
Review: Learning Goals

1. The design philosophy behind SIFT
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David Lowe’s Invariant Local Features
Image content is transformed into local feature coordinates that are invariant to 
translation, rotation, scale, and other imaging parameters 



Scale Invariant Feature Transform (SIFT)

SIFT describes both a detector and descriptor

1. Multi-scale extrema detection 
2. Keypoint localization 
3. Orientation assignment 
4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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1. Multi-scale Extrema Detection
Detect maxima and minima of Difference of Gaussian in scale space

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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Searching over Scale-space
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2. Keypoint Localization 

— After keypoints are detected, we remove those that have low contrast or 
are poorly localized along an edge  

How do we decide whether a keypoint is poorly localized, say along an edge, 
vs. well-localized?  

C =



2. Keypoint Localization 
Example:



3. Orientation Assignment

— Create histogram of local gradient 
directions computed at selected scale  

— Assign canonical orientation at peak 
of smoothed histogram  

— Each key specifies stable 2D 
coordinates (x , y , scale, orientation)  



— Image gradients are sampled over 16 × 16 array of locations in scale space 
(weighted by a Gaussian with sigma half the size of the window)  
— Create array of orientation histograms  
— 8 orientations × 4 × 4 histogram array 

4. SIFT Descriptor



— Image gradients are sampled over 16 × 16 array of locations in scale space 
(weighted by a Gaussian with sigma half the size of the window)  
— Create array of orientation histograms  
— 8 orientations × 4 × 4 histogram array 

4. SIFT Descriptor



SIFT Matching

Extract features from the image …  

Each image might generate 100’s or 1000’s of SIFT descriptors



Lecture 13: Planar Geometry and RANSAC

CPSC 425: Computer Vision 
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Menu for Today
Topics: 

— Planar Geometry 
— Image Alignment, Object Recognition

Readings: 
— Today’s Lecture:  Szeliski 2.1, 8.1, Forsyth & Ponce 10.4.2

Reminders: 

— Assignment 3: due March 6th!

— RANSAC 



Learning Goals

1. Linear (Projective) Transformations 
2. Good results don’t happen by chance (or do they?) 
3. Good == more support
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Image Alignment

Aim: warp our images together using a 2D transformation
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Image Alignment

Aim: warp our images together using a 2D transformation
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Image Alignment

Find corresponding (matching) points between the images
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Image Alignment

Compute the transformation to align the points
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Image Alignment

We can also use this transformation to reject outliers
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Image Alignment

We can also use this transformation to reject outliers

21

✘

✘



Planar Geometry

— 2D Linear + Projective transformations  
Euclidean, Similarity, Affine, Homography 

— Robust Estimation and RANSAC 
Estimating 2D transforms with noisy correspondences



2D Transformations

— We will look at a family that can be represented by 3x3 matrices 

— This group represents perspective projections of planar surfaces
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.



Affine Transformation

— Transformed points are a linear function of the input points 
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— Transformed points are a linear function of the input points 

— This can be written as a single matrix multiplication using 
homogeneous coordinates

Affine Transformation
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— Transformed points are a linear function of the input points 

— This can be written as a single matrix multiplication using 
homogeneous coordinates

Affine Transformation
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Linear Transformation

— Consider the action of the unit square under, sample transform 
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Linear Transformation
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— Consider the action of the unit square under, sample transform 
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Translation, rotation, scale, shear (parallel lines preserved) 

Linear (or Affine) Transformations



Translation, rotation, scale, shear (parallel lines preserved) 

These transforms are not affine (parallel lines not preserved)

Linear (or Affine) Transformations



Consider a single point correspondence 

Linear (or Affine) Transformations
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Consider a single point correspondence 

How many points are needed to solve for a?

Linear (or Affine) Transformations
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Computing Affine Transform

Lets compute an affine transform from correspondences: 

Re-arrange unknowns into a vector
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Computing Affine Transform

Lets compute an affine transform from correspondences: 

Re-arrange unknowns into a vector
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Linear system in the unknown parameters a  

Of the form

Computing Affine Transform
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Linear system in the unknown parameters a  

Of the form

Computing Affine Transform

Solve for a using Gaussian Elimination
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Once we solve for a transform, we can now map any other points between the 
two images … or resample one image in the coordinate system of the other

Computing Affine Transform
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This allows us to “stitch” the 
two images

Computing Affine Transform

p�

Once we solve for a transform, we can now map any other points between the 
two images … or resample one image in the coordinate system of the other



Linear Transformations

Other linear transforms are special cases of affine transform: 
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Linear Transformations

Other linear transforms are special cases of affine transform:  

e.g.,  

                                    translation transform 
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Linear Transformations

Other linear transforms are special cases of affine transform:  

e.g.,  

                                                       euclidian transform 
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Linear Transformations

Other linear transforms are special cases of affine transform:  

e.g.,  

                                                       similarity transform 
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Face Alignment
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Face Alignment
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Face Alignment
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Face Alignment
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Face Alignment
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Face Alignment
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2D Transformations
38 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

H̃
i

3⇥3
8 straight lines `̀

  

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T

1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-vectors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This transformation changes the aspect ratio of an image,

x0 = sxx + tx

y0 = syy + ty,

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

x0 = a0 + a1x + a2y + a6x
2

+ a7xy

y0 = a3 + a4x + a5y + a7x
2

+ a6xy,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, ak, which are often the quantities being estimated.



