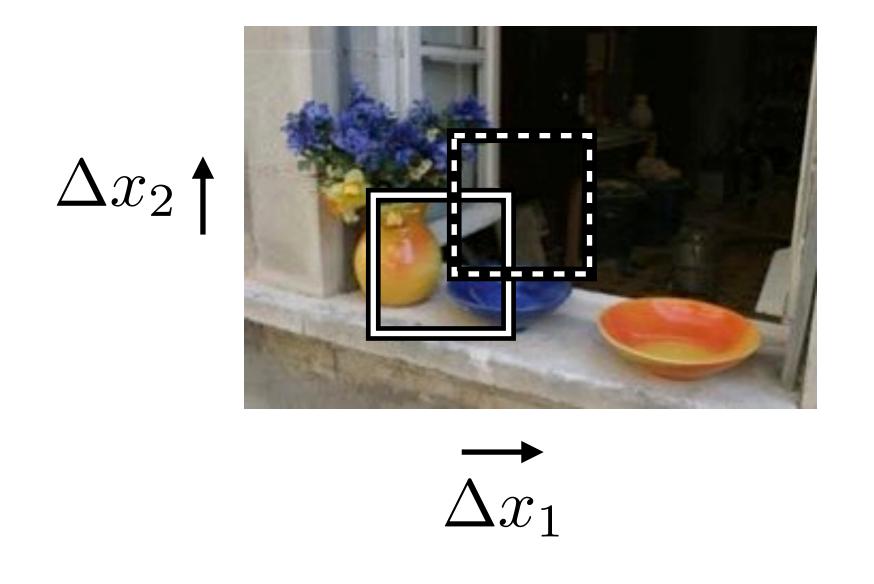
Harris Corners



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$
$$= \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

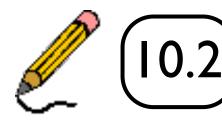
$$\mathbf{H} = \sum_{\mathcal{R}} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

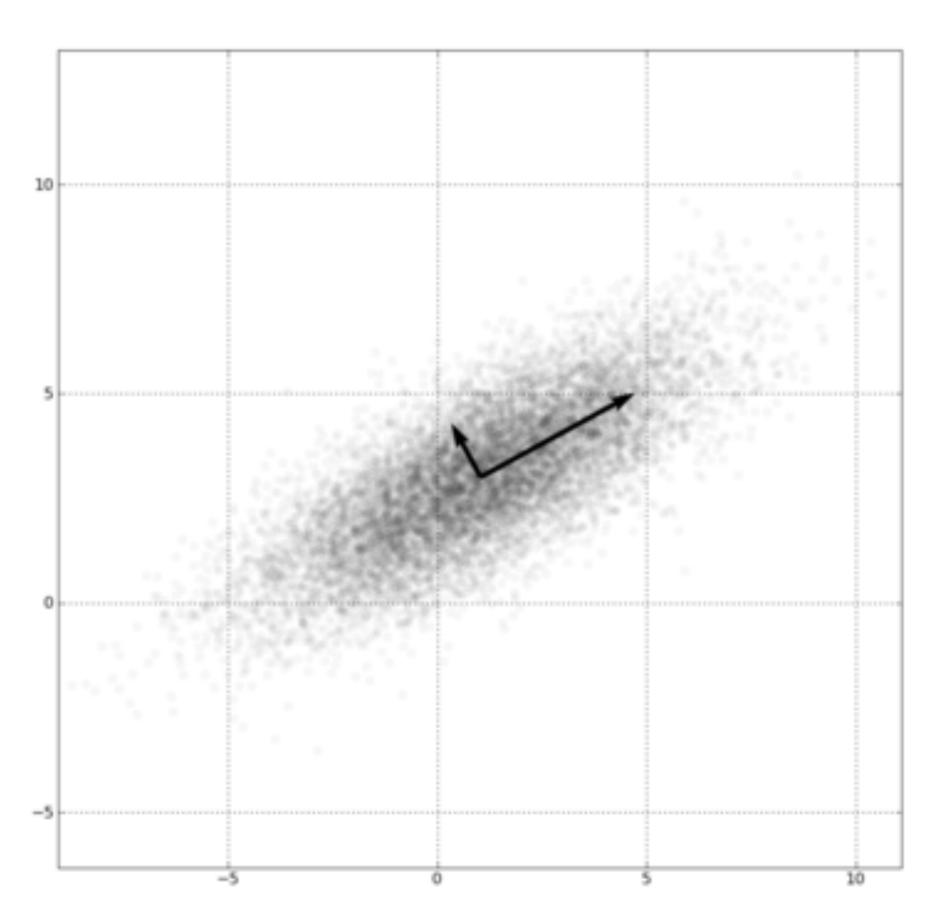
SSD function must be large for all shifts $\Delta \mathbf{x}$ for a corner / 2D structure

This implies that both eigenvalues of $\,H\,$ must be large

Note that H is a 2x2 matrix

Recap: Computing Eigenvalues and Eigenvectors





https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Harris Corner Detection

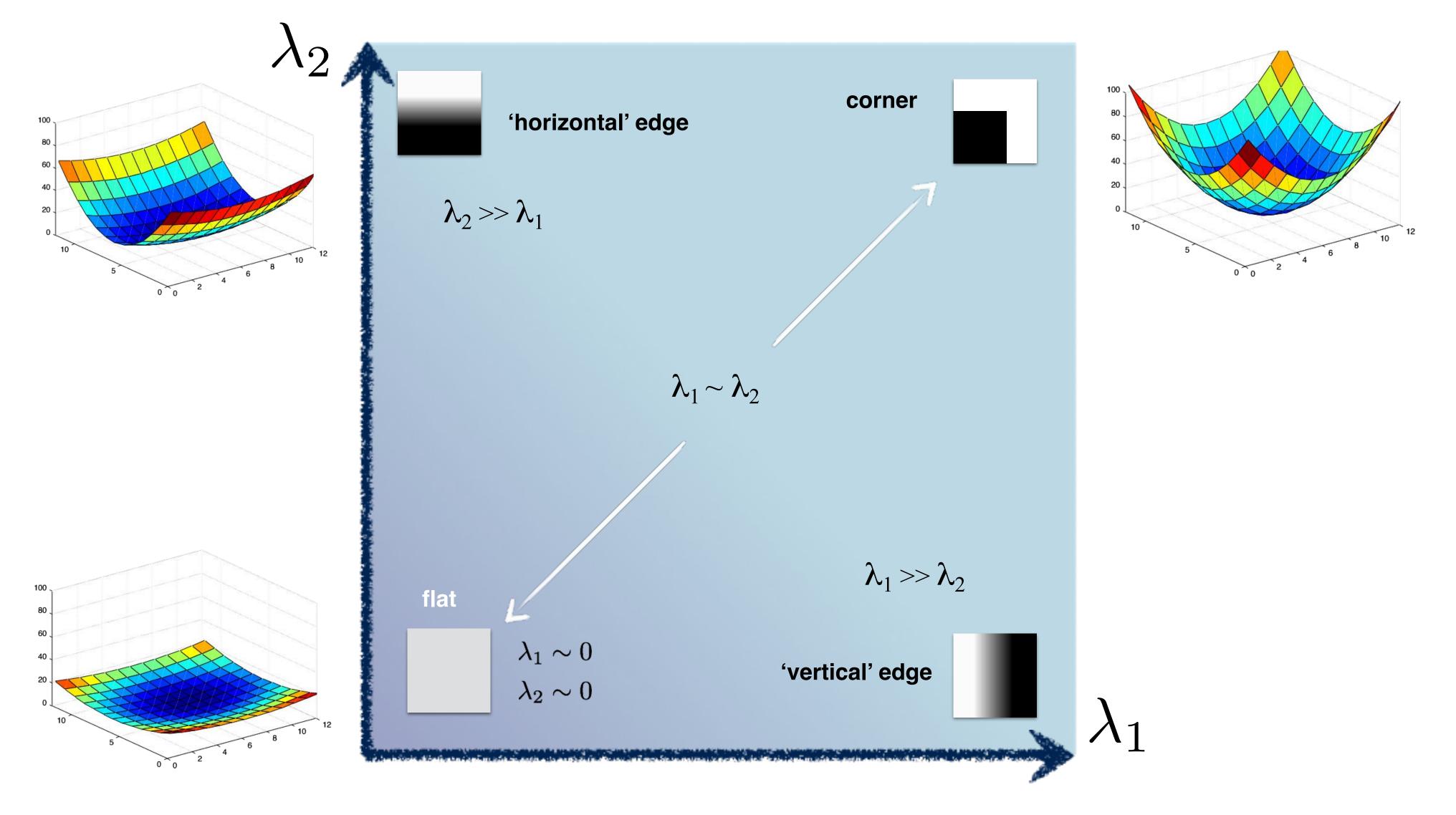
- 1.Compute image gradients over small region
- 2. Compute the covariance matrix
- 3.Compute eigenvectors and eigenvalues
- 4.Use threshold on eigenvalues to detect corners

$$I_x = \frac{\partial I}{\partial x}$$

$$I_y = \frac{\partial I}{\partial y}$$

$$\left[egin{array}{ccc} \sum\limits_{p \in P} I_x I_x & \sum\limits_{p \in P} I_x I_y \ \sum\limits_{p \in P} I_y I_x & \sum\limits_{p \in P} I_y I_y \ \end{array}
ight]$$

Interpreting Eigenvalues



Threshold on Eigenvalues to Detect Corners

(a function of)

Harris & Stephens (1988)

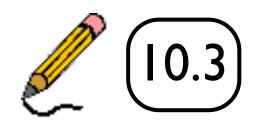
$$\det(C) - \kappa \operatorname{trace}^2(C)$$

Kanade & Tomasi (1994)

$$\min(\lambda_1, \lambda_2)$$

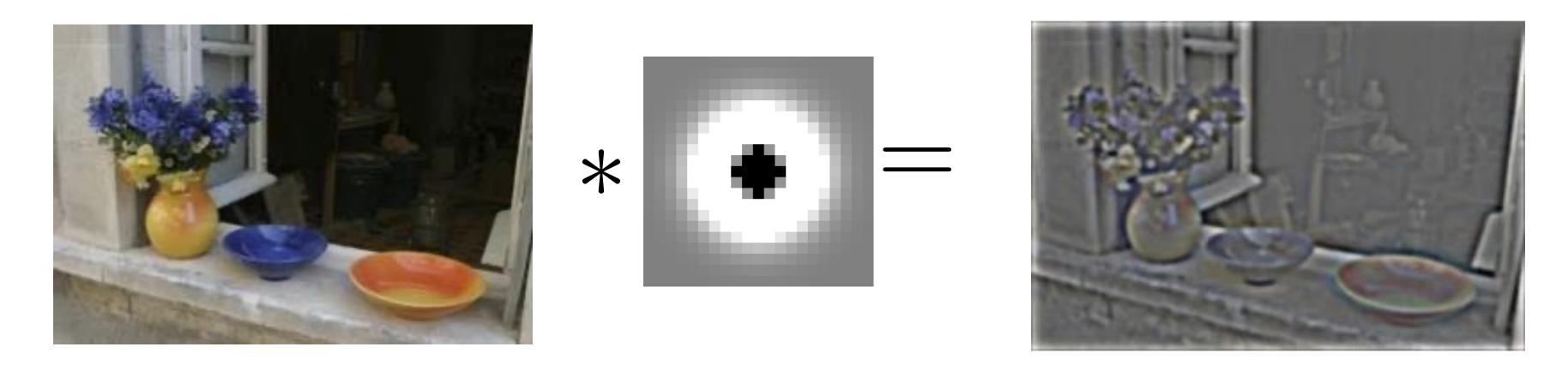
Nobel (1998)

$$\frac{\det(C)}{\operatorname{trace}(C) + \epsilon}$$



Difference of Gaussian

DoG = centre-surround filter

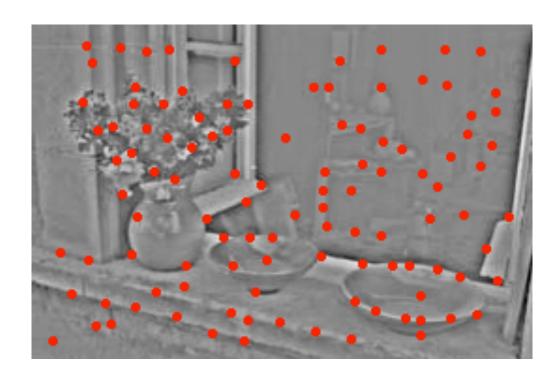


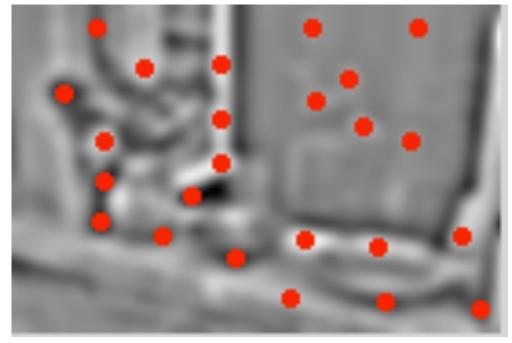
• Find local-maxima of the centre surround response

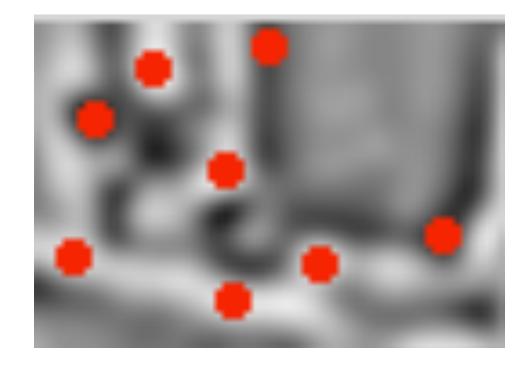
Non-maximal suppression:
These points are maxima in
a 10 pixel radius

Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)



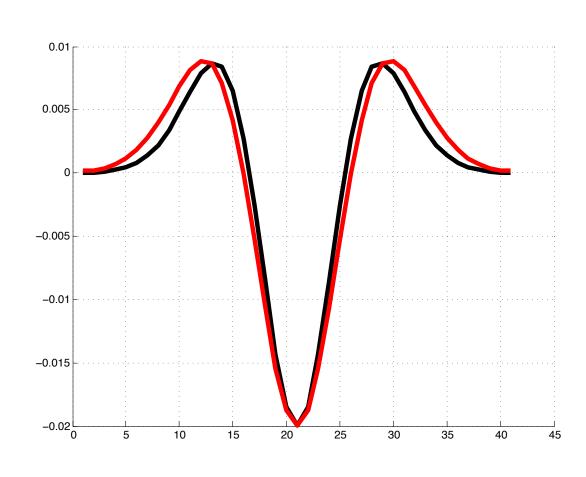




Note: DOG ≈ Laplacian of Gaussian

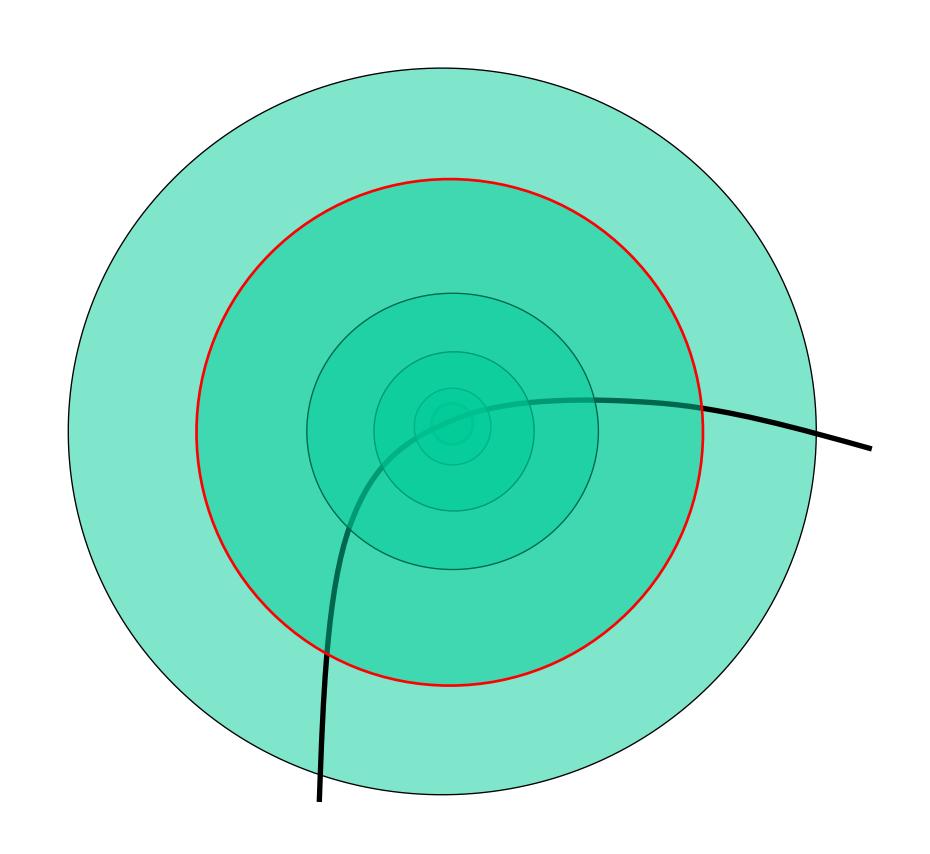
$$red = [1 -2 1] * g(x; 5.0)$$

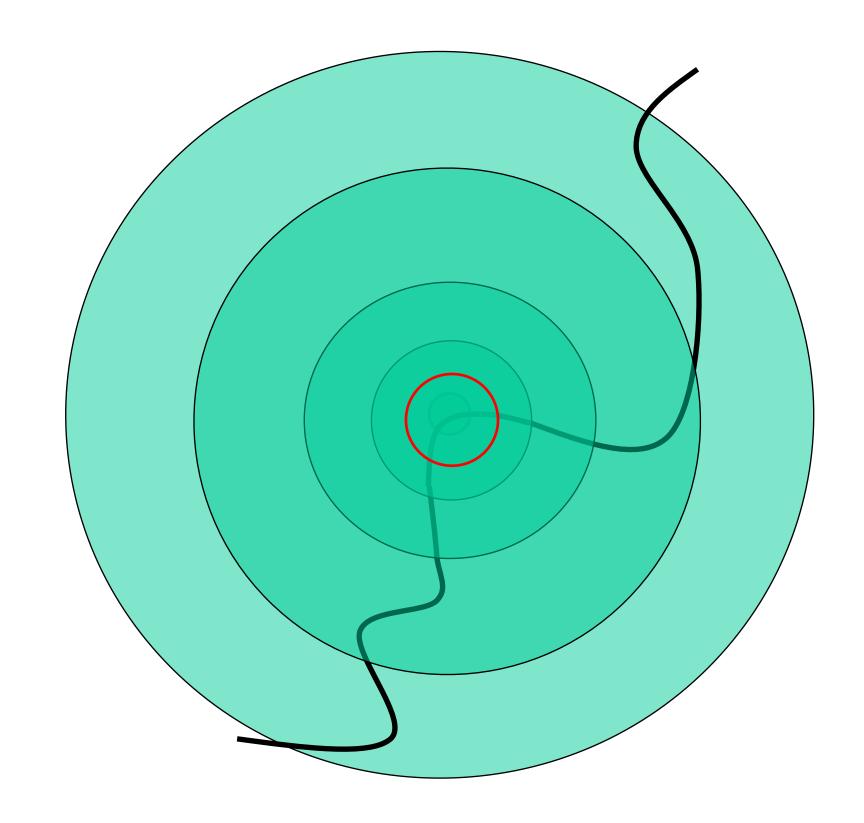
black =
$$g(x; 5.0) - g(x; 4.0)$$



Scale Invariant Interest Point Detection

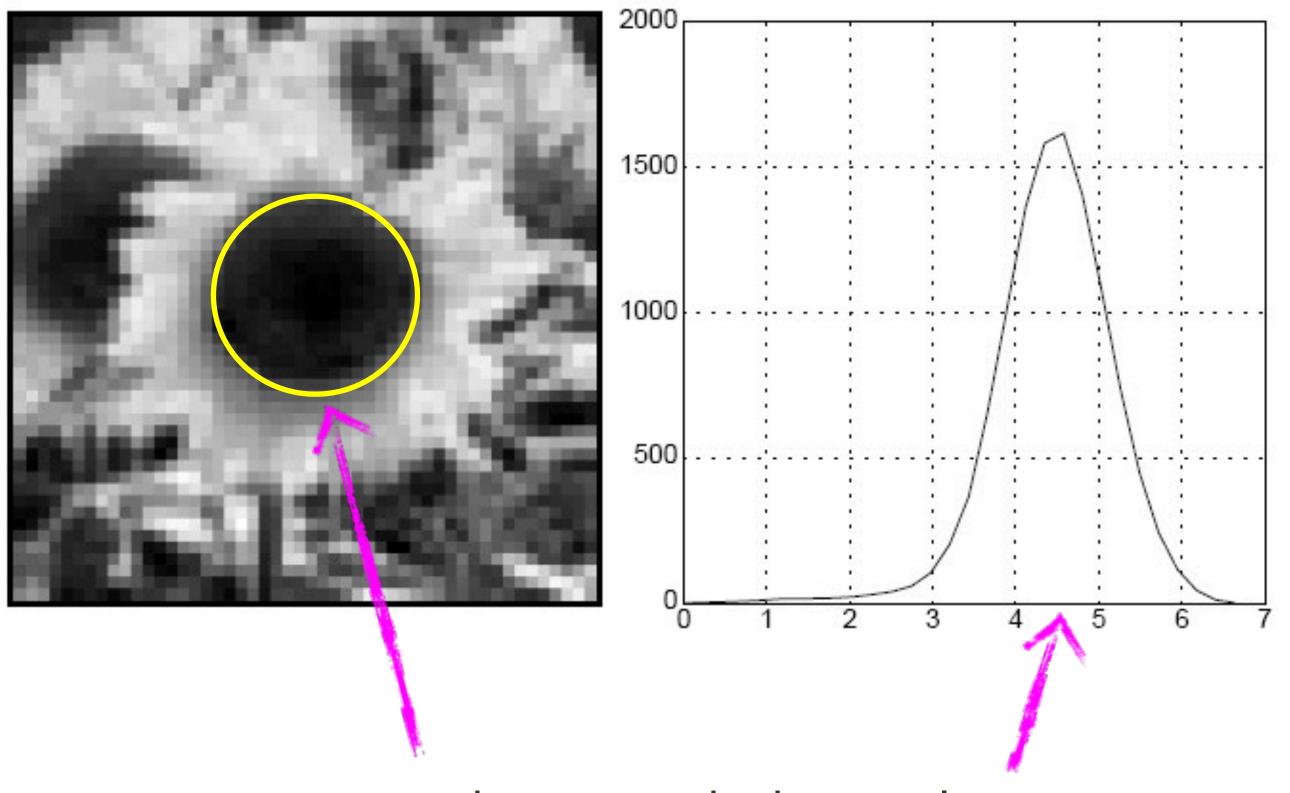
Find local maxima in both position and scale





