Review: Learning Goals

1. The design philosophy behind SIFT



David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters

SIFT Features



Scale Invariant Feature Transform (SIFT

SIFT describes both a detector and descriptor

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Multi-scale Extrema Detection
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1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space

Selected if larger or
smaller than all 26
neighbors
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2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?
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2. Keypoint Localization

(a)

233 x 189
Image

832 DOG
extrema

729 left after
peak value
threshold

536 left after
testing ratio
of principal
curvatures



3. Orientation Assignment

— Create histogram of local gradient
directions computed at selected scale /

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , y , scale, orientation)




4. SIFT Descriptor

— Image gradients are sampled over 16 x 16 array of locations in scale space
(weighted by a Gaussian with sigma half the size of the window)

— Create array of orientation histograms
— 8 orientations x 4 x 4 histogram array

Image gradients Keypoint descriptor



4. SIFT Descriptor

— Image gradients are sampled over 16 § Half the size 1©
(weighted by a Gaussian with sigma half 3
— Create array of orientation histograms ==
— d orientations x 4 x 4 histogram array ¢ =——r
Gaussian Difference of Gaussian (DoG)

o ~

Image gradients Keypoint descriptor




SIFT Matching

Extract features from the image ...

ht generate 100’s or 1000’s of SIFT descriptors

image mig
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Menu for Today

Topics:

— Planar Geometry — RANSAC
— Image Alignment, Object Recognition

— Today’s Lecture: Szeliski 2.1, 8.1, Forsyth & Ponce 10.4.2

Reminders:

— Assignment 3: due March 6th!




| earning Goals

1. Linear (Projective) Transformations
2. Good results don’t happen by chance (or do they?)
3. Good == more support

15



Image Alignment

Aim: warp our images together using a 2D transtormation

10



Image Alignment

Aim: warp our images together using a 2D transtormation

17



Image Alignment

FInd corresponding (matching) points between the images

18



Image Alignment

Compute the transformation to align the points

19



Image Alignment

We can also use this transformation to reject outliers

20



Image Alignment

We can also use this transformation to reject outliers

21



Planar Geometry

— 2D Linear + Projective transformations
—uclidean, Similarity, Affine, Homography

— Robust Estimation and RANSAC

—stimating 2D transforms with noisy correspondences




2D Transformations

— We will look at a family that can be represented by 3x3 matrices

Y A / similariE? Q project;e‘/

i g |
Euclidwe

, -

— This group represents perspective projections of planar surfaces



Affine Iransformation

— [ransformed points are a linear function of the input points

|
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Affine Iransformation

— [ransformed points are a linear function of the input points

— This can be written as a single matrix multiplication using %
homogeneous coordinates



Affine Iransformation

— [ransformed points are a linear function of the input points

— This can be written as a single matrix multiplication using %
homogeneous coordinates

/
L1 adi1 Q12 Aais L1

/
Y — |21 Q22 Q23 Y1

1D Lo o 1 jqip




Linear lransformation

— Consider the action of the unit square under, sample transform

O = W

DI W

— O O



Linear lransformation

— Consider the action of the unit square under, sample transform

O = W
DI W

— O O




Linear (or Affine) Transformations

0= /7

Translation, rotation, scale, shear (parallel lines preserved)



Linear (or Affine) Transformations

0= /7

Translation, rotation, scale, shear (parallel lines preserved)

SVARSEY'

These transforms are not affine (parallel lines not preserved)



Linear (or Affine) Transformations

Consider a single point correspondence

1
1 0 0 1 1




Linear (or Affine) Transformations

Consider a single point correspondence

How many points are needed to solve for a”



Computing Affine Transform

Lets compute an affine transform from correspondences:

L1 a1 di12 d13 L1

N
ek
|

— [d21 Q22 G23 Y1
1 0 0 1 1

% Re-arrange unknowns into a vector



Computing Affine Transform

Lets compute an affine transform from correspondences:

L1 a1 di12 d13 L1

N
ek
|

— [d21 Q22 G23 Y1
1 0 0 1 1

% Re-arrange unknowns INto a vector

r | = [an di2 4aA13 4a21 422 CL23}

coor~RE% 8




Computing Affine Transform

Linear system in the unknown parameters a

L1 Y1 1 0 0
0 0 0 L1 Y1
T2 y2 1 0

0
0 0 0 L2 Y92
L3 Y3 1 0 0
0 0 0 L3 Y3

Of the form




Computing Affine Transform

Linear system in the unknown parameters a

L1 U 1 0 0 0 a11 :13’1
0 0 0 x1 wy1 1| |ar Y1
L2 Y2 1 0 0 0 ais| 213/2
0 0 0 =z y2 1| a:n| — |vh
L3 Y3 1 0 0 0 a29 ZIZ‘g
0 0 0 x3 y3 1| |as3 Y3

Of the form
Ma =y

Solve for a using Gaussian Elimination




Computing Affine Transform

Once we solve for a transform, we can now map any other points between the
two Images ... or resample one image In the coordinate system of the other

