® Add camera 4

Estimate camera pose, add new 3D points, jointly optimize
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Bundle Adjustment
® Add camera 4
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Bundle Adjustment

® Add camera 4
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Bundle Adjustment

® Add camera 5

Estimate camera pose, add new 3D points, jointly optimize
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Add camera 5

Estimate camera pose, add new 3

stment

D points, jointly optimize
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Bundle Adjustment

® Add camera 5
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Bundle Adjustment

® Add camera 5

Estimate camera pose, add new 3D points, jointly optimize
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Bundle Adjustment

® Add camera 6

Estimate camera pose, add new 3D points, jointly optimize
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Bundle Adjustment

® Add camera 6

Estimate camera pose,

add new 3D points, jointly optimize
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Bundle Adjustment

® Add remaining cameras in same way
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Bundle Adjustment

ININEg Cameras In same way

® Add rema
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SFM recap
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SFM recap

Match features, e.g., SIFT, between all views

Use RANSAC to reject outliers and estimate Epipolar
Geometry / Camera matrices

Form feature tracks by linking multiview matches

Select an initialization set, e.g., 3 images with lots of matches
and good baseline (parallax)

Jointly optimize cameras R, t and structure X for this set

Repeat for each camera:
- Estimate pose R, t by minimising projection errors with existing X
- Add 3D points corresponding to the new view and optimize
- Bundle adjust optimizing over all cameras and structure
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Visual SFM

=unstable points removed: 042
Focal Length : [532.971]->[531.451]
Radial Distortion : [-0.376 -> -36]

File SfM View ViP Rep Tools Help
B e B ooEw X-Laztmp Ieyeail n W

=67; [51] sees 1053 (+253) 30 ponts
Focal Length in EXIF [1066.367]
Estimated Focal Length [1066][1.04N]
= 778 projs (179 pts and 15 merges)
SKIP: 14 cams, 8387 ponts, 31583 projs

PBA: 1.110 -> 1.020 (5 WMs in 0. 10se¢)
2points outside bunde : 118
=points w/ large errors: 8

23+ ponts removed: 6
=unstable points removed: 043
Radial Distortion : [0.111 -> 12]

= 17 projs (4 pts and 0 merges)

Focal Length : [1066.367]->[1080.209)
Radial Distortion : [0.111 -> 12]

‘--..--.‘.--.‘---.-....--.---
W PP G - hagh o

268 [57] sees 860 (+253) 3D ponts
Focal Length in EXIF [822.222)
Estimated Focal Length [822][1.03N]
NOTE: inker ratio 72%, 83%

= 278 projs (0 pts and 3 merges)

SKIP: 12 cams, 7841 points, 28954 projs

PBA: 1,962 -> 1.005 (5 Ms in 0.05s¢¢)
2points outside bunde : 114
=points w/ large errors: 8

23+ ponts removed: 3
2unstable points removed: 0+7

I NN

#68: 5905 proj, 1596 pts, /M, 15UP

[ ccwu.me/vsfm ]

PBA: 4387 3D pts, 67(-33) cams and 154991 projs...

PBA: 4937 3D pts, 68(-36) cams and 22730 projs..

PBA: 19054 3D pts, 68(-0) cams and 55740 projs...
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colmap.github.io

# COLMAP

Search docs

Installation

Tutorial

Database Format
Camera Models

Output Format
Datasets

Graphical User Interface
Command-line Interface
Frequently Asked Questions
Changelog

Contribution

License

Bibliography

COLMAP

[ COLMAP — COLMAP 3.9-dev documentation

U 63 @ B

#  COLMAP View page source

COLMAP

f o A LRCTTTN,

Dense models of several landmarks pro

About <

COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline
with a graphical and command-line interface. It offers a wide range of features for reconstruction of
ordered and unordered image collections. The software is licensed under the new BSD license. If
you use this project for your research, please cite:

@inproceedings{schoenberger2016sfm,
author={Sch\"{o}nberger, Johannes Lutz and Frahm, Jan-Michael},
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Application: 3D from Internet Images

® Reconstruct 3D from unordered photo collections

[ Building Rome in a Day, S.Agarwal et al 2009 ] 79
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A new paradigm in 2024+

Uncalibrated RGB
8x Playback

https://edexheim.github.io/mast3r-slam/
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A new paradigm in 2024+: "geometry first”
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A new paradigm in 2024+: “geemetry-Hrst point maps

Unconstrained
image collections

DUSt3R

Corresponding pointmaps
(dense 2D < 3D mappings)

>

Camera calibration

Monocular
Depth estimation <
Multi-View

Pixel correspondences

Pairwise (relative)
Camera pose estimation

Multi-View
Dense 3D reconstruction

Visual Localization
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A new paradigm in 2024+: “geemetry-Hrst point maps

Unconstraine
image collectig

Camera calibration
Monocular
4 ) Depth estimation <
Multi-View
— DUSt3R — » Pixel correspondences
Pairwise (relative)
\ / Camera pose estimation < |
= 4 R é ) Pointmap —
] ' Y11l e pWxHX3 T~
— B Vﬂ;I —_ Trgnsfc:lrmer Confidence Common coo-rdinate frame __.;..:;:.....,';.._‘..,;.:..,.._v_}:,_.-.._
B encoder Fi ecoder; e of camera 1 (image [,) x\""':\h""\",ﬁ.
H ,/ " ) Cameral P ey
Image J; € R "7 - Shared ¢lnformation (at origini/‘_’ :..
weights sharing o t’s

‘ R ‘ ) Pointmap /

X21 g RWxHx3 Camera2
(unknown position)

VIT E Transformer Head
encoder ' Decoder, ‘ Confidence

2 ¢ mWXH
y % ) C“eRrR

—

/ Patchify

Image |, € RW*H*3

—
Il
'r
4

Figure 2. Architecture of the network F. Two views of a scene (1", I*) are first encoded in a Siamese manner with a shared ViT encoder.
The resulting token representations F'' and F are then passed to two transformer decoders that constantly exchange information via
cross-attention. Finally, two regression heads output the two corresponding pointmaps and associated confidence maps. Importantly, the two
pointmaps are expressed in the same coordinate frame of the first image I''. The network F is trained using a simple regression loss (Eq. (4))
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A new paradigm in 2024+: —“geemetry-Hrst point maps

Camera Matrix

r
f 0 0 0
0 f 0 0
0 0 1 0
3D object point
T - o -
P = z projects to 2D image point P’ = | v | where| sP'=CP
1 1 |
f -7 (s is a scale factor) |
‘—\
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Geometry / Camera matrices

® Select an initialization set, e.g., 3 images with lots of matches
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® Repeat for each camera:
- Estimate pose R, t by minimising projection errors with existing X
- Add 3D points corresponding to the new view and optimize
- Bundle adjust optimizing over all cameras and structure
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