
Recap

1



Learning Goals

1. How to get multiple hypothesis 
2. Voting-based strategies are useful
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Hough Transform: Motivation

Space of 2D Image Lines

Votes / Probability Distribution



Lines: Normal form

0  ✓  2⇡

r � 0

Forsyth/Ponce convention

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x cos(θ) + y sin(θ) = ρ

x cos(θ) + y sin(θ) + r = 0
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Example: Clean Data

Votes
Tokens Horizontal axis is θ 

Vertical Axis is r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)



Image space Parameter space

variables

parameters

four points 
become?

parameters

variables

Hough Transform: Lines

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

x cos(θ) + y sin(θ) = ρ



Generalized Hough Transform
What if we want to detect an arbitrary geometric shape? 

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980



Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows

* Slide from Sanja Fidler
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Visual Words

* Slide from Sanja Fidler



B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004

training image

visual codeword with 
displacement vectors

Index displacements by “visual codeword”

Example 1: Object Recognition — Implicit Shape Model



B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004

Example 1: Object Recognition — Implicit Shape Model



B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,  
ECCV Workshop on Statistical Learning in Computer Vision 2004

Combined object detection and segmentation using an implicit shape model. 
Image patches cast weighted votes for the object centroid. 

Inferring Other Information: Segmentation 



Example 1: Object Recognition — Implicit Shape Model
“Training” images of cows
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Inferring Other Information: Segmentation 

* Slide from Sanja Fidler

Idea: When back-projecting, back-project labeled segmentations per training patch



Inferring Other Information: Segmentation 

* Slide from Sanja Fidler



Inferring Other Information: Part Labels

* Slide from Sanja Fidler



Inferring Other Information: Depth

* Slide from Sanja Fidler



Example 2: Object Recognition — Boundary Fragments
Boundary fragments cast weighted votes for the object centroid. Also obtains 
an estimate of the object’s contour. 

Image credit: Opelt et al., 2006



Boundary fragments cast weighted votes for the object centroid. Also obtains 
an estimate of the object’s contour. 

Image credit: Opelt et al., 2006

Example 2: Object Recognition — Boundary Fragments



Example 3: Deep Hough Voting

[Qi et al., 2019, ICCV]



Advantages:  
— Can handle high percentage of outliers: each point votes separately 
— Can detect multiple instances of a model in a single pass  

Disadvantages:  
— Search time increases exponentially with the number of model parameters 
— Can be tricky to pick a good bin size  

Idea of Hough transform:  
— For each token vote for all models to which the token could belong  
— Return models that get many votes  
e.g., For each point, vote for all lines that could pass through it; the true lines 
will pass through many points and so receive many votes  

Summary of Hough Transform



Lecture 15: Stereo

CPSC 425: Computer Vision 

34

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)



Menu for Today
Topics: 

— 3D Correspondence, Epipolar Geometry   
— Stereo Vision

Readings: 

— Today’s Lecture:  Szeliski 12.1, 12.3-12.4, 9.3                             

Reminders: 
— Assignment 4: RANSAC and Panoramas due March 20th 
  



Recap: 2D Transformations

— We will look at a family that can be represented by 3x3 matrices 

— This group represents perspective projections of planar surfaces

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.



Consider a single point correspondence 

Recap: Linear (or Affine) Transformations
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Correspondences in 3D

Find all matches between views

38



Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation
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Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation
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Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation
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Correspondences in 3D

Find subset of matches that are consistent with a geometric transformation

42

Consistent matches can be used for subsequent stages,  
e.g., 3D reconstruction, object recognition etc.



2-view Geometry

(u1, v1) (u2, v2)?

How do we find correspondences between two views?



2-view Geometry
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Planar case: the mapping can be obtained by a homography



(u1, v1) (u2, v2)

X?
X?

X?

?

2-view Geometry
How do we find correspondences between two views?

Non-planar case: depends on the depth of the 3D point



Epipolar Line

(u1, v1) (u2, v2)?

X?
X?

X?

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



Visualization of Epipolar Lines
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Visualization of Epipolar Lines

Stereo Vision 11
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Aside: The Epipolar Constraint — CPSC533Y

epipole e epipole e′ 

epipolar line l′ 

x′ x

C
C′ 

X
Some point in the line

For any pair of corresponding points  in the two images x ↔ x′ 

x′ 

⊤Fx = 0

For the motivated: https://www.icloud.com/keynote/0lMsw0TLJioSA-HpXIPpXm2rw#lect_part2_1_epipolar_geom



Improving RANSAC + Alignment with Epipolar Geometry 



Improving RANSAC + Alignment with Epipolar Geometry 
Raw SIFT features and their matches



Improving RANSAC + Alignment with Epipolar Geometry 

?