1 0 0 1 1



Computing Affine Transform

Once we solve for a transform, we can now map any other points between the
two Images ... or resample one image in the coordinate system of the other

This allows us to “stitch” the
two Images




Linear [ransformations

Other linear transforms are special cases of affine transform:

a1 di12 d13

o1 dA22 A3
0 0 1



Linear [ransformations

Other linear transforms are special cases of affine transform:

a1 di12 d13

o1 dA22 A3
0 0 1

e.g.,

S
ek
L W

translation transform
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Linear [ransformations

Other linear transforms are special cases of affine transform:

a1 di12 d13
o1 dA22 A3

0 0 1
e.d., cosf sinf aqs
B Som b Cog b ai?’ euclidian transform



Linear [ransformations

Other linear transforms are special cases of affine transform:

a1 di12 d13

o1 dA22 A3
0 0 1

e.d., scosf) ssinf ajs
—ssinf)  scosf aog

0 0 h similarity transform




Face Alignment

40



Face Alignment
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Face Alignment

4|



Face Alignment
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Face Alignment

42



Face Alignment
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2D Transformations

Transformation Matrix # DoF Preserves Icon
translation | I ‘ t 2 orientation
_ 12%x3
rigid (Euclidean) | R ‘ t 3 lengths Q
i 12x3
similarity _ s ‘ t _ 4 angles Q
12x3
affine _ A _ 6 parallelism E
i 12x3
projective _ H _ 3 straight lines E
_ 43%x3




Example: \Warping with Different Transformations

Projective
Translation Affine (homography)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: \We can use homographies when ...

1.... the scene Is planar; or

2.... the scene Is very far
or has small (relative)
depth variation = scene
IS approximately planar

A5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Aside: \We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation
or pose change)

A6 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Projective [ransformation

General 3x3 matrix transformation




Projective [ransformation

(General 3x3 matrix transformation

L1 adi1 di12 di3 L1
/

Y1 | = [A21 G292 Q23 Y1
1 a31 Qs 433 1

Lets try an example:

x! 7 | 1 0 O]
Y| =H |yl =10 1 0 —
1 1] Jo1 1 |

Transformation Points Transformed Points



Projective [ransformation

(General 3x3 matrix transformation

Lets try an example:

a,/,/
y'| = H
1

X
Yy
1

331 a11

yi1| = |a2
1 a31
1 0 O]
0O 1 O
0 1 1

Transformation

di12 d13 L1
o9 A23 Y1
32 (33 1

Points Transformed Points

Divide by the last row:

0
0
1

0
0.0
1




Compute H from Correspondences

Each match gives 2 equations to solve for 8 parameters

/
L1 adi1 Q12 Aais L1

/
Y1 | = |a21 a22 423 Y1
1 a31 G322 (a33 1

— 4 correspondences to solve for H matrix
Solution uses Singular Value Decomposition (SVD)

In Assignment 4 you can compute this using cv2 . findHomography



Image Alignment

Find corresponding (matching) points between the image

2 points for Similarity

u = Hx 3 for Affine
4 for Homography
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In practice we have many noisy correspondences + outliers

Image Alignment



Image Alignment

In practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

_331 U1 1 0 0 0 a11 ZC’l
0 0 0 L1 U1 1 a19 y/1
L2 Y2 1 0 0 0 ais| 513/2
0 0 0 2 w2 1| lan| |¥5
L3 Y3 1 0 0 0 a929 ZB%

0 0 0 w3 y3 1| |aos | Y3

t iIs overconstrained (more equations than unknowns) and subject to outliers
(some rows are completely wrong)



Image Alignment

In practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

_331 U1 1 0 0 0 a11 ZC’l
0 0 0 L1 U1 1 a19 y/1
L2 Y2 1 0 0 0 ais| 513/2
0 0 0 2 w2 1| lan| |¥5
L3 Y3 1 0 0 0 a929 ZB%

0 0 0 w3 y3 1| |aos | Y3

t iIs overconstrained (more equations than unknowns) and subject to outliers
(some rows are completely wrong)

Let’s deal with these problems in a simpler context ...



Fitting a Model to Noisy Data

f we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)?



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% oultliers

We can fit a line using two points

f we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)?



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% oultliers

We can fit a line using two points

f we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)?

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs
will consist entirely of ‘good’ data points (inliers)



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% oultliers

We can fit a line using two points

f we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)?

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs
will consist entirely of ‘good’ data points (inliers)

— We can identity these good pairs by noticing that a large collection of other
points lie close to the line fitted to the pair



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% oultliers

We can fit a line using two points

f we draw pairs of points uniformly at random, what fraction of

pairs will consist entirely of ‘good’ data points (inliers)?

