Recap



| earning Goals

1. How 1o get multiple nhypothesis
2. Voting-based strategies are useful



Hough [ransform: Motivation

Votes / Probabillity Distribution

Space of 2D Image Lines



Lines: Normal form

xcos(@) + ysin(f) = p

Forsyth/Ponce convention

xcos(@)+ysin(@)+r=0

r >0

0<6 <27

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Example: Hough Transform for Lines
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Example: Hough Iransform for Lines |
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Example: Hough Iransform for Lines §
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines

(.

2,7
J

3

]
) AN I
o
o 3
‘-
-_— 2--
=
1
5 4 -3 2 -4 0 1 2 3 4$
o
-4

!

190 100110120130 ...

3
3.5
A
4.5

5




Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Hough Iransform for Lines
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Example: Clean Data

C o3 04 ol apo

Votes
Tokens Horizontal axis is 6

Vertical AXIS IS r
Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)



Hough [ransform: Lines

variables parameters
J N v "
y = mx + b XCOS(H) + y Sln(é’) =
N 7 N 2y
parameters variables
T

(3,3)

(1,1)
four points
o become”?

(—2,-2) | (1,-1) :
) N 2\ / \

-4

0.25n 0.5n 0.75n

Image space Parameter space
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Generalized Hough Transform

What if we want to detect an arbitrary geometric shape”?

Offline procedure:

At each boundary point,
compute displacement
vector: r = a - p;.

Model shape

Store these vectors in a
£ / table indexed by gradient
“0 \ orientation 6.

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980



Example 1: Object Recognition — Implicit Shape Model

“Training” Images of cCows

Keypoint Keypoint Offset
Image Keypoint Detection Description to
Index Index (4D) (128D) Centroid
Image 1 1 X, V, S, Thetal X,y S
Image 1 2 X, V, S, Thetal X,y
Image 1 265  [x,V, s, Theta] [...] [X,Y]
Image 2 1 X, V, s, Theta X,Y.
Image 2 2 X, V, S, Thetal X,y
Image 2 645 X, v, S, Theta] [...] X,Y]
Image K 1 X, V, S, Thetal X,y
Image K 2 X, V, S, Thetal X,y
Image K 134  [x, v, s, Theta] [...] X, Y]

* Slide from Sanja Fidler



Visual \Words

@ Visual vocabulary (we saw this for retrieval)

@ Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

* Slide from Sanja Fidler



Example 1: Object Recognition — Implicit Shape Model

Index displacements by “visual codeword”

visual codeword with
displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model.
Image patches cast weighted votes for the object centroid.

Original Image fetarast Poiite Matched Codebook Probabilistic

\ o Entries

Voting Space
(continuous)

Segmentation ﬂ_‘.

Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004



Example 1: Object Recognition — Implicit Shape Model

» « ey Keypoint Keypoint Offset
Tralnlng |mag eS Of COWS Image Keypoint Detection Description to Segment

Index Index (4D) (128D) Centroid

Image 1 1 X, V, S, Theta .. X,V r
Image 1 2 X, V, s, Theta L X,y L
Image1 265  [x,V, s, Theta] [..] [X,Y]

Image 2 1 X, V, S, Theta . X,y

Image 2 2 X, V, S, Theta L X,y

Image 2 645  [x,V, s, Thetq] [...] [X,Y]

Image K 1 X, V, S, Theta . X,y

Image K 2 X, V, S, Theta L X,Y]

Image K 134  [x, v, s, Theta] [...] [X,y]

* Slide from Sanja Fidler



Inferring Other Information: Segmentation

Idea: \When back-projecting, back-project labeled segmentations per training patch

&3 £33
Y
-

. -
I}

(a) detections (b) p(figure) (c) segmentation (a) detections (b) p(figure) (c) segmentation

[Source: B. Leibe]

- * Slide from Sanja Fidler



Inferring Other Information: Segmentation

B
ol

* Slide from Sanja Fidler

[Source: B. Leibe]



Inferring Other Information: Part Labels

* Slide from Sanja Fidler



Inferring Other Information: Depth

Test image Ground truth Result

* Slide from Sanja Fidler



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

All matched boundary
fragments

Original Image

Centroid Voting on a subset of the matched fragments

Segmentation / Detection Backprojected Maximum

Image credit: Opelt et al., 2006



Example 2: Object Recognition — Boundary Fragments

Boundary fragments cast weighted votes for the object centroid. Also obtains
an estimate of the object’s contour.

