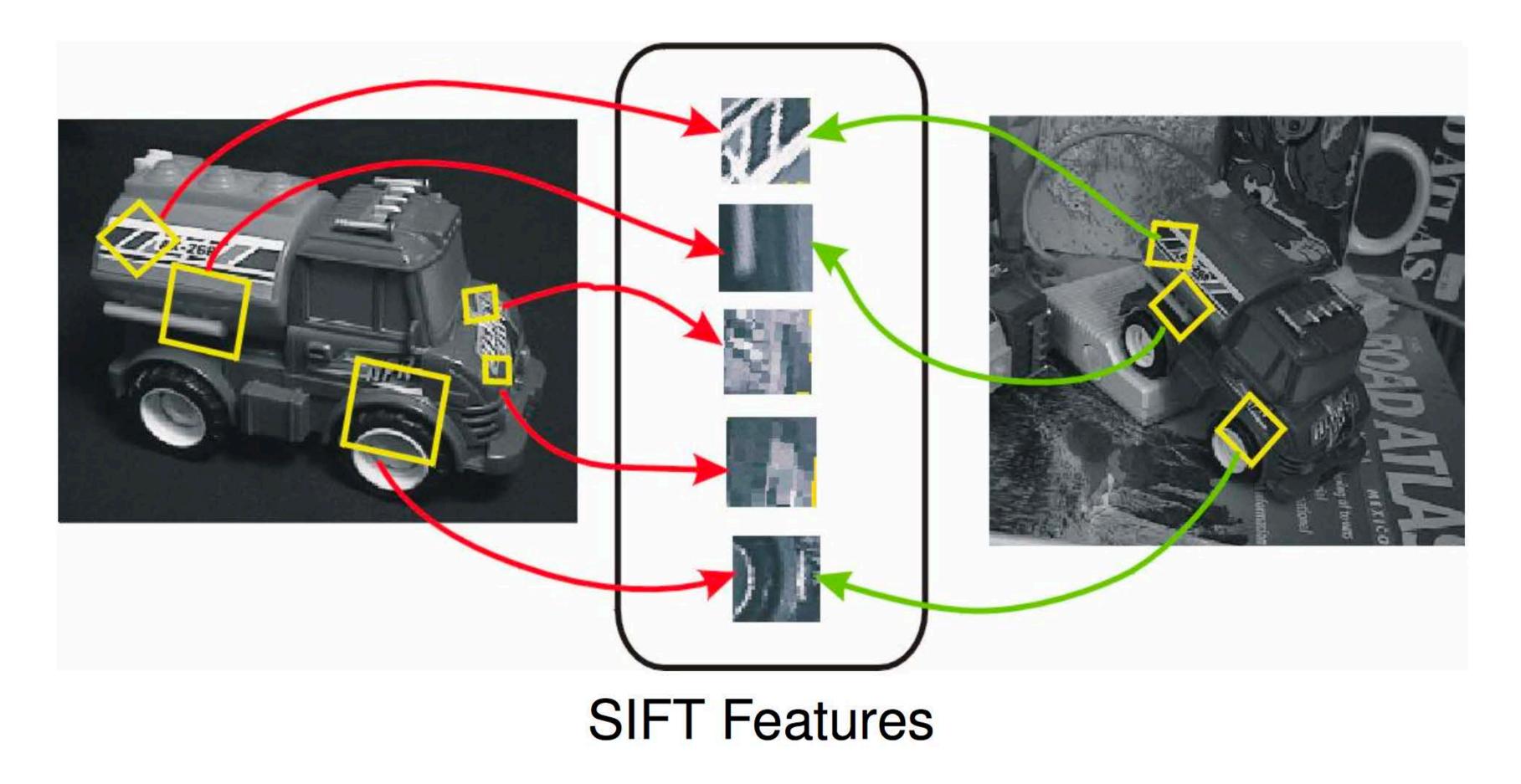
Review: Learning Goals

1. The design philosophy behind SIFT

David Lowe's Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

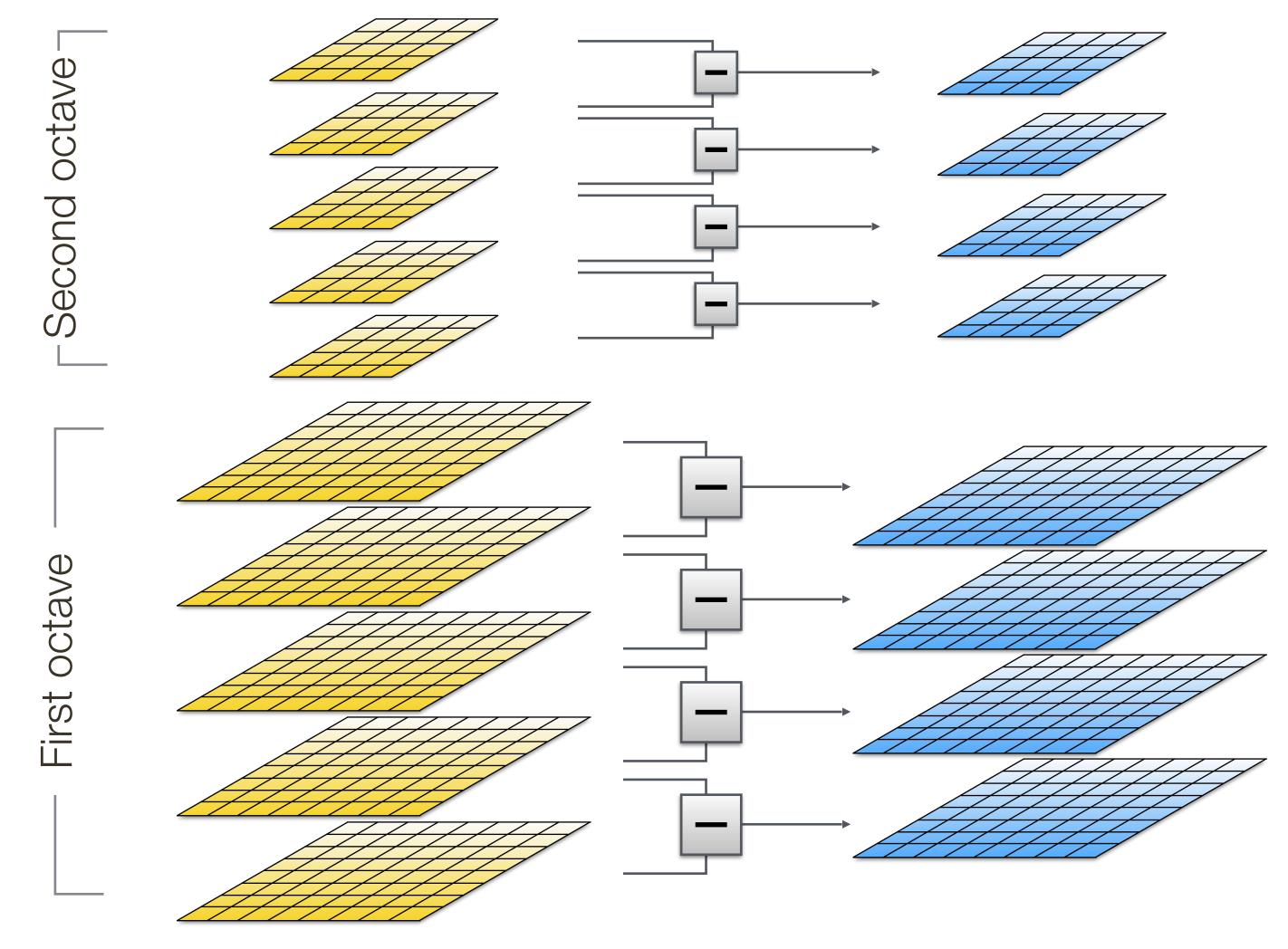


Scale Invariant Feature Transform (SIFT)

- SIFT describes both a **detector** and **descriptor**
 - 1. Multi-scale extrema detection
 - 2. Keypoint localization
 - 3. Orientation assignment
 - 4. Keypoint descriptor

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Multi-scale Extrema Detection

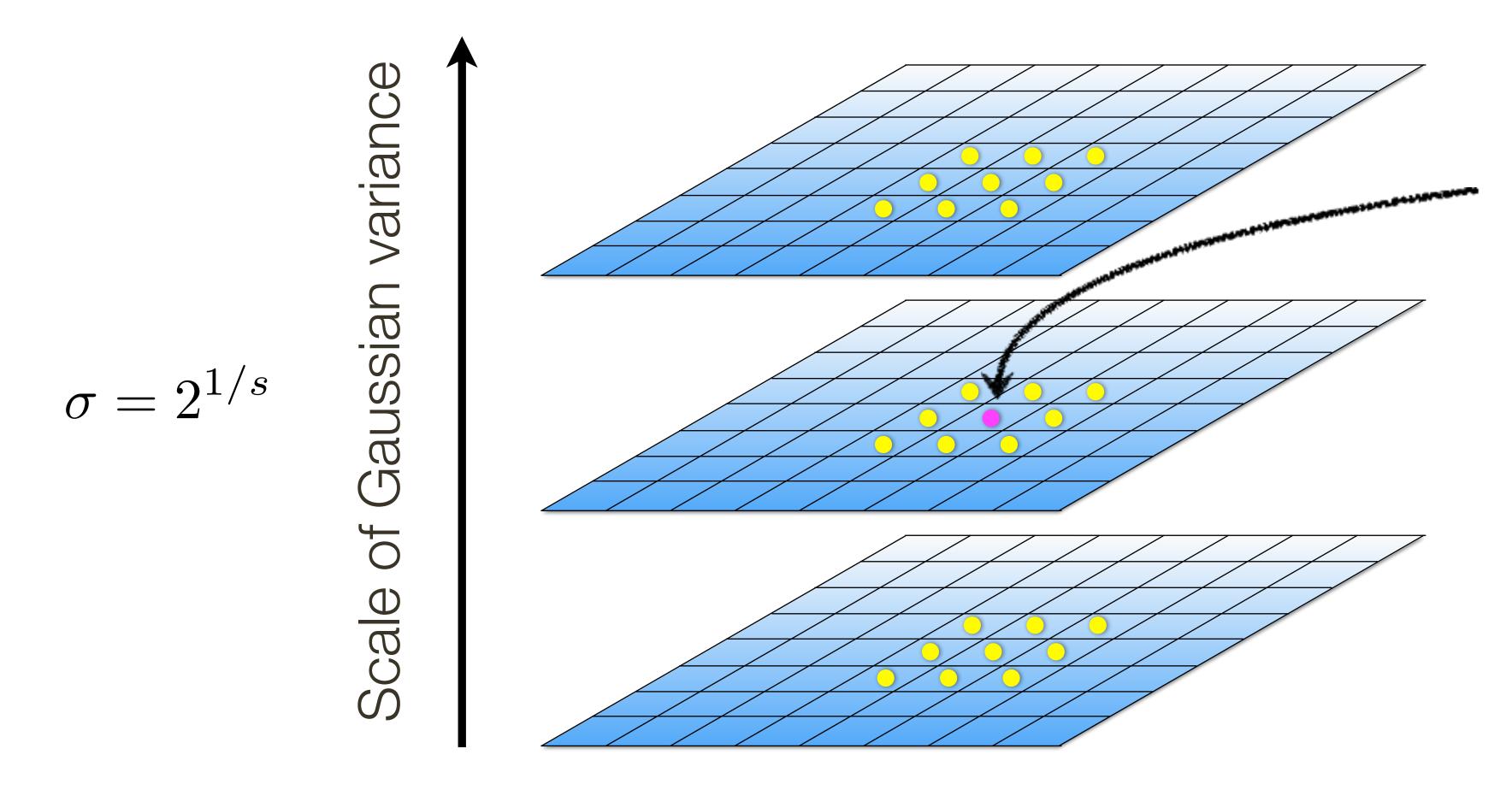


Half the size

Difference of Gaussian (DoG)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

1. Multi-scale Extrema Detection Detect maxima and minima of Difference of Gaussian in scale space

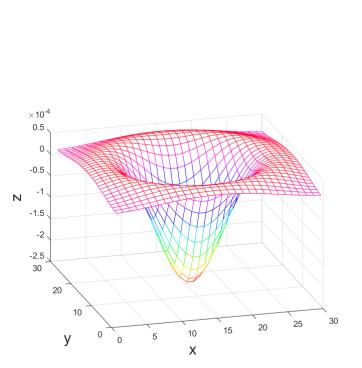


Selected if larger or smaller than all 26 neighbors

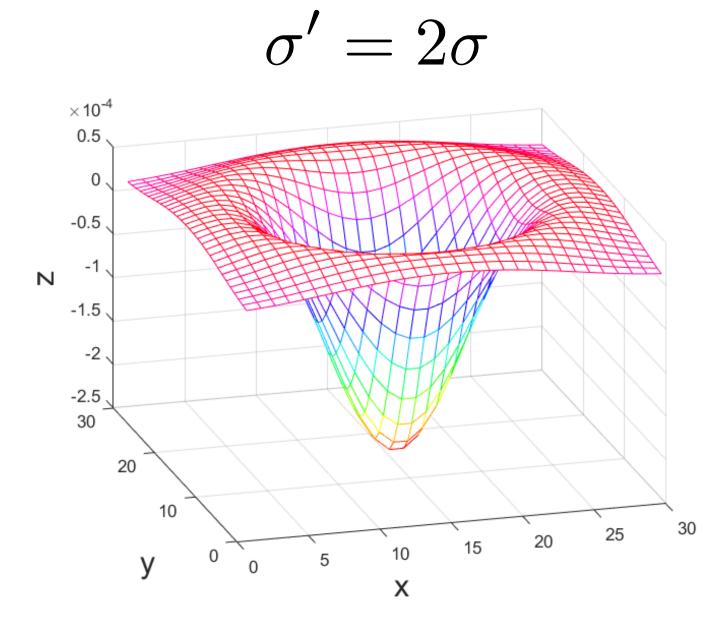
Difference of Gaussian (DoG)

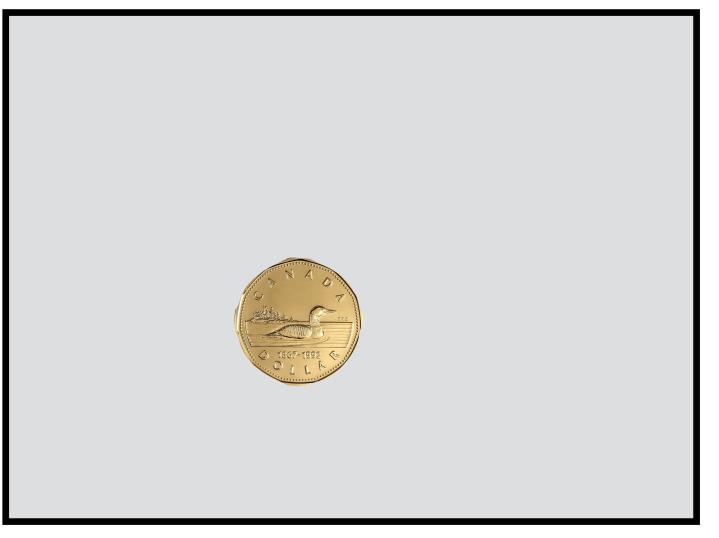
Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

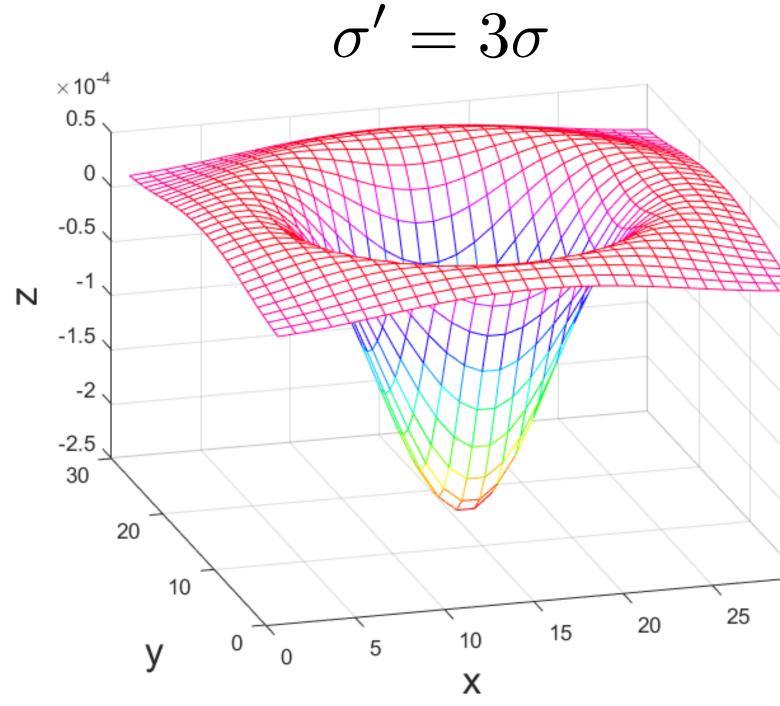
Searching over Scale-space



 σ







2. Keypoint Localization

- After keypoints are detected, we reare **poorly localized** along an edge

How do we decide whether a keypoint is poorly localized, say along an edge, vs. well-localized?

