Recap

Learning Goals

1. How to get **multiple** hypothesis 2. Voting-based strategies are useful

Hough Transform: Motivation

Votes / Probability Distribution

Space of 2D Image Lines

Lines: Normal form

$x\cos(\theta) + y\sin(\theta) = \rho$

Forsyth/Ponce convention

 $x\cos(\theta) + y\sin(\theta) + r = 0$ r > 0 $0 < \theta < 2\pi$

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Example: Hough Transform for Lines 100 110 120 130 ... 90 $(-2,3.3)^{y}$ 3 (-5,3) 3.5 4 $^{\cdot}x$ 4.5 5 -.

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$

Example: Hough Transform for Lines 100 110 120 130 ... 90 $(-2,3.3)^{y}$ 3 (-5,3) 3.5 4 $^{\cdot}x$ 4.5 5 -.

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$

Example: Hough Transform for Lines 90 100 110 120 130 ... (-2,3.3) *y* 3 (-5,3)3.5 4 x4.5

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$

5

-

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-2\cos(95^\circ) + 3.3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.46$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-2\cos(95^\circ) + 3.3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.46$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-2\cos(105^\circ) + 3.3\sin(105^\circ) + r = 0 \rightarrow r \approx 3.71$

$2\cos(95^\circ) + 3.3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.46$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-2\cos(105^\circ) + 3.3\sin(105^\circ) + r = 0 \rightarrow r \approx 3.71$

$2\cos(95^\circ) + 3.3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.46$

$-5\cos(95^\circ) + 3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.42$ $-5\cos(105^\circ) + 3\sin(105^\circ) + r = 0 \rightarrow r \approx 4.18$ $-5\cos(115^\circ) + 3\sin(115^\circ) + r = 0 \rightarrow r \approx 4.83$

$-2\cos(105^\circ) + 3.3\sin(105^\circ) + r = 0 \rightarrow r \approx 3.71$

$2\cos(95^\circ) + 3.3\sin(95^\circ) + r = 0 \rightarrow r \approx 3.46$

Example: Clean Data

Tokens

Votes Horizontal axis is θ Vertical Axis is r Forsyth & Ponce (2nd ed.) Figure 10.1 (Top)

Hough Transform: Lines

Image space

Parameter space Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

four points become?

Generalized Hough Transform

What if we want to detect an **arbitrary** geometric shape?

Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980

Offline procedure:

At each boundary point, compute displacement vector: $\mathbf{r} = \mathbf{a} - \mathbf{p}_i$.

Store these vectors in a table indexed by gradient orientation θ .

Example 1: Object Recognition — Implicit Shape Model

"Training" images of cows

lmage Index	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid
lmage 1 Image 1	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 1	265	 [x, y, s, Theta]	 []	[x,y]
lmage 2 Image 2	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image 2	645	 [x, y, s, Theta]	···· []	[x,y]
lmage K Image K	1 2	[x, y, s, Theta] [x, y, s, Theta]	[] []	[x,y] [x,y]
Image K	134	 [x, y, s, Theta]	 []	[x,y]

Visual Words

- Visual vocabulary (we saw this for retrieval)

Compare each patch to a small set of visual words (clusters)

Visual words (visual codebook)!

Example 1: Object Recognition — Implicit Shape Model

Index displacements by "visual codeword"

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

visual codeword with displacement vectors

Example 1: Object Recognition — Implicit Shape Model

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Inferring Other Information: Segmentation

Combined object detection and segmentation using an implicit shape model. Image patches cast weighted votes for the object centroid.

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Example 1: Object Recognition — Implicit Shape Model

"Training" images of cows

Imag Imag

. Imag

Imag Imag Imag

Imac Imaç

Imag

ge ex	Keypoint Index	Keypoint Detection (4D)	Keypoint Description (128D)	Offset to Centroid	Se
ge 1 ge 1 	1 2 265	[x, y, s, Theta] [x, y, s, Theta] 	[] []	[x,y] [x,y] [x y]	
ge 2 ge 2 ge 2	1 2 645	[x, y, s, Theta] [x, y, s, Theta] [x, y, s, Theta] [x, y, s, Theta]	[] [] []	[x,y] [x,y] [x,y] [x,y]	
ge K ge K ge K	1 2 134	[x, y, s, Theta] [x, y, s, Theta] [x, y, s, Theta]	[] [] []	[x,y] [x,y] [x,y]	

Inferring Other Information: Segmentation Idea: When back-projecting, back-project labeled segmentations per training patch

(a) detections

(b) p(figure)

(c) segmentation

[Source: B. Leibe]

(a) detections

(b) p(figure)

(c) segmentation

Inferring Other Information: Segmentation

[Source: B. Leibe]

Inferring Other Information: Part Labels

Training

Test

Inferring Other Information: **Depth**

Test image

"Depth from a single image"

Result

Example 2: Object Recognition — Boundary Fragments

an estimate of the object's contour.