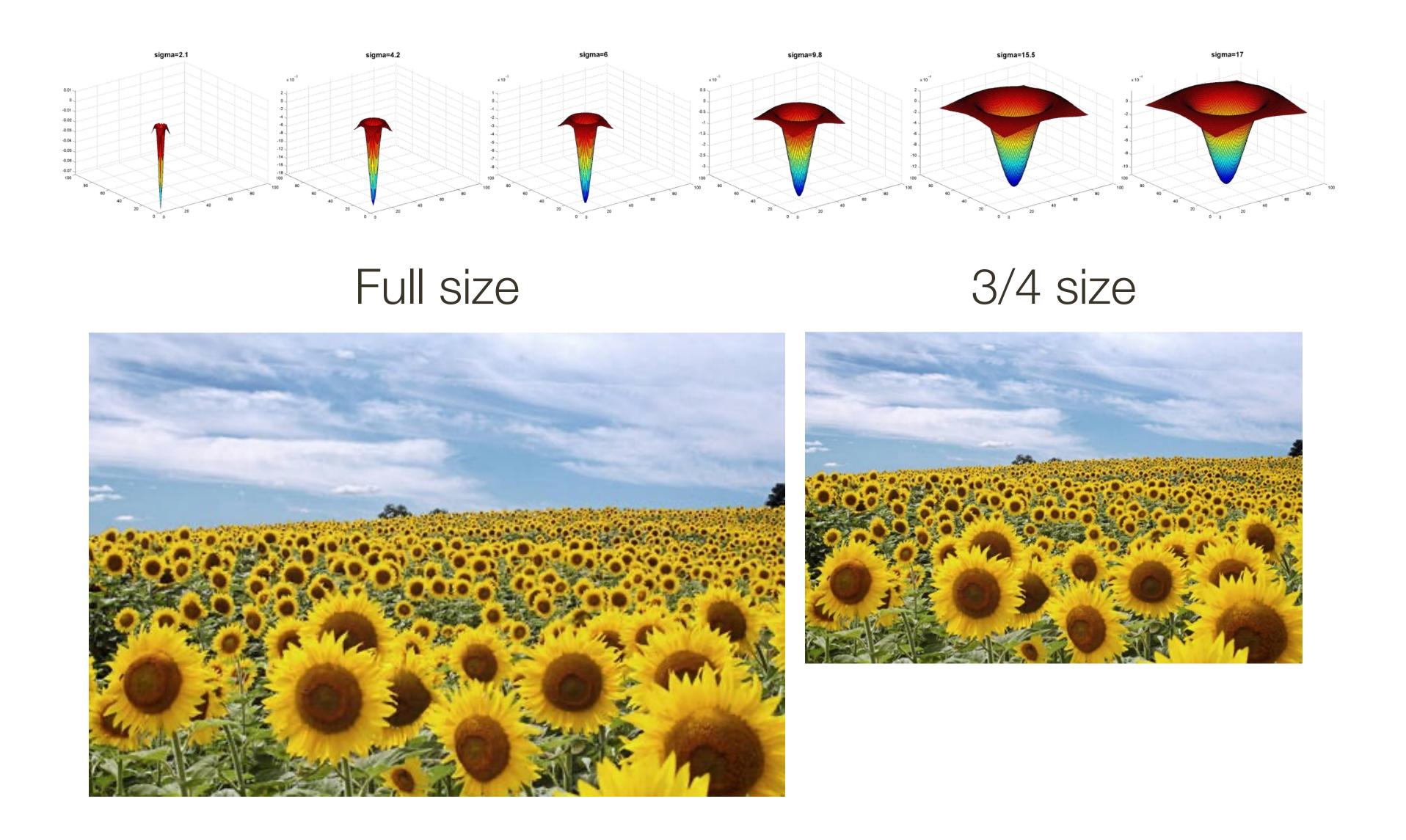
Characteristic Scale

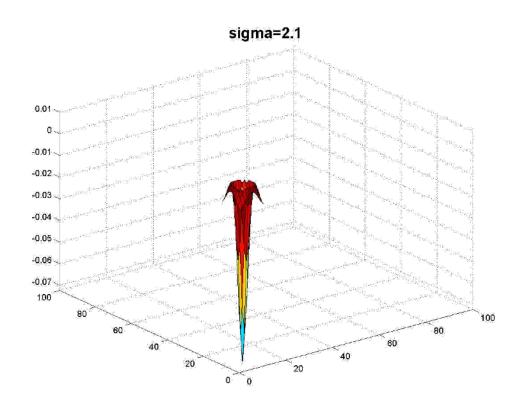
characteristic scale - the scale that produces peak filter response

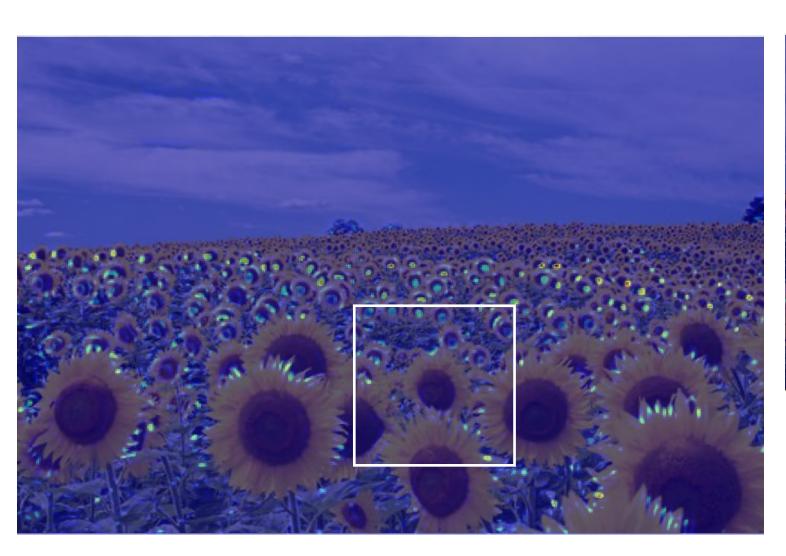


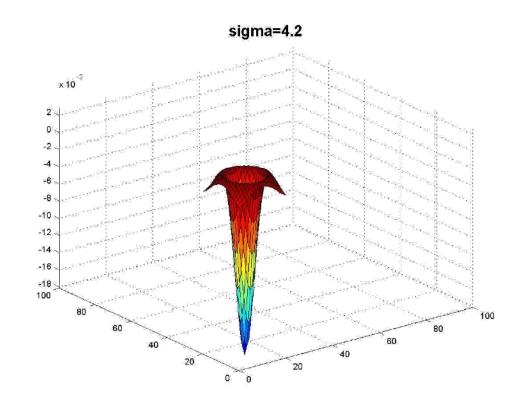
characteristic scale

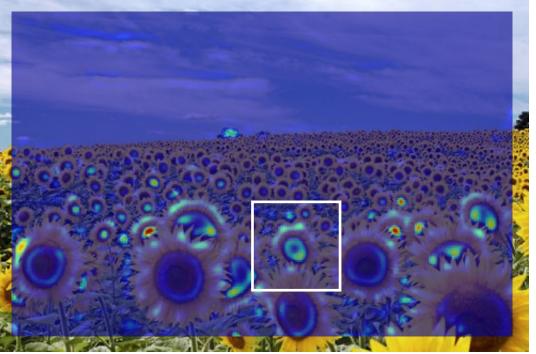
we need to search over characteristic scales