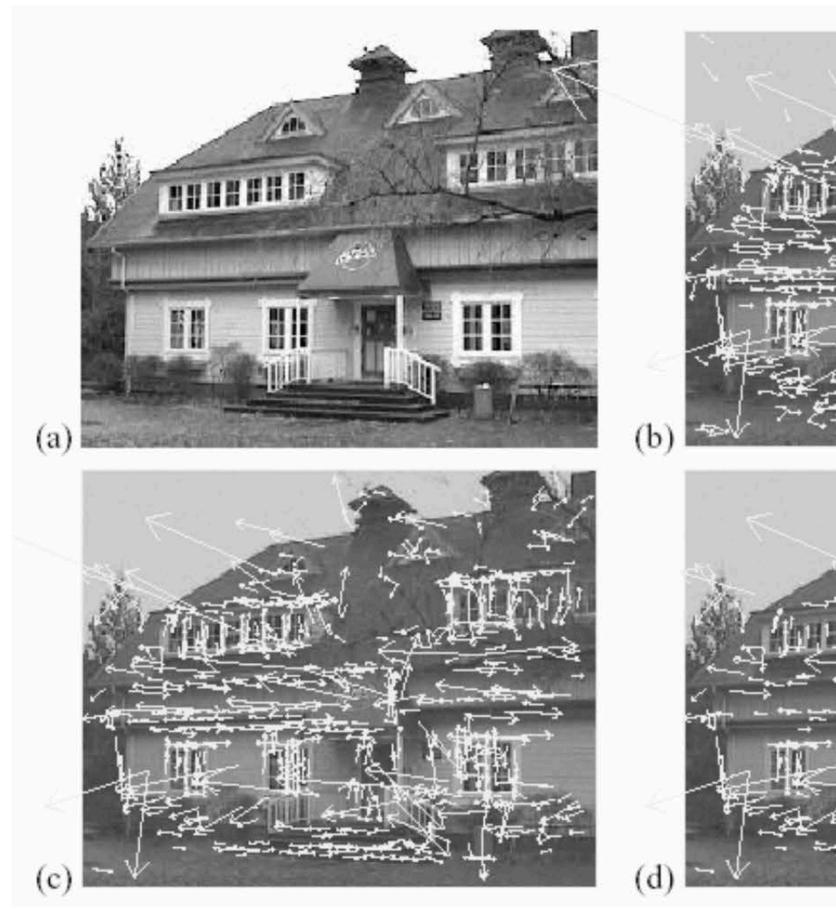
 $C = \begin{bmatrix} \sum_{p \in P} I \\ \sum_{p \in P} I \\ \sum_{p \in P} I \end{bmatrix}$

- After keypoints are detected, we remove those that have low contrast or

$$\left[egin{array}{ccc} I_x I_x & \sum\limits_{p \in P} I_x I_y \ P & p \in P \end{array}
ight] \left[egin{array}{ccc} I_y I_x & \sum\limits_{p \in P} I_y I_y \ P & p \in P \end{array}
ight]$$

2. Keypoint Localization

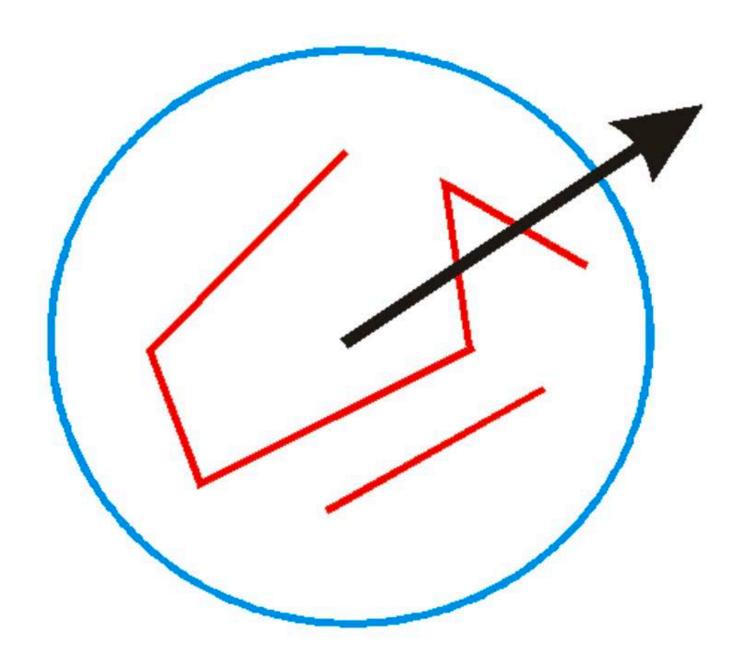
Example:

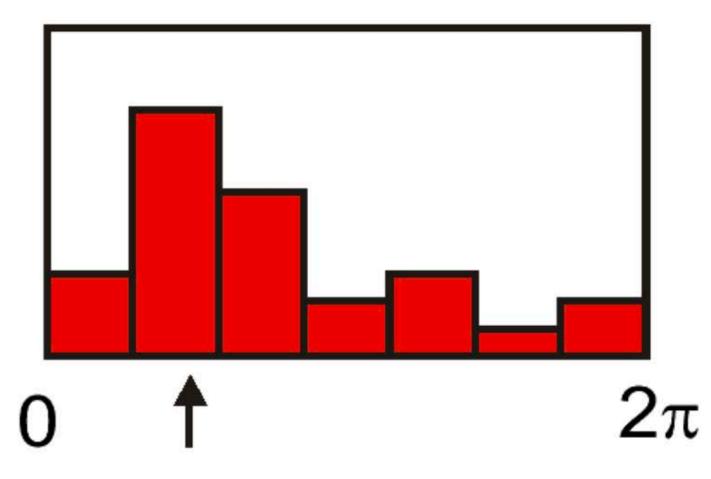


(a) 233 × 189 image (b) 832 DOG extrema (c) 729 left after peak value threshold (d) 536 left after testing ratio of principal curvatures

3. Orientation Assignment

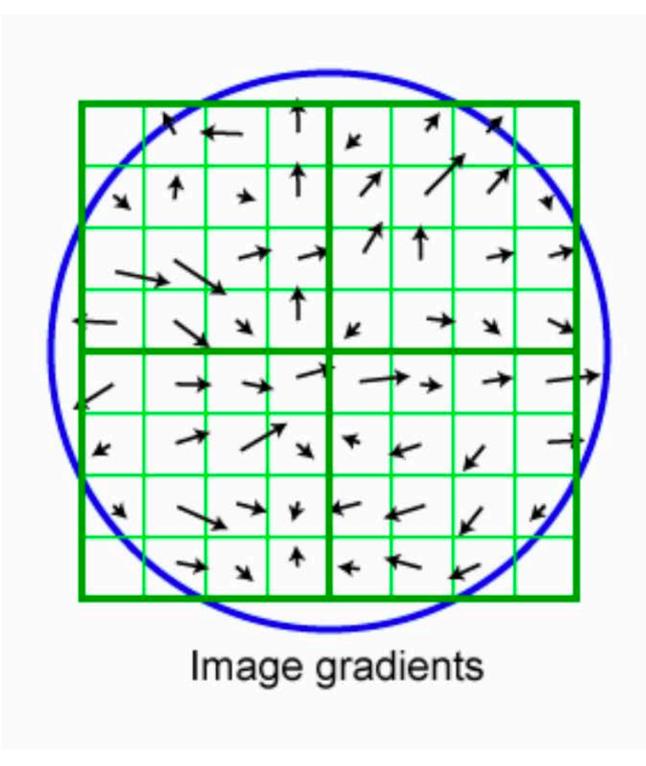
- Create **histogram** of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)



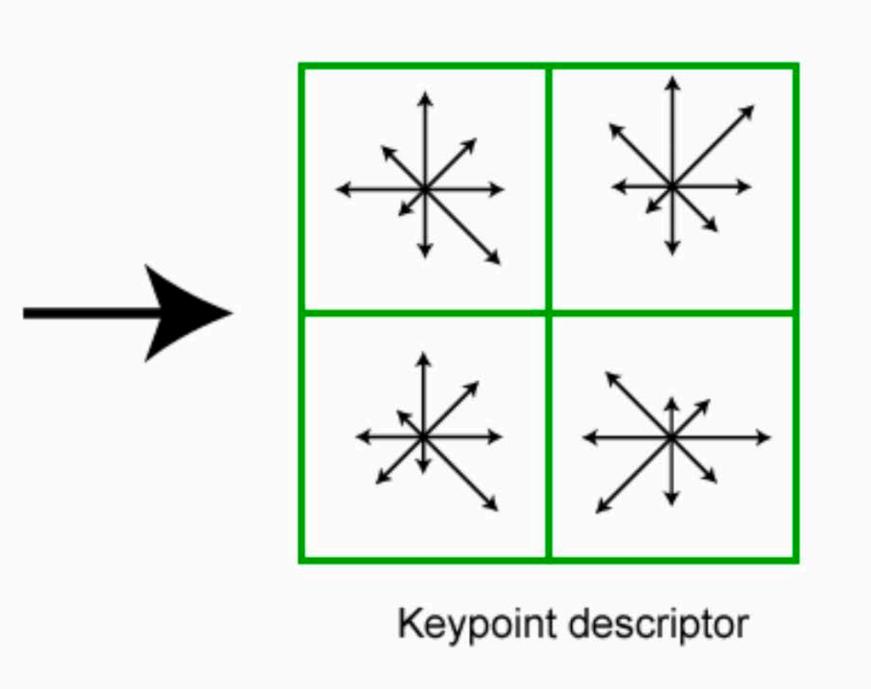


4. SIFT Descriptor

(weighted by a Gaussian with sigma half the size of the window) - Create array of orientation histograms - 8 orientations \times 4 \times 4 histogram array

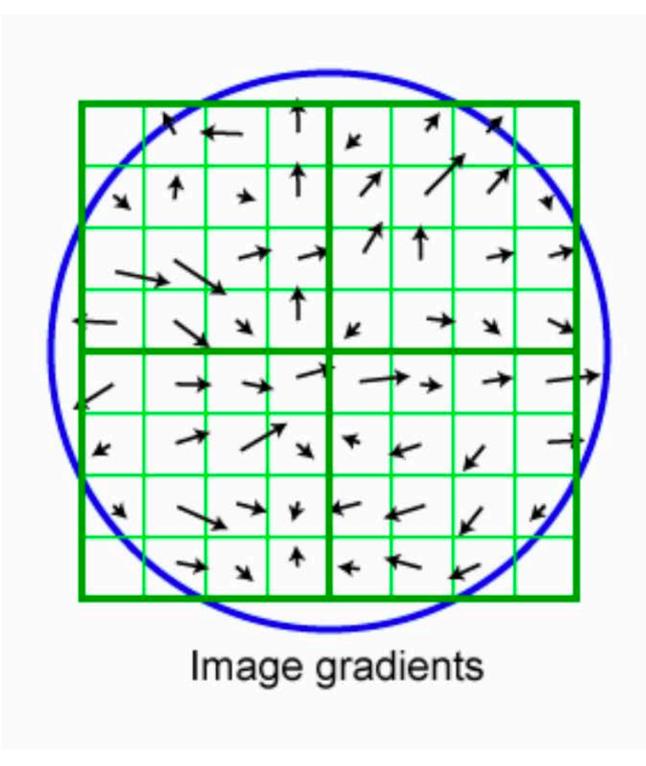


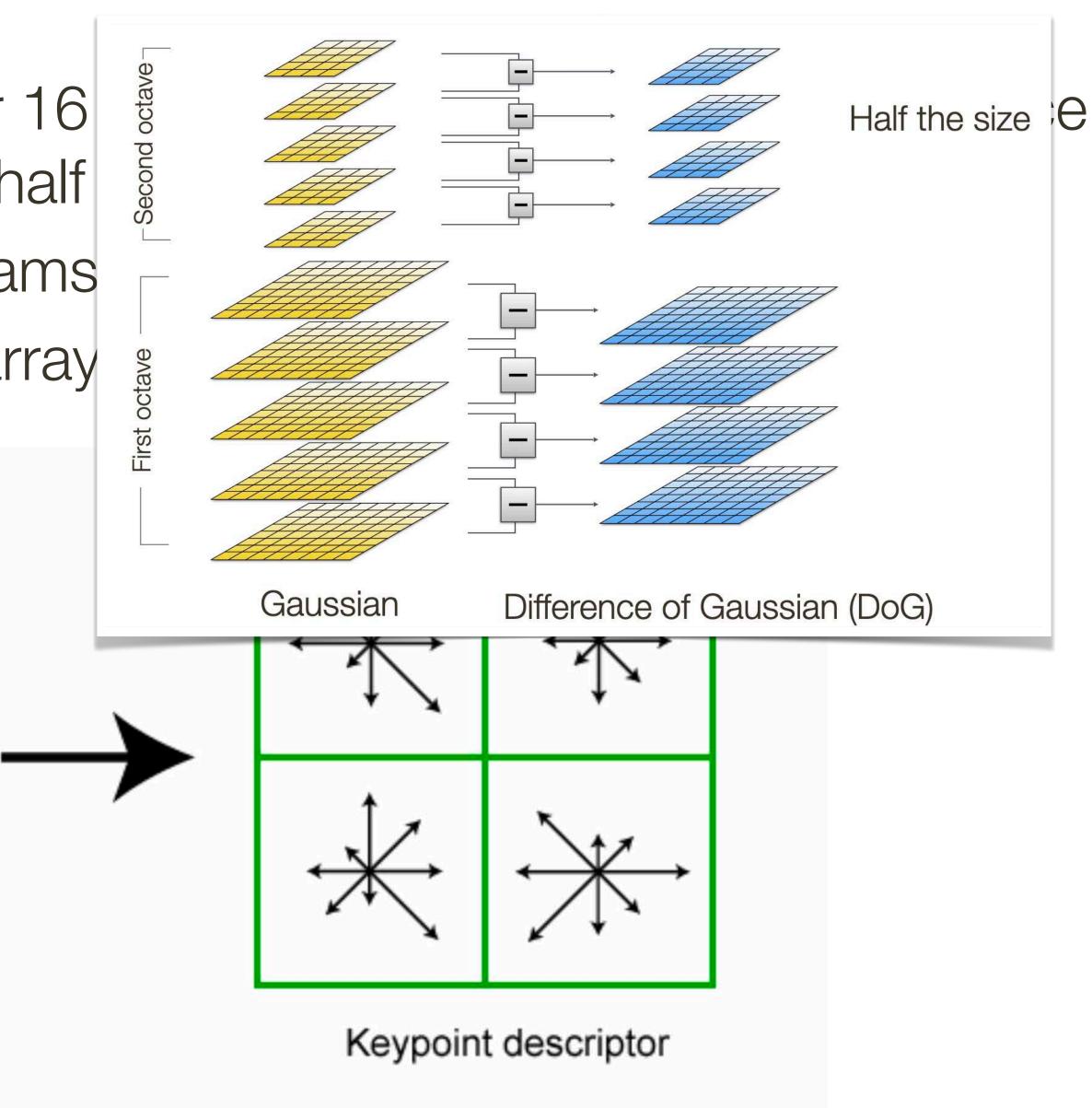
- Image gradients are sampled over 16 \times 16 array of locations in scale space



4. SIFT Descriptor

Image gradients are sampled over 16 (weighted by a Gaussian with sigma half
Create array of orientation histograms
8 orientations × 4 × 4 histogram array





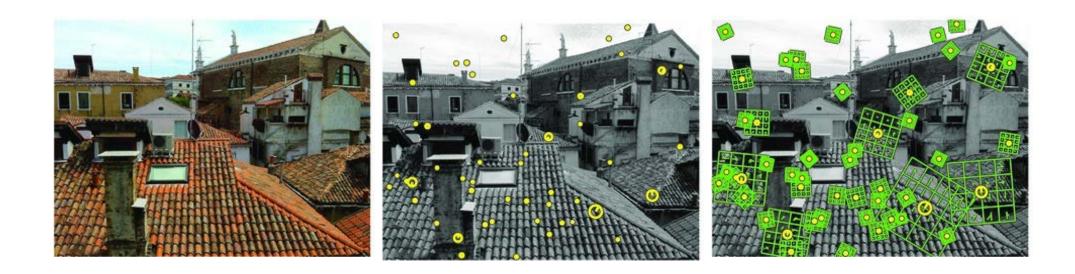
SIFT Matching

Extract features from the image ...

Each image might generate 100's or 1000's of SIFT descriptors

THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision



Lecture 13: Planar Geometry and RANSAC

Menu for Today

Topics:

- **Planar** Geometry
- Image Alignment, Object Recognition

Readings:

- Today's Lecture: Szeliski 2.1, 8.1, Forsyth & Ponce 10.4.2

Reminders:

- Assignment 3: due March 6th!

Learning Goals

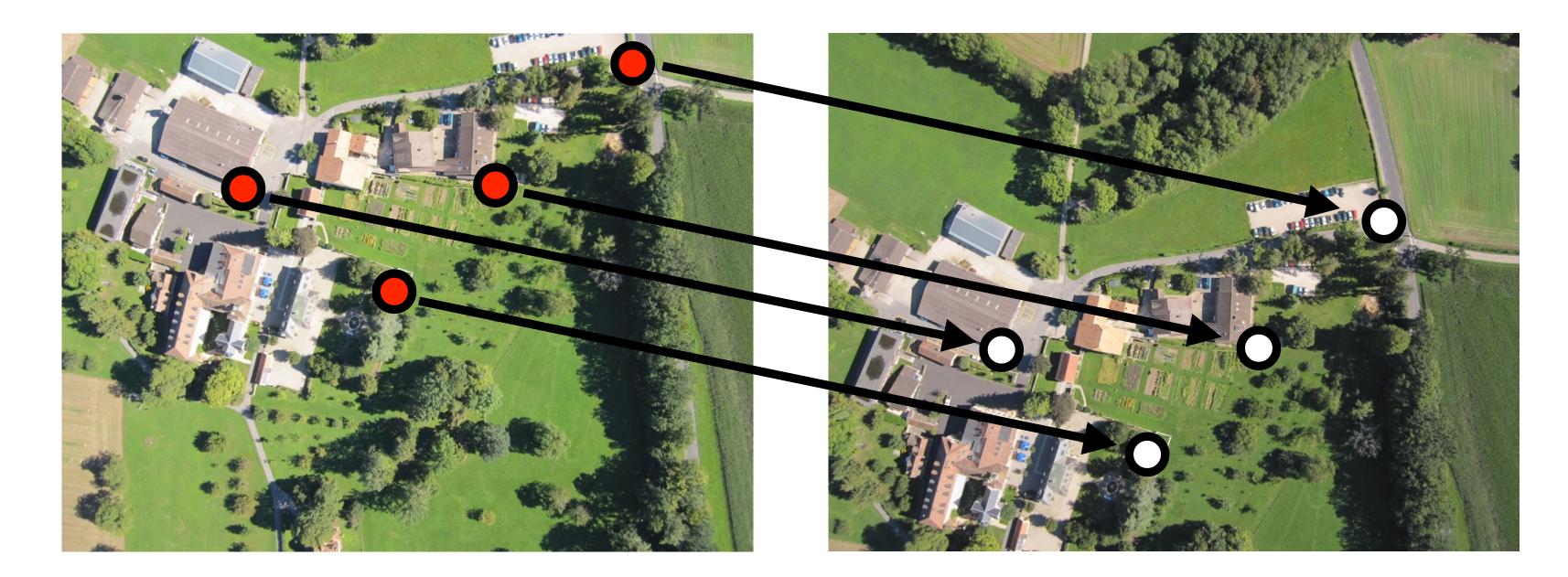
Linear (Projective) Transformations Good results don't happen by chance (or do they?)