- Hough votin Backprojected .
Original S T —— Matching boundary spacge for thg codebook entries D&t: z:;:c:f Segmentation
. Image 9 9 fragments centroid for a maximum
Steps in
Detect. Alg. (1) (2) (3) (4)
. -
| L.‘.‘ '.. ¢ ﬂ
A '
‘}:" .
?.
-, .
- No maximum
- above threshold found
L B ..
", t' e ' No maximum
Rk v "y above threshold found
$ "

Image credit: Opelt et al., 2006



Example 3: Deep Hough Voting

Voting from input point cloud 3D detection output

Figure 1. 3D object detection in point clouds with a deep Hough
voting model. Given a point cloud of a 3D scene, our VoteNet
votes to object centers and then groups and aggregates the votes to
predict 3D bounding boxes and semantic classes of objects.

[Qi et al., 2019, ICCV]



Summary of Hough Transform

|dea of Hough transform:
— For each token vote for all models to which the token could belong
— Return models that get many votes

e.g., For each point, vote for all lines that could pass through it; the true lines
will pass through many points and so receive many votes

Advantages:
— Can handle high percentage of outliers: each point votes separately
— (Can detect multiple instances of a model in a single pass

Disadvantages.
— Search time increases exponentially with the number of model parameters
— (Can be tricky to pick a good bin size
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Lecture 15: Stereo
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Menu for Today

Topics:

— 3D Correspondence, Epipolar Geometry
— Stereo Vision

— Today’s Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

— Assignment 4: RANSAC and Panoramas due March 20th



Recap: 2D Transformations

— We will look at a family that can be represented by 3x3 matrices

Y A / similariE? Q project;e‘/

i g |
Euclidwe

, -

— This group represents perspective projections of planar surfaces



Recap: Linear (or Affine) Transformations

Consider a single point correspondence




Correspondences in 3D

Find all matches between views




Correspondences in 3D

FINd subset of matches that are consistent with a geometric transformation
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orrespondences in 3D

FINd subset of matches that are consistent with a geometric transformation
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Correspondences in 3D

FINd subset of matches that are consistent with a geometric transformation

4



Correspondences in 3D

FINd subset of matches that are consistent with a geometric transformation

Consistent matches can be used for sulbsequent stages,
e.g., 3D reconstruction, object recognition etc.

42



2-view Geometry

How do we find correspondences between two views?




2-view Geometry

How do we find correspondences between two views?

Planar case: the mapping can be obtained by a homography



2-view Geometry

How do we find correspondences between two views?

X7
X7
X?

K

[ LN

Non-planar case: depends on the depth of the 3D point




Epipolar Line

How do we find correspondences between two views?

A point In Image 1 must lie along the line in Image 2



2-view Stereo

Search over matches constrained to (epipolar

reduces to 1d search



Visualization of Epipolar Lines

[ R. Cipolla ]



Visualization of Epipolar Lines

[ R. Cipolla ]



Visualization of Epipolar Lines
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[ R. Cipolla ]



Visualization of Epipolar Lines

-r'ir,.|:

[ R. Cipolla ]



Aside: The Epipolar Constraint — CPSC533Y

—or any pair of corresponding points X <> X' in the two images
T
X" Fx =0

X

Some point in the line

\

I

epipolar line I’

epipole e epipole e
)\‘
V/

For the motivated: https://www.icloud.com/keynote/OlMswO TLJioSA-HpXIPpXm2rwilect_part2_1_epipolar_geom

a

C/



Improving RANSAC + Alignment with Epipolar Geometry




Improving RANSAC + Alignment with Epipolar Geometry

Raw SIFT features and their matches




Improving RANSAC + Alignment with Epipolar Geometry

Instead of matching purely based on SIFT descriptor, leverage geometry
to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)



Improving RANSAC + Alignment with Epipolar Geometry

Better matches lead to fewer iterations of RANSAC

(gives more consistent geometrically valid matches)



RANSAC for Epipolar Geometry

!

.0

.

Solve for camera gegmetry and RANSAC



Triangulation

Given cameras X .wecan triangulate

and corresponding to find the 3D point
points...




Going back to Epipolar Geometry

How do we find correspondences between two views?

A point In Image 1 must lie along the line in Image 2



2-view Stereo

Search over matches constrained to (epipolar

reduces to 1d search



Stereo Camera Configuration

Humans and many stereo cameras have parallel optical axes

[ J. Elson |

o



AXxis Aligned Stereo

A common stereo configuration has camera optical axes aligned, with cameras
related by a translation in the x direction

& (142

depth

baseline

62



Stereo Matching in Rectified Images

— In a standard stereo setup, where cameras are related by translation in the x
direction, epipolar lines are horizontal

— Stereo algorithms search along scanlines for matches

— Distance along the scanline (difference in x coordinate) for a corresponding
feature Is called disparity



Stereo Matching in Rectified Images (Left)

| [ D. Scharstein ]