Example: Warping with Different Transformations
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Translation Affine
Projective 

(homography)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Aside: We can use homographies when … 

45

1.… the scene is planar; or

2.… the scene is very far 
or has small (relative) 
depth variation → scene 
is approximately planar

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)
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3.… the scene is captured under camera rotation only (no translation 
or pose change)

Aside: We can use homographies when … 

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Projective Transformation
General 3x3 matrix transformation  
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Points Transformed Points Transformation

Projective Transformation
General 3x3 matrix transformation  

Lets try an example:
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Points Transformed Points Transformation

Projective Transformation
General 3x3 matrix transformation  

Lets try an example:
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Compute H from Correspondences

Each match gives 2 equations to solve for 8 parameters 

→ 4 correspondences to solve for H matrix 

Solution uses Singular Value Decomposition (SVD) 

In Assignment 4 you can compute this using cv2.findHomography
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Image Alignment
Find corresponding (matching) points between the image

2 points for Similarity 
3 for Affine 
4 for Homography

u = Hx



In practice we have many noisy correspondences + outliers 

Image Alignment

?



In practice we have many noisy correspondences + outliers 

     e.g., for an affine transform we have a linear system in the parameters a: 

It is overconstrained (more equations than unknowns) and subject to outliers 
(some rows are completely wrong)

Image Alignment
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In practice we have many noisy correspondences + outliers 

     e.g., for an affine transform we have a linear system in the parameters a: 

It is overconstrained (more equations than unknowns) and subject to outliers 
(some rows are completely wrong)

Image Alignment
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Let’s deal with these problems in a simpler context …



Fitting a Model to Noisy Data 

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers 

We can fit a line using two points 

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers 

We can fit a line using two points 
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will consist entirely of ‘good’ data points (inliers) 

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers 

We can fit a line using two points 

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs 
will consist entirely of ‘good’ data points (inliers) 

— We can identify these good pairs by noticing that a large collection of other 
points lie close to the line fitted to the pair 

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers 

We can fit a line using two points 

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs 
will consist entirely of ‘good’ data points (inliers) 

— We can identify these good pairs by noticing that a large collection of other 
points lie close to the line fitted to the pair 

— A better estimate of the line can be obtained by refitting the line to the points 
that lie close to the line 

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  

Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  

RANSAC is very useful for variety of applications
Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus) 

1. Randomly choose minimal subset of data points necessary to fit model (a 
sample)  

2. Points within some distance threshold, t, of model are a consensus set. 
Size of consensus set is model’s support  

3. Repeat for N samples; model with biggest support is most robust fit  
— Points within distance t of best model are inliers  
— Fit final model to all inliers  

Fitting a Line: 2 points

Slide Credit: Christopher Rasmussen



Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman



b

d
a

c

Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman



b

d
a

c
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After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed 
from minimal set of inliers  

Improve this initial estimate with estimation over all inliers (e.g., with standard 
least-squares minimization)  

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier  
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Example 2: Fitting a Line
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Figure Credit: Hartley & Zisserman

10 points



In practice we have many noisy correspondences + outliers 

Image Alignment + RANSAC

?



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

4 inliers (red, yellow, orange, brown), 



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

4 outliers (blue, light blue, purple, pink)



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

4 inliers (red, yellow, orange, brown), 
4 outliers (blue, light blue, purple, pink)



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

choose light blue, purple



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

warp image



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances

#inliers = 2



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

choose pink, blue



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

warp image



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances

#inliers = 2



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

choose red, orange



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

warp image



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC

check match distances

#inliers = 4



RANSAC solution for Similarity Transform (2 points) 

Image Alignment + RANSAC



1. Match feature points between 2 views 

2. Select minimal subset of matches* 

3. Compute transformation T using minimal subset 

4. Check consistency of all points with T —  compute projected position and 
count #inliers with distance < threshold 

5. Repeat steps 2-4 to maximize #inliers 

* Similarity transform = 2 points,  Affine = 3, Homography = 4

Image Alignment + RANSAC
Assignment 4



2-view Rotation Estimation
Find features + raw matches, use RANSAC to find Similarity



2-view Rotation Estimation
Remove outliers, can now solve for R using least squares



2-view Rotation Estimation
Final rotation estimation



Object Instance Recognition
Database of planar objects Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)



Object Instance Recognition with SIFT



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known 
keypoints extracted from training examples
— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known 
keypoints extracted from training examples
— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and 
geometric transform (e.g., affine transform)



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known 
keypoints extracted from training examples
— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and 
geometric transform (e.g., affine transform)

Optionally refine pose estimate by recomputing the transformation using all 
the RANSAC inliers 



Fitting a Model to Noisy Data 
Suppose we are fitting a line to a dataset that consists of 50% outliers  

We can fit a line using two points  

82

If we draw pairs of points uniformly at random, what fraction of 
pairs will consist entirely of ‘good’ data points (inliers)? 



RANSAC: How many samples?
Let       be the fraction of outliers (i.e., points on line) 

Let     be the number of points needed to define hypothesis  
       (          for a line in the plane) 

Suppose    samples are chosen 

How many samples do we need to find a good solution?

83

n

k

n = 2

13.7

p0

1



RANSAC: How many samples? (p = 0.99)

84

Figure Credit: Hartley & Zisserman



In practice…

85 [Jin et al., 2021]



RANSAC is a technique to fit data to a model 
— divide data into inliers and outliers 
— estimate model from minimal set of inliers 
— improve model estimate using all inliers 
— alternate fitting with re-classification as inlier/outlier  

RANSAC is a general method suited for a wide range of model fitting problems 
— easy to implement 
— easy to estimate/control failure rate  

RANSAC only handles a moderate percentage of outliers without cost blowing 
up 

86

Re-cap: RANSAC