Instead of matching purely based on SIFT descriptor, leverage geometry 
to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)



Improving RANSAC + Alignment with Epipolar Geometry 

(gives more consistent geometrically valid matches)

Better matches lead to fewer iterations of RANSAC



RANSAC for Epipolar Geometry

57

Raw feature matches (after ratio test filtering)

Solve for camera geometry and RANSAC 



Triangulation

K1,R1, t1 K2,R2, t2

Given cameras  
and corresponding  

points...

...we can triangulate 
to find the 3D point

X

u1

u2



Going back to Epipolar Geometry

(u1, v1) (u2, v2)?

X?
X?

X?

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2



2-view Stereo
Search over matches constrained to (epipolar) line

(reduces to 1d search)



Stereo Camera Configuration

Humans and many stereo cameras have parallel optical axes

61 [ J. Elson ]



Axis Aligned Stereo

A common stereo configuration has camera optical axes aligned, with cameras 
related by a translation in the x direction

62

14.2



Stereo Matching in Rectified Images 

— In a standard stereo setup, where cameras are related by translation in the x 
direction, epipolar lines are horizontal 

— Stereo algorithms search along scanlines for matches 
— Distance along the scanline (difference in x coordinate) for a corresponding 
feature is called disparity

534 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.



Stereo Matching in Rectified Images (Left)
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(a) (b) (c)
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Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.
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Stereo Matching in Rectified Images (Right)

[ D. Scharstein ] 

534 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.



Stereo Matching in Rectified Images (Right)
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(a)



Anaglyph

Stereo pair with images encoded in different color channels
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Stereo Displays

Field sequential (shutter) glasses transmit alternate left/right image at 120Hz

68

Lenticular lenses send  
different images directly to each 
eye, without the need for glasses 



Stereo Displays

VR headsets send L/R images directly to each eye

69 [ Google Cardboard ]



Rectified Stereo Pair

Any two camera views that overlap can be rectified so that epipolar lines 
correspond to scan lines (no special conditions must hold)



Reproject image planes onto 
a common plane parallel to 
the line between camera 
centers

Need two homographies 
(3x3 transform), one for each 
input image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Rectified Stereo Pair

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Example

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Before Rectification

After Rectification



Stereo Matching in Rectified Images 

— In a standard stereo setup, where cameras are related by translation in the x 
direction, epipolar lines are horizontal 

— Stereo algorithms search along scanlines for matches 
— Distance along the scanline (difference in x coordinate) for a corresponding 
feature is called disparity
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and        are corresponding             windows of pixels
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wL wR m⇥m

Define a distance function between image patches, e.g.,  

= ||wL �wR(d)||2

= wL ·wR(d) = cos ✓

SSD

correlation

Matching along a Scanline
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Matching along a Scanline

Best match is at minimum of 
SSD function along a scanline



(simple) Stereo Algorithm

76

1.Rectify images  
(make epipolar lines horizontal) 

2.For each pixel in image 1 
a.Search along epipolar line in image 2 
b.Find best match and record offset = disparity 
c.Compute depth from disparity

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Z = f
�X

disp

1



Effect of Window Size

Larger windows → smoothed result

77

Aggregation window, error and cost functions

Ground truth SAD W=11SAD W=3 SAD W=25

Effect of window size (W) for aggregating the photometric cost: 

W=3 W=11 W=25

Smaller window 
+  More detail 
-   More noise

Larger window 
+   Smoother disparity maps 
-    Less detail 
-    Fails near boundaries



Occlusions

Sometimes a point in image 1 does not appear in image 2, or vice-versa (this is 
called an occlusion)

C

B

A

a

D

b c d a cb
d

• Occlusions cause 
gaps in the stereo 
reconstruction 

• + Matching is difficult 
nearby as aggregation 
windows often overlap 
the occluded region 



Edge Aware Stereo

Occlusions and depth discontinuities cause problems for stereo matching, as 
aggregation windows overlap multiple depths
(a) (c) (d)(b)

(e) (g) (h)(f)

(i) (j) (k) (l)

Figure 4. Output images. (a–d) Depth map (αth = 0.5), (e–h) segmentation map, and (i–l) alpha matte for each data set.