Backprojected Maximum Segmentation / Detection

Boundary fragments cast weighted votes for the object centroid. Also obtains

Image credit: Opelt et al., 2006

Example 2: Object Recognition — Boundary Fragments Boundary fragments cast weighted votes for the object centroid. Also obtains

an estimate of the object's contour.

Image credit: Opelt et al., 2006

Example 3: Deep Hough Voting

Voting from input point cloud 3D detection output

Figure 1. 3D object detection in point clouds with a deep Hough voting model. Given a point cloud of a 3D scene, our VoteNet votes to object centers and then groups and aggregates the votes to predict 3D bounding boxes and semantic classes of objects.

[Qi et al., 2019, ICCV]

Summary of Hough Transform

Idea of **Hough transform**:

 For each token vote for all models to which the token could belong Return models that get many votes e.g., For each point, vote for all lines that could pass through it; the true lines will pass through many points and so receive many votes

Advantages:

- Can handle high percentage of outliers: each point votes separately Can detect multiple instances of a model in a single pass

Disadvantages:

- Search time increases exponentially with the number of model parameters Can be tricky to pick a good bin size

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Image Credit: Ioannis (Yannis) Gkioulekas (CMU)

Lecture 15: Stereo

34

Menu for Today

Topics:

- 3D Correspondence, **Epipolar** Geometry
- Stereo Vision

Readings:

- Today's Lecture: Szeliski 12.1, 12.3-12.4, 9.3

Reminders:

- Assignment 4: RANSAC and Panoramas due March 20th

Recap: 2D Transformations

- We will look at a family that can be represented by 3x3 matrices

This group represents perspective projections of **planar surfaces**
Recap: Linear (or Affine) Transformations

Consider a single point correspondence

Y

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

Find all matches between views

Find subset of matches that are consistent with a geometric transformation

Find subset of matches that are consistent with a geometric transformation

Find subset of matches that are consistent with a geometric transformation

Find subset of matches that are consistent with a geometric transformation

Consistent matches can be used for subsequent stages, e.g., 3D reconstruction, object recognition etc.

2-view Geometry

How do we find correspondences between two views?

2-view Geometry

How do we find correspondences between two views?

Planar case: the mapping can be obtained by a homography

2-view Geometry

How do we find correspondences between two views?

Non-planar case: depends on the depth of the 3D point

Epipolar Line

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

[R. Cipolla]

[R. Cipolla]

[R. Cipolla]

[R. Cipolla]

Aside: The Epipolar Constraint — CPSC533Y

For the motivated: https://www.icloud.com/keynote/0IMsw0TLJioSA-HpXIPpXm2rw#lect_part2_1_epipolar_geom

Improving RANSAC + Alignment with Epipolar Geometry

Improving RANSAC + Alignment with Epipolar Geometry Raw SIFT features and their matches

Improving RANSAC + Alignment with Epipolar Geometry

Instead of matching purely based on SIFT descriptor, leverage geometry to obtain matches close to epipolar lines

(gives more consistent geometrically valid matches)

Improving RANSAC + Alignment with Epipolar Geometry

Better matches lead to fewer iterations of RANSAC

(gives more consistent geometrically valid matches)

RANSAC for Epipolar Geometry

Raw feature matches (after ratio test filtering)

Solve for camera geometry and RANSAC

Triangulation

Given cameras and corresponding points...

...we can triangulate to find the 3D point

 \mathbf{X}

Going back to Epipolar Geometry

How do we find correspondences between two views?

