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Menu for Today
Topics:
— Correspondence Problem — Invariance, geometric, photometric
— Patch matching — SIFT = Scale Invariant Feature Transform

— Today’s Lecture: Szeliski Chapter 7, Forsyth & Ponce 5.4

Reminders:

— Assignment 3: due March 6th!



| earning Goals

1. The design philosophy behind SIFT



Scale Invariant Feature Transform = SIFT

Distinctive Image Features
from Scale-Invariant Keypoints

David G. Lowe
Computer Science Department
University of British Columbia

The SIFT paper (David Lowe) was rejected twice

January 5, 2004

and eventually published only as a Poster).
Became one of the most influential and widely

are shown to provide robust matching across a a substantial range of affine dis-

tortion, change in 3D viewpoint, addition of noise, and change in illumination. | ] ] ] ]

The features are highly distinctive, in the sense that a single feature can be cor-

rectly matched with high probability against a large database of features from c I e p a p e rs I ﬂ e I e ~ C I a I O ﬂ S .
many images. This paper also describes an approach to using these features ,

for object recognition. The recognition proceeds by matching individual fea-

tures to a database of features from known objects using a fast nearest-neighbor

algorithm, followed by a Hough transform to identify clusters belonging to a sin-

gle object, and finally performing verification through least-squares solution for

consistent pose parameters. This approach to recognition can robustly identify
objects among clutter and occlusion while achieving near real-time performance.

Accepted for publication in the International Journal of Computer Vision, 2004.



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Bullding a panorama
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Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Matthew Brown and David Lowe

Figure Cred



Bullding a panorama
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Figure Credit: Matthew Brown and David Lowe



Bullding a panorama

Figure Credit: Matthew Brown and David Lowe



Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between images.

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...
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Building Rome in a Day

The Colosseum: 2,106 images, 819,242 points matched



Correspondence Problem

A basic problem in Computer Vision is to establish matches (correspondences
between images.

This has many applications: rigid/non-rigid tracking, object recognition, image
registration, structure from motion, stereo...




Back to Good Local Features

Where are the good features, and

how do we match them?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Photometric Iransformations

What can we use to deal with this?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

How can we deal with this?

Multiple View
Geometry

0 Lomn

e 1 ey o0t Al oo Tmonr i an

objects will appear at different scales,
translation and rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Lets assume for the moment we can figure out where the good features
(oatches) are ... how do we match them?

How do we localize good features to match (think back 1-2 lectures)?

Harris, Blob are locally distinct (this is minimally what we need)



Back to Good Local Features

How do we know which corner goes with which?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Back to Good Local Features

How do we know which blob goes with which®

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Back to Good Local Features

Patch around the local feature Is very informative

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Recall: Feature Detector

Straight Lines




Recall: Feature Descriptor
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Shape Context

A: Feature network B: Metric network

Bottleneck FC3 + Softmax

FC1
Conv4
Conv3 C: MatchNet in training
Cross-Entropy Loss
Conv2

Pool1

Conv1

Pool0

Conv0

Preprocessing
Sampling

L earned Descriptors




Intensity Image

Just use the pixel values of the patch

= (FIEEORE - DEREYY)

vector of intensity values

Perfectly fine If geometry and appearance Is unchanged

(a.k.a. template matching)

What are the problems”?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Intensity Image

Just use the pixel values of the patch

= (FIEEORE - DEREYY)

vector of intensity values

Perfectly fine If geometry and appearance Is unchanged

(a.k.a. template matching)

What are the problems”?

How can you be less sensitive to absolute intensity values?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems”?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Image Gradients / Edges

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values

What are the problems”?

How can you be less sensitive to deformations’?

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Geometric Transformations

How can we deal with this?

Multiple View
Geometry

0 Lomn

e 1 ey o0t Al oo Tmonr i an

objects will appear at different scales,
translation and rotation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Local Coordinate Frame

One way to achieve invariance is to use local coordinate frames that follow
the surface transformation (covariant) and compute features descriptors in them
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Strategy #1: Detecting Scale / Orientation

A common approach is to detect a local scale and orientation for each feature
poiNt

e.g., extract Harris at multiple scales and align to the local gradient



Strategy #1: Detecting Scale / Orientation

A common approach is to detect a local scale and orientation for each feature
poiNt

8 pixels
¢t

e.g., extract Harris at multiple scales and align to the local gradient



Strategy #1: Compute Features in Local Coordinate Frame

First rotate to canonical frame of reference (e.q., align feature direction
with y-axis) and only then compute a feature representation



Strategy #1: Compute Features in Local Coordinate Frame

First scale to canonical frame of reference and only then compute a feature
representation



Strategy #2: Represent Distributions over Gradients

Use pixel differences

vector of x derivatives

Feature Is invariant to absolute intensity values



Where does SIFT fit In”?