— If we draw pairs of points uniformly at random, then about 1/4 of these pairs
will consist entirely of ‘good’ data points (inliers)

— We can identity these good pairs by noticing that a large collection of other
points lie close to the line fitted to the pair

— A Dbetter estimate of the line can be obtained by refitting the line to the points
that lie close to the line



RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are Inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

RANSAC Is very useful for variety of applications

Slide Credit: Christopher Rasmussen



RANSAC (RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points necessary to fit model (a
sample)

Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a consensus set.
Size of consensus set Is model’s support

3. Repeat for N samples; model with biggest support is most robust fit
— Points within distance t of best model are inliers
— kit final model to all inliers

Slide Credit: Christopher Rasmussen



Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman



Example 1: Fitting a Line

Figure Credit: Hartley & Zisserman



Example 1: Fitting a Line
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Figure Credit: Hartley & Zisserman



After RANSAC

RANSAC divides data into inliers and outliers and yields estimate computed
from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard
least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/
outlier



Example 2: Fitting a Line

4 points

Figure Credit: Hartley & Zisserman



Example 2: Fitting a Line

10 points

Figure Credit: Hartley & Zisserman



Image Alignment + RANSAC

In practice we have many noisy correspondences + outliers




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, , orange, brown),

4 outliers (blue, light blue, purple, pink)



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

choose light blue, purple



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

warp image

- “'n“\\\



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances




Image Alignment + RANSAC

RANSAC

solution for Similarity Transform (2 points

check match distances

Y |

linliers = 2



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

choose pink, blue



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

warp image



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

check match distances

Hinliers = 2



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

choose red, orange



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

-

@ - W
check match distance:



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points

-

@ - W
check match distance:

Hinliers = 4



Image Alignment + RANSAC

RANSAC solution for Similarity Transform (2 points




Image Alignment + RANSAC
Assignment 4

1. Match feature points between 2 views
2. Select minimal subset of matches”
3. Compute transformation T using minimal subset

4. Check consistency of all points with T — compute projected position and
count #inliers with distance < threshold

5. Repeat steps 2-4 to maximize #inliers

* Similarity transform = 2 points, Affine = 3, Homography = 4



2-view Rotation Estimation

FIind features + raw matches, use RANSAC to find Similarity




2-view Rotation Estimation

Remove outliers, can now solve for R using least squares




2-view Rotation Estimation

Final rotation estimation




Object Instance Recognition

Datalbase of planar objects Instance recognition
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Object Instance Recognition with SIFT



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known
keypoints extracted from training examples

— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known
keypoints extracted from training examples

— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and
geometric transform (e.qg., affine transform)



Object Instance Recognition with SIFT

Match SIFT descriptors between query image and a database of known
keypoints extracted from training examples

— use fast (approximate) nearest neighbour matching
— threshold based on ratio of distances between 1NN and 2NN

Use RANSAC to find a subset of matches that all agree on an object and
geometric transform (e.qg., affine transform)

Optionally refine pose estimate by recomputing the transformation using all
the RANSAC inliers



Fitting a Model to Noisy Data

Suppose we are fitting a line to a dataset that consists of 50% oultliers

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of
pairs will consist entirely of ‘good’ data points (inliers)?

32



RANSAC: How many samples?

Let Po be the fraction of outliers (i.e., points on line)

Let n be the number of points needed to define hypothesis
(n = 2 for a line in the plane)

Suppose k samples are chosen

How many samples do we need to find a good solution”?

& (37
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RANSAC: How many samples? (p = 0.99)

Sample
s1ze

N 5% 10% 20% 25% 30% 40% S50%

Proportion of outliers

Figure Credit: Hartley & Zisserman
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N practice...

- Performance vs cost: mAA(5°) — Performance vs cost: mAA(10°)
0.50 — 0.58 —
g 048 0.56
046 0.54
g 0.44 0.52
v —
7042 0.50
>
< 040 0.48
=
g
> 038 0.461
0.36 1 0.44 :
0.00 025 0.50 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
Time in seconds (per image pair) Time in seconds (per image pair)
—=— CV-RANSAC, n = 0.5 px —— PyRANSAC, n = 0.25 px —— MAGSAC, n = 1.25 px

—— sklearn-RANSAC, n = 0.75 px —— DEGENSAC, 7 = 05 px —— GC-RANSAC, 7 = 0.5 px

Fig. 9 Validation — Performance vs. cost for RANSAC. We evaluate
six RANSAC variants, using 8k SIFT features with “both” matching
and a ratio test threshold of r=0.8. The inlier threshold 7 and itera-
tions limit /" are variables — we plot only the best n for each method,
for clarity, and set a budget of 0.5 seconds per image pair (dotted red
line). For each RANSAC variant, we pick the largest I under this time

“limit” and use it for all validation experiments. Computed on ‘nl-
standard-2’ VMs on Google Compute (2 vCPUs, 7.5 GB).

85

[Jin et al., 2021]



Re-cap: RANSAC

RANSAC is a technigque to fit data to a model

— divide data into Inliers and outliers

— estimate model from minimal set of inliers

— Improve model estimate using all inliers

— alternate fitting with re-classification as inlier/outlier

RANSAC is a general method suited for a wide range of model fitting problems
— easy to Implement
— easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing
Up

30