3. Good == more support

Aim: warp our images together using a 2D transformation

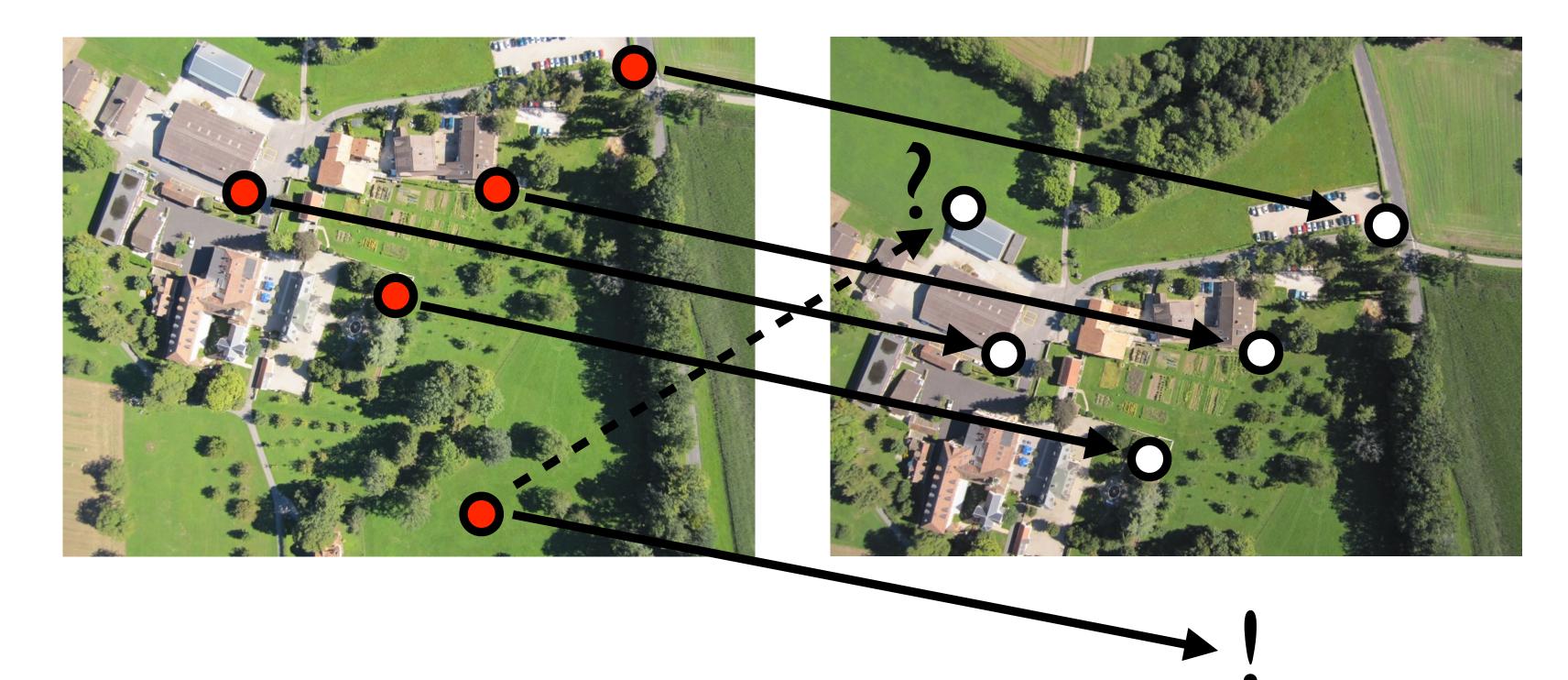
Aim: warp our images together using a 2D transformation

Find corresponding (matching) points between the images

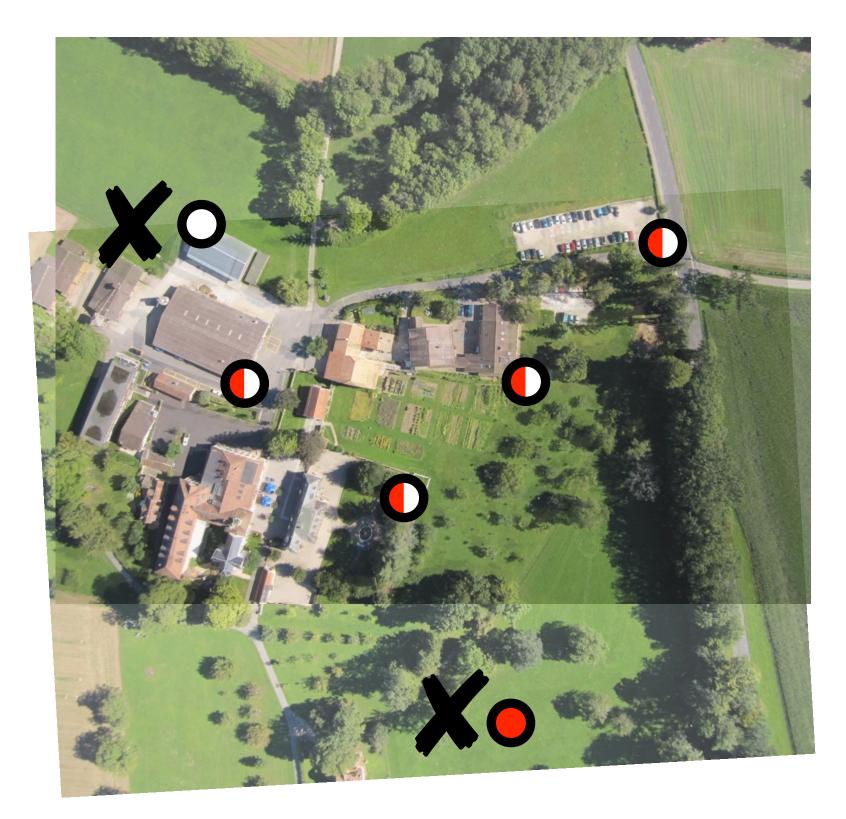


Compute the transformation to align the points

We can also use this transformation to reject outliers



We can also use this transformation to reject outliers



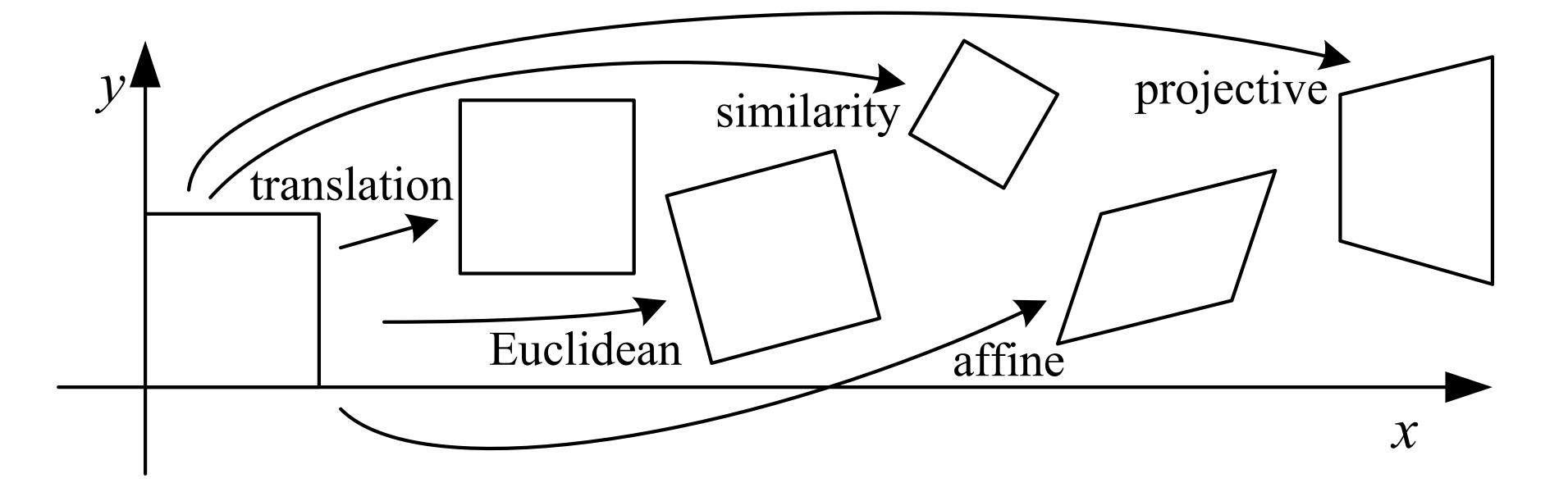
Planar Geometry

- 2D Linear + **Projective** transformations Euclidean, Similarity, Affine, Homography

Robust Estimation and RANSAC Estimating 2D transforms with noisy correspondences

2D Transformations

— We will look at a family that can be represented by 3x3 matrices



This group represents perspective projections of planar surfaces

Affine Transformation

- Transformed points are a linear function of the input points

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

$$\begin{array}{c} a_{12} \\ a_{22} \end{array} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

Affine Transformation

- Transformed points are a **linear function** of the input points

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

- This can be written as a single matrix multiplication using homogeneous coordinates

$$\begin{array}{c} a_{12} \\ a_{22} \end{array} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

Affine Transformation

- Transformed points are a linear function of the input points

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$

This can be written as a single matrix multiplication using homogeneous coordinates

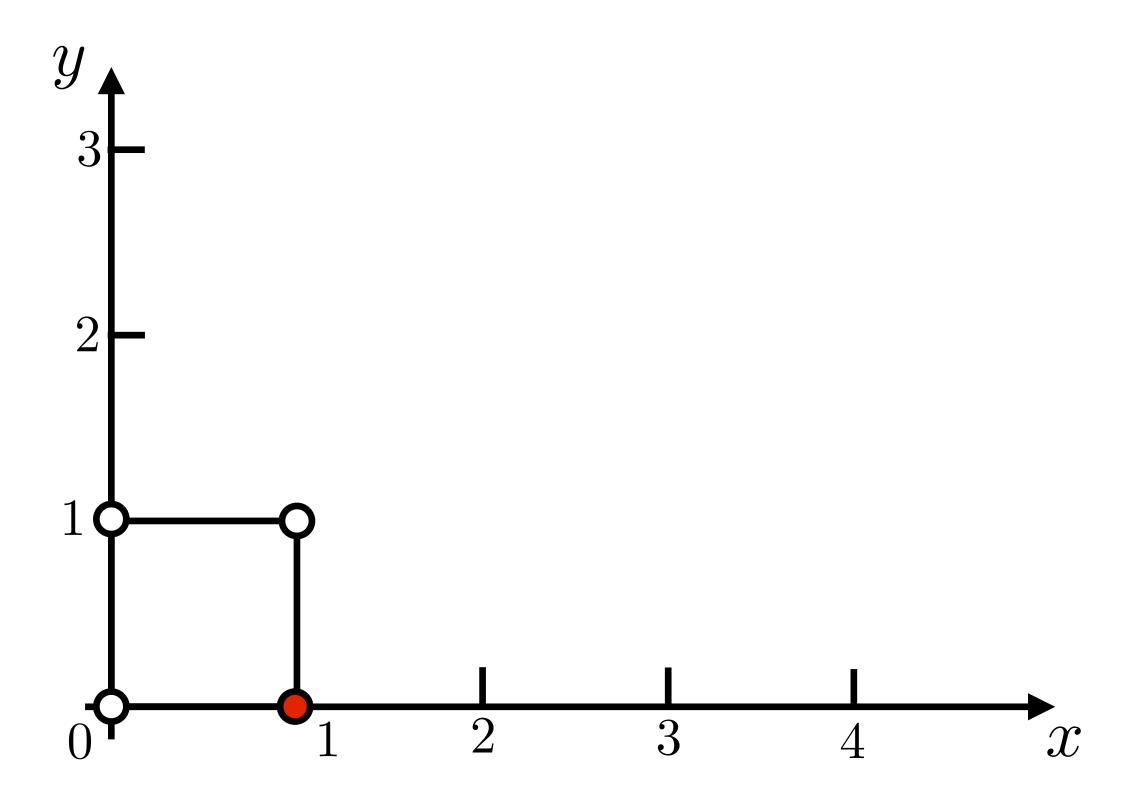
$$\begin{bmatrix} x'_1 \\ y'_1 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

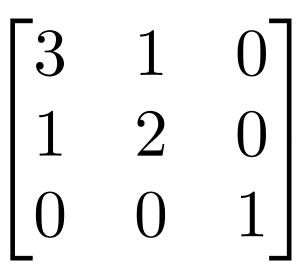
$$\begin{array}{c} a_{12} \\ a_{22} \end{array} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Linear Transformation

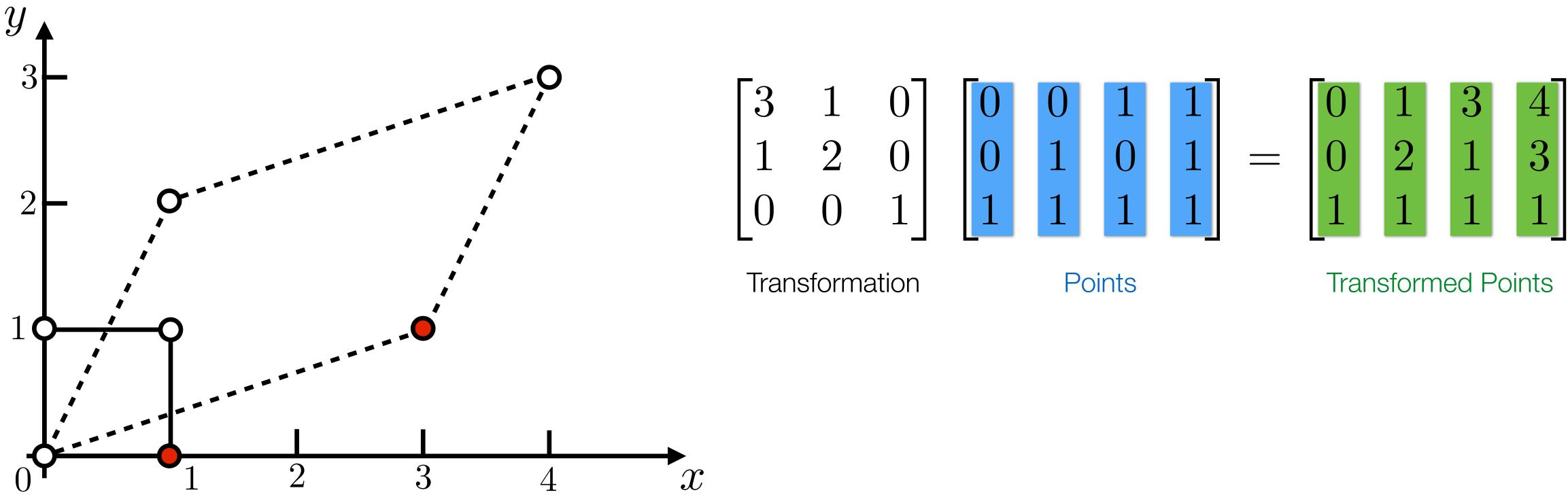
- Consider the action of the unit square under, sample transform $\begin{vmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{vmatrix}$

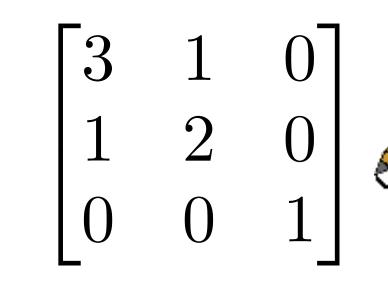


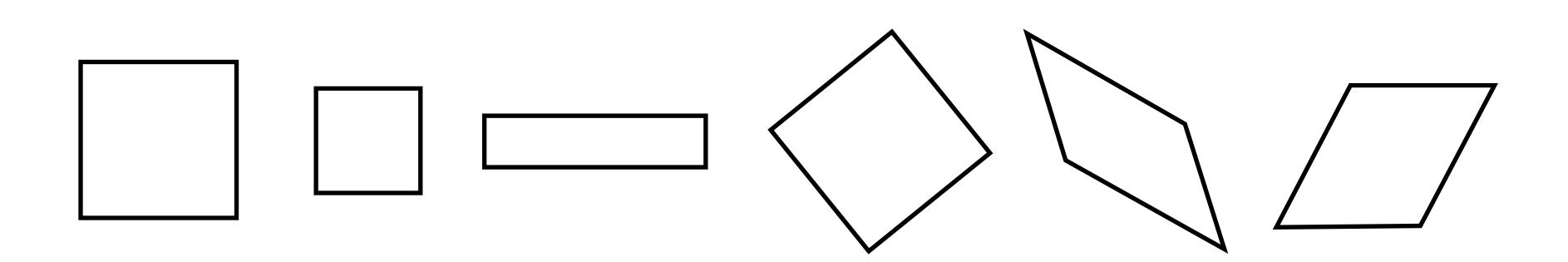


Linear Transformation

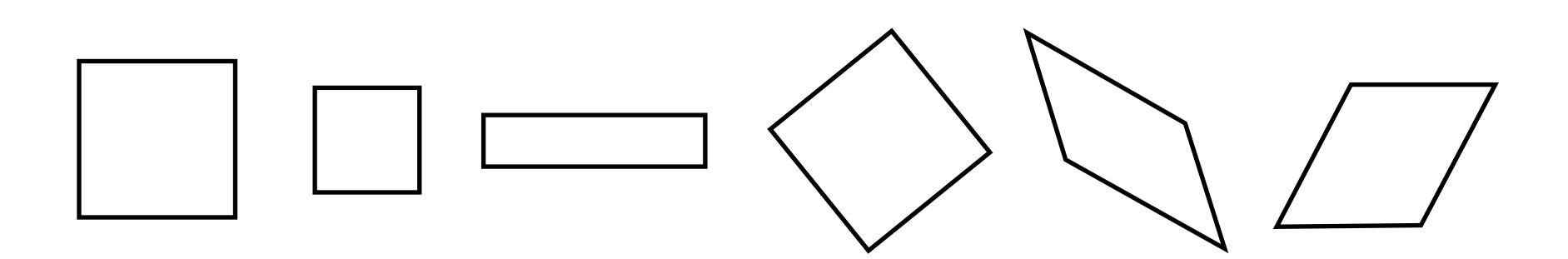
- Consider the action of the unit square under, sample transform