[8, 3, 18, 23], because color segmentation fails at object
boundaries with similar foreground and background colors.
For example, Fig. 7 (d) shows the results from Hong and
Chen’s method [8], a color-segmentation based algorithm
that ranked third on the old Middlebury evaluation. Deng
et al.’s patch-based approach [6] overcomes many of these
errors, as shown in Fig. 7 (e). (Deng et al. fill occluded re-
gions with neighboring depth values because these regions
were not considered in the old Middlebury evaluation.) Our
result is similar in quality to Deng et al.’s (Fig. 7 (f)). Cur-
rently, Sun et al. [13] obtain the best results for this image
pair by using segmentation as a soft constraint (Fig. 7 (g)).

5.3. Z-Keying

Figure 8 shows a Z-keying result using estimated depth
maps and alpha mattes for the Teddy and Cones image pairs.
We extracted the teddy bear from the left Teddy image and
composited it into the left Cones image. Because we use
alpha mattes for both extraction and composition, there is
no color bleeding on boundaries between the teddy bears
and other objects (Figs. 8 (a) and (b)). By comparison, the
matting results using a single depth map (calculated with
αth = 0.5) and no alpha matte (Fig. 8 (c)) have artifacts.

6. Discussion and Conclusions

Our adaptive over-segmentation based stereo algorithm
overcomes limitations of traditional segmentation based
methods while properly handling mixed pixels on object
boundaries. Our depth maps are not only accurate according
to accepted standards (Middlebury) but in fact more com-
plete, because we produce opacity information and fore-
ground/background colors and depths for mixed pixels. In
contrast to most matting methods, we produce this informa-
tion along depth discontinuities throughout the scene, not
only for foreground objects. Currently, the most significant
limitation of our method is that it assumes a constant depth
for all pixels in each segment, so it does not handle heav-
ily slanted planes well. In future work, we could attempt to
address this problem by using oriented planes or parametric
surfaces instead of fronto-parallel segments.

To compare our stereo results with other researchers, we
create single-valued depth maps to use with the Middle-
bury stereo evaluation. In doing so, we discovered that
the Tsukuba ground truth depth map is biased toward the
foreground depths of mixed pixels. Our performance on
the Middlebury evaluation gives us good confidence in our
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.

• Segmentation-based stereo approaches aim to solve this by 
trying to guess the depth edges (e.g., joint segmentation 
and depth estimation [ Taguchi et al 2008 ])



Ordering Constraint

If point B is to the right of point A in image 1, the same is usually true in image 2

CB
A

a

D

b c d a cb
d B

A

a                   b a

Not always, e.g., if an object 
is wholly within the ray 
triangle generated by A



Occlusions + Ordering

Note that the ordering constraint is still maintained in the presence of 
occlusions (unless there is an object off surface as in the previous slide)

C

B

A

a

D

b c d a cb
d



Stereo Cost Functions
• Energy function for stereo matching based on disparity d(x,y)

• Sum of data and smoothness terms
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correcting the apparent gaze during video conferencing, and background replacement. We
discuss the first two applications below and defer the discussion of background replacement
to Section 11.5.3.

The use of head tracking to control a user’s virtual viewpoint while viewing a 3D object
or environment on a computer monitor is sometimes called fish tank virtual reality, since the
user is observing a 3D world as if it were contained inside a fish tank (Ware, Arthur, and
Booth 1993). Early versions of these systems used mechanical head tracking devices and
stereo glasses. Today, such systems can be controlled using stereo-based head tracking and
stereo glasses can be replaced with autostereoscopic displays. Head tracking can also be used
to construct a “virtual mirror”, where the user’s head can be modified in real-time using a
variety of visual effects (Darrell, Baker, Crow et al. 1997).

Another application of stereo head tracking and 3D reconstruction is in gaze correction
(Ott, Lewis, and Cox 1993). When a user participates in a desktop video-conference or video
chat, the camera is usually placed on top of the monitor. Since the person is gazing at a
window somewhere on the screen, it appears as if they are looking down and away from the
other participants, instead of straight at them. Replacing the single camera with two or more
cameras enables a virtual view to be constructed right at the position where they are looking
resulting in virtual eye contact. Real-time stereo matching is used to construct an accurate 3D
head model and view interpolation (Section 13.1) is used to synthesize the novel in-between
view (Criminisi, Shotton, Blake et al. 2003).