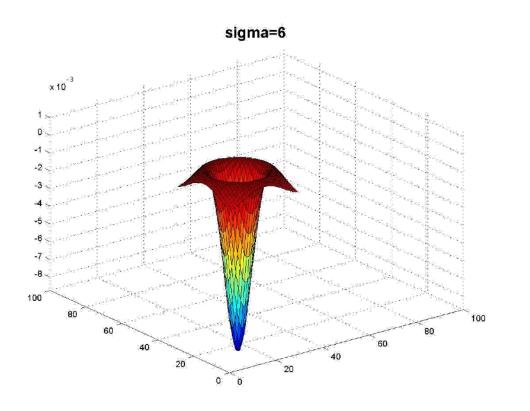


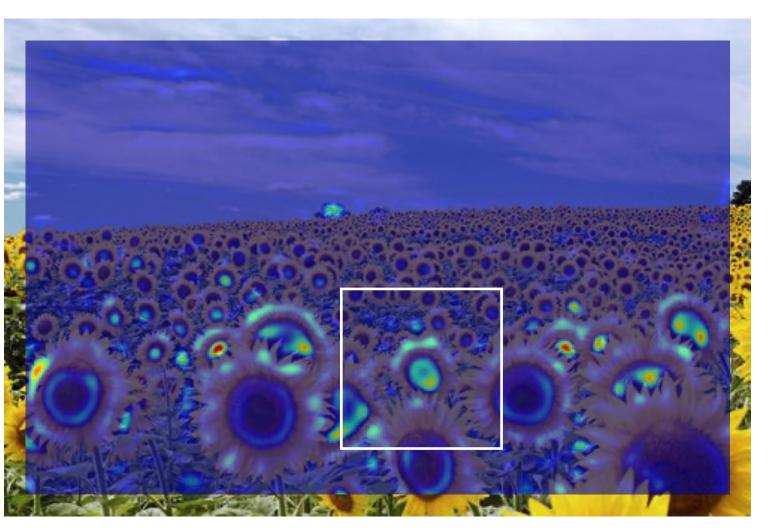


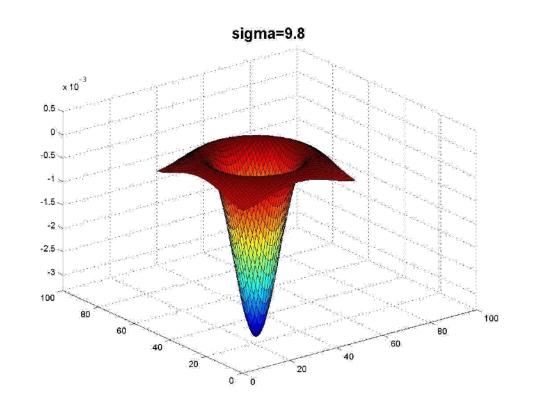


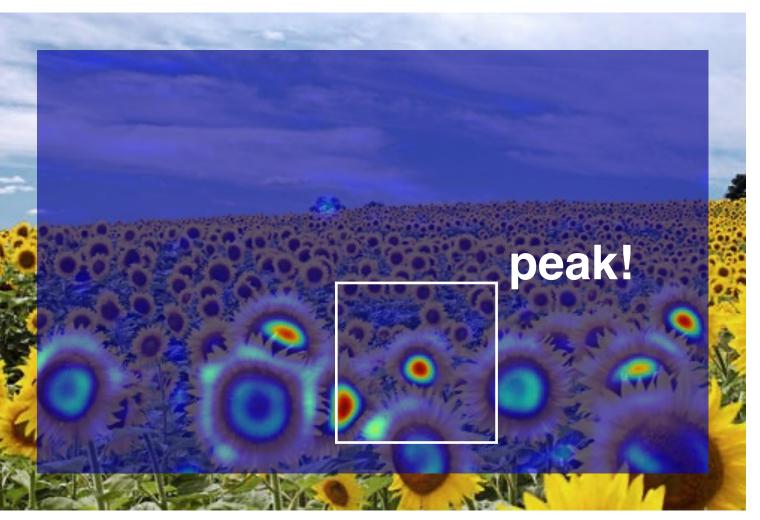


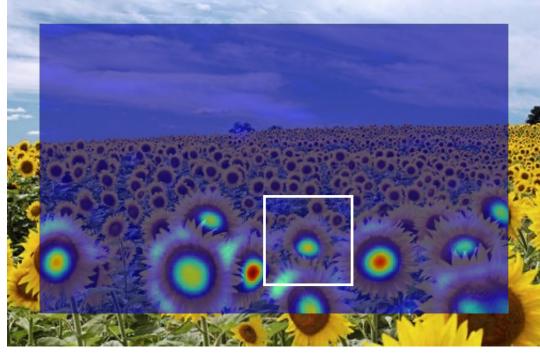


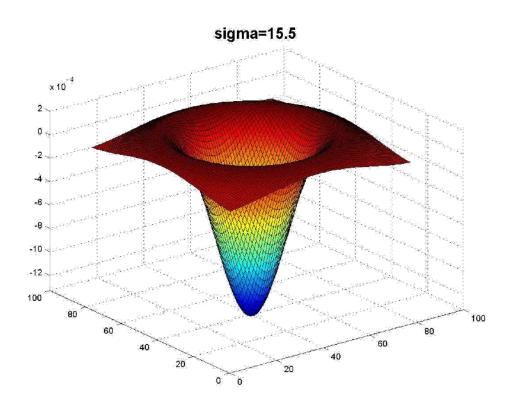


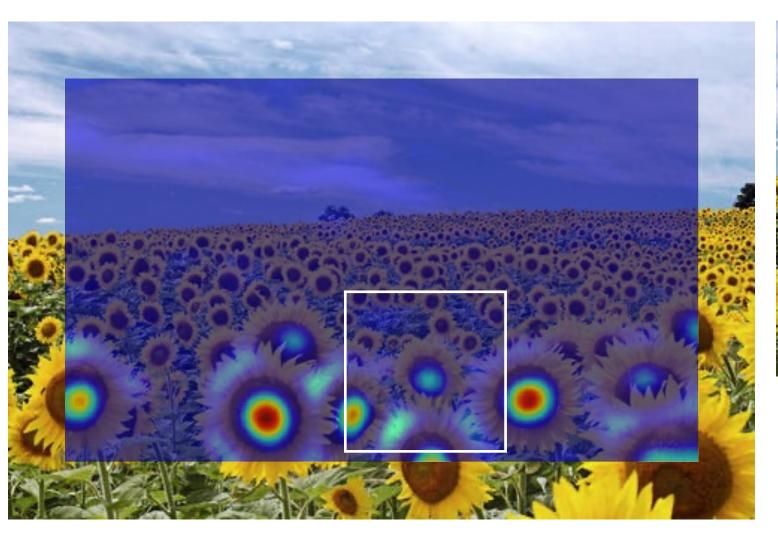


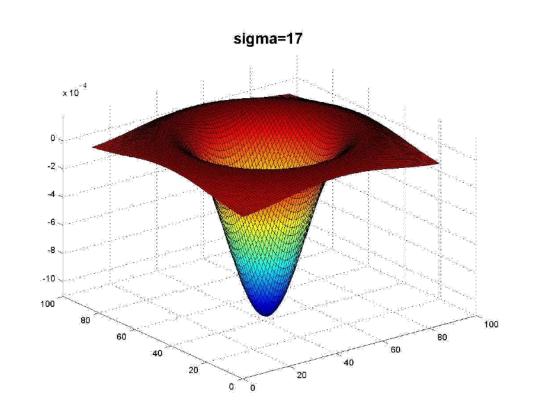


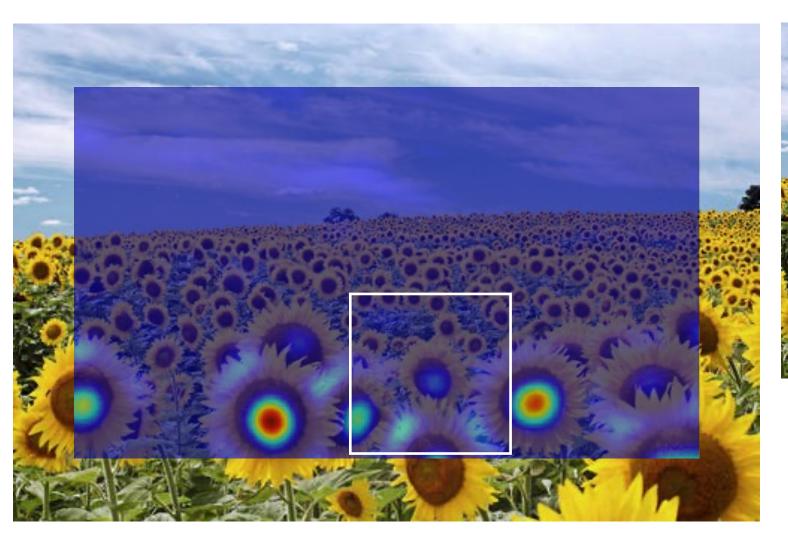


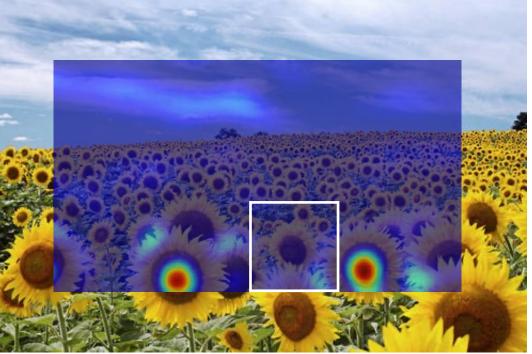


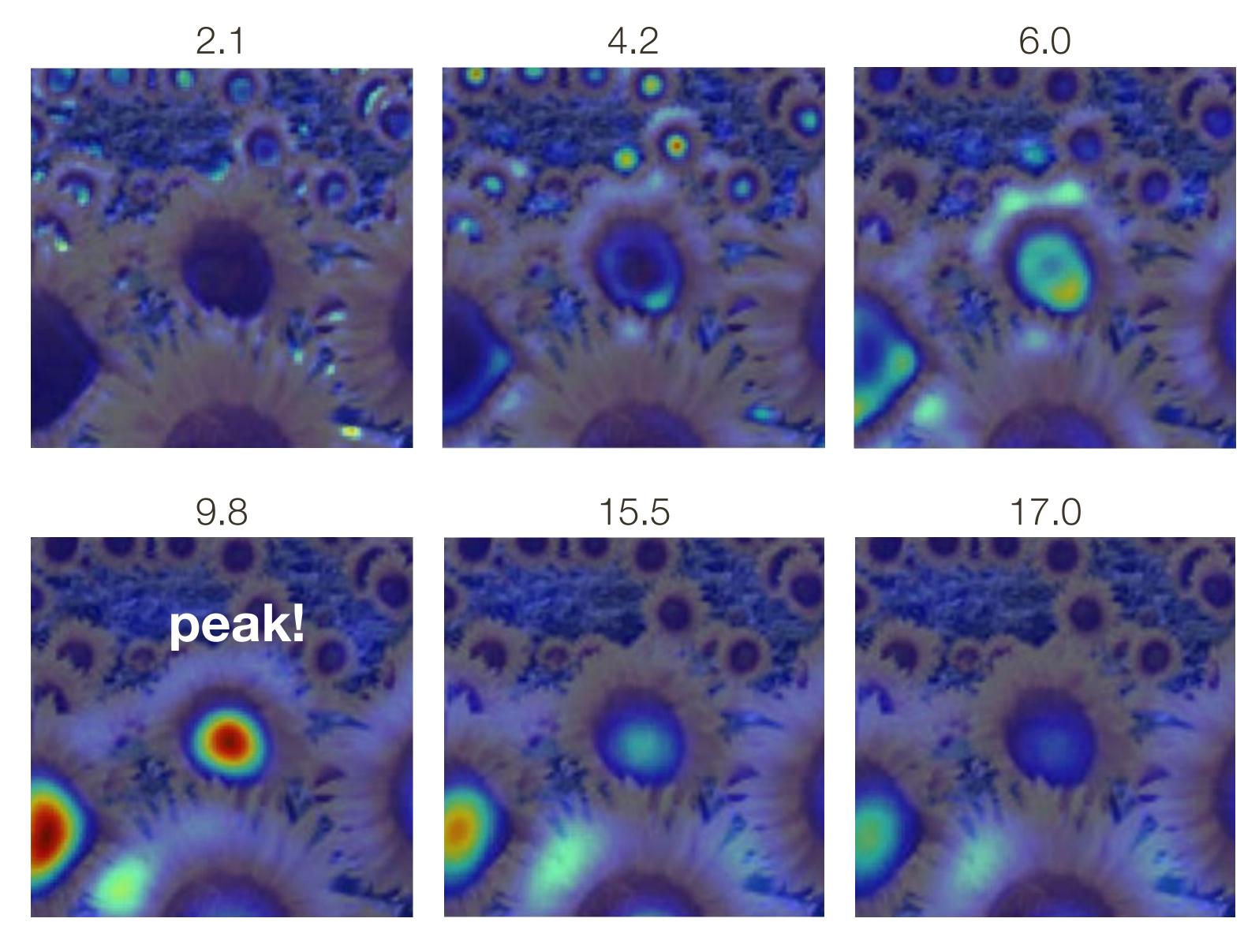




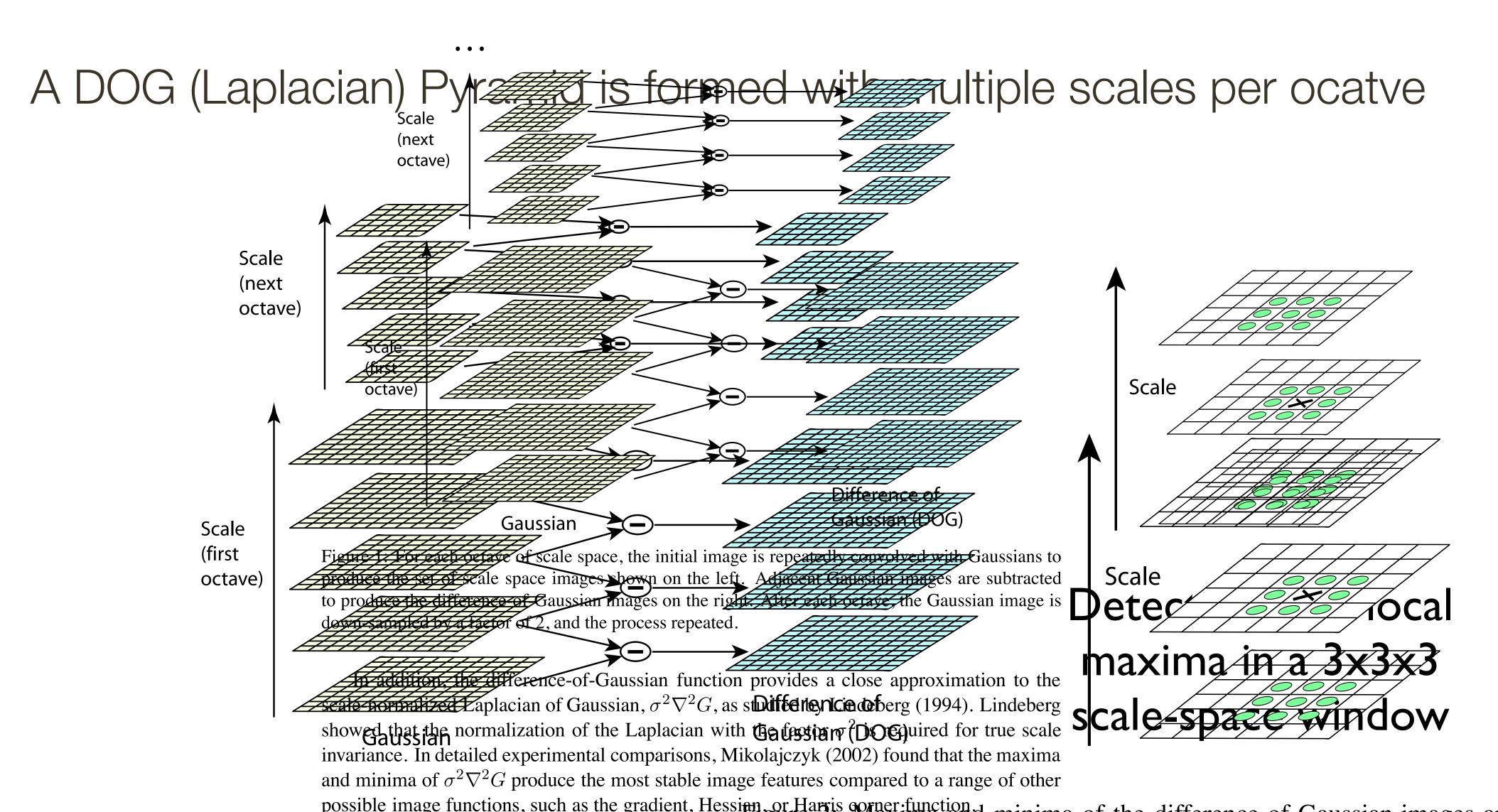








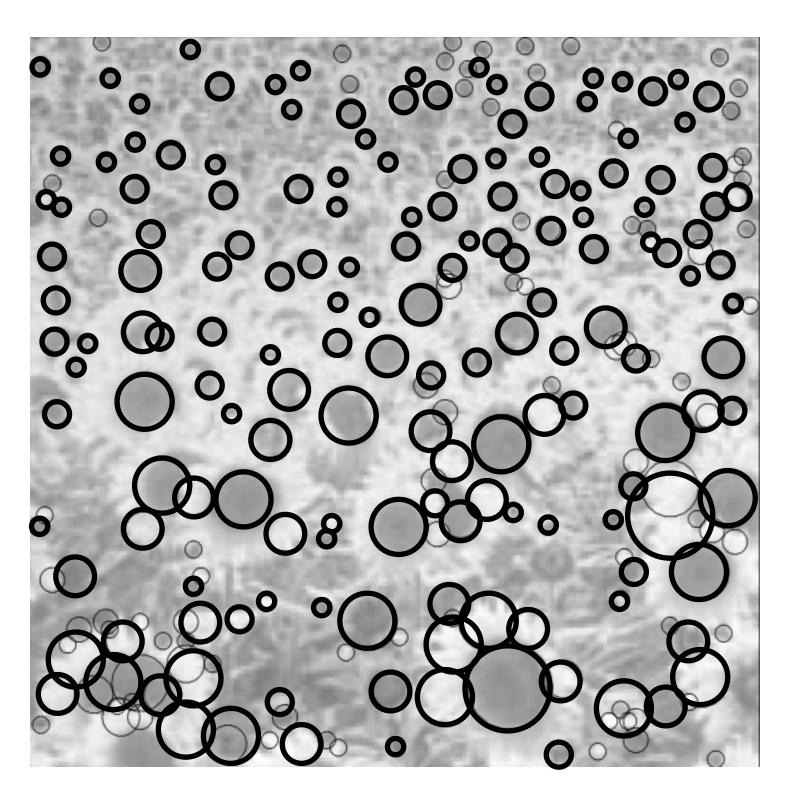
Scale Selection

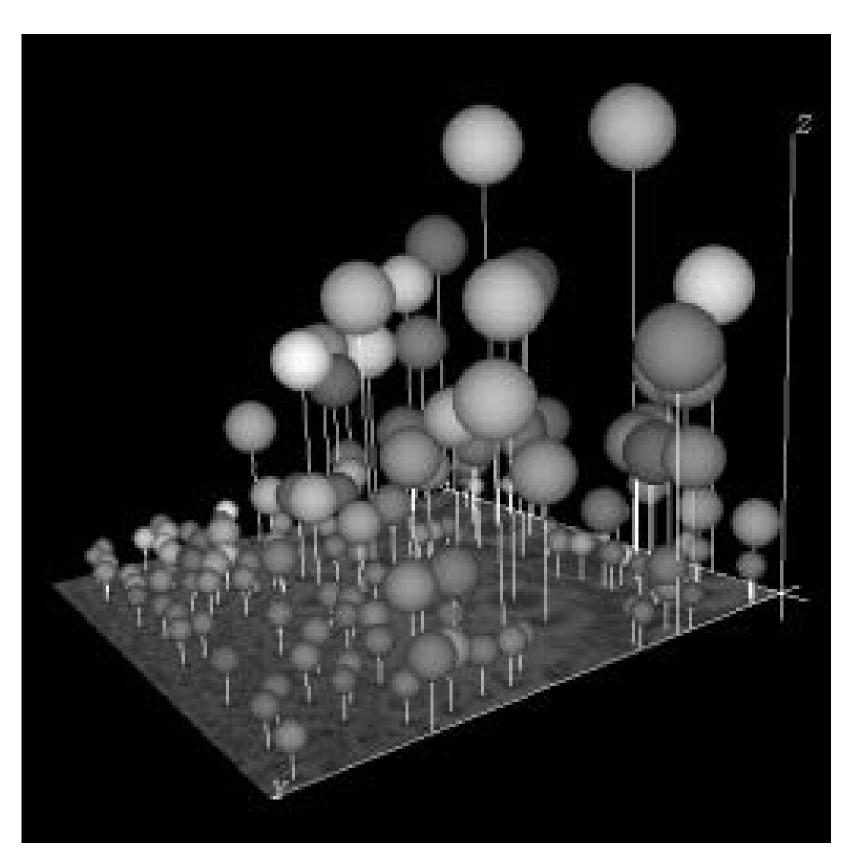


possible image functions, such as the gradient, Hessian or Harris corner function. The relationship between D and $\sigma^2 \nabla^2 G$ can be understood from the heat diffusion equation (parameterized in terms of σ rather than the more usual t = 0). With t = 0 neighbors in t = 0 and t = 0 and t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 are detected by comparing the relationship between t = 0 and t = 0 with circles).

Scale Selection

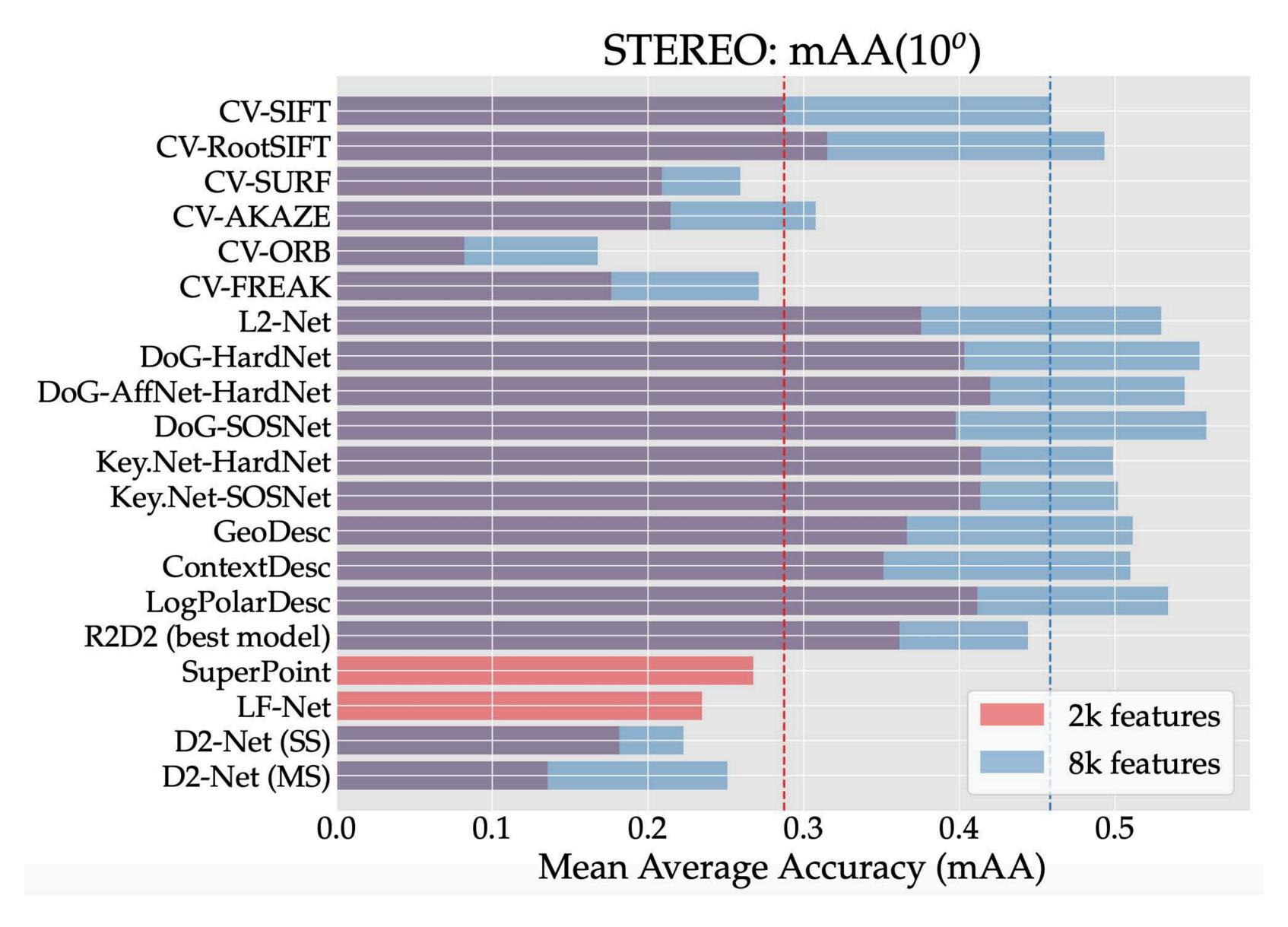
Maximising the DOG function in scale as well as space performs scale selection





[T. Lindeberg]

Difference of Gaussian blobs in 2020



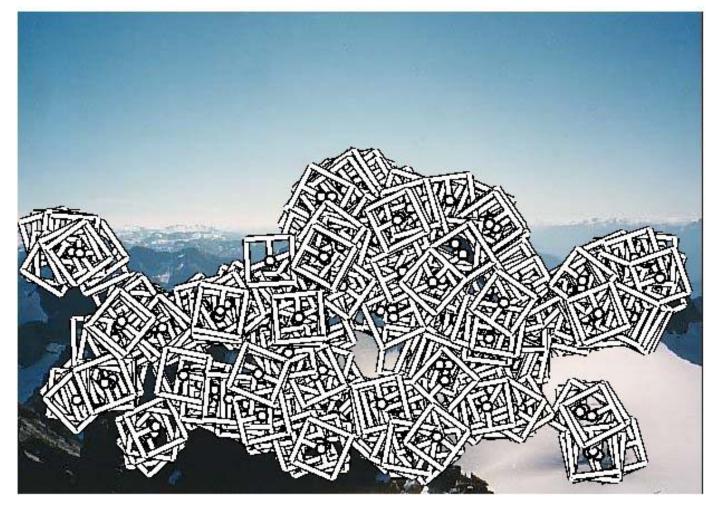
Multi-Scale Harris Corners

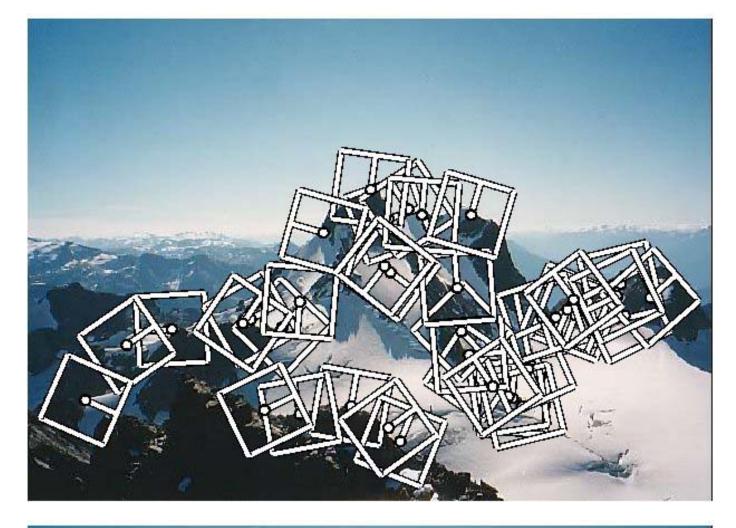
```
For each level of the Gaussian pyramid compute Harris feature response

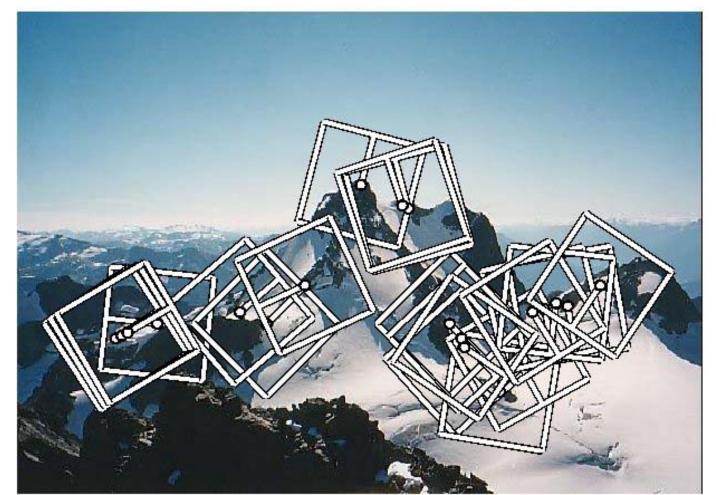
For each level of the Gaussian pyramid
```

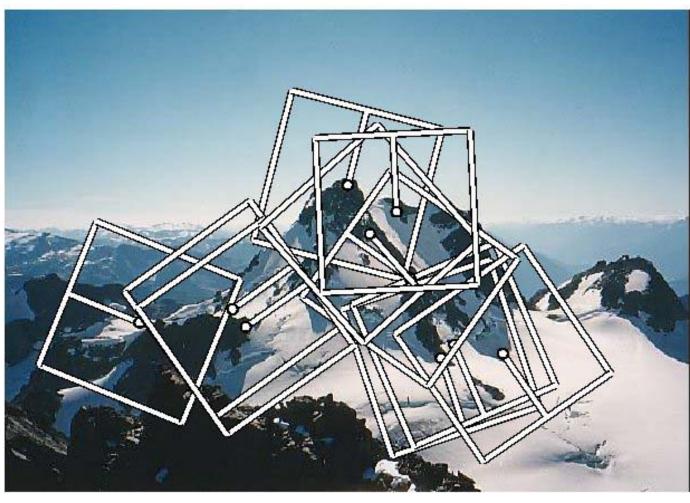
if local maximum and cross-scale $\begin{tabular}{ll} \textbf{save} & \textbf{scale} & \textbf{and location of feature} & (x,y,s) \\ \end{tabular}$

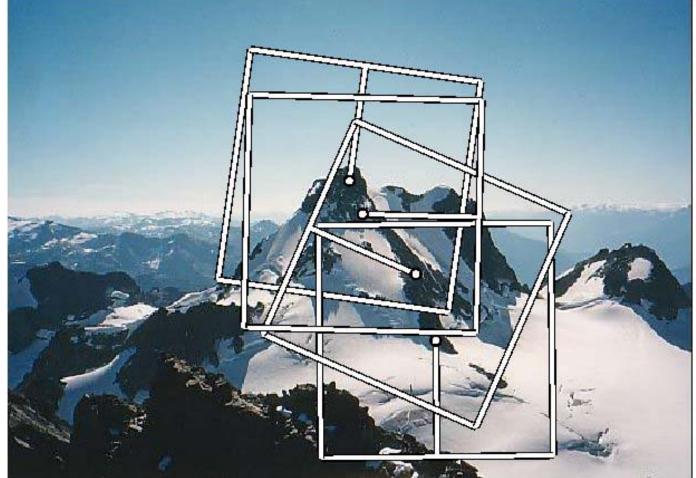
Multi-Scale Harris Corners











Summary

Edges are useful image features for many applications, but suffer from the aperture problem

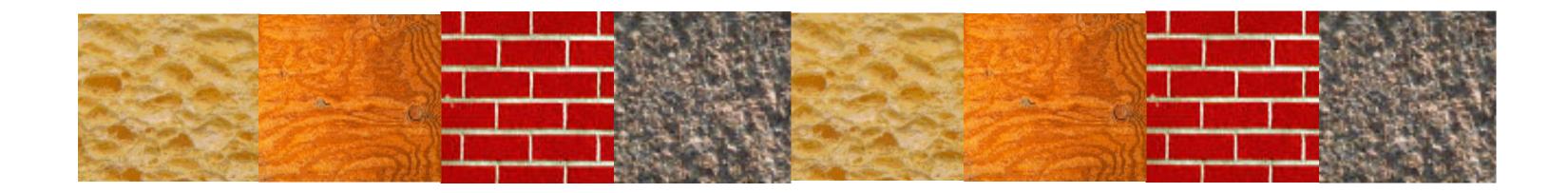
Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest points

CPSC 425: Computer Vision



Lecture 11: Texture

(unless otherwise stated slides are taken or adopted from **Bob Woodham, Jim Little** and **Fred Tung**)

Menu for Today

Topics:

- Texture Analysis, Synthesis
- Filter Banks, Data-driven Methods

Readings:

- Today's Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders:

- Midterm is right after reading break! February 24th 12:30 pm
- Quiz 3: Wednesday (Feb 12th)
- Assignment 2: due Feb 13th

Learning Goals

Understanding image as a collection of basis elements

A first step towards a "generative modelling" of images

Texture

What is **texture**?

Figure Credit: Alexei Efros and Thomas Leung

Texture is widespread, easy to recognize, but hard to define

Views of large numbers of small objects are often considered textures

- e.g. grass, foliage, pebbles, hair

Patterned surface markings are considered textures

e.g. patterns on wood

Definition of **Texture**

(Functional) **Definition**:

Texture is detail in an image that is at a scale too small to be resolved into its constituent elements and at a scale large enough to be apparent in the spatial distribution of image measurements

Uses of Texture

Texture can be a strong cue to **object identity** if the object has distinctive material properties

Texture can be a strong cue to an **object's shape** based on the deformation of the texture from point to point.