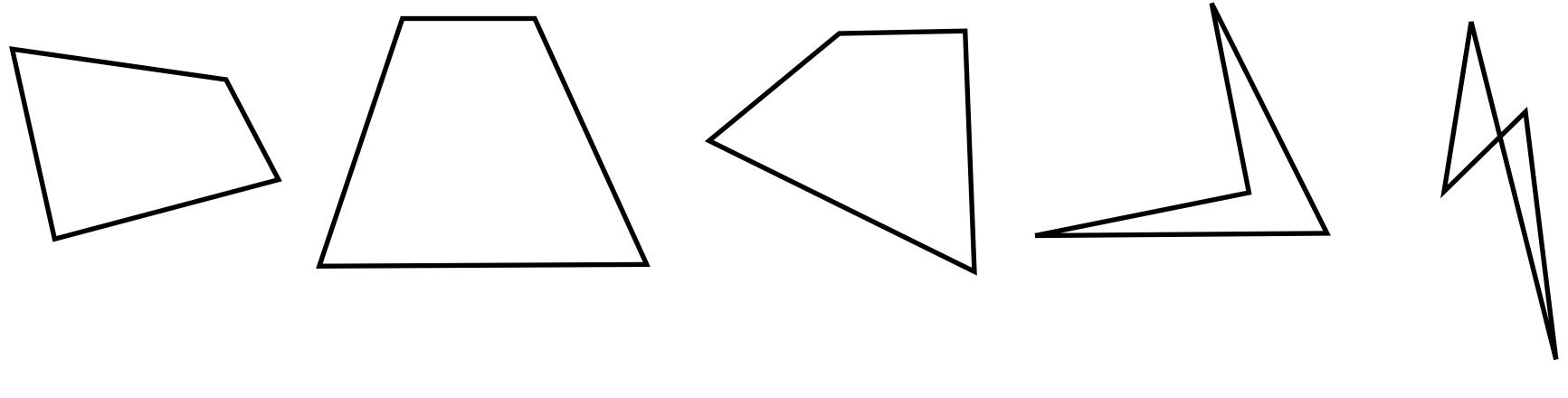






Translation, rotation, scale, shear (parallel lines preserved)



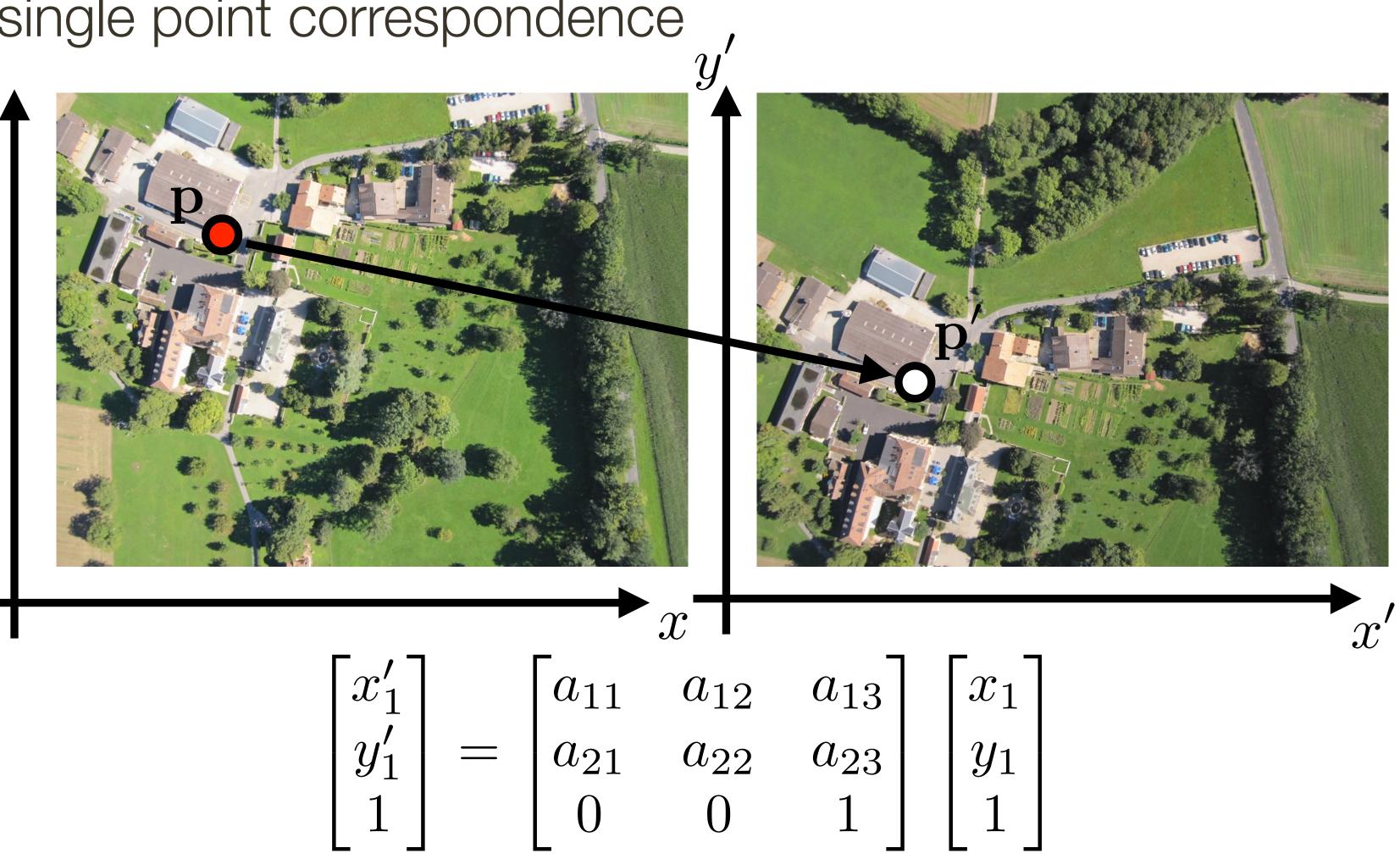


Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Consider a single point correspondence

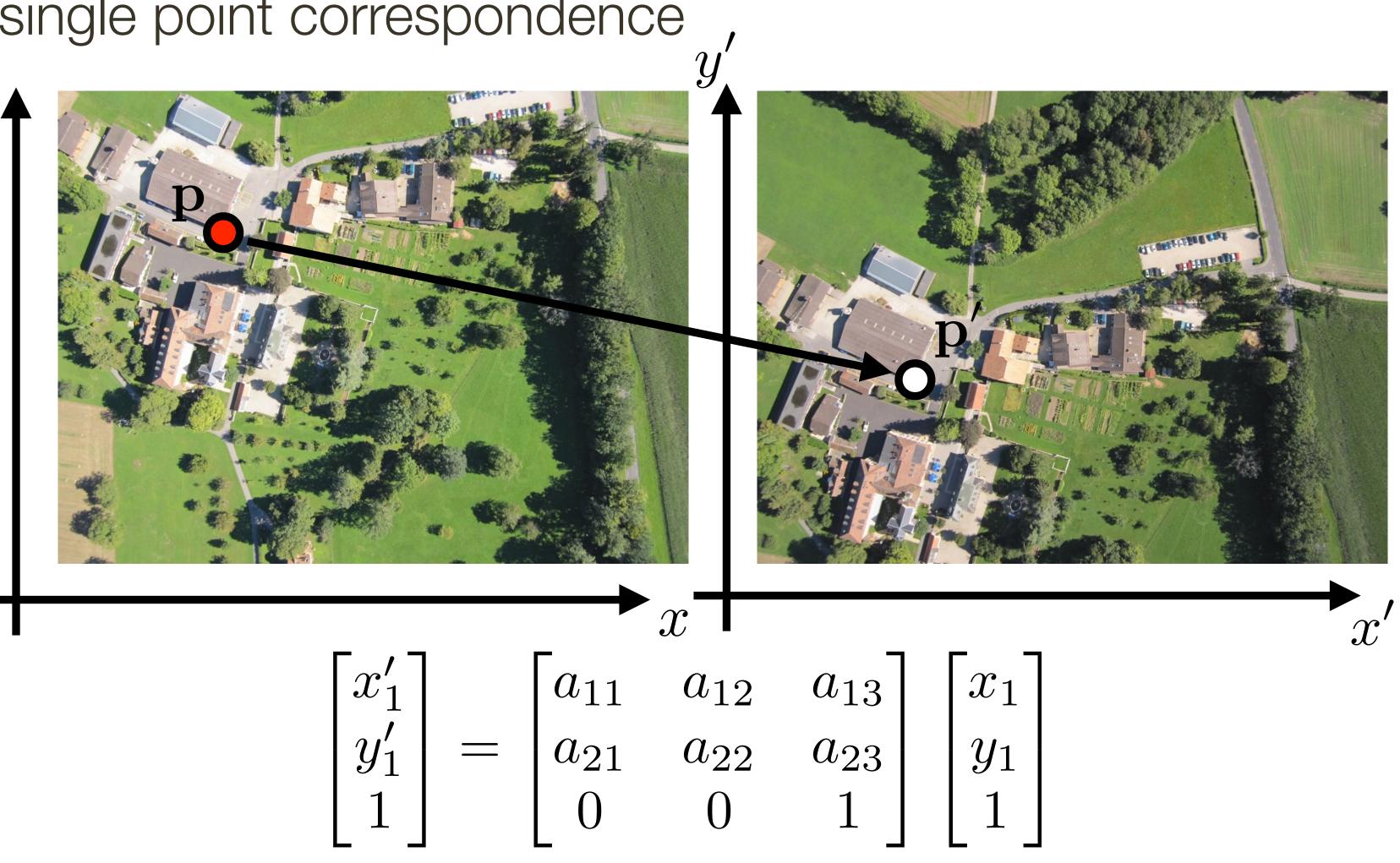
Y



$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{12} \\ a_{22} \\ 0 \end{bmatrix}$$

Consider a single point correspondence

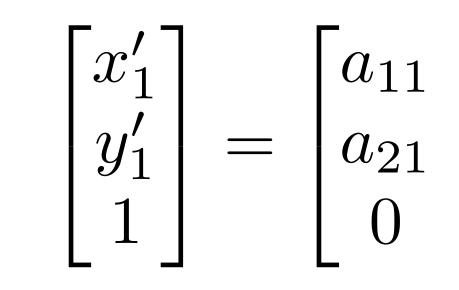
Y



$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

How many points are needed to solve for **a**?

Lets compute an affine transform from correspondences:



$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Lets compute an affine transform from correspondences:

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} \\ a_{21} \\ 0 \end{bmatrix}$$

Re-arrange unknowns into a vector

$$\begin{bmatrix} x_1' \\ y_1' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} 0 & x_1 \\ 0 & y_1 \\ 0 & 1 \\ x_1 & 0 \\ y_1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Linear system in the unknown parameters **a**

x_1	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3

Of the form

Ma = y

Linear system in the unknown parameters **a**

x_1	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3

Of the form

Ma = y

Solve for a using Gaussian Elimination

Computing Affine Transform

Once we solve for a transform, we can now map any <u>other points</u> between the two images ... or resample one image in the coordinate system of the other

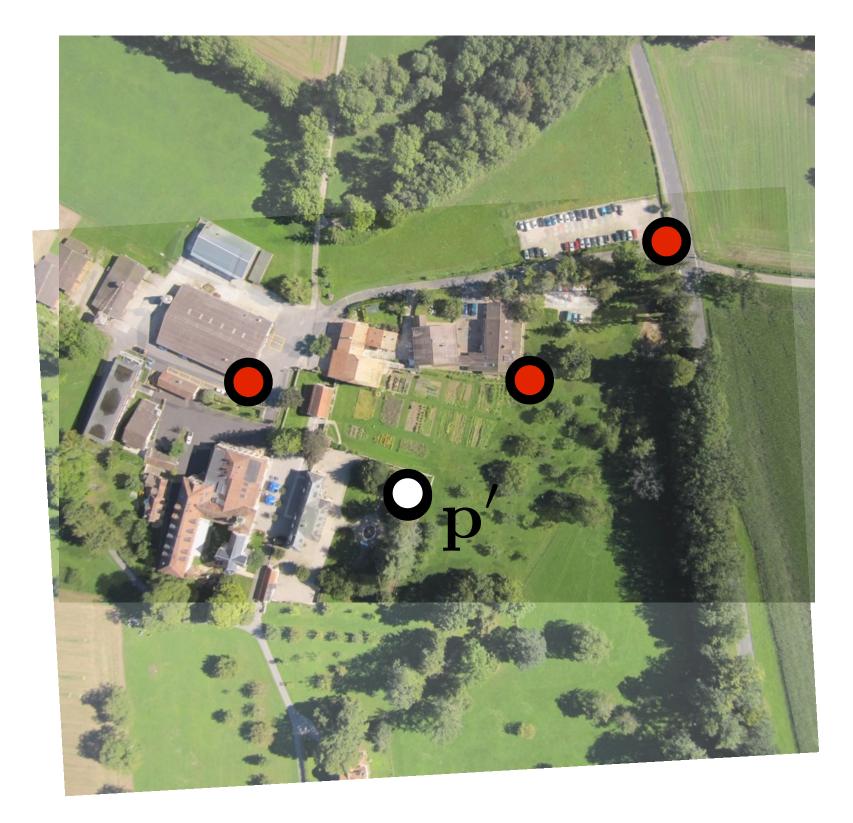
$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{21} \\ 0 \end{bmatrix}$$

$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Computing Affine Transform

This allows us to "stitch" the two images

Once we solve for a transform, we can now map any other points between the two images ... or resample one image in the coordinate system of the other

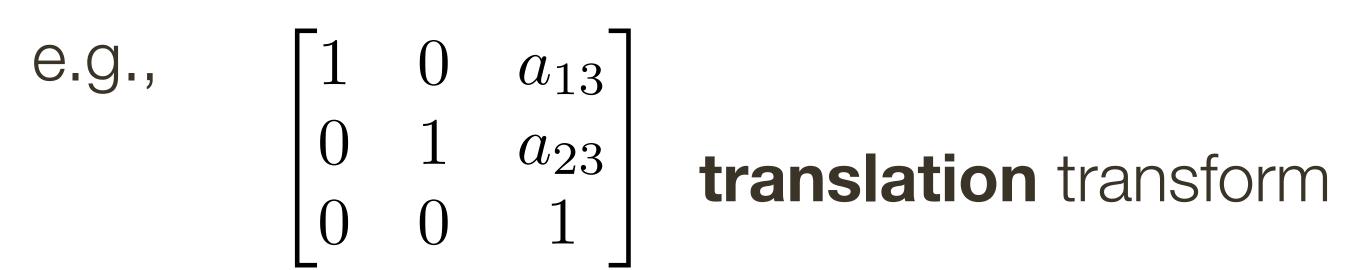


Other linear transforms are special cases of **affine** transform:

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$

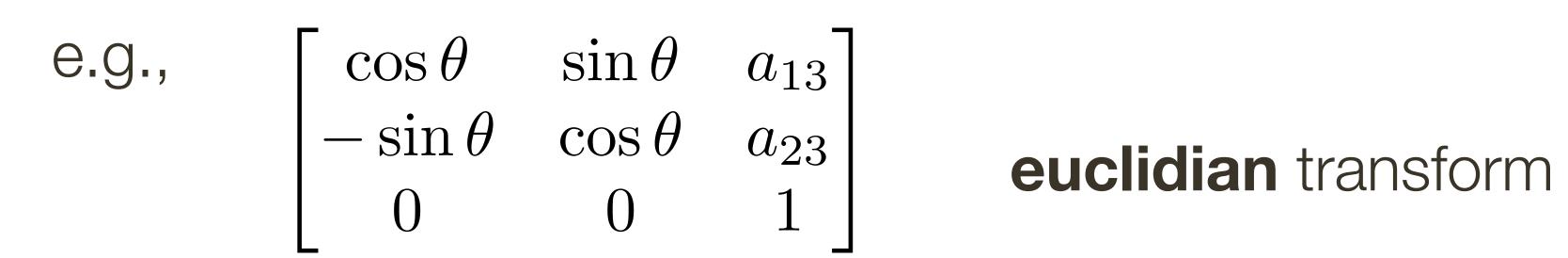
Other linear transforms are special cases of **affine** transform:

 $\begin{vmatrix} a_{11} \\ a_{21} \\ 0 \end{vmatrix}$



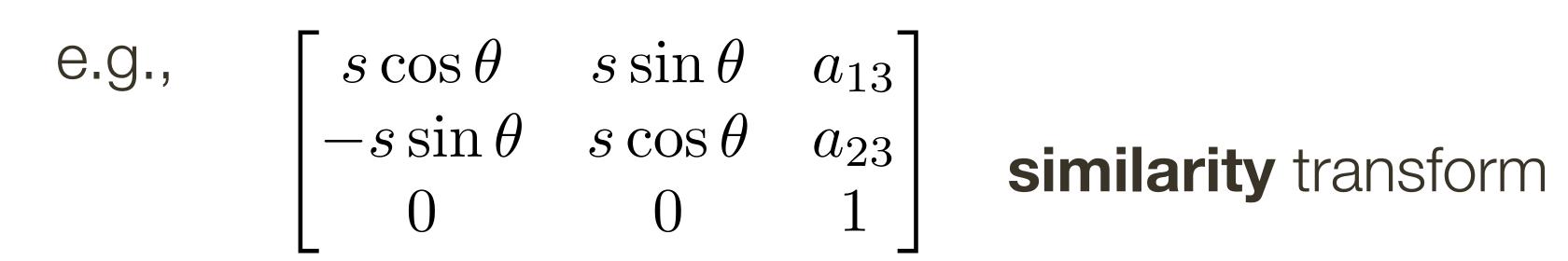
$$\begin{array}{ccc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ 0 & 1 \end{array}$$