11.5 Global optimization
Global stereo matching methods perform some optimization or iteration steps after the dis-
parity computation phase and often skip the aggregation step altogether, because the global
smoothness constraints perform a similar function. Many global methods are formulated in
an energy-minimization framework, where, as we saw in Sections 3.7 (3.100–3.102) and 8.4,
the objective is to find a solution d that minimizes a global energy,

E(d) = Ed(d) + �Es(d). (11.8)

The data term, Ed(d), measures how well the disparity function d agrees with the input image
pair. Using our previously defined disparity space image, we define this energy as

Ed(d) =

X

(x,y)

C(x, y, d(x, y)), (11.9)

where C is the (initial or aggregated) matching cost DSI.
The smoothness term Es(d) encodes the smoothness assumptions made by the algorithm.

To make the optimization computationally tractable, the smoothness term is often restricted
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to measuring only the differences between neighboring pixels’ disparities,

Es(d) =

X

(x,y)

⇢(d(x, y)� d(x + 1, y)) + ⇢(d(x, y)� d(x, y + 1)), (11.10)

where ⇢ is some monotonically increasing function of disparity difference. It is also possi-
ble to use larger neighborhoods, such as N8, which can lead to better boundaries (Boykov
and Kolmogorov 2003), or to use second-order smoothness terms (Woodford, Reid, Torr et
al. 2008), but such terms require more complex optimization techniques. An alternative to
smoothness functionals is to use a lower-dimensional representation such as splines (Szeliski
and Coughlan 1997).

In standard regularization (Section 3.7.1), ⇢ is a quadratic function, which makes d smooth
everywhere and may lead to poor results at object boundaries. Energy functions that do not
have this problem are called discontinuity-preserving and are based on robust ⇢ functions
(Terzopoulos 1986b; Black and Rangarajan 1996). The seminal paper by Geman and Ge-
man (1984) gave a Bayesian interpretation of these kinds of energy functions and proposed a
discontinuity-preserving energy function based on Markov random fields (MRFs) and addi-
tional line processes, which are additional binary variables that control whether smoothness
penalties are enforced or not. Black and Rangarajan (1996) show how independent line pro-
cess variables can be replaced by robust pairwise disparity terms.

The terms in Es can also be made to depend on the intensity differences, e.g.,

⇢d(d(x, y)� d(x + 1, y)) · ⇢I(kI(x, y)� I(x + 1, y)k), (11.11)

where ⇢I is some monotonically decreasing function of intensity differences that lowers
smoothness costs at high-intensity gradients. This idea (Gamble and Poggio 1987; Fua 1993;
Bobick and Intille 1999; Boykov, Veksler, and Zabih 2001) encourages disparity discontinu-
ities to coincide with intensity or color edges and appears to account for some of the good
performance of global optimization approaches. While most researchers set these functions
heuristically, Scharstein and Pal (2007) show how the free parameters in such conditional
random fields (Section 3.7.2, (3.118)) can be learned from ground truth disparity maps.

Once the global energy has been defined, a variety of algorithms can be used to find a
(local) minimum. Traditional approaches associated with regularization and Markov random
fields include continuation (Blake and Zisserman 1987), simulated annealing (Geman and
Geman 1984; Marroquin, Mitter, and Poggio 1987; Barnard 1989), highest confidence first
(Chou and Brown 1990), and mean-field annealing (Geiger and Girosi 1991).

More recently, max-flow and graph cut methods have been proposed to solve a special
class of global optimization problems (Roy and Cox 1998; Boykov, Veksler, and Zabih 2001;
Ishikawa 2003). Such methods are more efficient than simulated annealing and have produced
good results, as have techniques based on loopy belief propagation (Sun, Zheng, and Shum

• Smoothness cost penalises disparity changes with robust 𝜌(.)

• Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

• This is a Markov Random Field (MRF), which can be solved 
using techniques such as Graph Cuts 

[ Szeliski B5 ]



Stereo Comparison
• Global vs Scanline vs Local optimization
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*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.
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Programming
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aggregation[ Kolmogorov 

Zabih 2001]



Application: Microsoft Kinect v1
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Projector 
(NIR dot pattern)

J

Camera 
(NIR)



With two eyes, we acquire images of the world from slightly different viewpoints 

We perceive depth based on differences in the relative position of points 
in the left image and in the right image  

Stereo algorithms work by finding matches between points along 
corresponding lines in a second image, known as epipolar lines. 

A point in one image projects to an epipolar line in a second image 

In an axis-aligned / rectified stereo setup, matches are found along horizontal 
scanlines 
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Stereo Vision Summary