A point in Image 1 must lie along the line in Image 2

2-view Stereo

Search over matches constrained to (epipolar) line

(reduces to 1d search)

Stereo Camera Configuration

Humans and many stereo cameras have parallel optical axes

[J. Elson]

Axis Aligned Stereo

related by a translation in the x direction

A common stereo configuration has camera optical axes aligned, with cameras

Stereo Matching in Rectified Images

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matches
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

- Distance along the scanline (difference in x coordinate) for a corresponding

Stereo Matching in Rectified Images (Left)

[D. Scharstein]

Stereo Matching in Rectified Images (Right)

[D. Scharstein]

Stereo Matching in Rectified Images (Right)

[D. Scharstein]

Anaglyph

Stereo pair with images encoded in different color channels

Stereo Displays

Field sequential (shutter) glasses transmit alternate left/right image at 120Hz

Lenticular lenses send different images directly to each eye, without the need for glasses

Stereo Displays

VR headsets send L/R images directly to each eye

[Google Cardboard]

Rectified Stereo Pair

Any two camera views that overlap can be **rectified** so that epipolar lines correspond to scan lines (no special conditions must hold)

Rectified Stereo Pair

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3x3 transform), one for each input image reprojection

C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. Computer Vision and Pattern Recognition, 1999.

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Rectified Stereo Pair: Example

Before Rectification

After Rectification

Soi

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
Stereo Matching in Rectified Images

direction, epipolar lines are horizontal

- Stereo algorithms search along scanlines for matches
- feature is called **disparity**

- In a standard stereo setup, where cameras are related by translation in the x

- Distance along the scanline (difference in x coordinate) for a corresponding

Matching along a Scanline

- SSD =
- correlation

 \mathbf{w}_L and \mathbf{w}_R are corresponding $m \times m$ windows of pixels Define a distance function between image patches, e.g.,

$$|\mathbf{w}_L - \mathbf{w}_R(d)||^2$$

$$\mathbf{w}_L \cdot \mathbf{w}_R(d) = \cos \theta$$

Matching along a Scanline

Left

Best match is at minimum of SSD function along a scanline

Right

(simple) Stereo Algorithm

1.Rectify images (make epipolar lines horizontal) 2.For each pixel in image 1 a.Search along epipolar line in image 2 c.Compute depth from disparity

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

b.Find best match and record offset = disparity $Z = f \frac{\Delta f}{disp}$

Effect of Window Size

Larger windows -> smoothed result

W=3

Smaller window

- + More detail
- More noise

W=25

ndow etail oise

Larger window

- + Smoother disparity maps
 - Less detail
- Fails near boundaries

Occlusions

Sometimes a point in image 1 does r called an **occlusion**)

Sometimes a point in image 1 does not appear in image 2, or vice-versa (this is

 Occlusions cause gaps in the stereo reconstruction

 + Matching is difficult nearby as aggregation windows often overlap the occluded region

Edge Aware Stereo

aggregation windows overlap multiple depths

Segmentation-based stereo approaches aim to solve this by trying to guess the depth edges (e.g., joint segmentation and depth estimation [Taguchi et al 2008])

Occlusions and depth discontinuities cause problems for stereo matching, as

Ordering Constraint

If point B is to the right of point A in image 1, the same is usually true in image 2

Not always, e.g., if an object is wholly within the ray triangle generated by A

Occlusions + Ordering

Note that the ordering constraint is still maintained in the presence of occlusions (unless there is an object off surface as in the previous slide)

Stereo Cost Functions

• Energy function for stereo matching based on disparity d(x,y)• Sum of data and smoothness terms

• Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

$$E_d(d) = \sum_{(x,y)} C(x, y, d(x, y))$$

• Smoothness cost penalises disparity changes with robust $\rho(.)$

$$E_s(d) = \sum_{(x,y)} \rho(d(x,y) - d(x+1,y)) + \rho(d(x,y) - d(x,y+1))$$

This is a Markov Random Field (MRF), which can be solved using techniques such as Graph Cuts

 $E(d) = E_d(d) + \lambda E_s(d)$

[Szeliski B5] 82

Stereo Comparison

Global vs Scanline vs Local optimization

Ground truth

Graph Cuts [Kolmogorov Zabih 2001]

Dynamic Programming

SSD 21px aggregation

[Scharstein Szeliski 2002] 83

Application: Microsoft Kinect v1

Projector (NIR dot pattern) Camera (NIR)

Stereo Vision Summary

With two eyes, we acquire images of the world from slightly different viewpoints

in the left image and in the right image

Stereo algorithms work by finding **matches** between points along corresponding lines in a second image, known as epipolar lines.

A point in one image projects to an epipolar line in a second image

scanlines

- We perceive depth based on differences in the relative position of points
- In an axis-aligned / rectified stereo setup, matches are found along horizontal