Estimating surface orientation or shape from texture is known as "shape from texture"

Lecture 11: Re-cap Texture

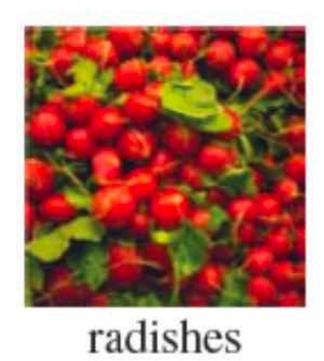
We will look at two main questions:

- 1. How do we represent texture?
 - → Texture analysis
- 2. How do we generate new examples of a texture?
 - → Texture **synthesis**

We begin with texture synthesis to set up Assignment 3

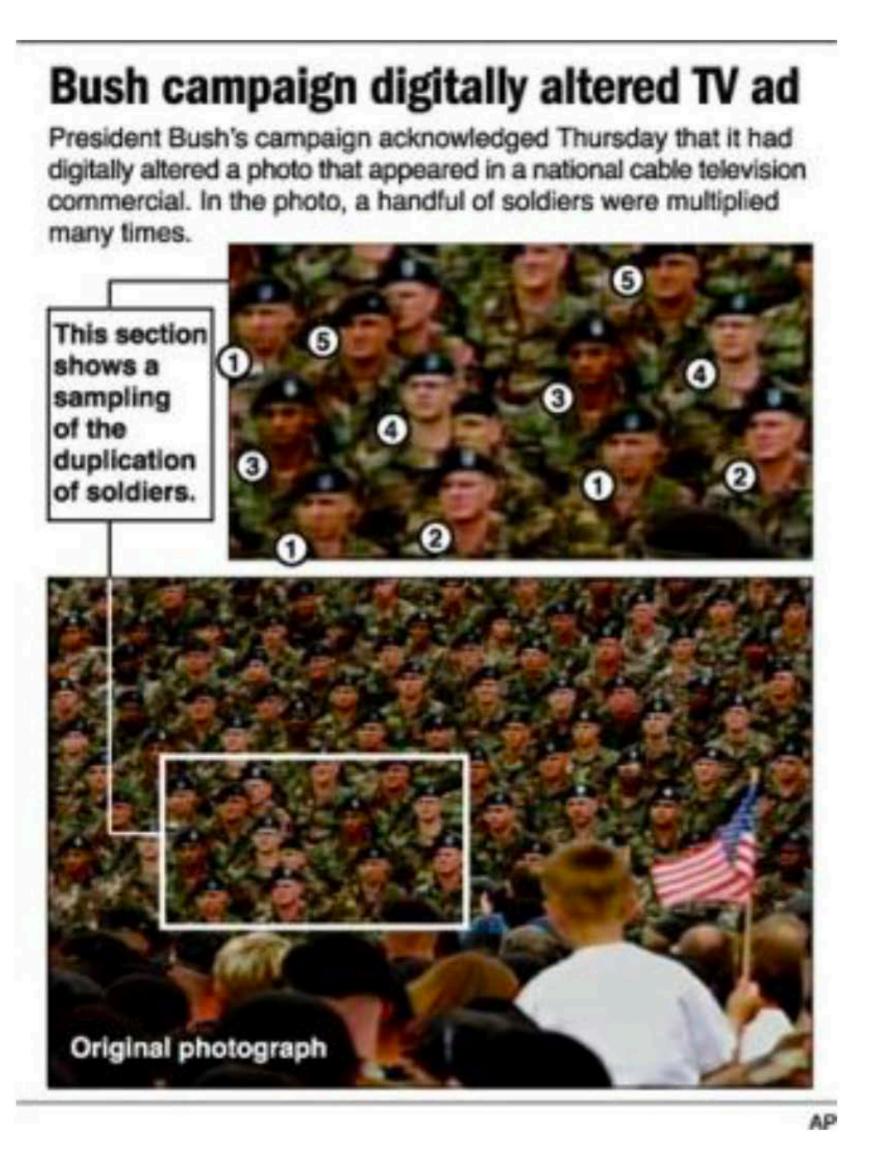
Why might we want to synthesize texture?

- 1. To fill holes in images (inpainting)
- Art directors might want to remove telephone wires. Restorers might want to remove scratches or marks.
- We need to find something to put in place of the pixels that were removed
- We synthesize regions of texture that fit in and look convincing
- 2. To produce large quantities of texture for computer graphics
- Good textures make object models look more realistic



lots more radishes

Szeliski, Fig. 10.49



Cover of "The Economist," June 19, 2010

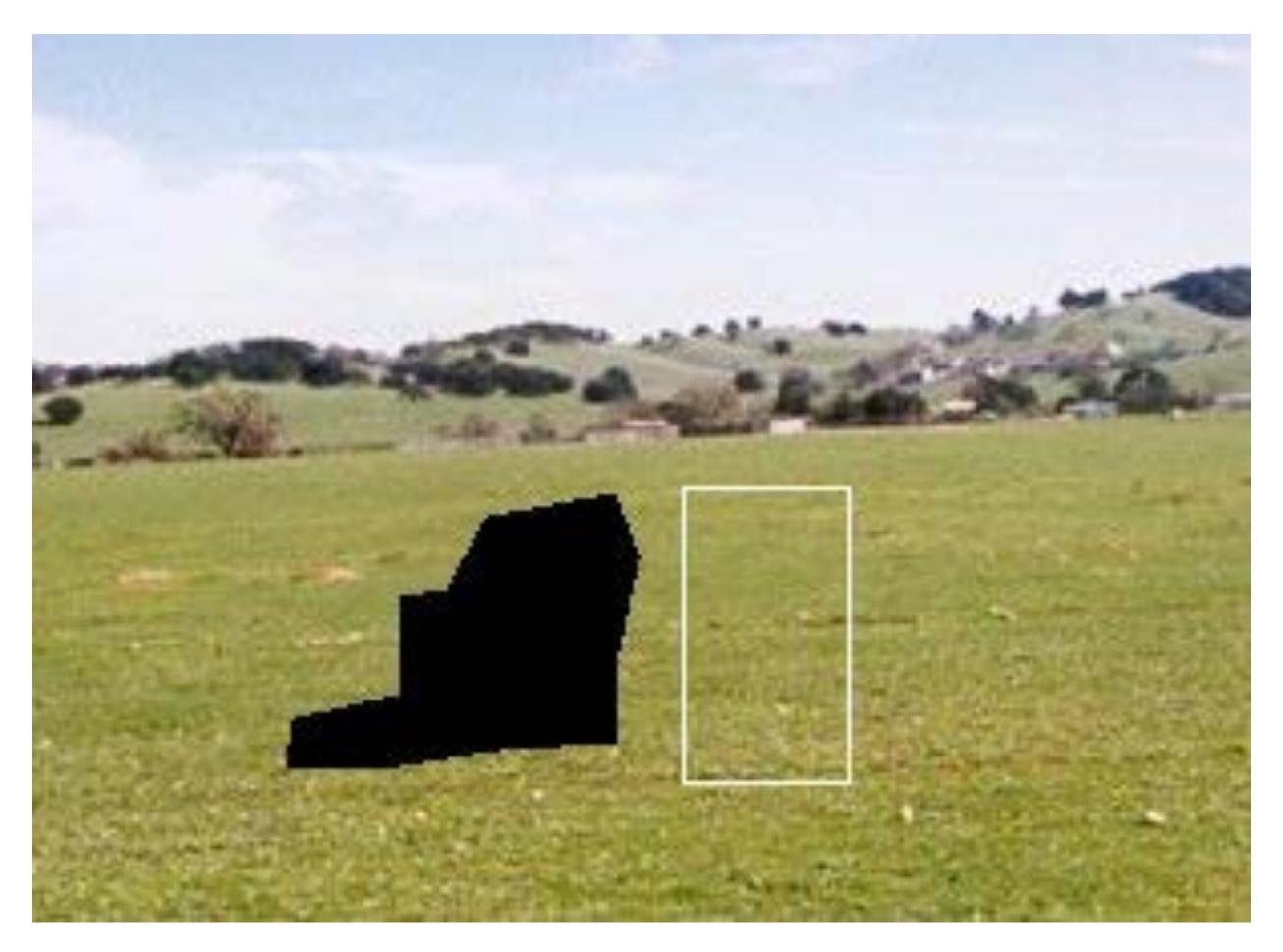
Photo Credit (right): Reuters/Larry Downing

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish



Method: Fill-in regions using texture from the white box

Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box

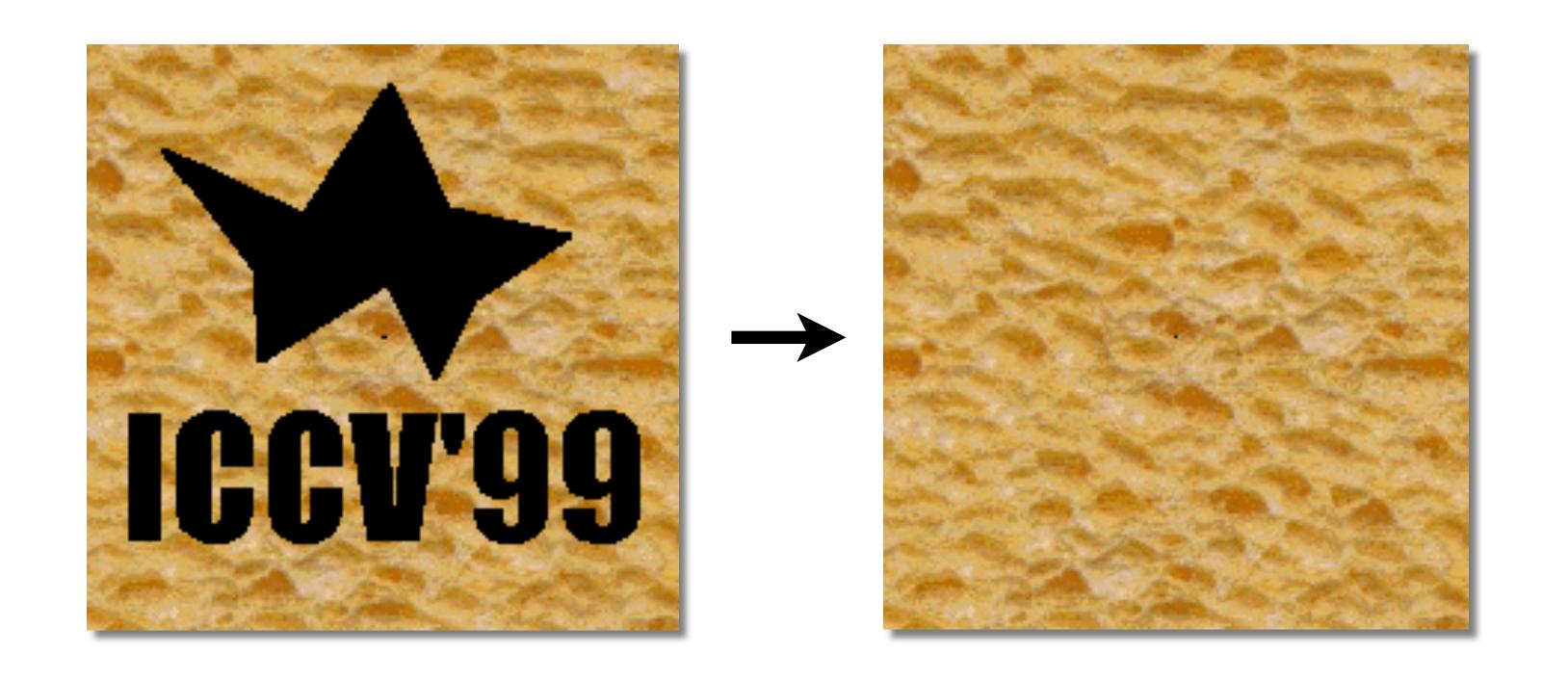
Texture Synthesis

Objective: Generate new examples of a texture. We take a "data-driven" approach

Idea: Use an image of the texture as the source of a probability model

- Draw samples directly from the actual texture
- Can account for more types of structure
- Very simple to implement
- Success depends on choosing a correct "distance"

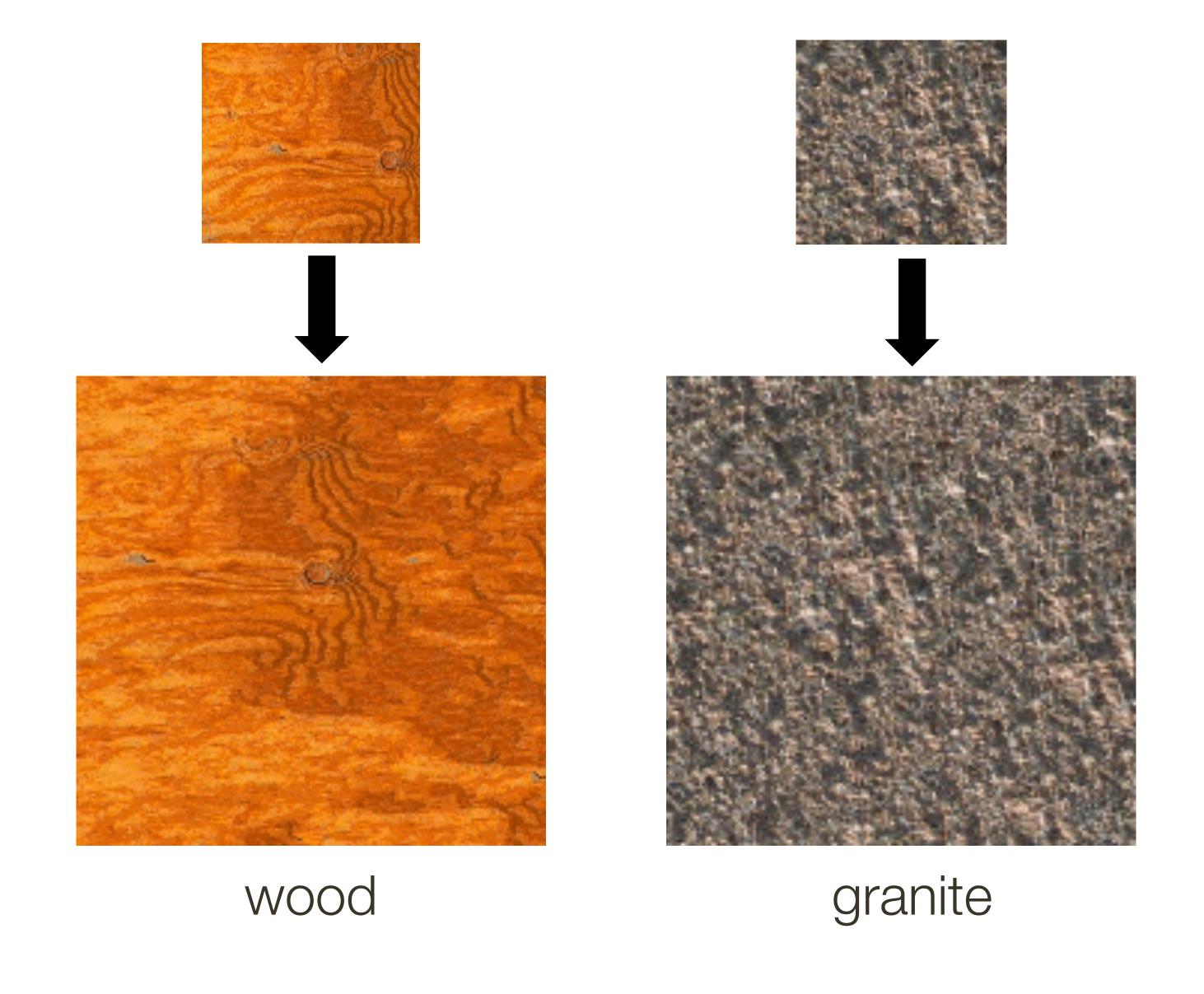
Texture Synthesis by Non-parametric Sampling



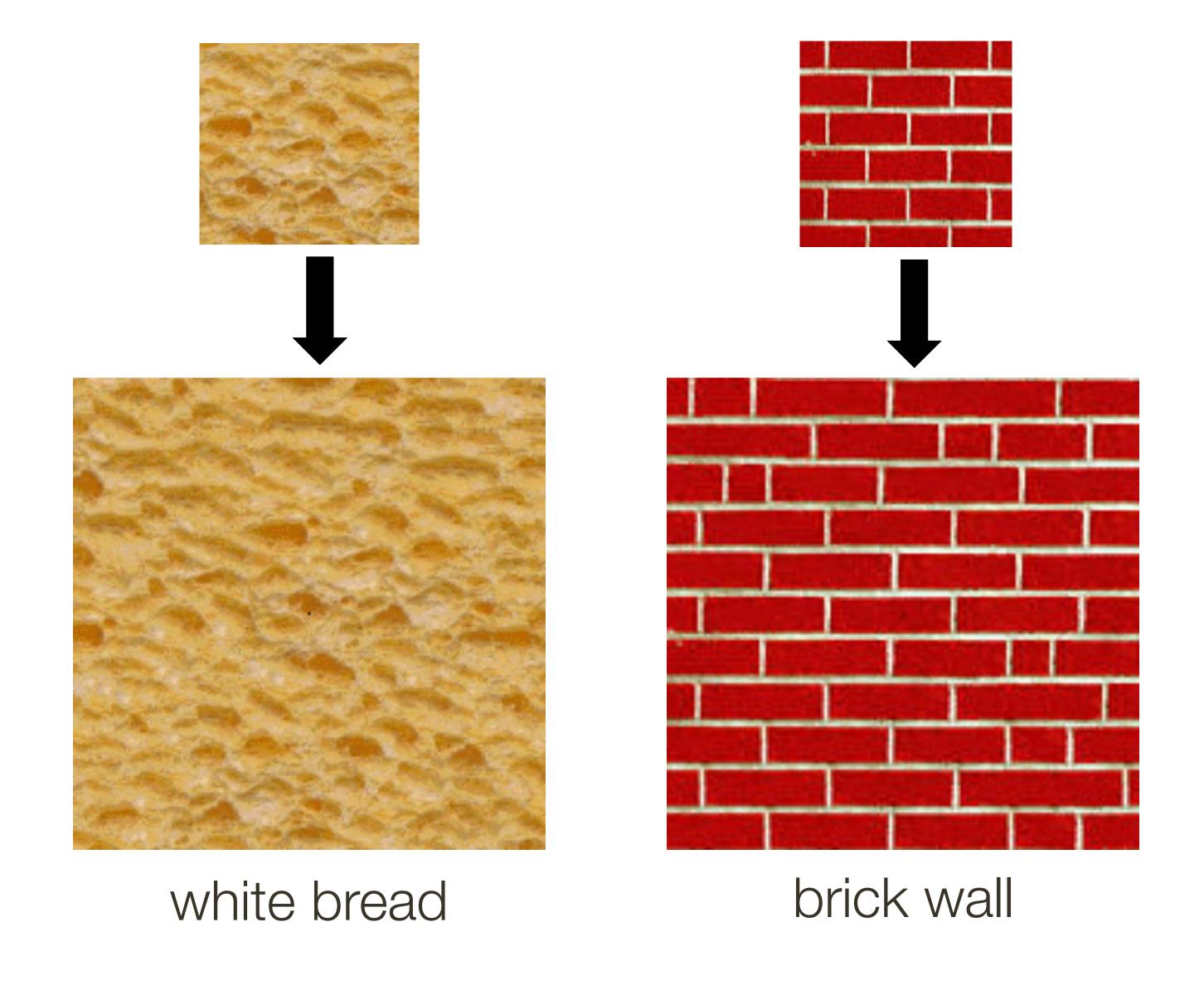
Alexei Efros and Thomas Leung
UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