Other linear transforms are special cases of **affine** transform:

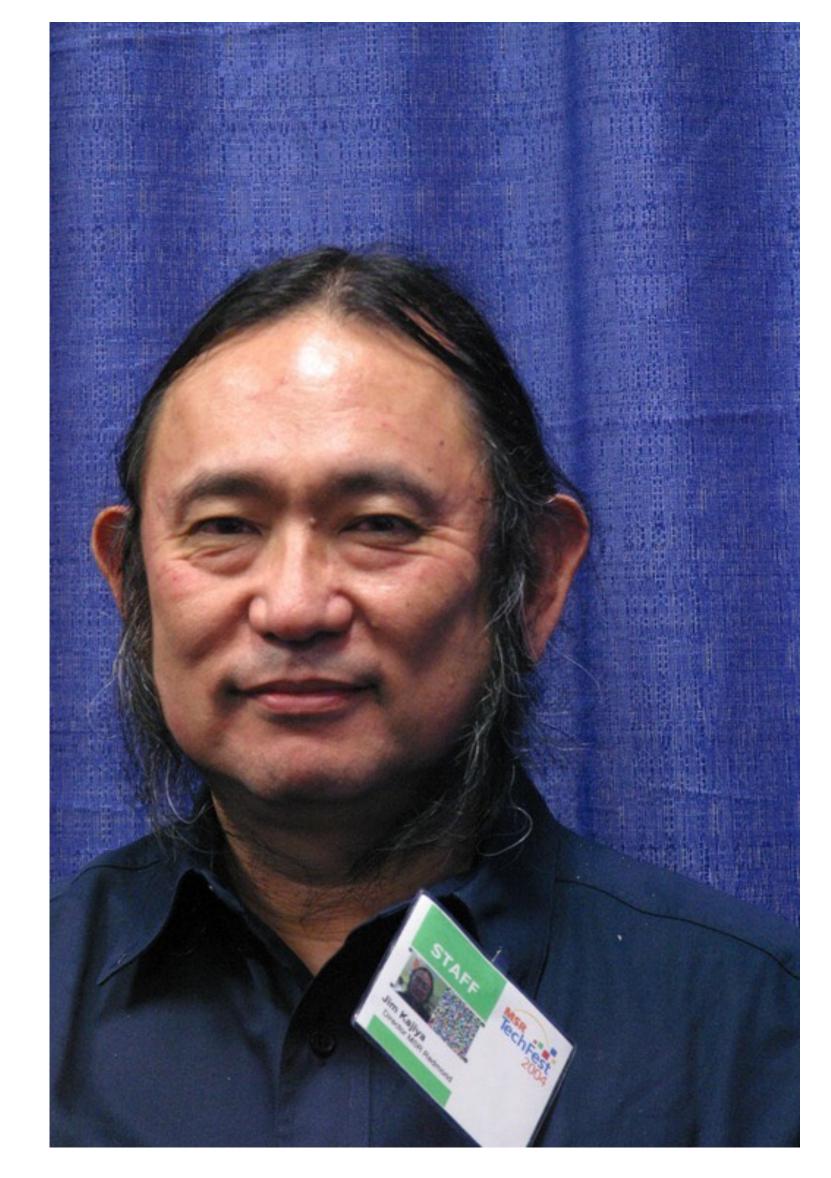


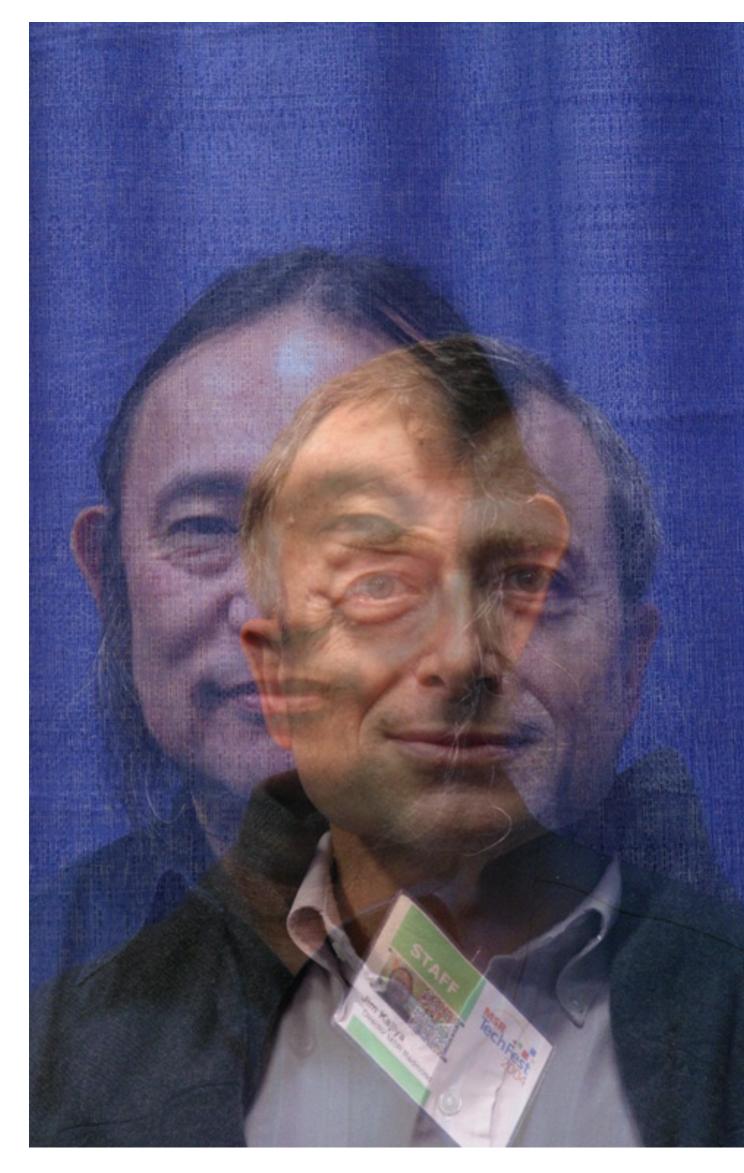
 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$

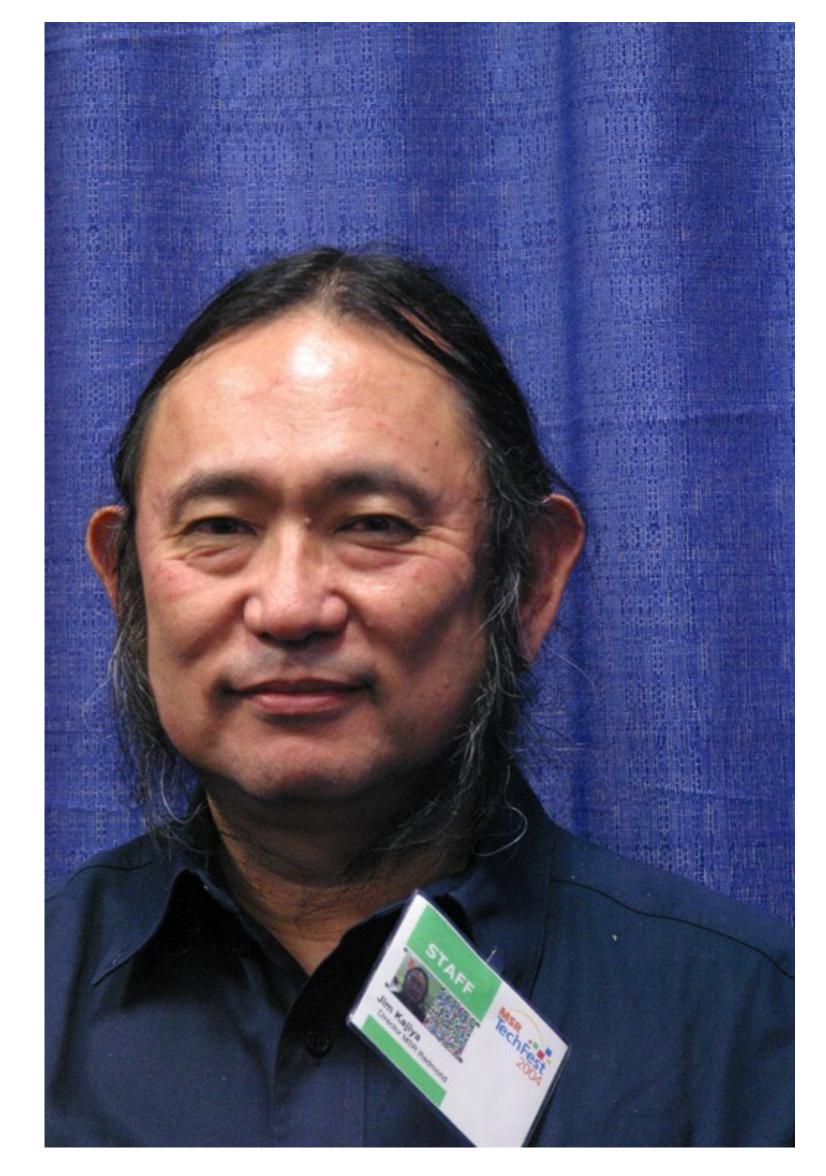
Other linear transforms are special cases of **affine** transform:

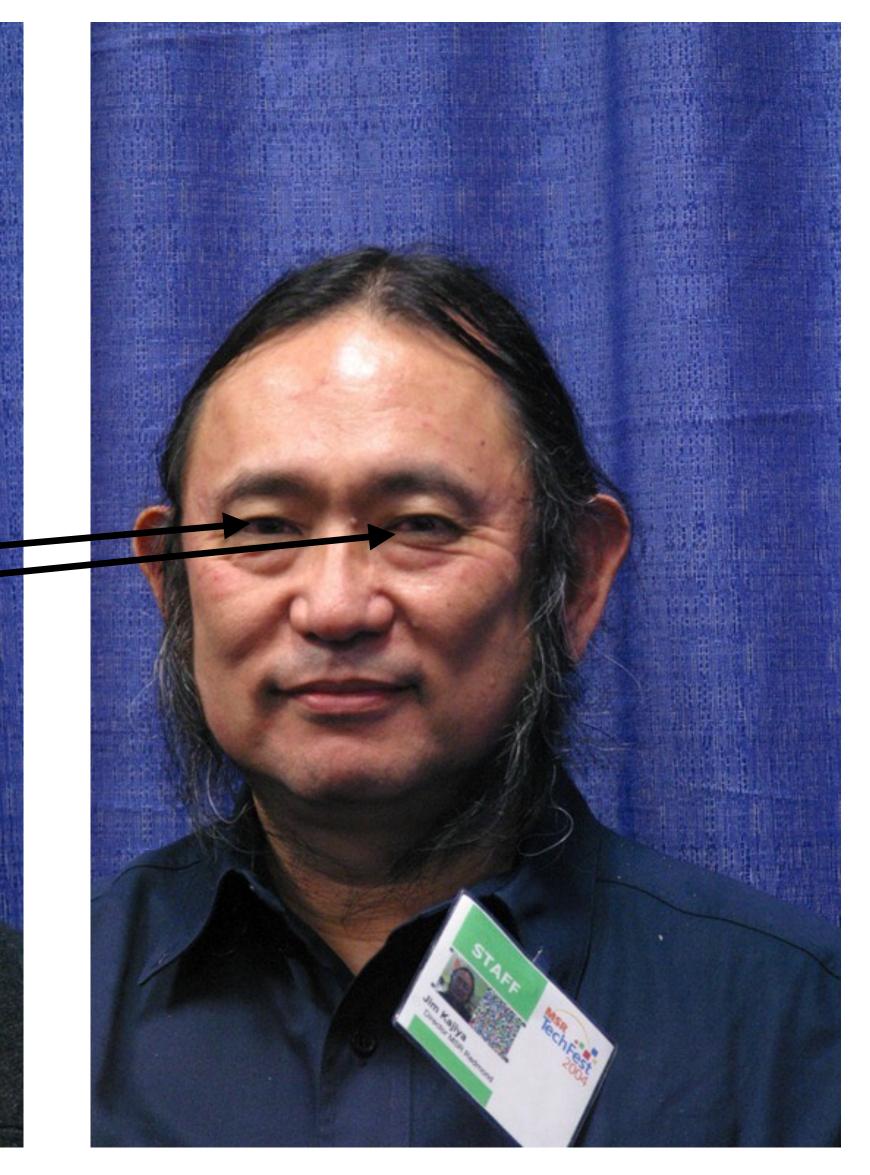


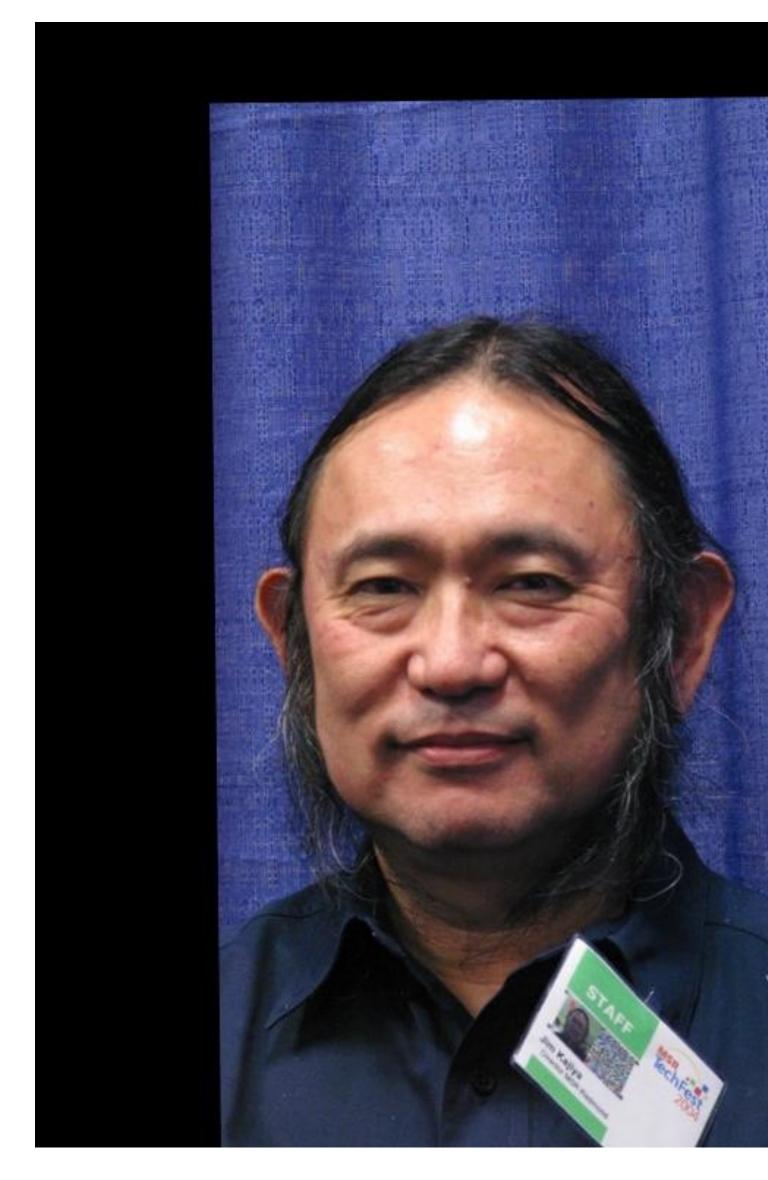
 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$