Stereo Matching in Rectified Images (Right)

-[ D Sc_:harstein ]



Stereo Matching in Rectified Images (Right)

- _[ D. é-zharstein ]



Anaglyph

Stereo pair with images encoded In different color channels

g ’ e '
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Stereo Displays

Field sequential (shutter) glasses transmit alternate left/right image at 120Hz

Screen _
s O

Lenticular-_-~
lens -
i Lenticular lenses senc
i different images directly to each
Left eye (} eye, without the need for glasses

Right eye
68



Stereo Displays

VR headsets send L/R images directly to each eye

| Google Cardboard |

69



Rectified Stereo Pair

i O 0O’ A
X ,,

1
m 7

Any two camera views that overlap can be rectified so that epipolar lines
correspond to scan lines (no special conditions must hold)



Rectified Stereo Pair

Reproject image planes onto
a common plane parallel to

the line between camera \
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(83x3 transform), one for each
INput Image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision.Computer Vision and Pattern Recognition, 1999.

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Rectified Stereo Pair: Example

Before Rectification

After Rectification

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Stereo Matching in Rectified Images

— In a standard stereo setup, where cameras are related by translation in the x
direction, epipolar lines are horizontal

— Stereo algorithms search along scanlines for matches

— Distance along the scanline (difference in x coordinate) for a corresponding
feature Is called disparity



Matching along a Scanline

Left Right

il L

(X, (x, =d. v )

WL and wg are corresponding m x m windows of pixels

Define a distance function between image patches, e.g.,

74



Matching along a Scanline

Left Right

Best match is at minimum of SSD error 4

SSD function along a scanline Wv\f/\/
\/ disparity

l4s)




(simple) Stereo Algorithm

""" HON. ABRAIIAM LINCOLN, President of United States.

-~ o a - ~ »
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{
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e L 20T = Sl

e Reniyetniisin Ay

1.Rectify images
(make epipolar lines horizontal)

2.For each pixel 1n i1mage 1
a.Search along epipolar line 1n 1mage 2
b.Find best match and record offset disparity

c.Compute depth from disparity A X
Z=f

diSp

Slide Credit: loannis (Yannis) Gkioulekas (CMU) 76



Fffect of Window Size

Larger windows — smoothed result

S

W=3 W=l | W=25

Smaller window Larger window
+ More detall + Smoother disparity maps
- More noise - Less detall

- Falls near boungaries

’r’



Occlusions

Sometimes a point in iImage 1 does not appear in iImage 2, or vice-versa (this Is
called an occlusion)
C D

A
—eo ® o—
jB ® Occlusions cause
L gaps In the stereo
reconstruction
® + Matching is difficult
nearby as aggregation

a b c d
C b
& V windows often overlap

the occluded region
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® Scgmentation-based stereo approaches aim to solve this by

e.g., Join

trying to guess the depth edges (

and depth estimation [ Taguchi et al 2008 ])



Ordering Constraint

f point B Is to the right of point A In iImage 1, the same Is usually true in image 2

V0 SN

Not always, e.qg., If an object
s wholly within the ray
triangle generated by A




Occlusions + Ordering

Note that the ordering constraint Is still maintained in the presence of
occlusions (unless there is an object off surface as in the previous slide)

A C D
—Cj R ® o—
L




Stereo Cost Functions

® Energy function for stereo matching based on disparity d(x,y)
® Sum of data and smoothness terms

E(d) = Eq(d) + AEs(d)

® Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

Eq(d) = )  C(z,y,d(z,y))

(z,y)

® Smoothness cost penalises disparity changes with robust o(.)

Es(d> — Z p(d(.ﬁlj‘,y) - d(aj T 1vy)) T p(d(x,y) - d($,y + 1))

(,y)

® This is a Markov Random Field (MRF), which can be solved

using techniques such as Graph Cuts
[ Szeliski B5] o,



Stereo Comparison

® Global vs Scanline vs Local optimization

Ground Graph Cuts Dynamic SSD 21 px

truth [ Kolmogorov Programming aggregation
Zabih 2001]

[ Scharstein Szeliski 2002 ] .,



Application: Microsoft Kinect v

IR Emitter Color Sensor
IR Depth Sensor

Tilt Motor

.
I

Microphcgne Array

4 b
Projector Camera
(NIR)

(NIR dot pattern)
84




Stereo Vision Summary

With two eyes, we acquire images of the world from slightly different viewpoints

We perceive depth based on differences In the relative position of points
N the left iImage and in the right image

Stereo algorithms work by finding matches between points along
corresponding lines In a second image, known as epipolar lines.

A point in one image projects to an epipolar line in a second image

In an axis-aligned / rectified stereo setup, matches are found along horizontal
scanlines
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