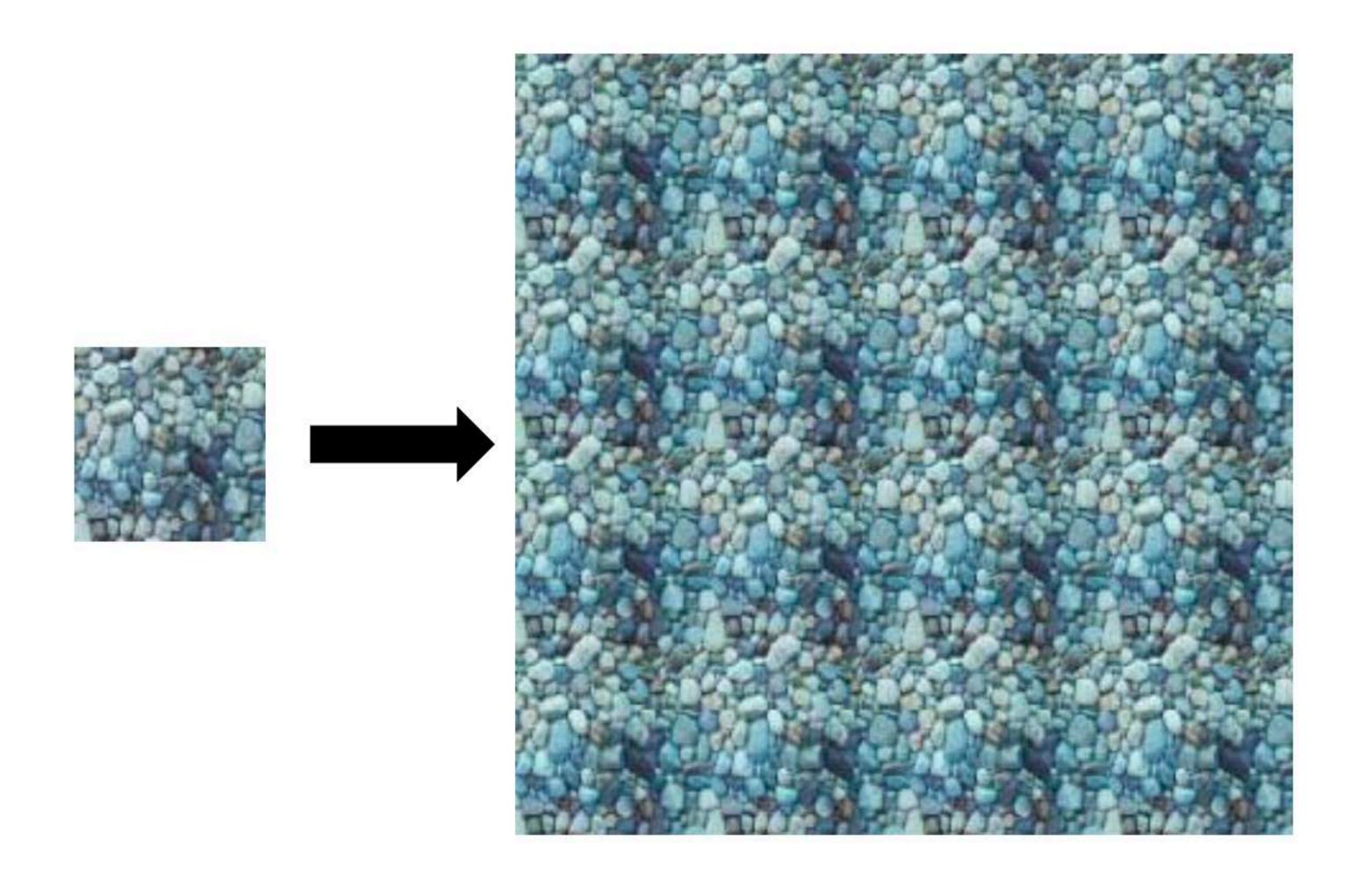
Efros and Leung

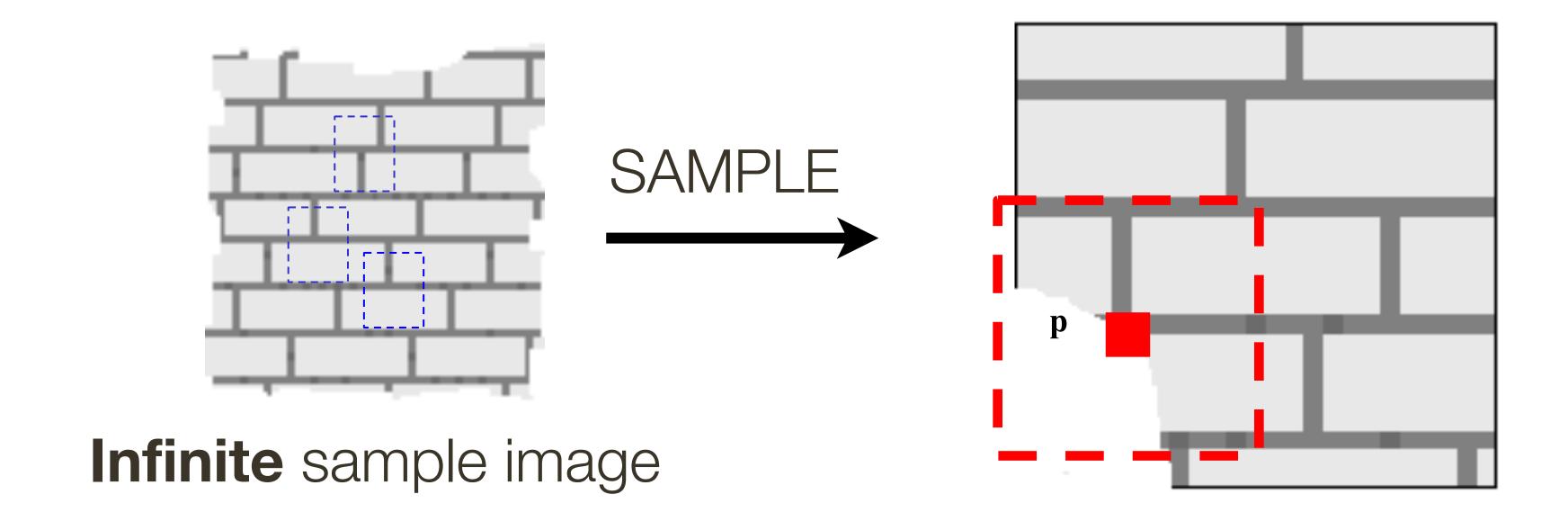


Efros and Leung

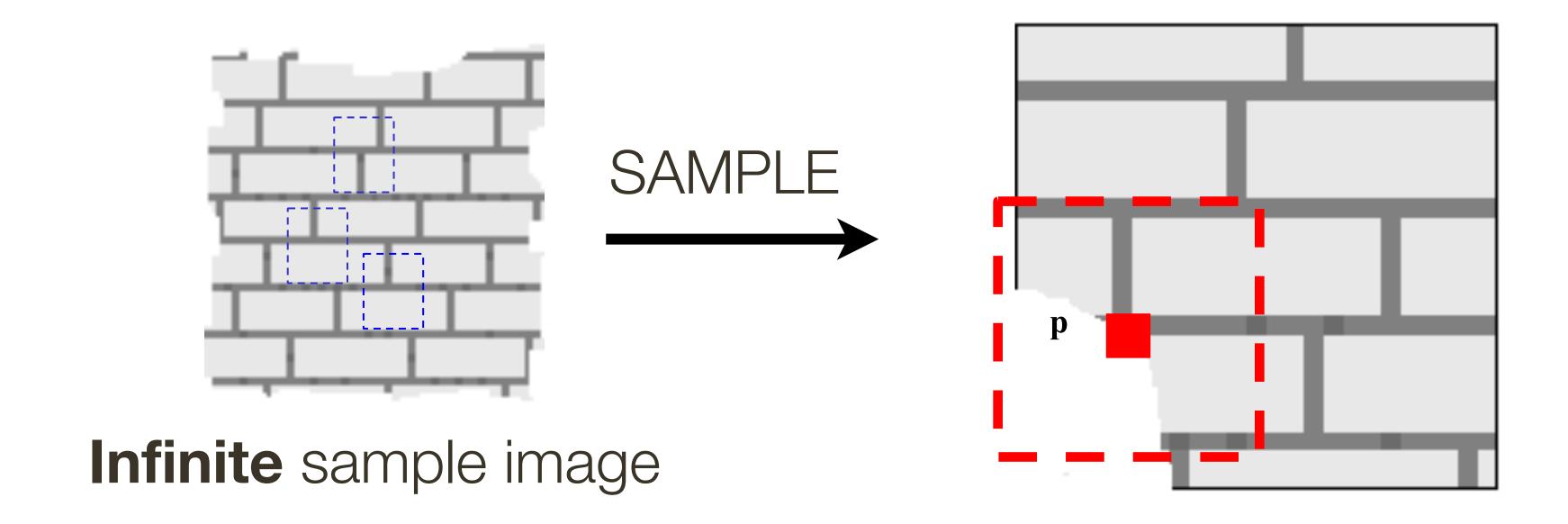


Like Copying, But not Just Repetition

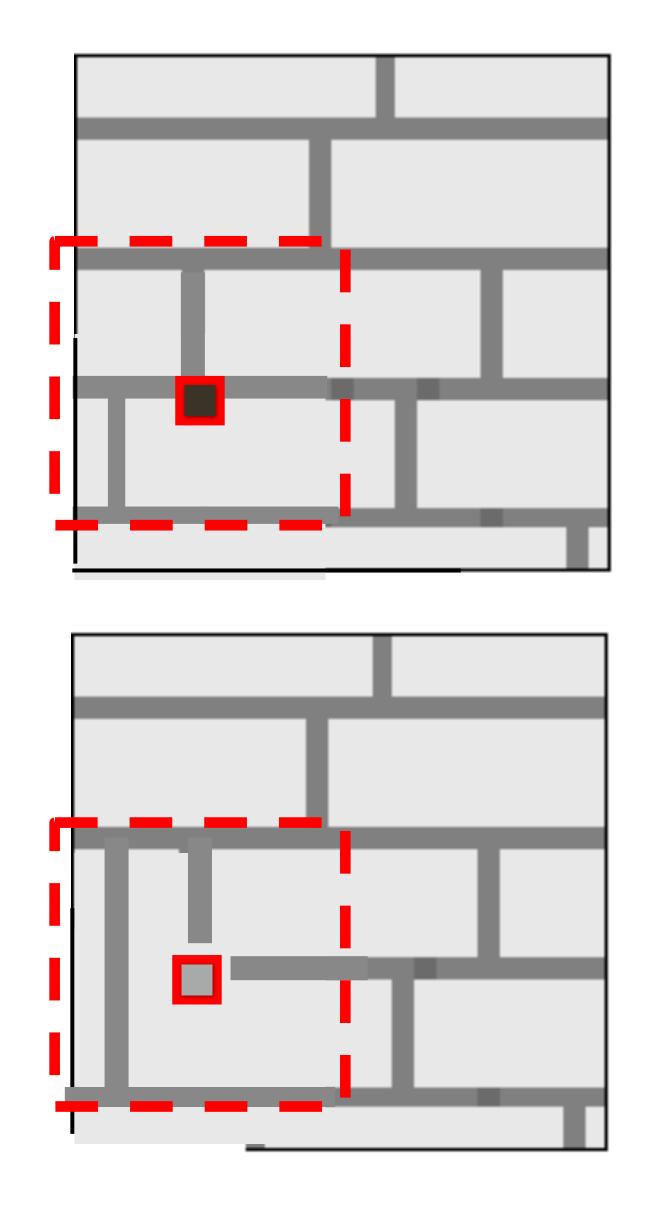


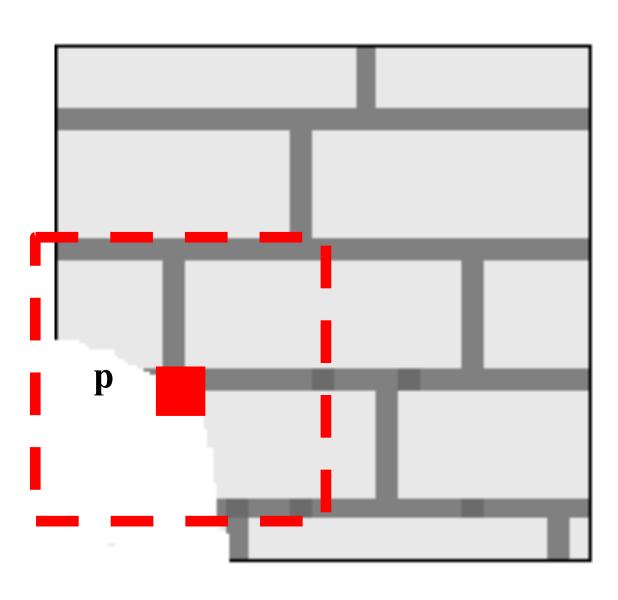


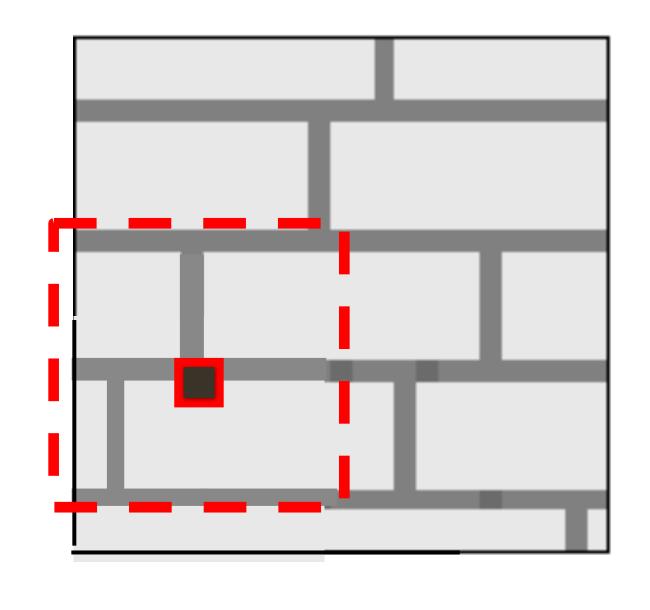
— What is **conditional** probability distribution of *p*, given the neighbourhood window?



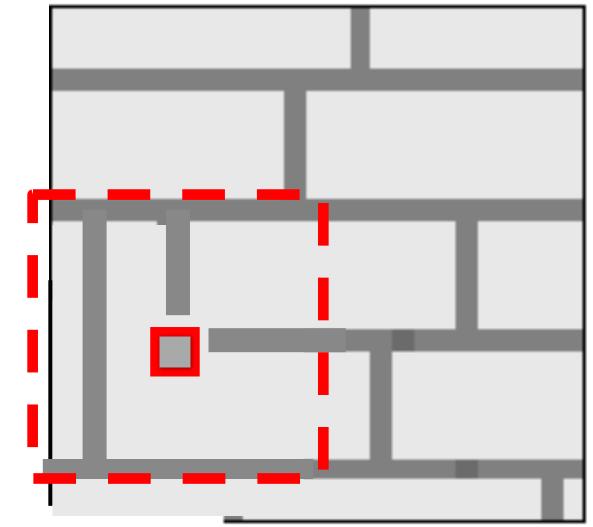
- What is **conditional** probability distribution of *p*, given the neighbourhood window?
- Directly search the input image for all such neighbourhoods to produce a histogram for p