Representation Result Is. .. Approach Technique
tamplate (normalized)
Intensity dense (2D) matshin correlation,
J SSD
relatively . 5
edge sparse (1D) derivatives -G, Canny
) . § locally distinct .
corner / “blob sparse (0D) P——. Harris, SIFT




Object Recognition with Scale Invariant Feature Transform

Task: |dentify objects or scenes and determine their pose and model
parameters

Applications:

— Industrial automation and inspection
— Mobile robots, toys, user interfaces

— Location recognition

— Digital camera panoramas

— 3D scene modeling, augmented reality



David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters

SIFT Features



David Lowe’s Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters

\5




Advantages of Invariant Local Features

Locality: features are local, so robust to occlusion and clutter (no prior
segmentation)

Distinctiveness: individual features can be matched to a large database of
objects

Quantity: many features can be generated for even small objects

Efficiency: close to real-time performance



Scale Invariant Feature Transform (SIFT

SIFT describes both a detector and descriptor

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Multi-scale Extrema Detection

Half the size
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Slide Credit: loannis (Yannis) Gkioulekas (CMU)



1. Multi-scale Extrema Detection

Half the size
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1. Multi-scale Extrema Detection

Half the size
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Recall: Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17

001 .,

<001
002 .
003
004
0,05

-0.06 -,

007

Slide Credit: loannis (Yannis) Gkioulekas (CMU)
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Searching over Scale-space
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1. Multi-scale Extrema Detection

Half the size
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1. Multi-scale Extrema Detection

Laplacian



1. Multi-scale Extrema Detection

Detect maxima and minima of Difference of Gaussian in scale space

Selected if larger or
smaller than all 26
neighbors
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1. Multi-scale Extrema Detection — Sampling Frequency

More points are found as sampling frequency increases, but accuracy of matching
decreases after 3 scales/octave

100 .5 . .

Correctly matched
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1. Multi-scale Extrema Detection — Sampling Frequency

More points are found as sampling frequency increases, but accuracy of matching
decreases after 3 scales/octave




2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge



2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?



2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?
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2. Keypoint Localization

— After keypoints are detected, we remove those that have low contrast or
are poorly localized along an edge

How do we decide whether a keypoint is poorly localized, say along an edge,
vs. well-localized?

— Lowe suggests computing the ratio of the eigenvalues of C (recall Harris
corners) and checking if it is greater than a threshold

— Aside: The ratio can be computed efficiently in fewer than 20 floating point
operations, using a trick involving the trace and determinant of C - no need to
explicitly compute the eigenvalues



2. Keypoint Localization

(a)

233 x 189
Image

832 DOG
extrema

729 left after
peak value
threshold

536 left after
testing ratio
of principal
curvatures



3. Orientation Assignment

— Create histogram of local gradient
directions computed at selected scale /

— Assign canonical orientation at peak
of smoothed histogram

— Each key specifies stable 2D
coordinates (x , y , scale, orientation)




3. Orientation Assignment

|
|
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NOONONT NN NN N
NOONON NN N NN
I
I

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)



3. Orientation Assignment
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)




3. Orientation Assignment

|
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NOOONONNNN NN
NOONONT NN NN N
NOONON NN N NN
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)




3. Orientation Assignment

|
|
NOONON NN N NN

NOOONONNNN NN
NOONONT NN NN N
NOONON NN N NN
I
I

Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)



3. Orientation Assignment
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)



3. Orientation Assignment

|

|
NOONONNN NN N
NOOONONNNN NN

NOOONON NN N NN
NOONON NN N NN
I
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)



3. Orientation Assignment

|
|
NOONON NN NN N

NOOONONNNN NN
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I
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/TN = N

Arrows illustrate gradient orientation (direction) T
aﬂd gradient magnitUde (arI’OW |eﬂgth) ASSlgned Orientation



3. Orientation Assignment
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3. Orientation Assignment

Multiply gradient magnitude by a Gaussian kernel
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Arrows illustrate gradient orientation (direction)
and gradient magnitude (arrow length)




3. Orientation Assignment

— Histogram of 36 bins (10 degree
iIncrements)

— Size of the window is 1.5 scale (recall /
the Gaussian filter)

— Gaussian-weighted voting

— Highest peak and peaks above 80% of
highest also considered for calculating
dominant orientations




3. Keypoint Localization

(a)

233 x 189
Image

832 DOG
extrema

729 left after
peak value
threshold

536 left after
testing ratio
of principal
curvatures



Scale Invariant Feature Transform (SIFT

SIFT describes both a detector and descriptor

73 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



4. Keypoint Description

We have seen how to assign a location, scale, and orientation to each key point
— keypoint detection

— The next step Is to compute a keypoint descriptor: should be robust to
local shape distortions, changes in illumination or 3D viewpoint

— Keypoint detection Is not the same as keypoint description, e.g. some
applications skip keypoint detection and extract SIFT descriptors on a regularly
spaced grid



4. SIFT Descriptor

— Image gradients are sampled over 16 x 16 array of locations in scale space
(weighted by a Gaussian with sigma half the size of the window)

— Create array of orientation histograms
— 8 orientations x 4 x 4 histogram array

Image gradients Keypoint descriptor



4. SIFT Descriptor

How many dimensions are there in a SIFT descriptor”?