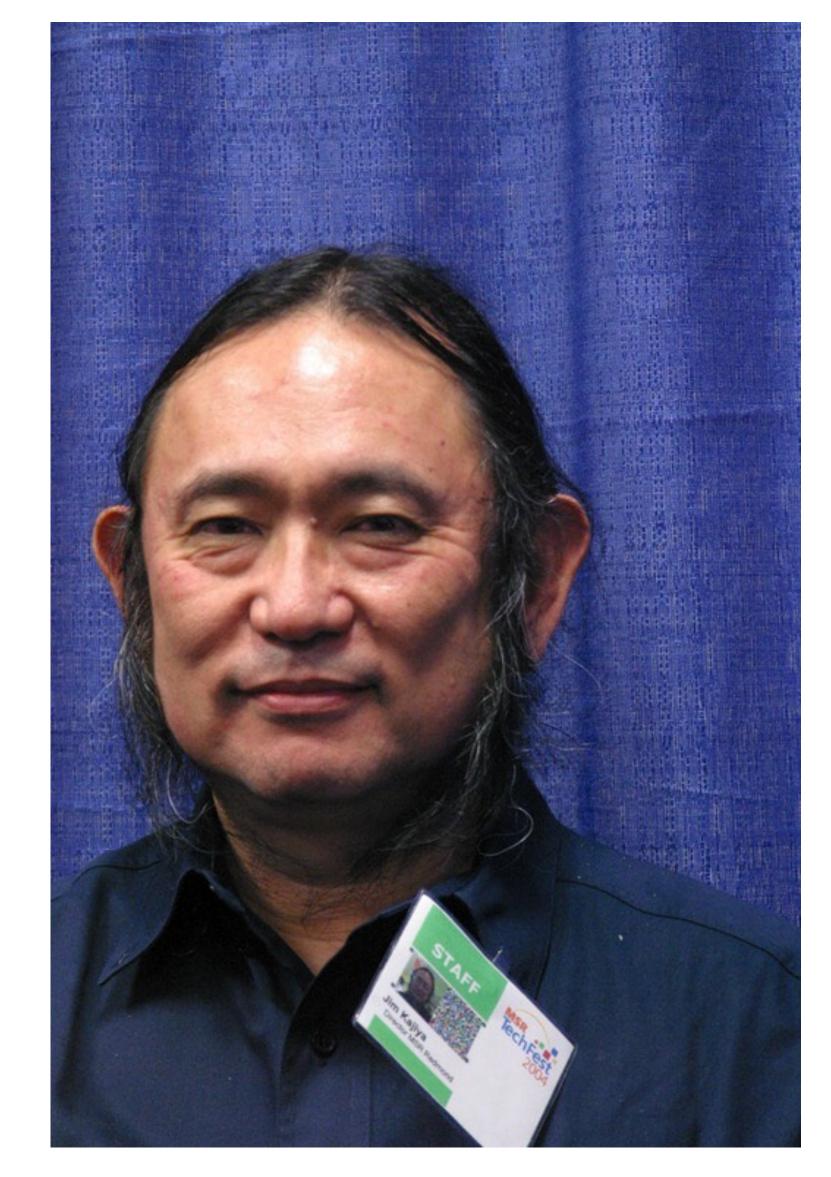


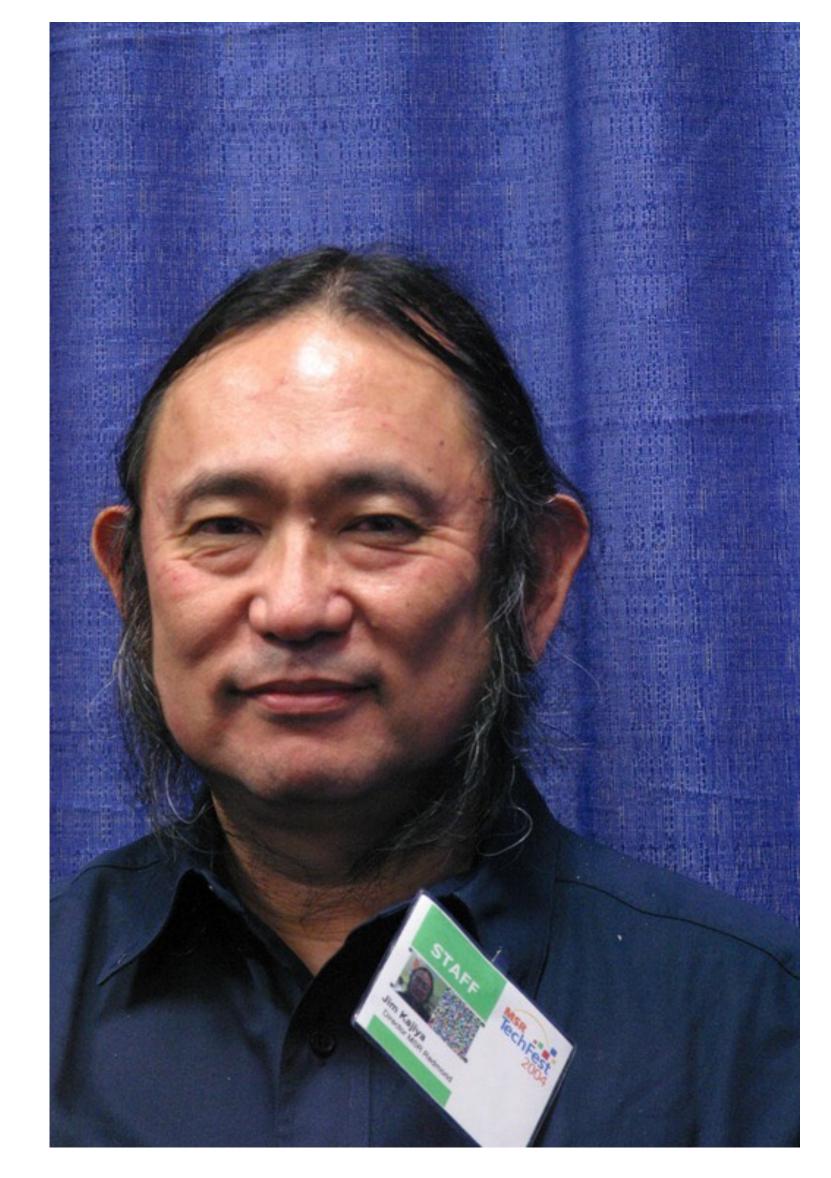


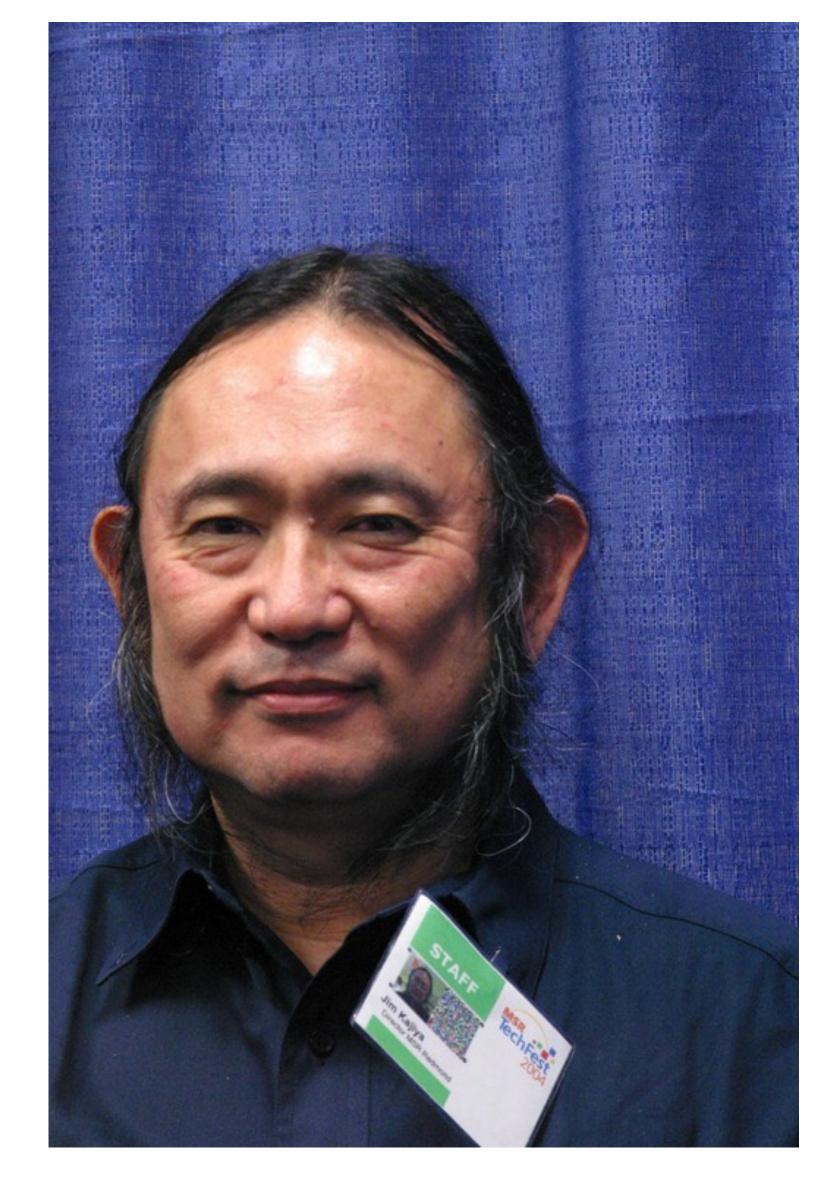








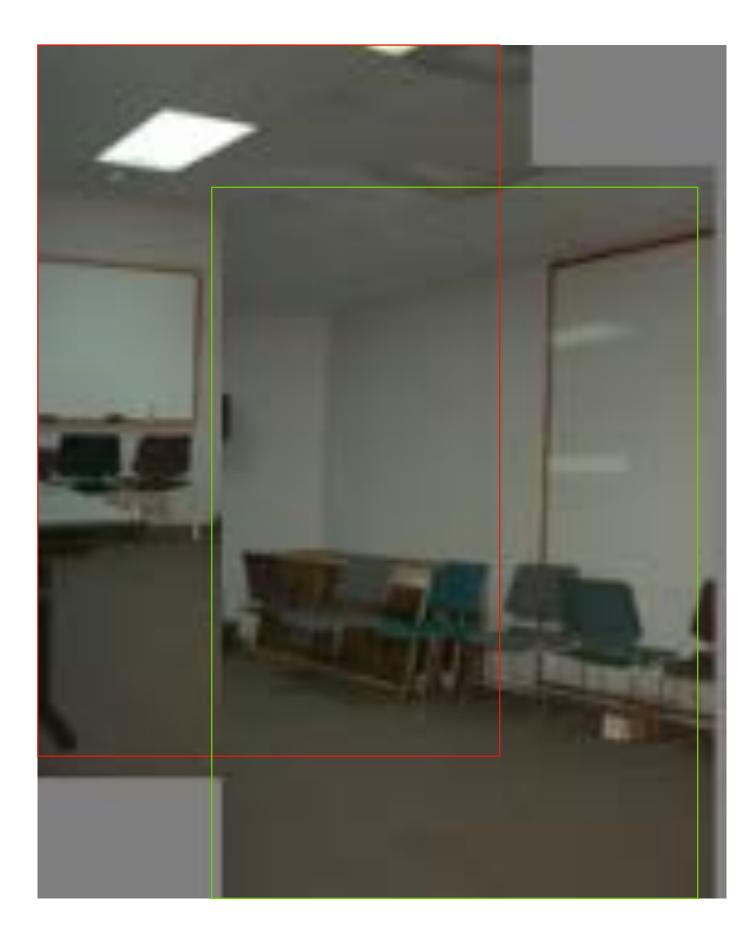


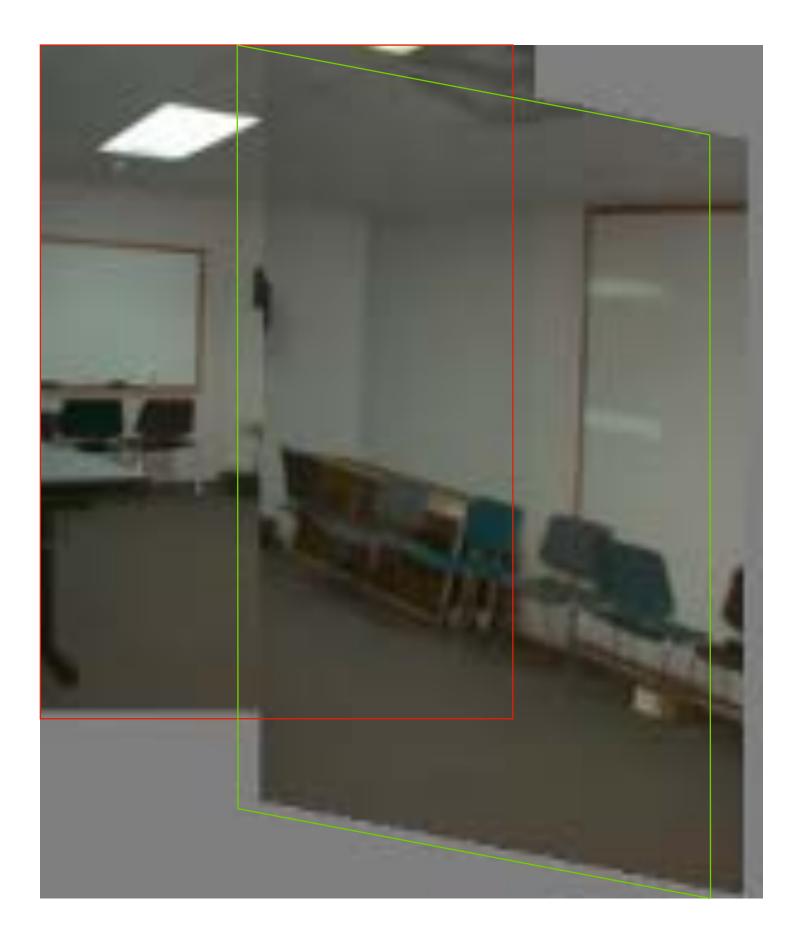


2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & t \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	г э	3	lengths	
similarity	$\left[\begin{array}{c c} s oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	4	angles	
affine	$\left[egin{array}{c} egin{arr$	6	parallelism	
projective	$\left[\begin{array}{c} ilde{oldsymbol{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Example: Warping with Different Transformations Projective Translation Affine (homography)





Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: We can use homographies when ...

1.... the scene is planar; or

2.... the scene is very far or has small (relative) depth variation → scene is approximately planar

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Aside: We can use homographies when ...

3.... the scene is captured under camera rotation only (no translation) or pose change)

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

Projective Transformation

General 3x3 matrix transformation

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Projective Transformation

General 3x3 matrix transformation

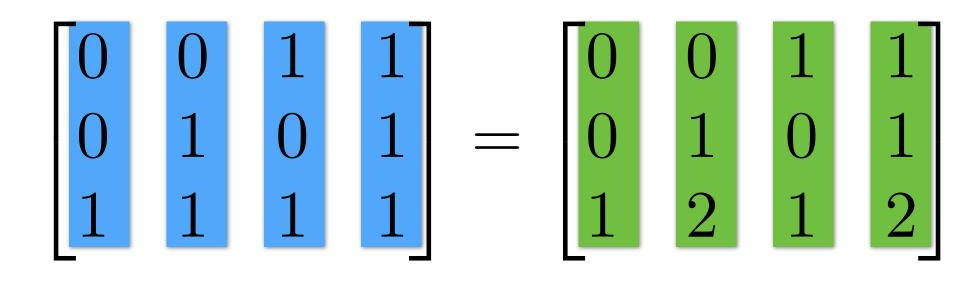
$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Lets try an example:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Transformation

$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$



Points

Transformed Points

Projective Transformation

General 3x3 matrix transformation

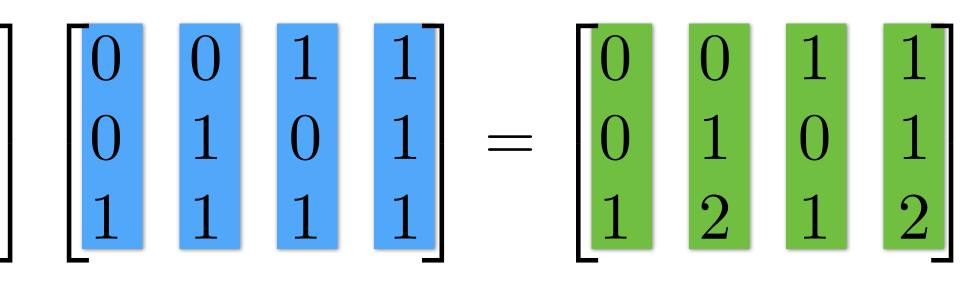
$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Lets try an example:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Transformation

$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$



Points

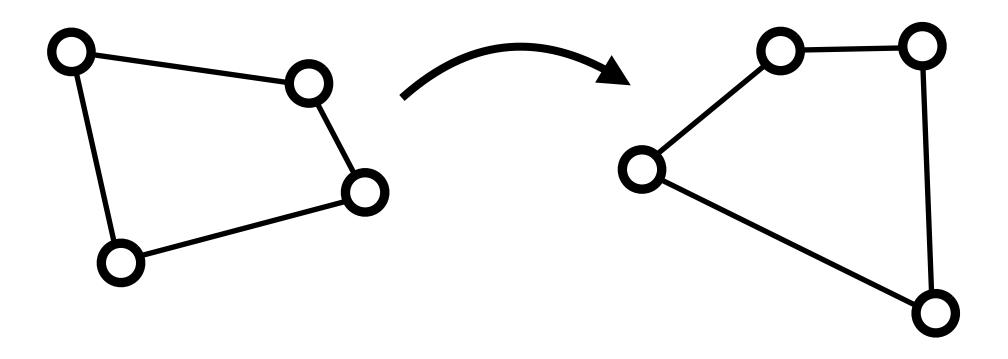
Transformed Points

Divide by the last row: $\begin{bmatrix} 0 & 0 & 1 & 0.5 \\ 0 & 0.5 & 0 & 0.5 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

Compute H from Correspondences

Each match gives 2 equations to solve for 8 parameters

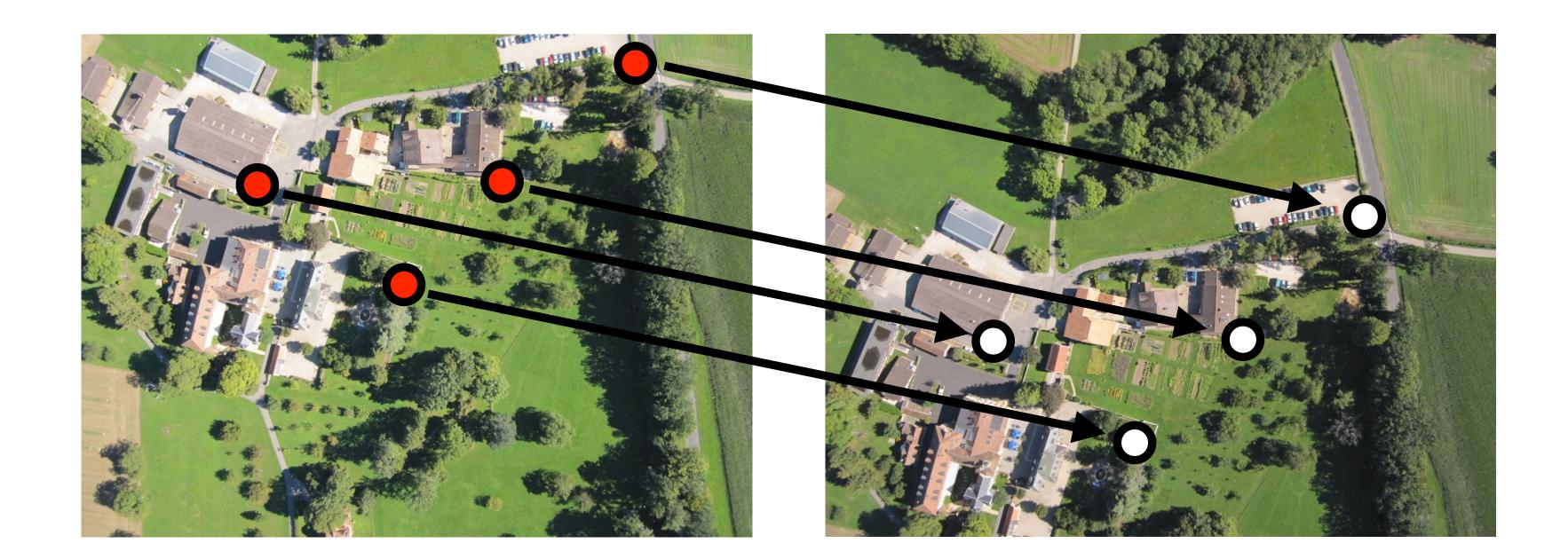
$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$