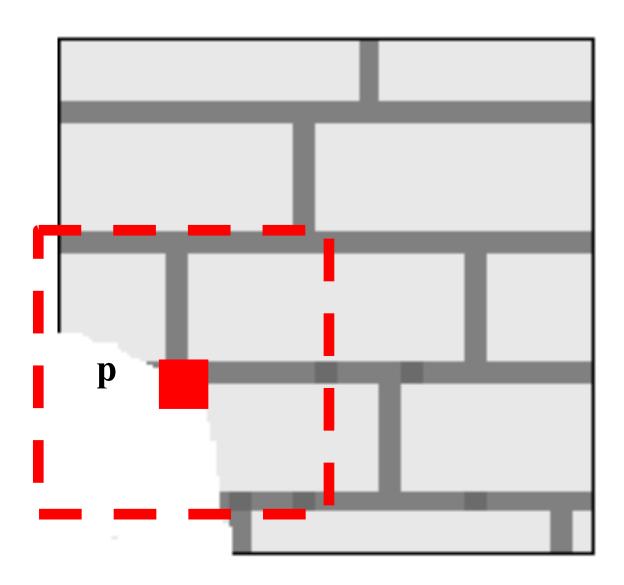


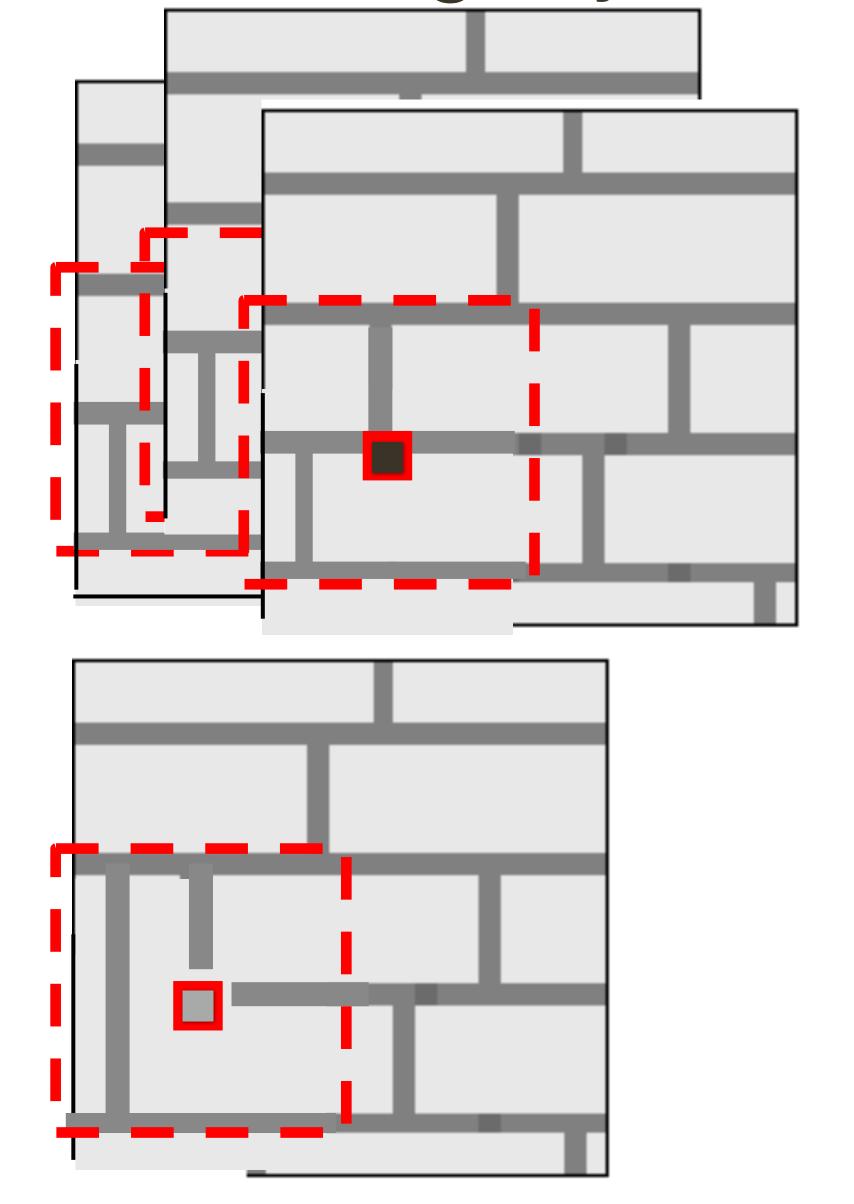


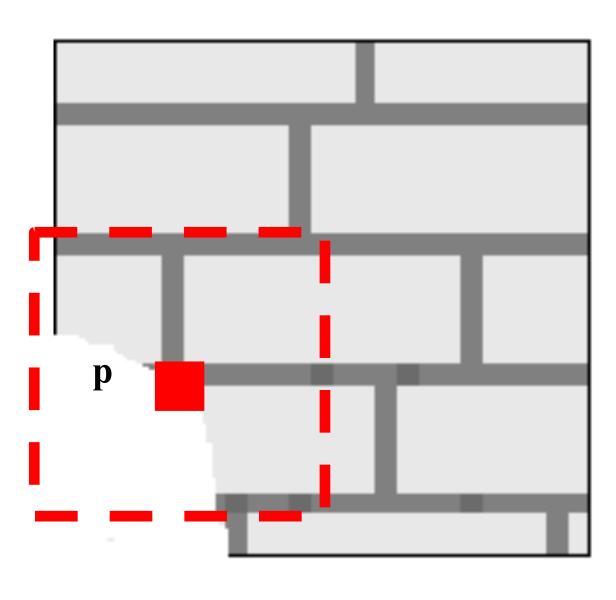
p(dark gray) = 0.5

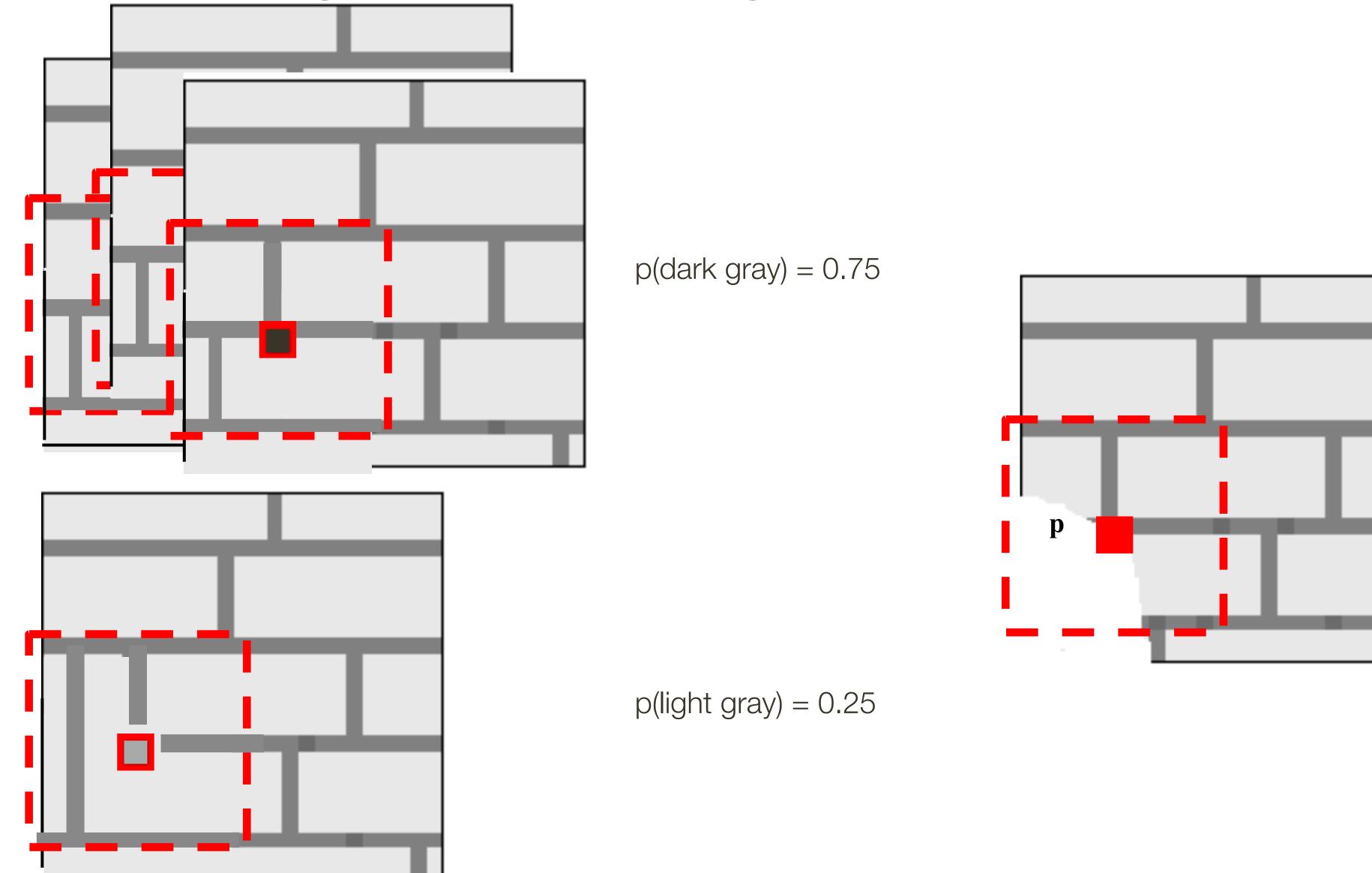


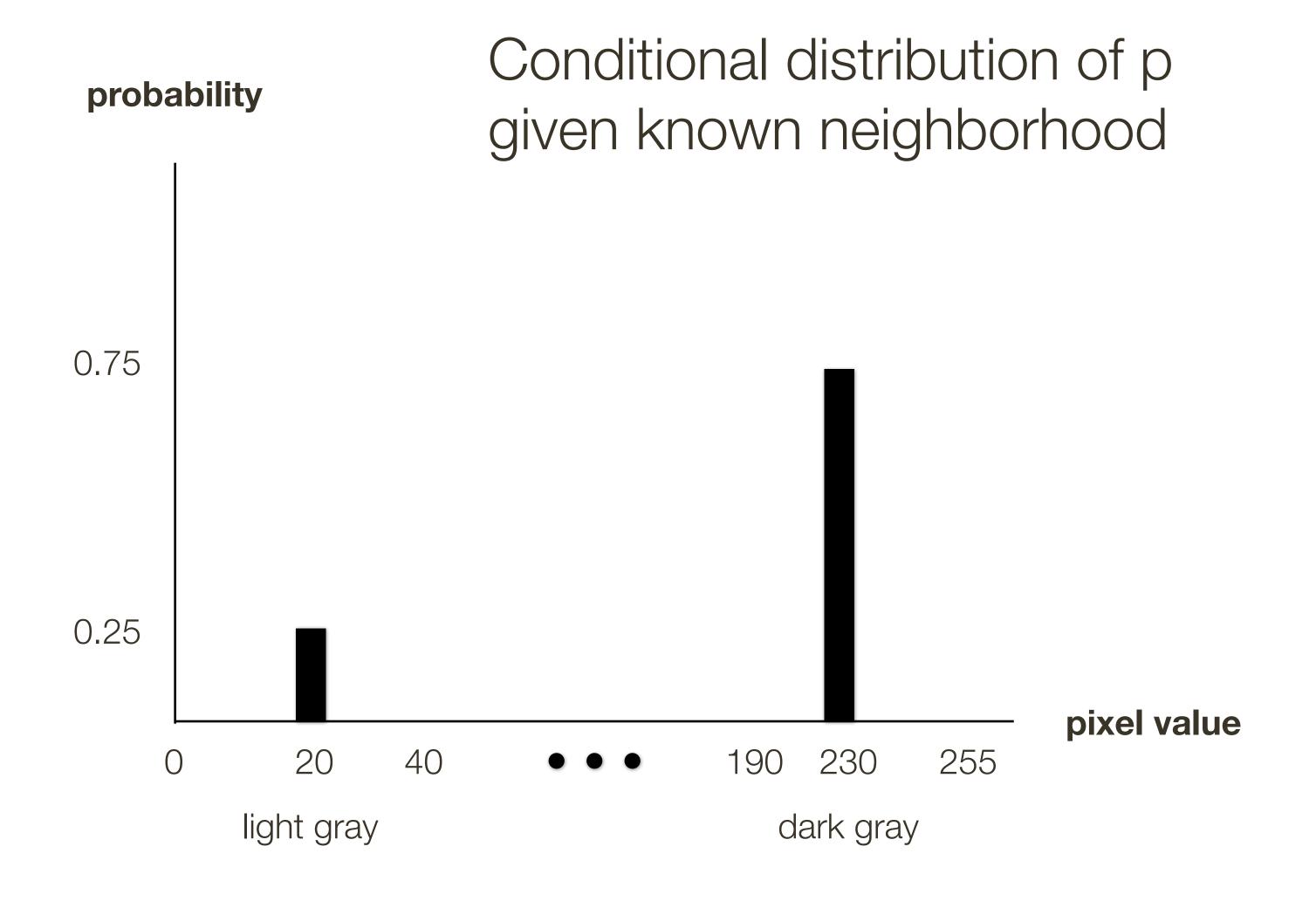
p(light gray) = 0.5

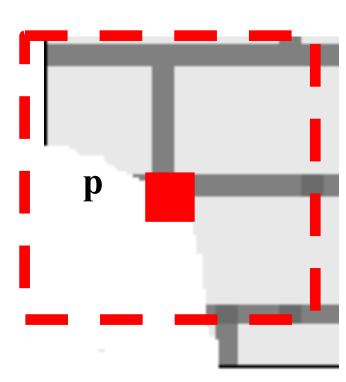


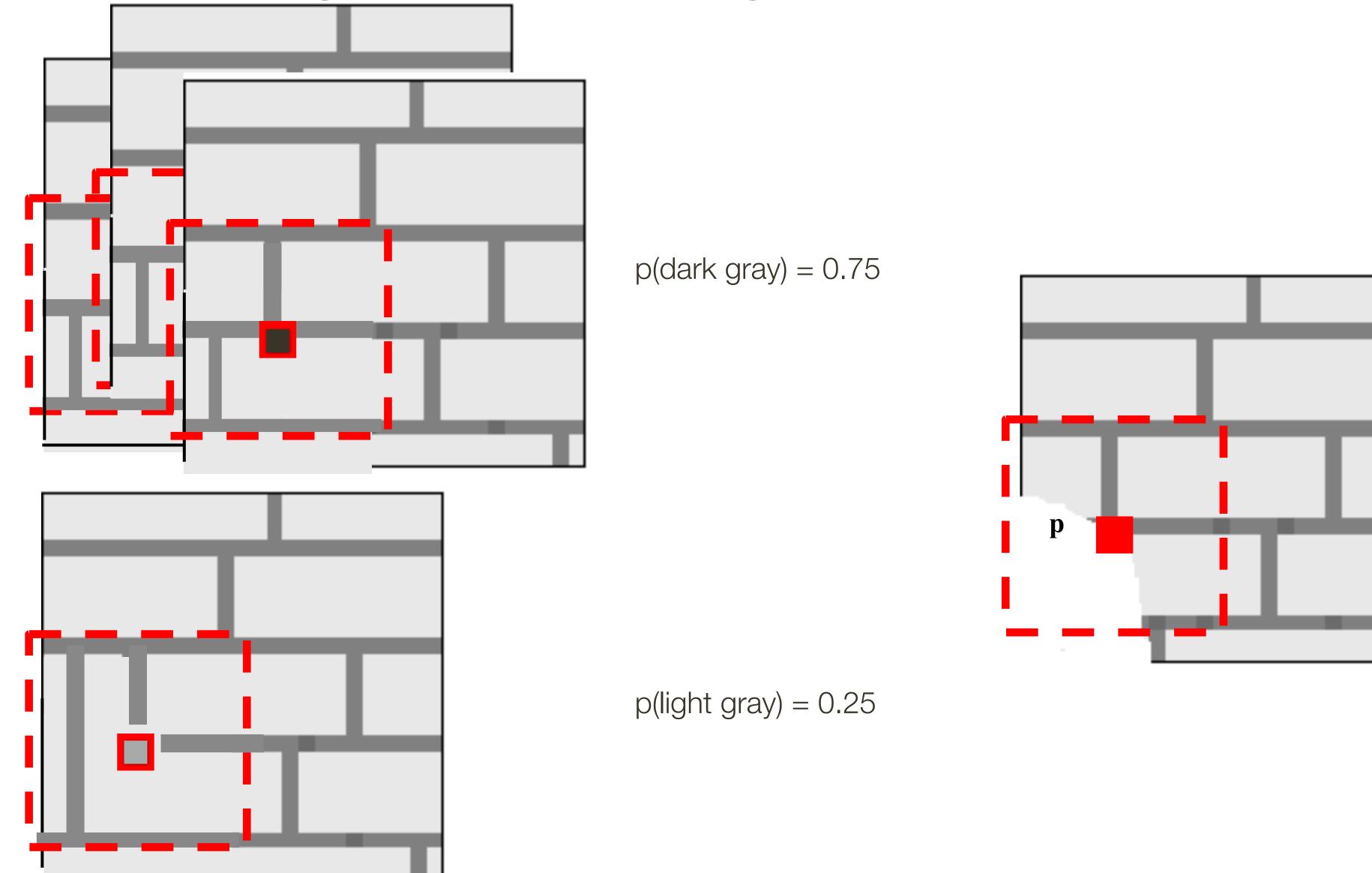


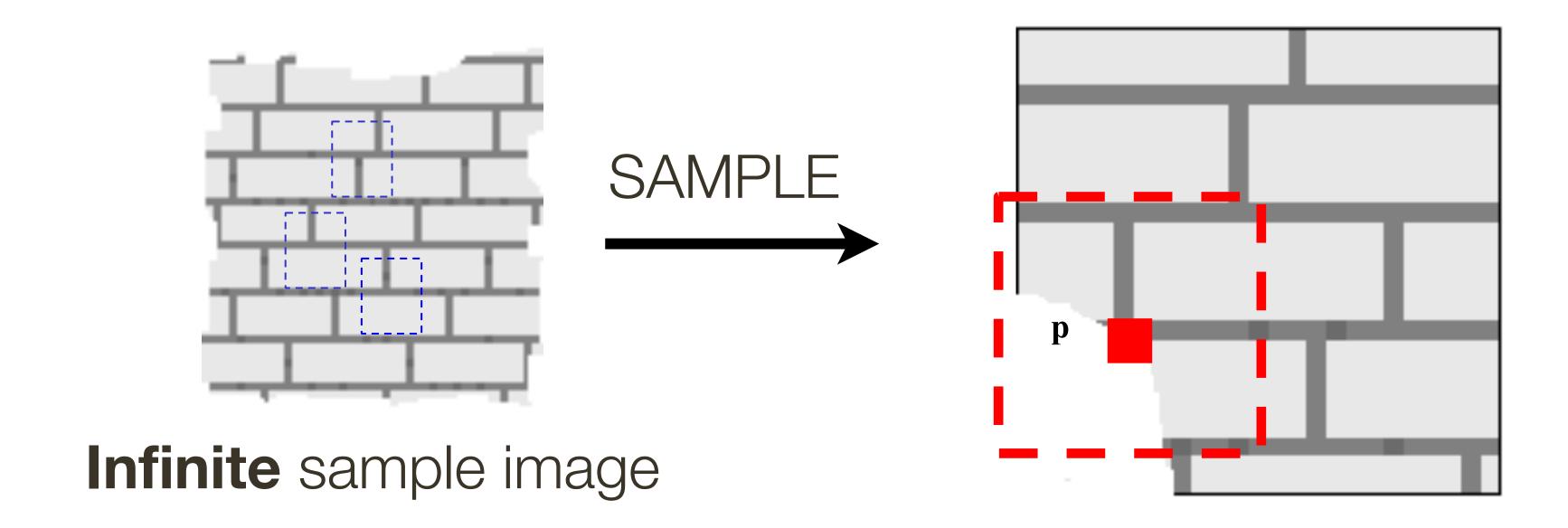




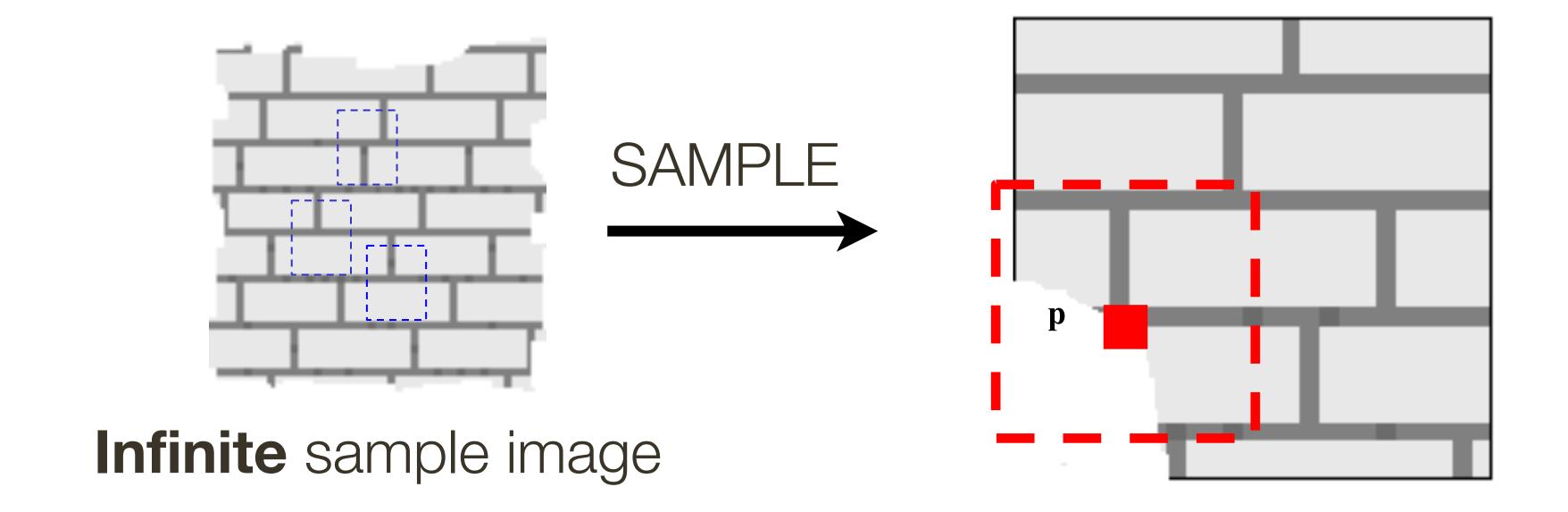




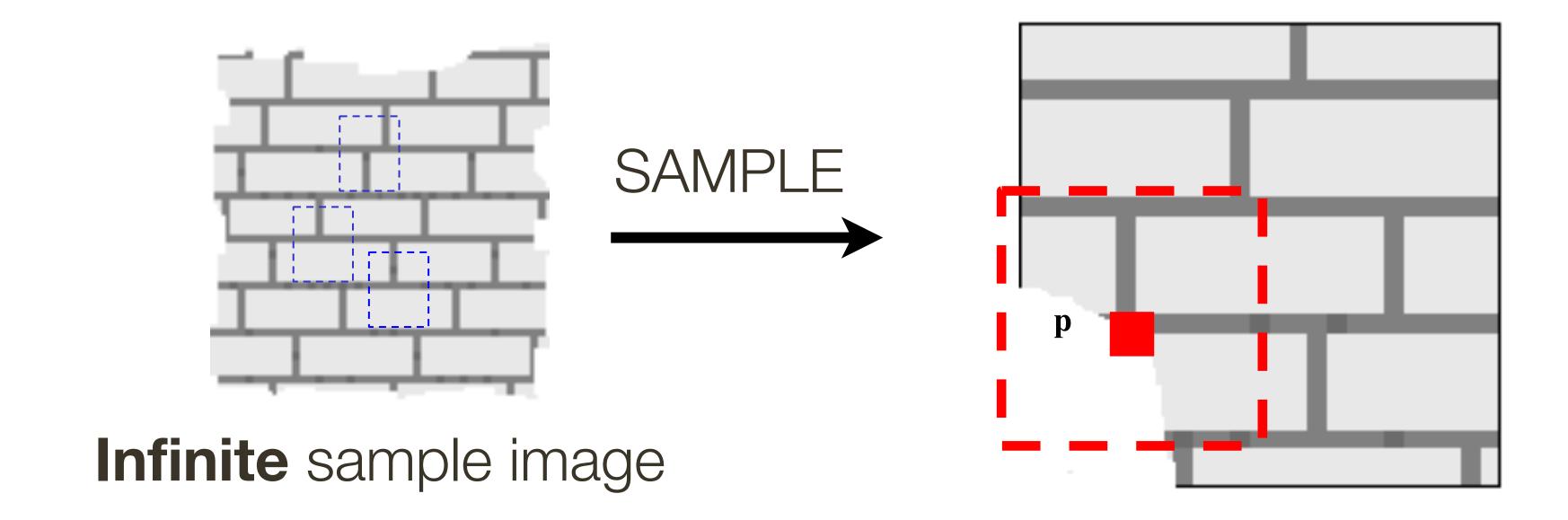




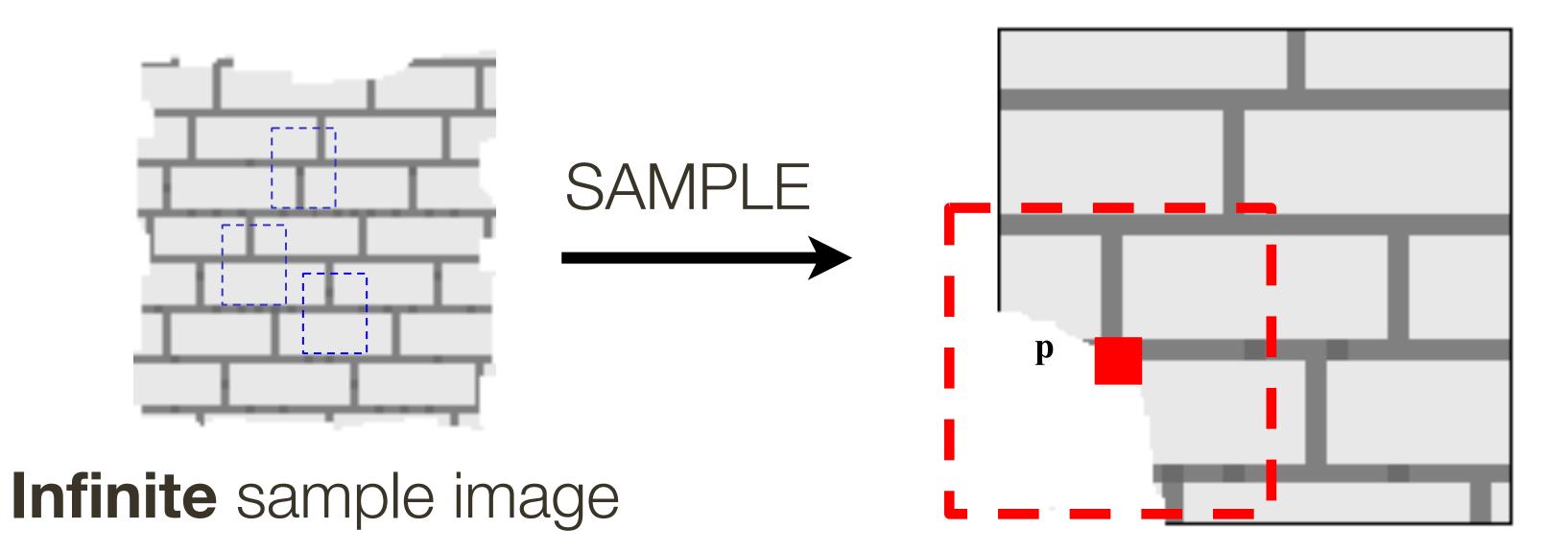
- What is **conditional** probability distribution of p, given the neighbourhood window?
- Directly search the input image for all such neighbourhoods to produce a
 histogram for p
- To **synthesize** *p*, pick one match at random



— Since the sample image is finite, an exact neighbourhood match might not be present



- Since the sample image is finite, an exact neighbourhood match might not be present
- Find the **best match** using SSD error, weighted by Gaussian to emphasize local structure, and take all samples within some distance from that match