(Note: This diagram shows a 2 x 2 histogram array but the actual descriptor
uses a 4 x 4 histogram array)

Image gradients Keypoint descriptor



4. SIFT Descriptor — Photometric Invariance

Descriptor is normalized to unit length (l.e. magnitude of 1) to reduce the
effects of lllumination change

— If brightness values are scaled (multiplied) by a constant, the gradients are
scaled by the same constant, and the normalization cancels the change

— If brightness values are increased/decreased by a constant (additive), the
gradients do not change



SIFT Recap

Detector:
— FIind points that are maxima in a DOG pyramid
— Compute local orientation from gradient histogram

— This establishes a local coordinate frame with scale/orientation

Descriptor:
— Build histograms over gradient orientations (8 orientations, 4x4 grid)

— Normalise the final descriptor to reduce the effects of illumination change



SIFT Matching

Extract features from the image ...

ht generate 100’s or 1000’s of SIFT descriptors

image mig

Each



SIFT Matching
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SIFT Matching

— Each SIFT feature is represented by 128-D vector (humbers)
— Feature matching becomes the task of finding the closest 128-D vector

— Nearest-neighbor matching:

NN (j) = argmin |X; — X;|, © # J

1

— This is expensive (linear time), but good approximation algorithms exist

e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast Library for
Approximate Nearest Neighbours) [Muja Lowe 2009]




Match Ratio Test

Compare ratio of distance of nearest neighbour (1NN) to second nearest

(2NN) neighbour — this will be a non-matching point

Rule of thumb: d(1NN) < 0.8 * d(2NN) for good match
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Feature Stability to Noise

Match features after random change in image scale & orientation, with differing
levels of Image noise

FINnd nearest neighbour In database of 30,000 features
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Feature Stabllity to Affine Change

Match features after random change in image scale & orientation, with differing
levels of Image noise

FINnd nearest neighbour In database of 30,000 features
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Summary
Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection
— use DoG pyramid
— 3 scales/octave, down-sample by factor of 2 each octave
2. Keypoint localization

— select stable keypoints (threshold on magnitude of extremum, ratio of
principal curvatures)

3. Keypoint orientation assignment
— pased on histogram of local image gradient directions

4. Keypoint descriptor
— histogram of local gradient directions — vector with 8 x (4 x 4) = 128 dim
— vector normalized (to unit length)



Histogram of Oriented Gradients (HOG) Features ﬂ\

Dalal, Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

histogram of
‘unsigned’
gradients

Cell

(8x8 pixels) [H8 —=ilinals

gradient magnitude histogram
(one for each cell)

_. soft binning
(2x2 cells)

Concatenate and L-2 normalization

Single scale, no dominant orientation

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Histogram of Oriented Gradients (HOG) Features

1 cell step size visualization

Pedestrian detection

128 pixels 15X 7 x4 X9 =
10 cells 3780
15 blocks

64 pixels
3 cells
7/ blocks

Redundant representation due to overlapping blocks
Slide Credit: loannis (Yannis) Gkioulekas (CMU)



'Speeded’ Up Robust Features (SURF)

4 x 4 cell grid

- Each cell Is represented

/ by 4 values:

71 S e, Yy, Y ldel, S |

Haar wavelets filters

dy

| sample
| poIints

How big is the SURF descriptor?
04 dimensions

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



'Speeded’ Up Robust Features (SURF)

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Keypoint Detectors vs. Descriptors

— Harris — SIFT
— Blob (Laplacian) — HoG
— SIFT — SURF



Fallure Case: Repetitive Structures

Window detall

Repetitive structures cause problems for
feature matching

Multiple locations in an image provide good
matches and have similar matching scores

They are particularly common in man-made
environments

Brick pattern

91



Learning Descriptors

Descriptor design as a learning (embedding) problem

[ Winder Brown 2007 ]



DeepDesc [ICCV 2015]

Learning an “embedding”

-

Shared
We|ghts

- -

Minimize the distance for corresponding matches.

) [(x1,%>) -

Maximize It for non-corresponding patches.

Slide credits, Eduard Trulls 93



|_earning with STM dataset

Training set #1:




| earned vs SIFT
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T

With COTR, we find where the four corners of the First frame went.
We visualize the results by augmenting another painting on top.
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With COTR, we find dense correspondences, which we can
reconstruct a dense 3D model from just two calibrated views.



https://youtu.be/OalLxTz1Yw7M
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Facial landmarks can also be tracked by using COTR easily
by Finding correspondences with the first frame.
NOTE that COTR was never trained on faces or deformable surfaces.




https://youtu.be/ -cjO3KqgJ w

Even with the crazy transformations that we never trained
COTR Ffor, it finds good correspondences amazingly well.
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Summary
Four steps to SIFT feature generation:

1. Scale-space representation and local extrema detection
— use DoG pyramid
— 3 scales/octave, down-sample by factor of 2 each octave
2. Keypoint localization

— select stable keypoints (threshold on magnitude of extremum, ratio of
principal curvatures)

3. Keypoint orientation assignment
— pased on histogram of local image gradient directions

4. Keypoint descriptor
— histogram of local gradient directions — vector with 8 x (4 x 4) = 128 dim
— vector normalized (to unit length)