 \rightarrow 4 correspondences to solve for **H** matrix Solution uses **Singular Value Decomposition** (SVD) In Assignment 4 you can compute this using cv2.findHomography

	a_{11}	a_{12}	a_{13}	$\begin{bmatrix} x_1 \end{bmatrix}$
—	a_{21}	a_{22}	a_{23}	y_1
	a_{31}	a_{32}	a_{33}	1

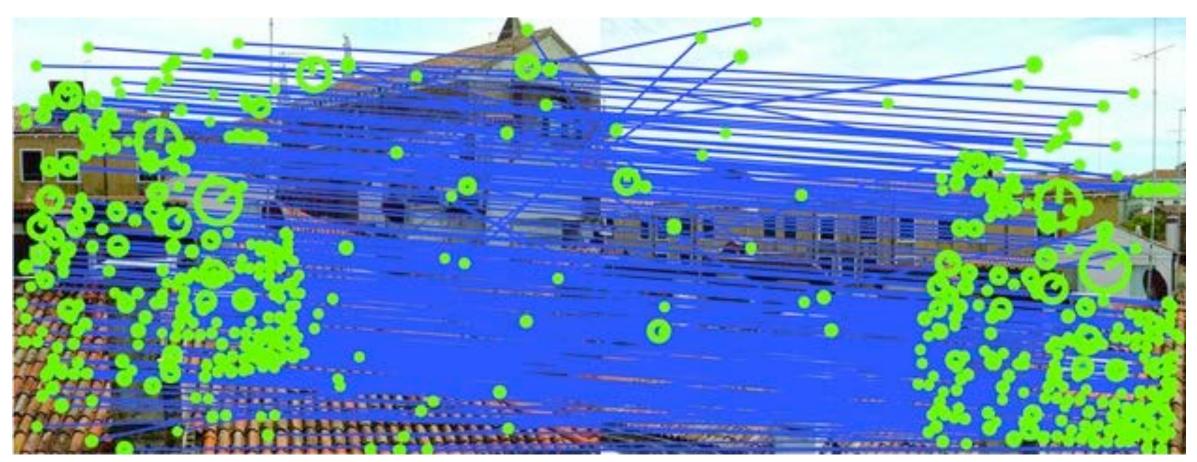
Find corresponding (matching) points between the image



$\mathbf{u} = \mathbf{H}\mathbf{x}$

2 points for Similarity3 for Affine4 for Homography

In practice we have many noisy correspondences + outliers

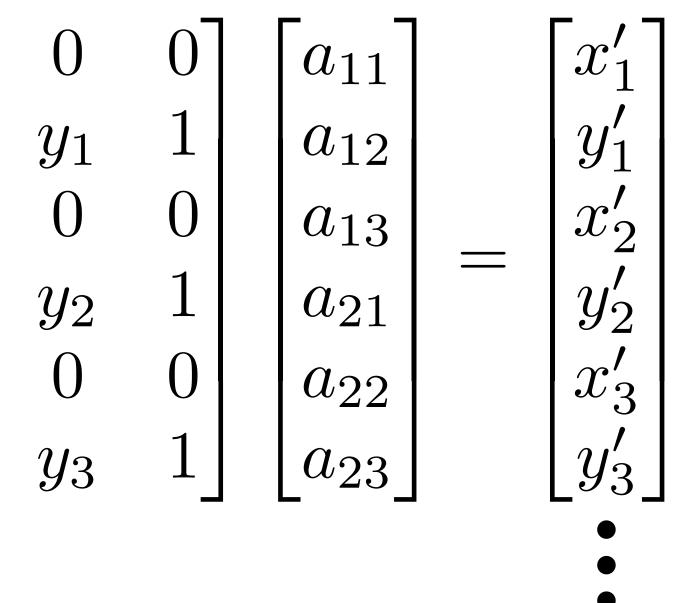


In practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

$\begin{bmatrix} x_1 \end{bmatrix}$	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3
			•

It is overconstrained (more equations than unknowns) and subject to outliers (some rows are completely wrong)



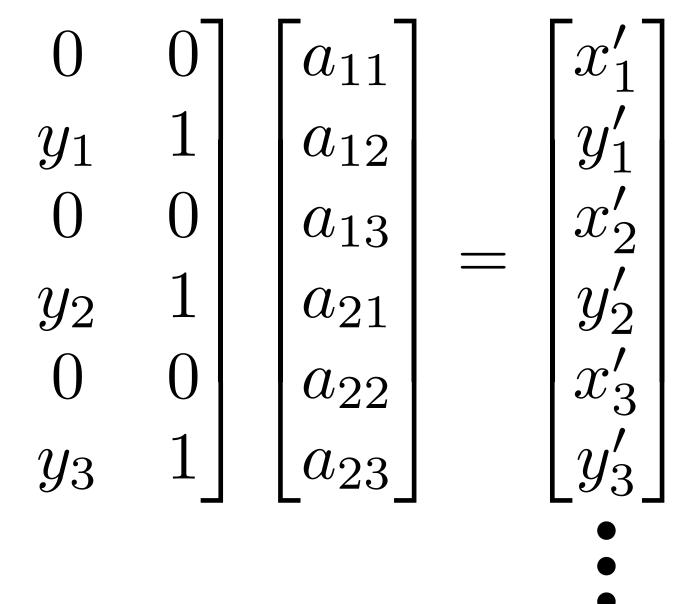
In practice we have many noisy correspondences + outliers

e.g., for an affine transform we have a linear system in the parameters a:

$\int x_1$	y_1	1	0
0	0	0	x_1
x_2	y_2	1	0
0	0	0	x_2
x_3	y_3	1	0
0	0	0	x_3

It is overconstrained (more equations than unknowns) and subject to outliers (some rows are completely wrong)

Let's deal with these problems in a simpler context ...



If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

We can fit a line using two points

Suppose we are **fitting a line** to a dataset that consists of 50% outliers

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

Suppose we are **fitting a line** to a dataset that consists of 50% outliers

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs will consist entirely of 'good' data points (inliers)

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

will consist entirely of 'good' data points (inliers)

points lie close to the line fitted to the pair

Suppose we are **fitting a line** to a dataset that consists of 50% outliers

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs
- We can identify these good pairs by noticing that a large collection of other

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

will consist entirely of 'good' data points (inliers)

points lie close to the line fitted to the pair

that lie close to the line

Suppose we are **fitting a line** to a dataset that consists of 50% outliers

- If we draw pairs of points uniformly at random, then about 1/4 of these pairs
- We can identify these good pairs by noticing that a large collection of other
- A better estimate of the line can be obtained by refitting the line to the points

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

- sample)
- Size of consensus set is model's **support**
- 3. Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

RANSAC is very useful for variety of applications

1. Randomly choose minimal subset of data points necessary to fit model (a

2. Points within some distance threshold, t, of model are a **consensus set**.

Slide Credit: Christopher Rasmussen

RANSAC (**RAN**dom **SA**mple **C**onsensus)

sample) Fitting a Line: 2 points

2. Points within some distance threshold, t, of model are a **consensus set**. Size of consensus set is model's support

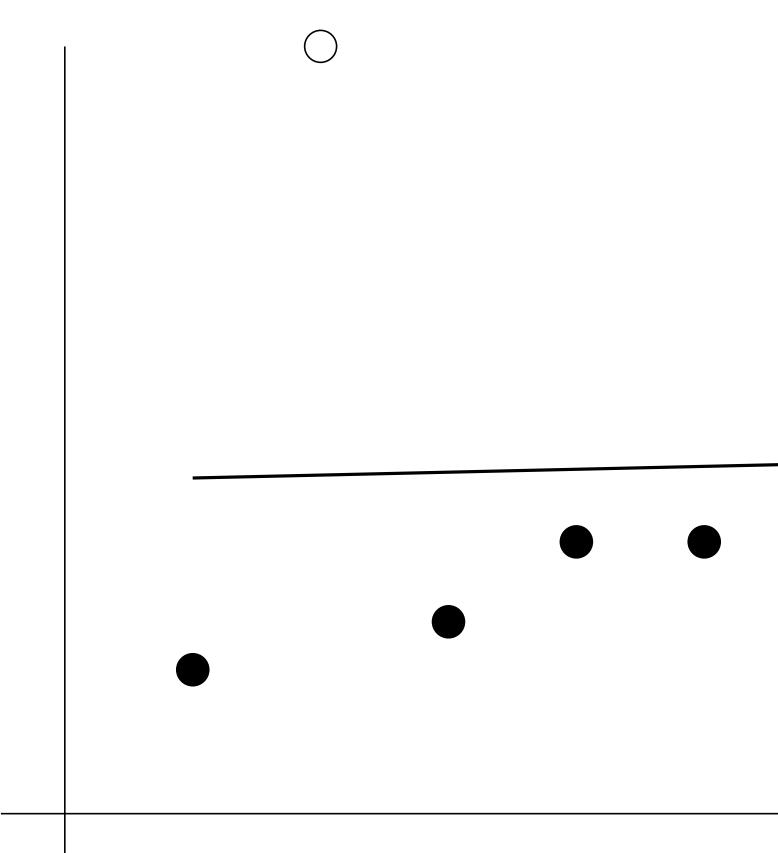
3. Repeat for N samples; model with biggest support is most robust fit Points within distance t of best model are inliers

- Fit final model to all inliers

1. Randomly choose minimal subset of data points necessary to fit model (a

Slide Credit: Christopher Rasmussen

Example 1: Fitting a Line



\bigcirc

Figure Credit: Hartley & Zisserman

Example 1: Fitting a Line

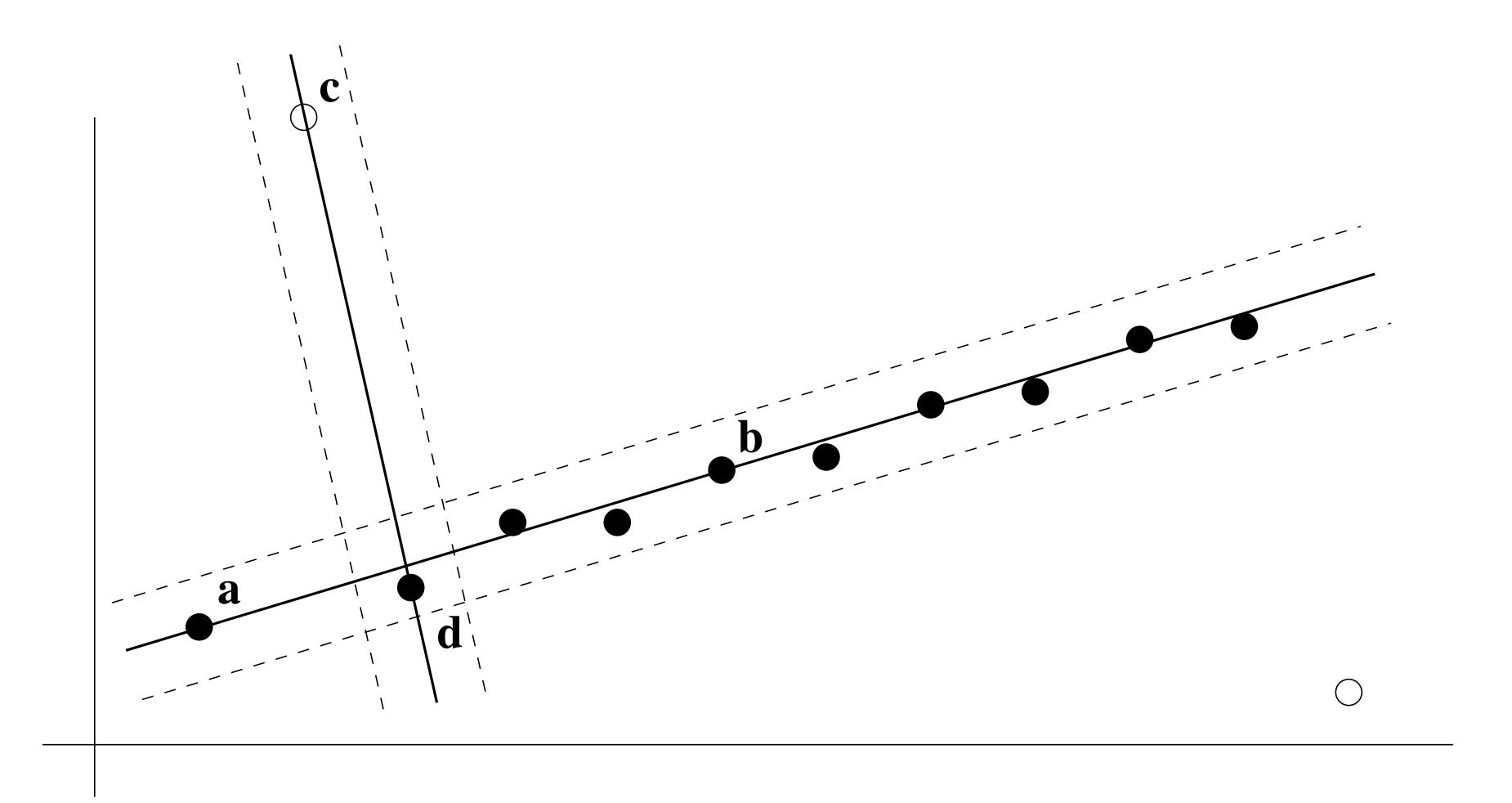


Figure Credit: Hartley & Zisserman

Example 1: Fitting a Line

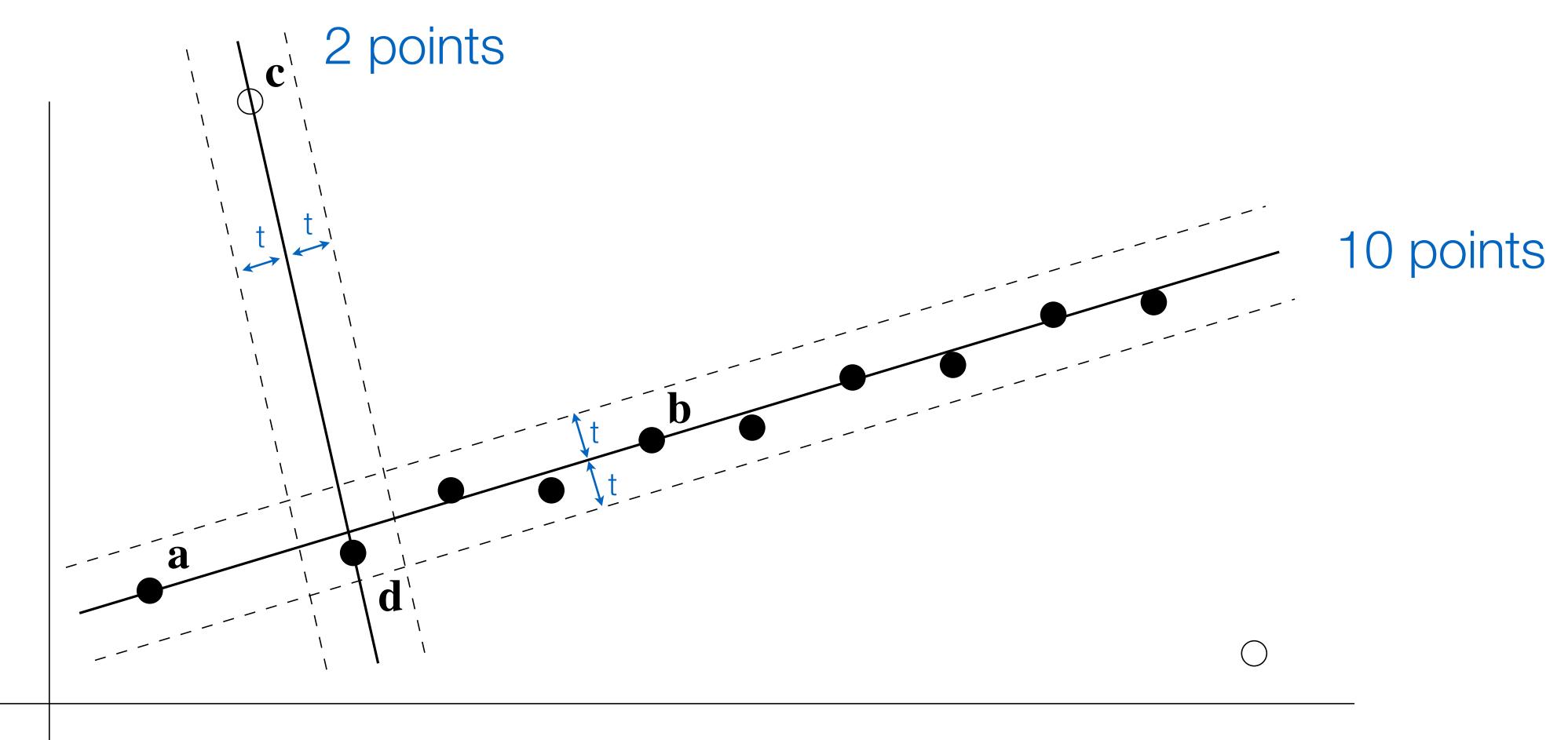


Figure Credit: Hartley & Zisserman

After RANSAC

from minimal set of inliers

Improve this initial estimate with estimation over all inliers (e.g., with standard least-squares minimization)

But this may change inliers, so alternate fitting with re-classification as inlier/ outlier