Ranked List

x = 5, y = 17

$$x = 63, y = 4$$

$$x = 3, y = 44$$

$$x = 123, y = 54$$

$$x = 4$$
, $y = 57$

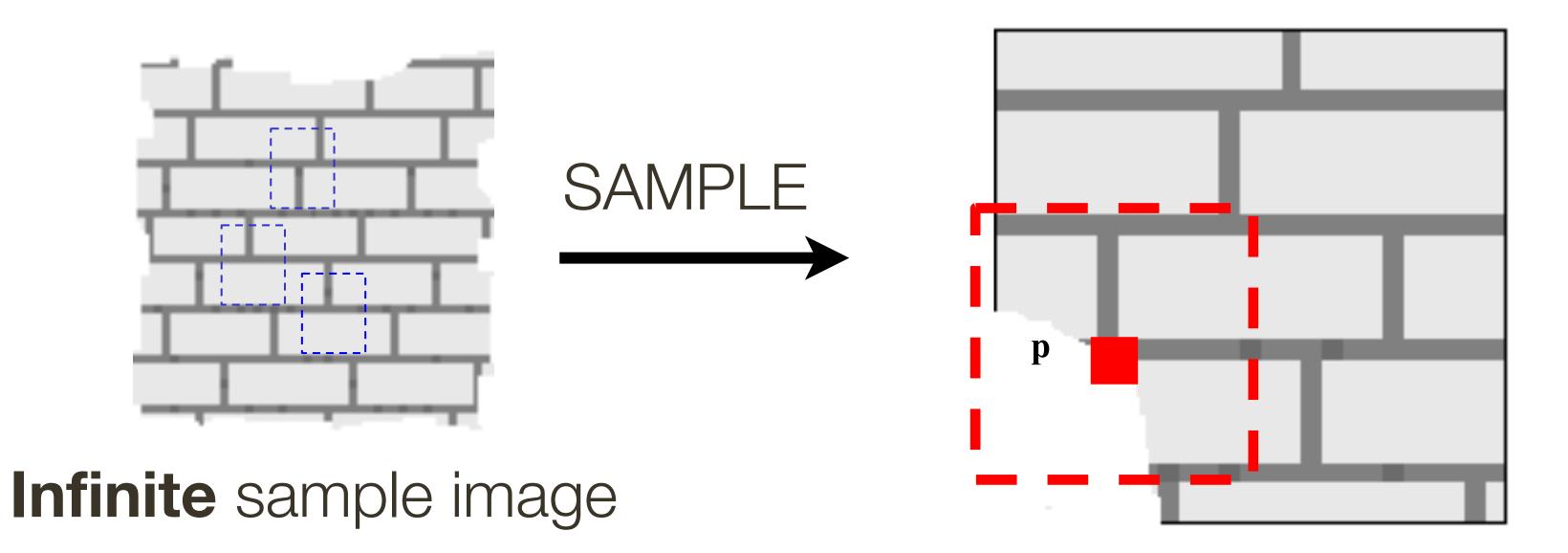
Similarity (cos)

0.64

threshold = best match * **0.8** = 0.696

0.60

- •
- •



Ranked List

$$x = 5, y = 17$$

$$x = 63, y = 4$$

$$x = 3, y = 44$$

$$x = 123, y = 54$$

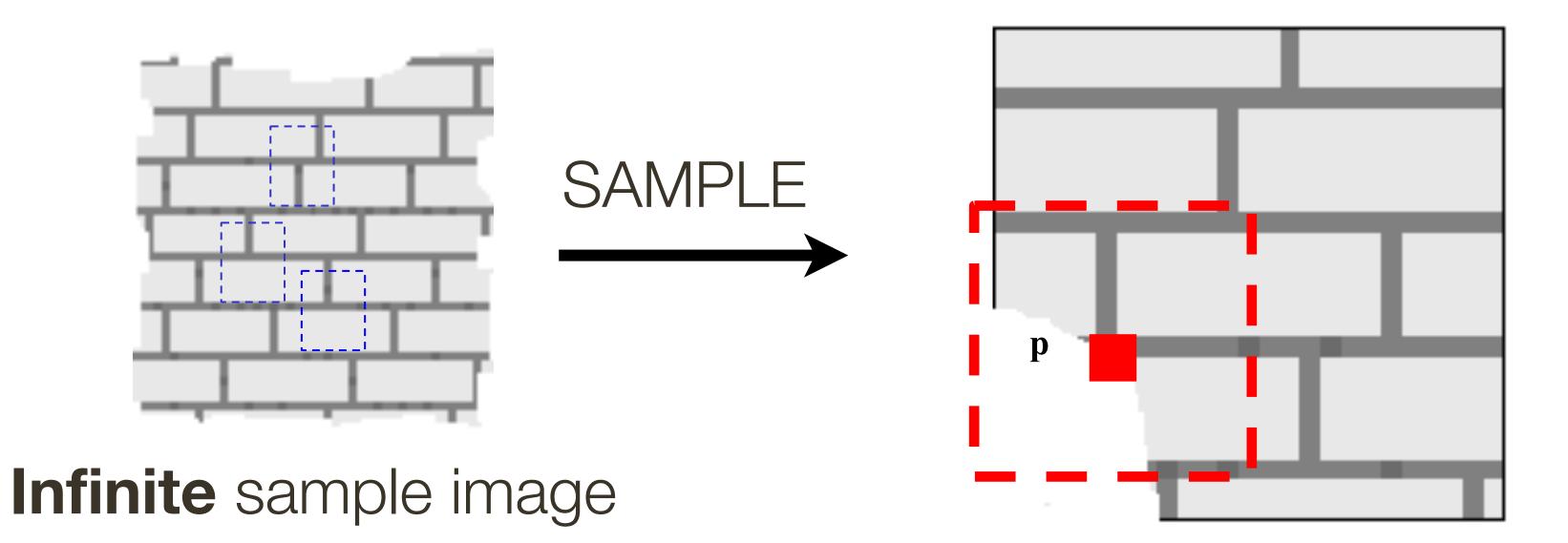
$$x = 4$$
, $y = 57$

Similarity (cos)

best match 0.87 0.75 pick one at random and copy target pixel from it 0.72 threshold = best match * **0.8** = 0.696

0.64

0.60



Ranked List

$$x = 5, y = 17$$

$$x = 63, y = 4$$

$$x = 3, y = 44$$

$$x = 123, y = 54$$

$$x = 4$$
, $y = 57$

•

Similarity (ssd)

0.13

0.25

pick one at random and copy target pixel from it

0.28

0.36

threshold = best match * **2.5** = 0.325

0.40

•

For multiple pixels, "grow" the texture in layers

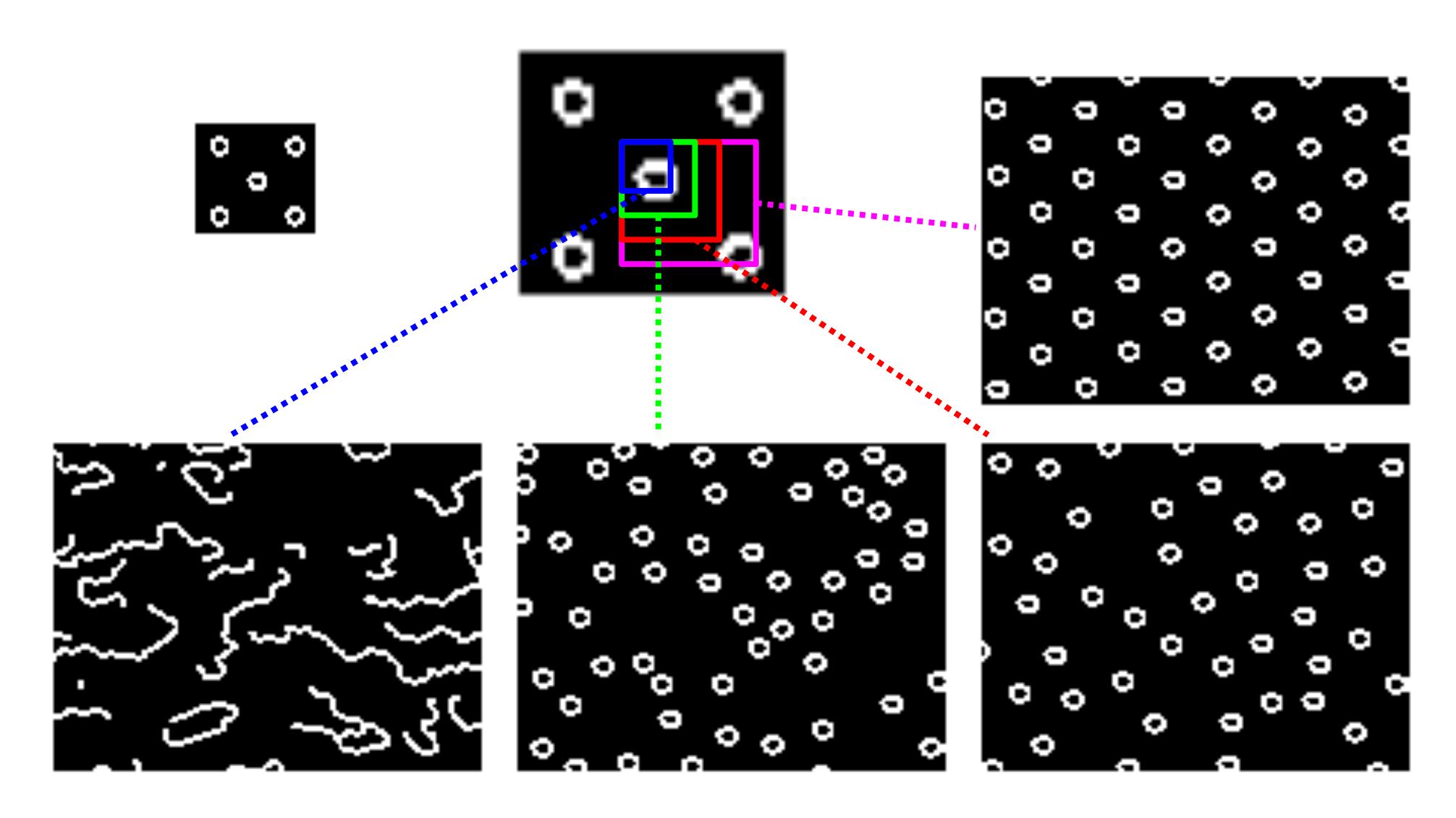
— In the case of hole-filling, start from the edges of the hole

For an interactive demo, see

https://una-dinosauria.github.io/efros-and-leung-js/

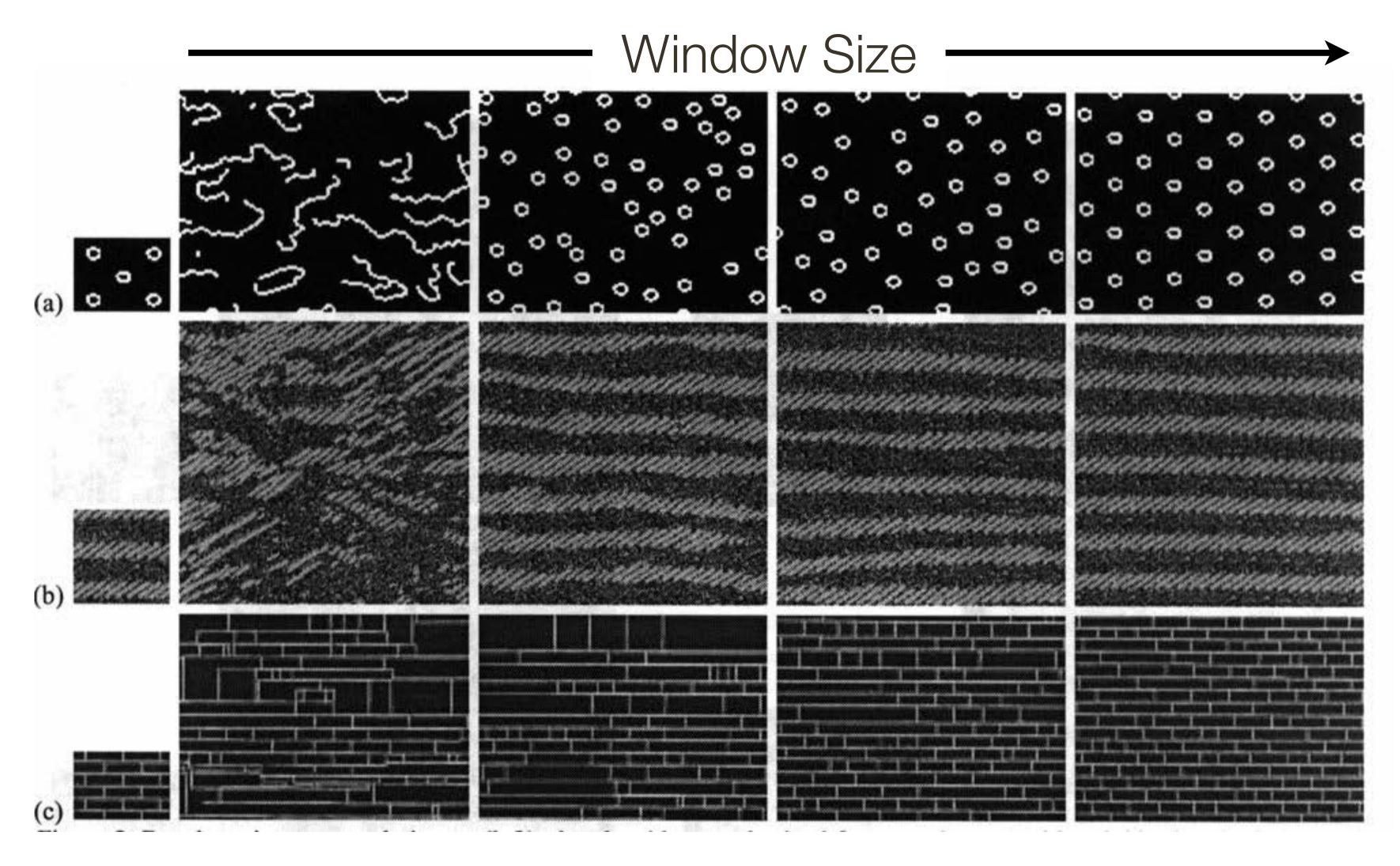
(written by Julieta Martinez, a previous CPSC 425 TA)

Randomness Parameter



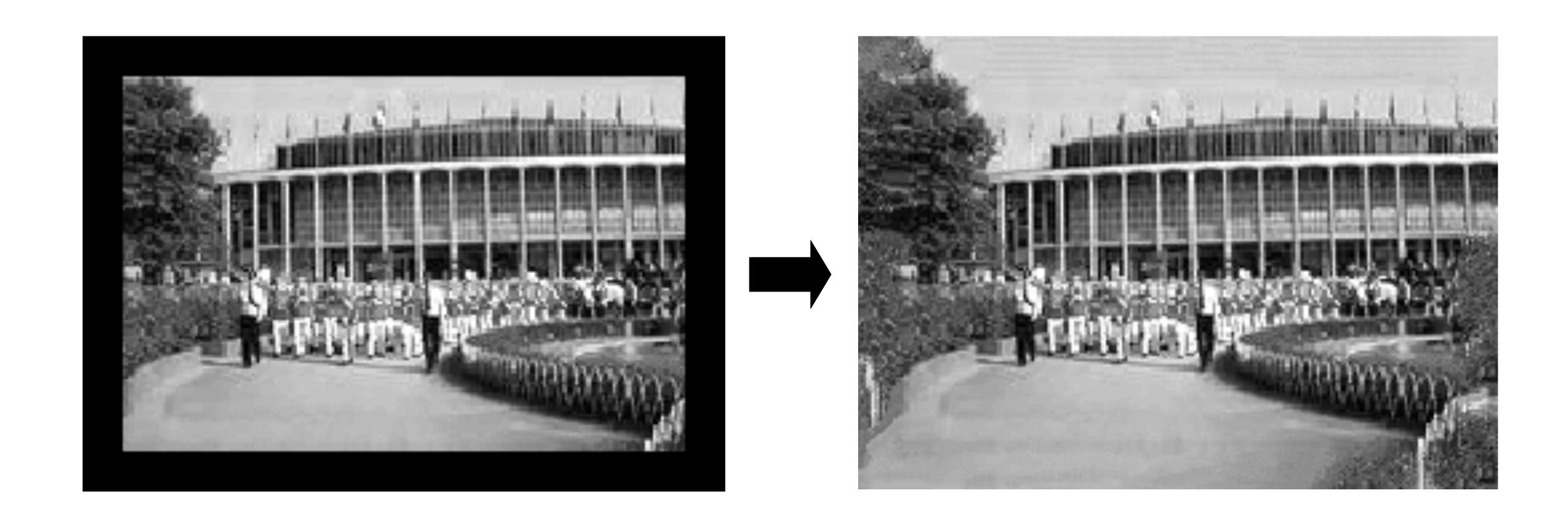
Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung: More Synthesis Results



Forsyth & Ponce (2nd ed.) Figure 6.12

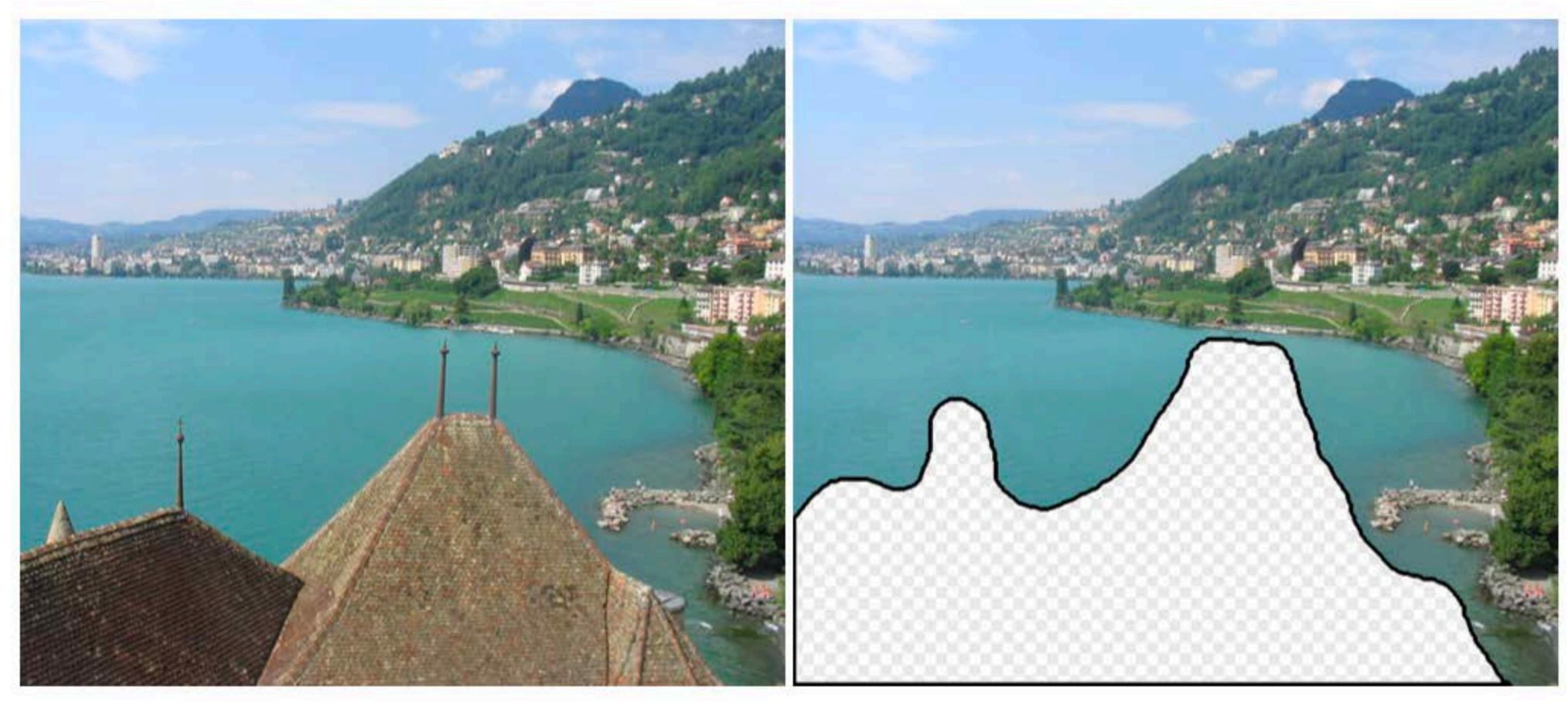
Efros and Leung: Image Extrapolation



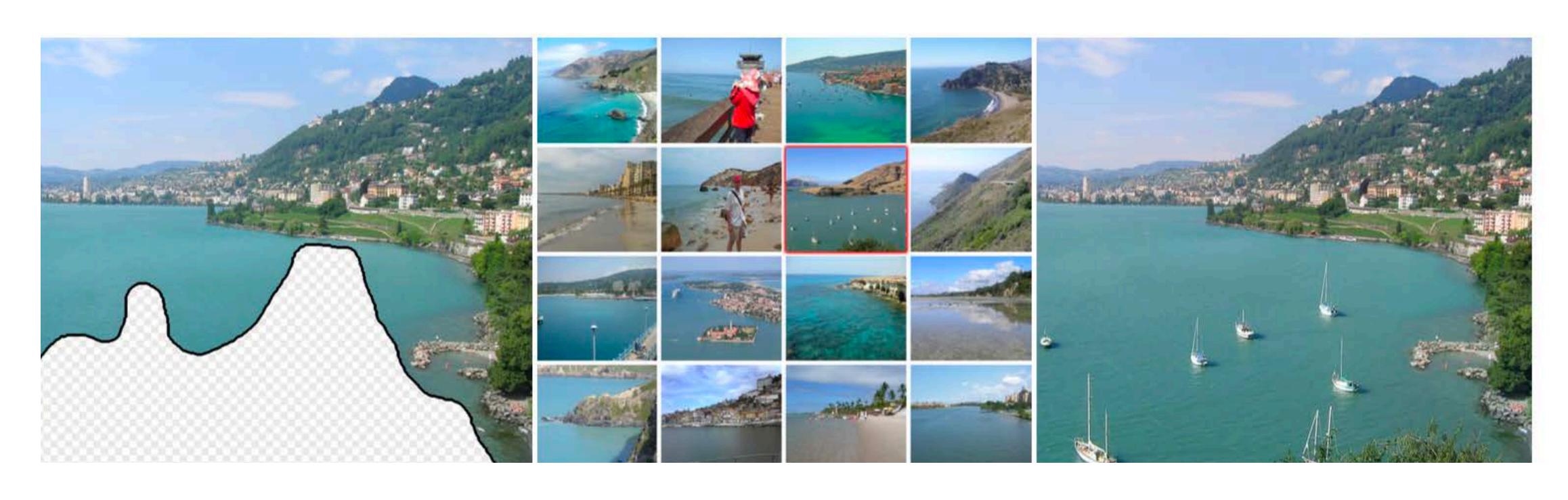
Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

"Big Data" enables surprisingly simple non-parametric, matching-based techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive database of a million images. What could you do?