RANSAC divides data into inliers and outliers and yields estimate computed

Example 2: Fitting a Line

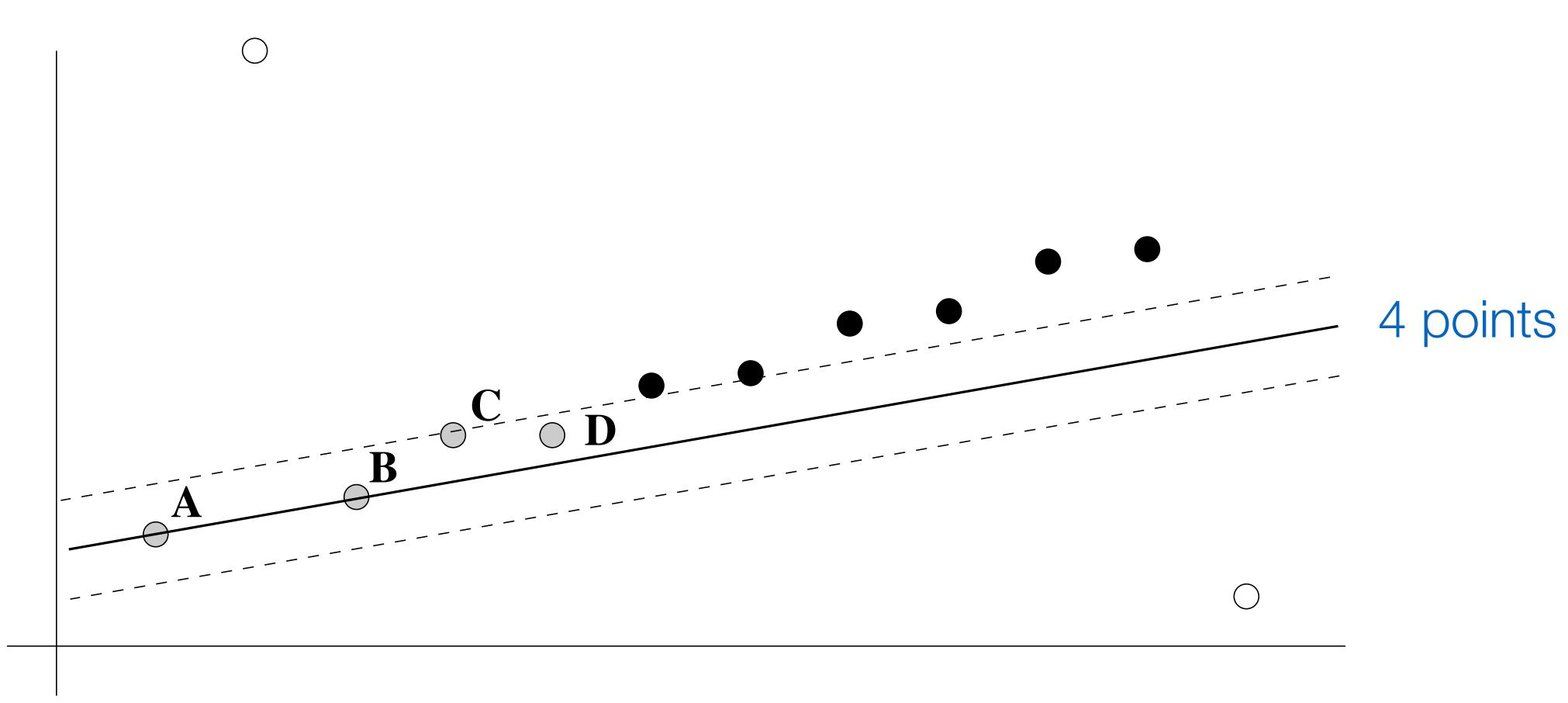


Figure Credit: Hartley & Zisserman

Example 2: Fitting a Line

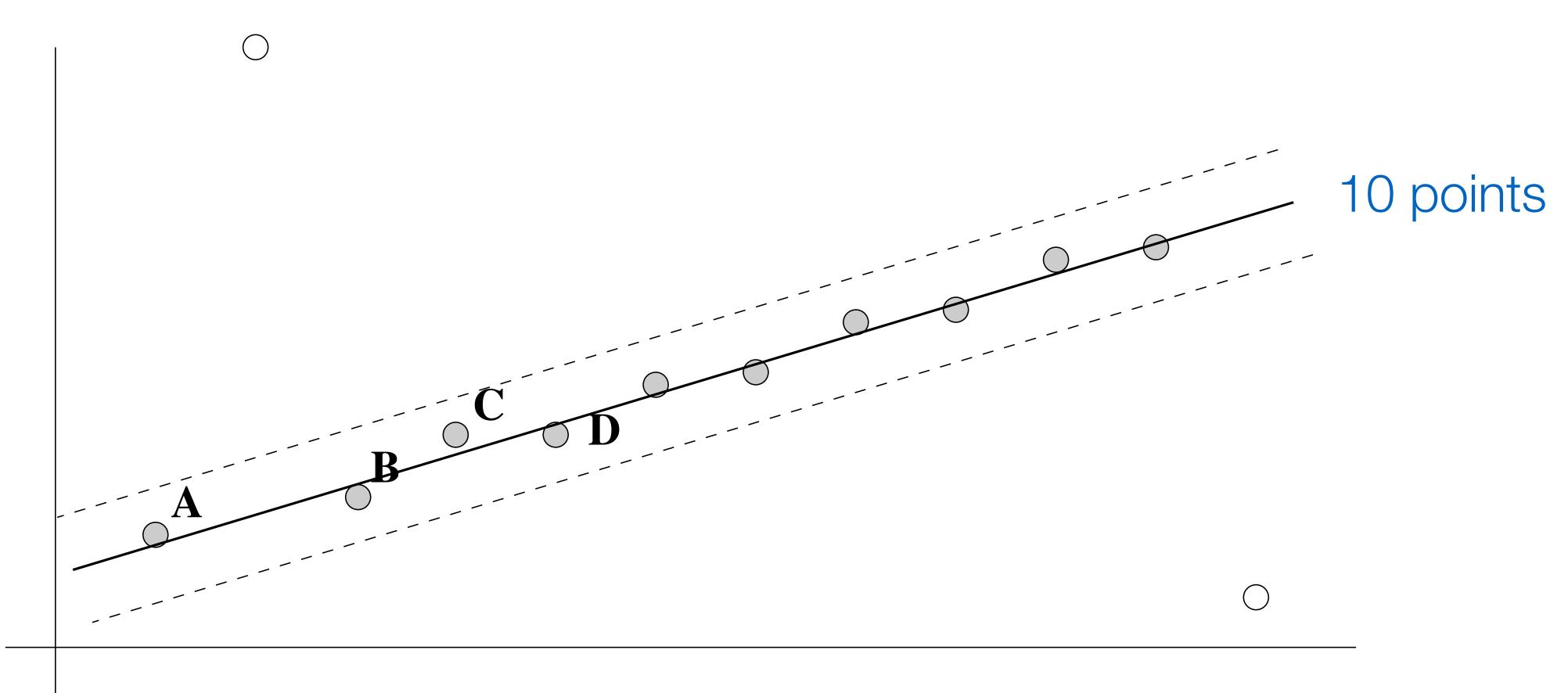
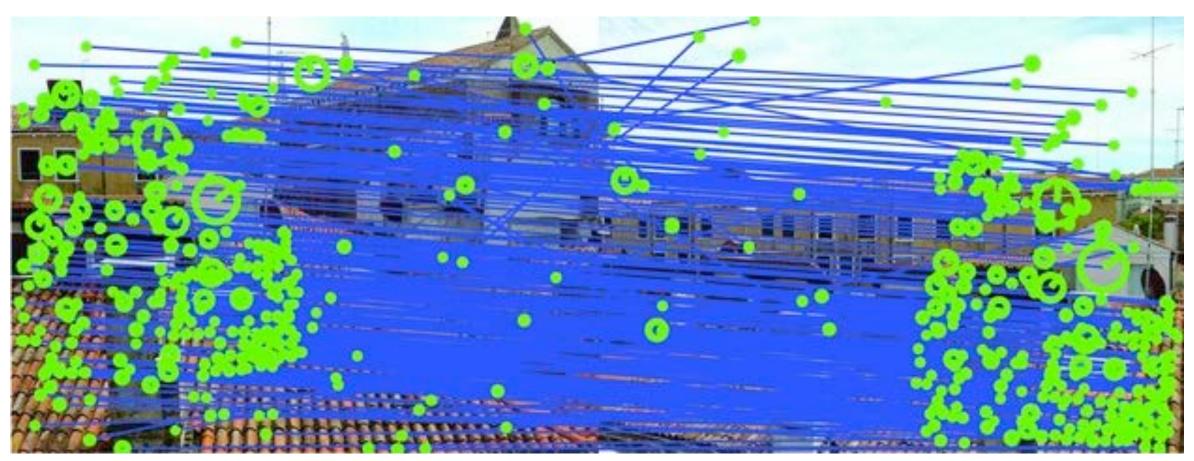


Figure Credit: Hartley & Zisserman

In practice we have many noisy correspondences + outliers



RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown),

RANSAC solution for Similarity Transform (2 points)

4 outliers (blue, light blue, purple, pink)

RANSAC solution for Similarity Transform (2 points)

4 inliers (red, yellow, orange, brown), 4 outliers (blue, light blue, purple, pink)

RANSAC solution for Similarity Transform (2 points)

choose light blue, purple



RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances #inliers = 2

RANSAC solution for Similarity Transform (2 points)

choose pink, blue

warp image

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances #inliers = 2

RANSAC solution for Similarity Transform (2 points)

choose red, orange

RANSAC solution for Similarity Transform (2 points)

check match distances

RANSAC solution for Similarity Transform (2 points)

check match distances

#inliers = 4

- **1.** Match feature points between 2 views
- **2.** Select minimal subset of matches^{*}
- **3.** Compute transformation T using minimal subset
- count #inliers with distance < threshold
- **5.** Repeat steps 2-4 to maximize #inliers

* Similarity transform = 2 points, Affine = 3, Homography = 4

Assignment 4

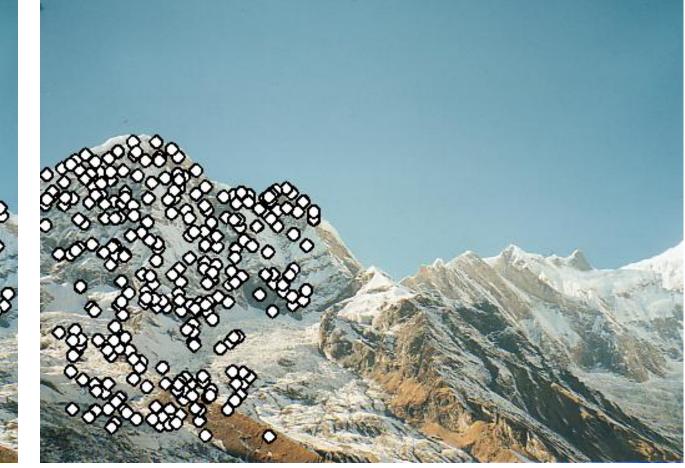
4. Check consistency of all points with T - compute projected position and

2-view Rotation Estimation

Find features + raw matches, use RANSAC to find Similarity

2-view Rotation Estimation

Remove outliers, can now solve for R using least squares

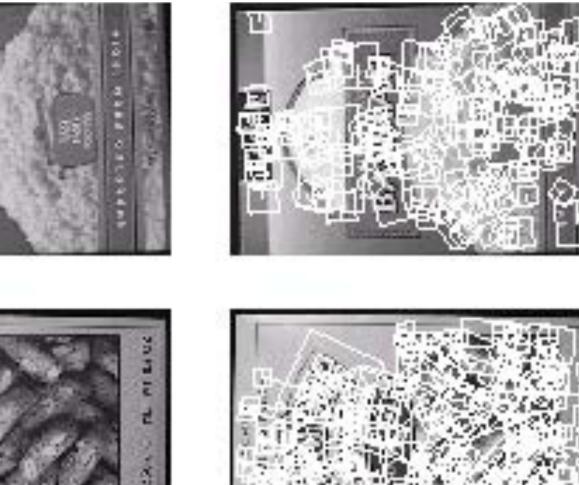


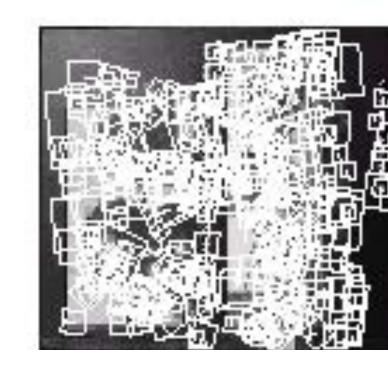
2-view Rotation Estimation

Final rotation estimation

Object Instance Recognition

Database of planar objects





Instance recognition

Slide Credit: Ioannis (Yannis) Gkioulekas (CMU)

- Match SIFT descriptors between query image and a database of known keypoints extracted from training examples
- use fast (approximate) nearest neighbour matching
- threshold based on ratio of distances between 1NN and 2NN

- Match SIFT descriptors between query image and a database of known keypoints extracted from training examples
- use fast (approximate) nearest neighbour matching
- threshold based on ratio of distances between 1NN and 2NN
- Use **RANSAC** to find a **subset of matches** that all agree on an object and geometric transform (e.g., **affine transform**)

- Match SIFT descriptors between query image and a database of known keypoints extracted from training examples
- use fast (approximate) nearest neighbour matching
- threshold based on ratio of distances between 1NN and 2NN
- Use **RANSAC** to find a **subset of matches** that all agree on an object and geometric transform (e.g., **affine transform**)
- Optionally **refine pose estimate** by recomputing the transformation using all the RANSAC inliers

Fitting a Model to Noisy Data Suppose we are **fitting a line** to a dataset that consists of 50% outliers

We can fit a line using two points

If we draw pairs of points uniformly at random, what fraction of pairs will consist entirely of 'good' data points (inliers)?

RANSAC: How many samples?

Let p_0 be the fraction of outliers (i.e., points on line)

- Let *n* be the number of points needed to define hypothesis (n = 2 for a line in the plane)
- Suppose k samples are chosen
- How many samples do we need to find a good solution?

RANSAC: How many samples? (p = 0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Figure Credit: Hartley & Zisserman

In practice...

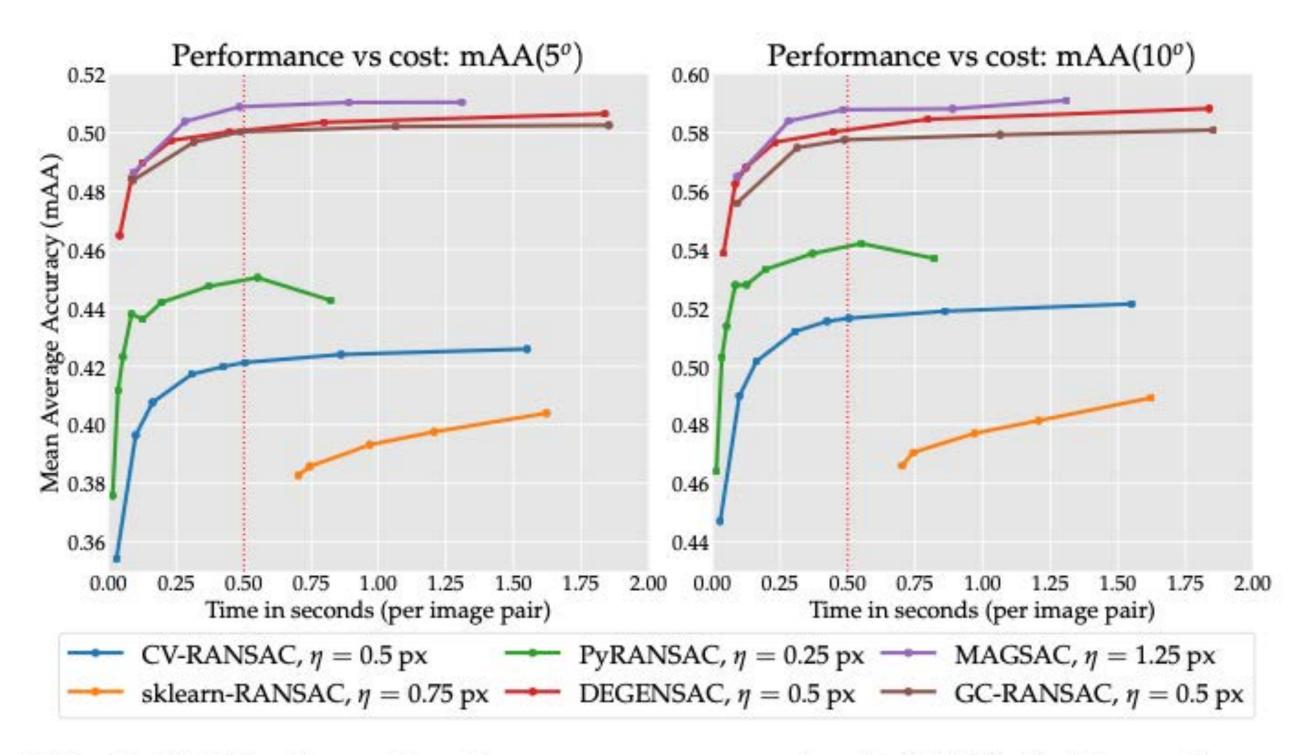


Fig. 9 Validation – Performance vs. cost for RANSAC. We evaluate six RANSAC variants, using 8k SIFT features with "both" matching and a ratio test threshold of r=0.8. The inlier threshold η and iterations limit Γ are variables – we plot only the best η for each method, for clarity, and set a budget of 0.5 seconds per image pair (dotted red line). For each RANSAC variant, we pick the largest Γ under this time "limit" and use it for all validation experiments. Computed on 'n1standard-2' VMs on Google Compute (2 vCPUs, 7.5 GB).

Re-cap: RANSAC

RANSAC is a technique to fit data to a model

- divide data into inliers and outliers
- estimate model from minimal set of inliers
- improve model estimate using all inliers
- alternate fitting with re-classification as inlier/outlier

- easy to implement
- easy to estimate/control failure rate

RANSAC only handles a moderate percentage of outliers without cost blowing up

RANSAC is a general method suited for a wide range of model fitting problems