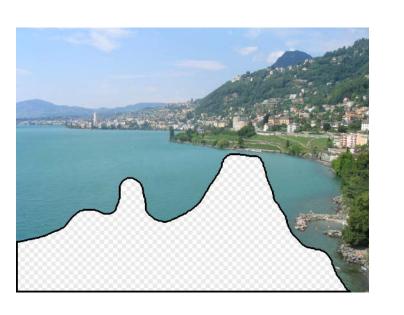


Original Image Input

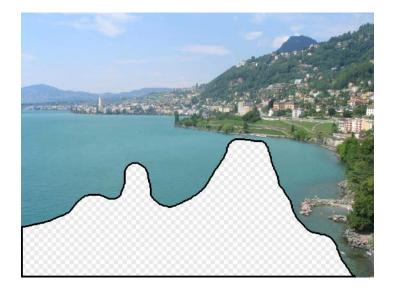


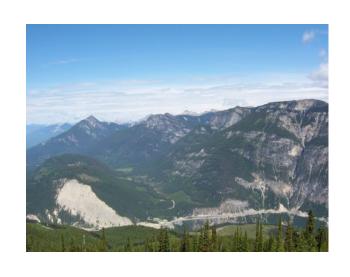
Input Scene Matches Output

Effectiveness of "Big Data"



Effectiveness of "Big Data"





10 nearest neighbors from a collection of 20,000 images

Effectiveness of "Big Data"

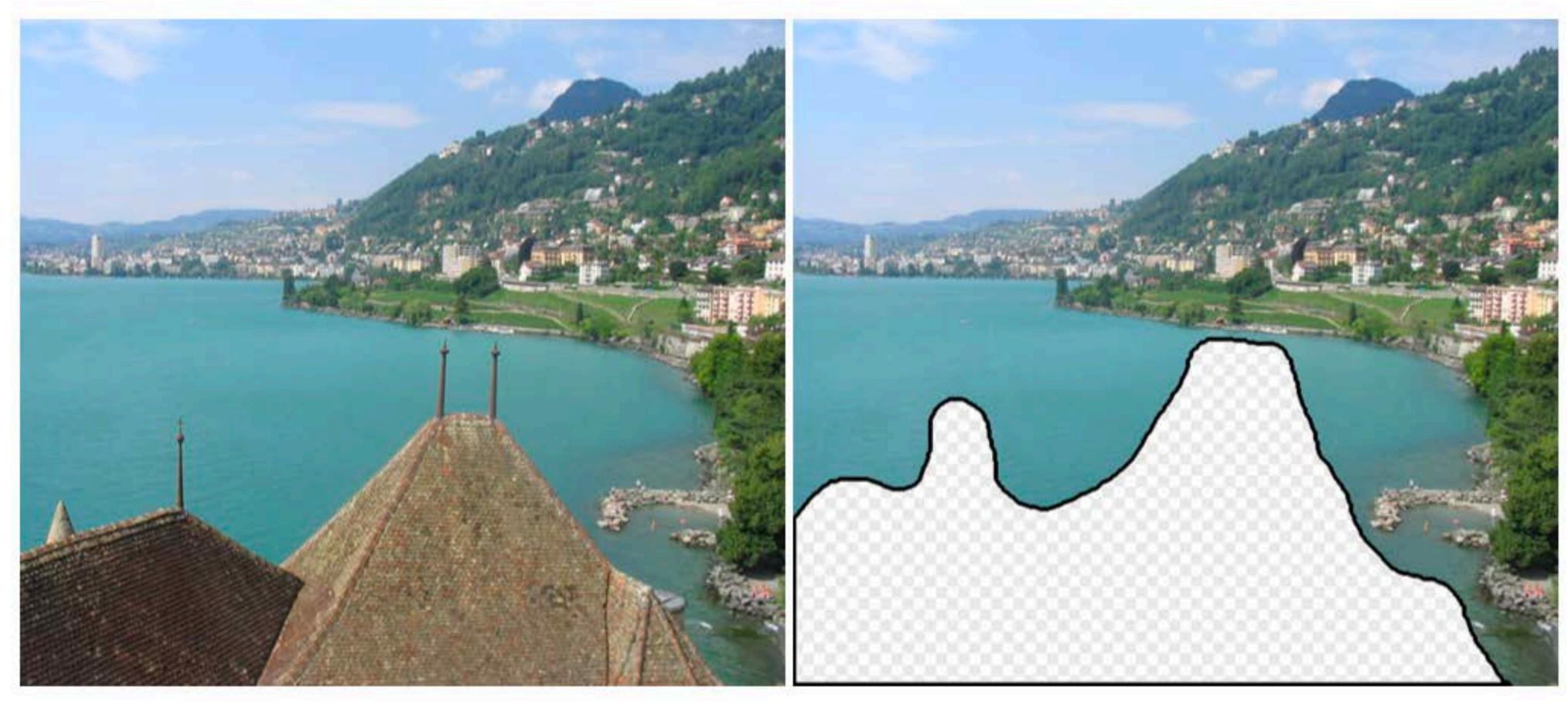
10 nearest neighbors from a collection of 2 million images

Figure Credit: Hays and Efros 2007

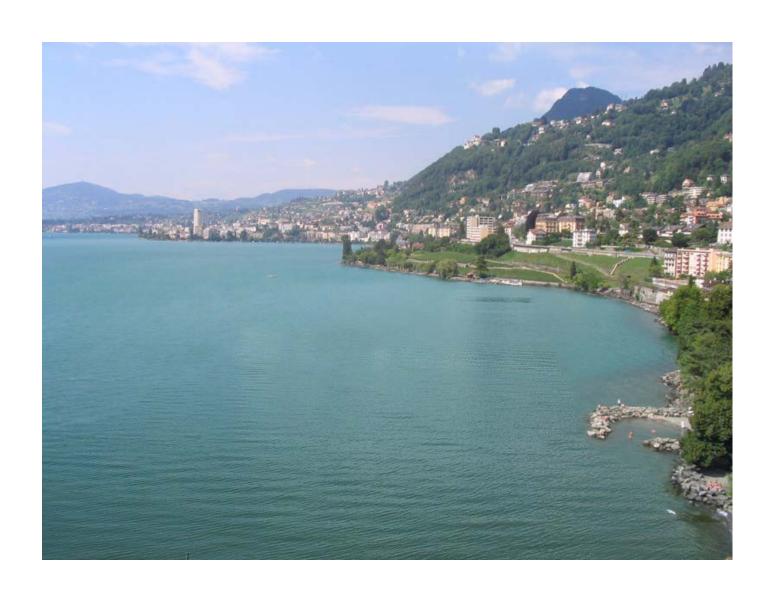
Algorithm sketch (Hays and Efros 2007):

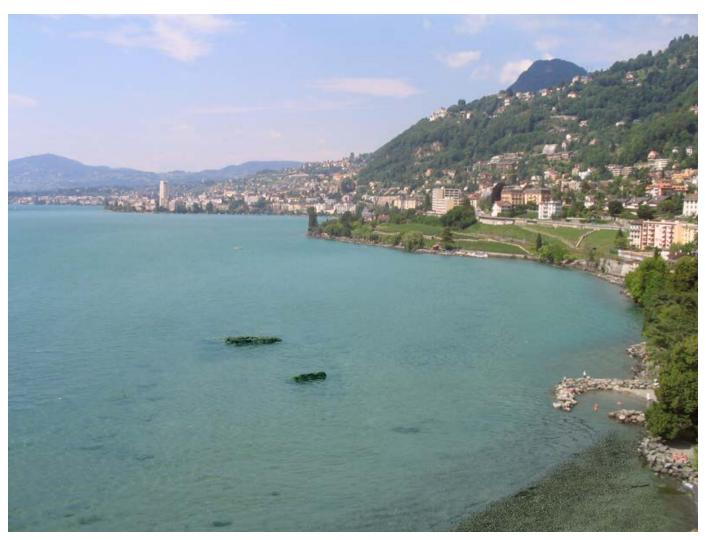
- 1. Create a short list of a few hundred "best matching" images based on global image statistics
- 2. Find patches in the short list that match the context surrounding the image region we want to fill
- 3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images



Original Image Input





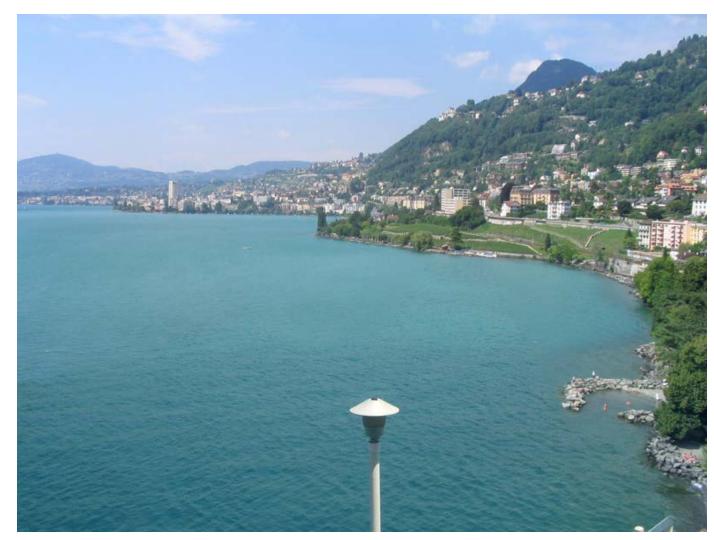


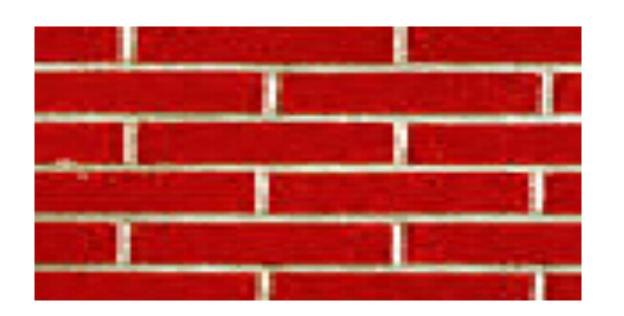
Figure Credit: Hays and Efros 2007

Figure Credit: Hays and Efros 2007

How do we analyze texture?

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

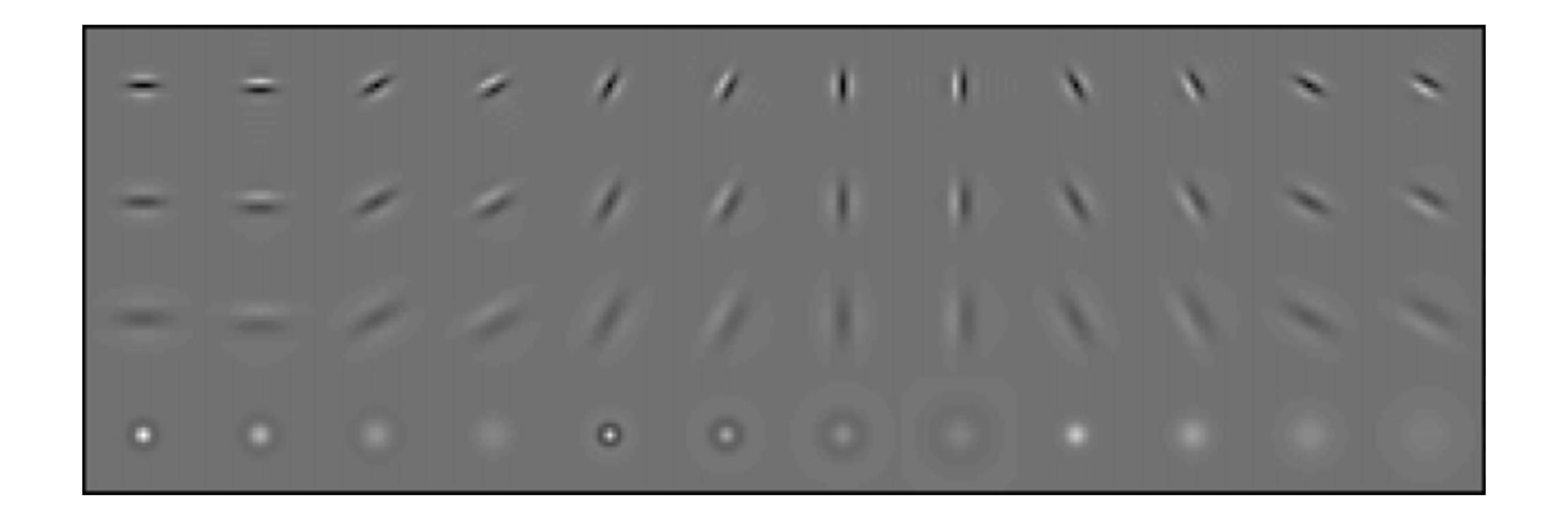


Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

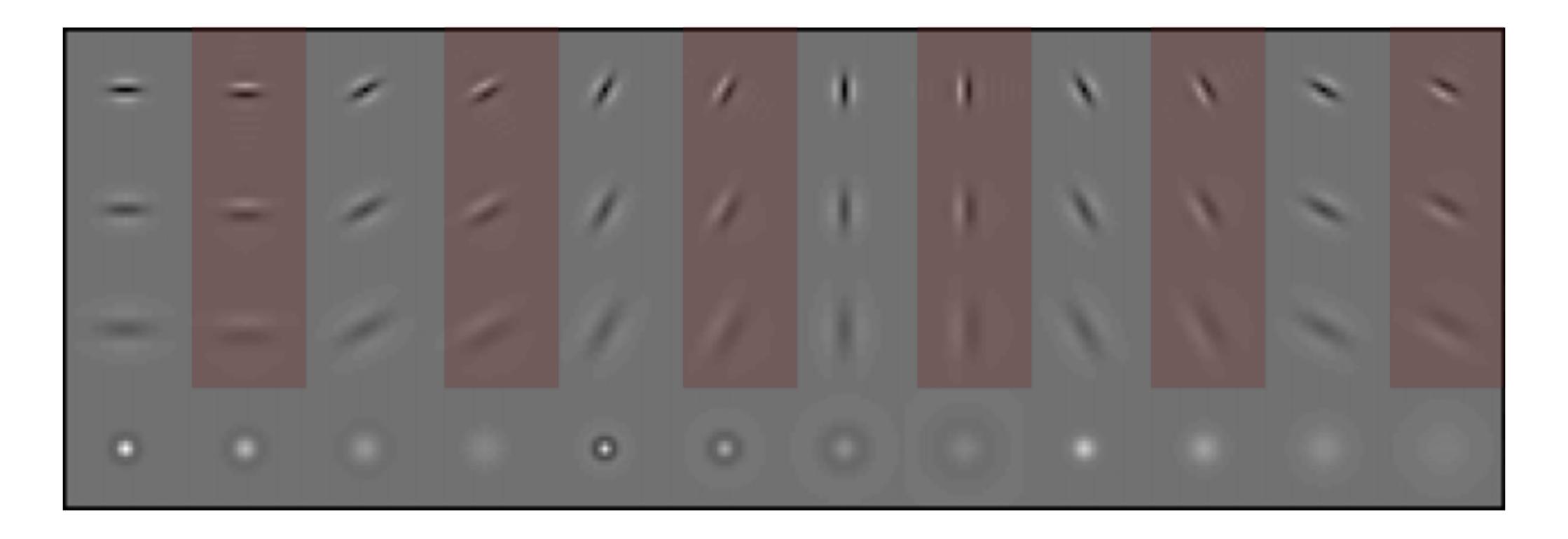
Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

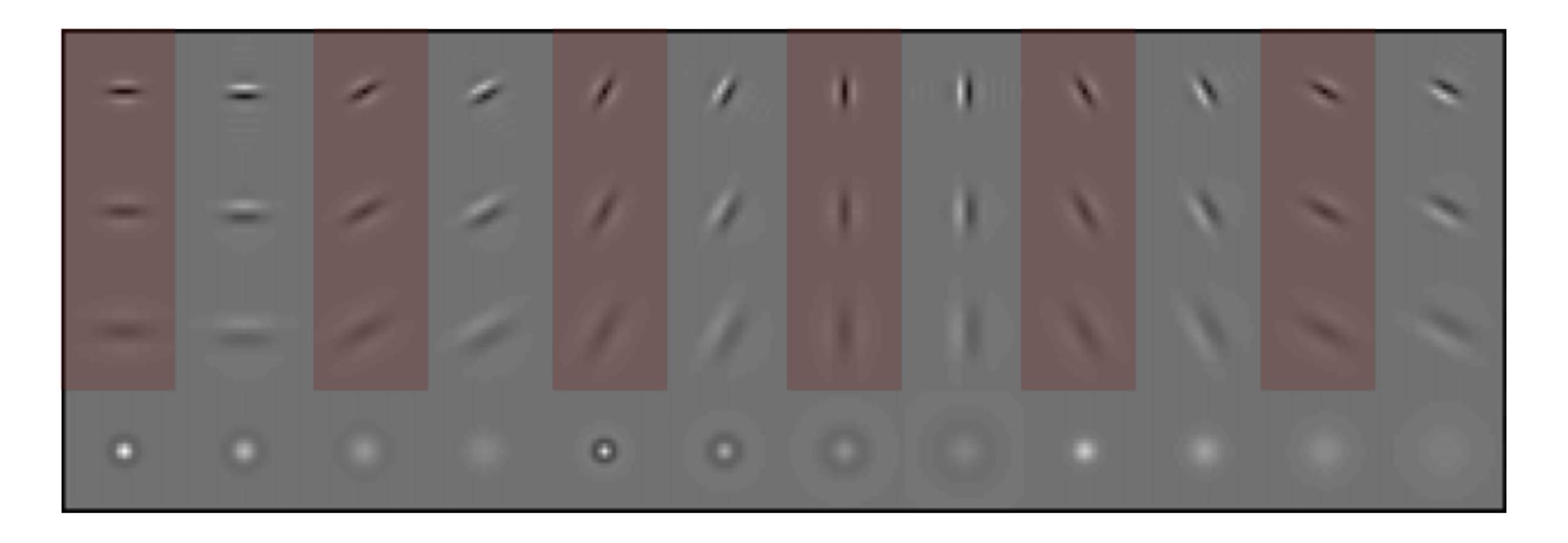
Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales



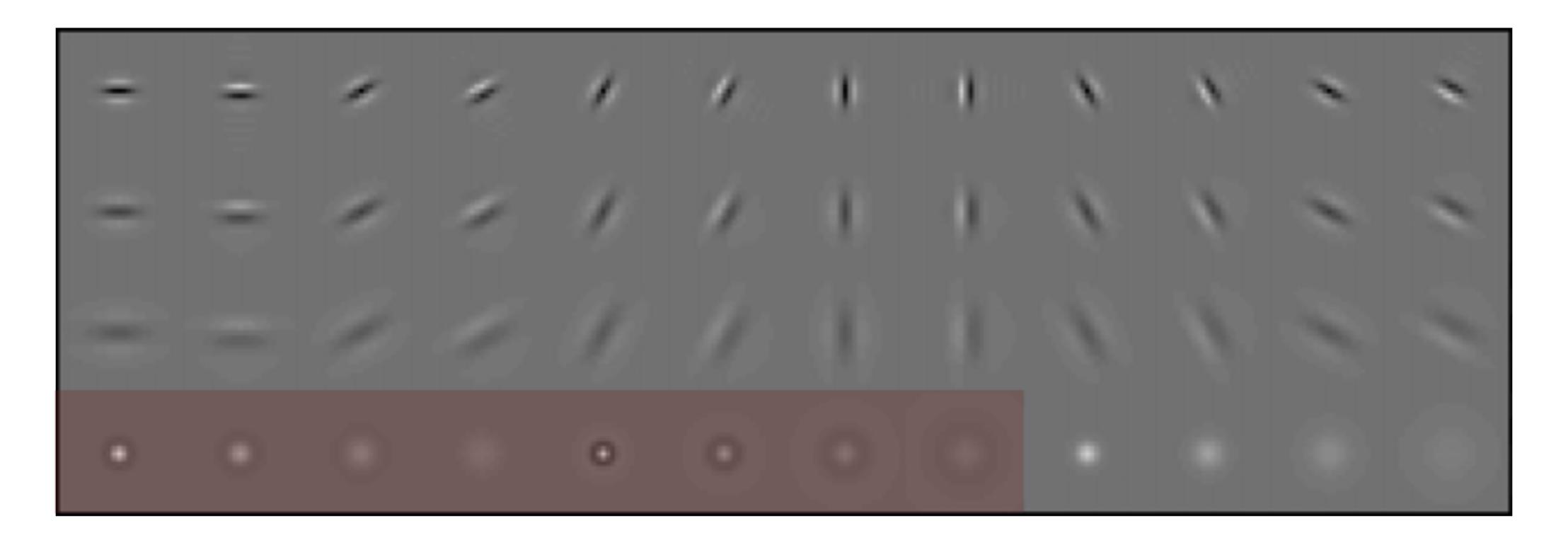
First derivative of Gaussian at 6 orientations and 3 scales



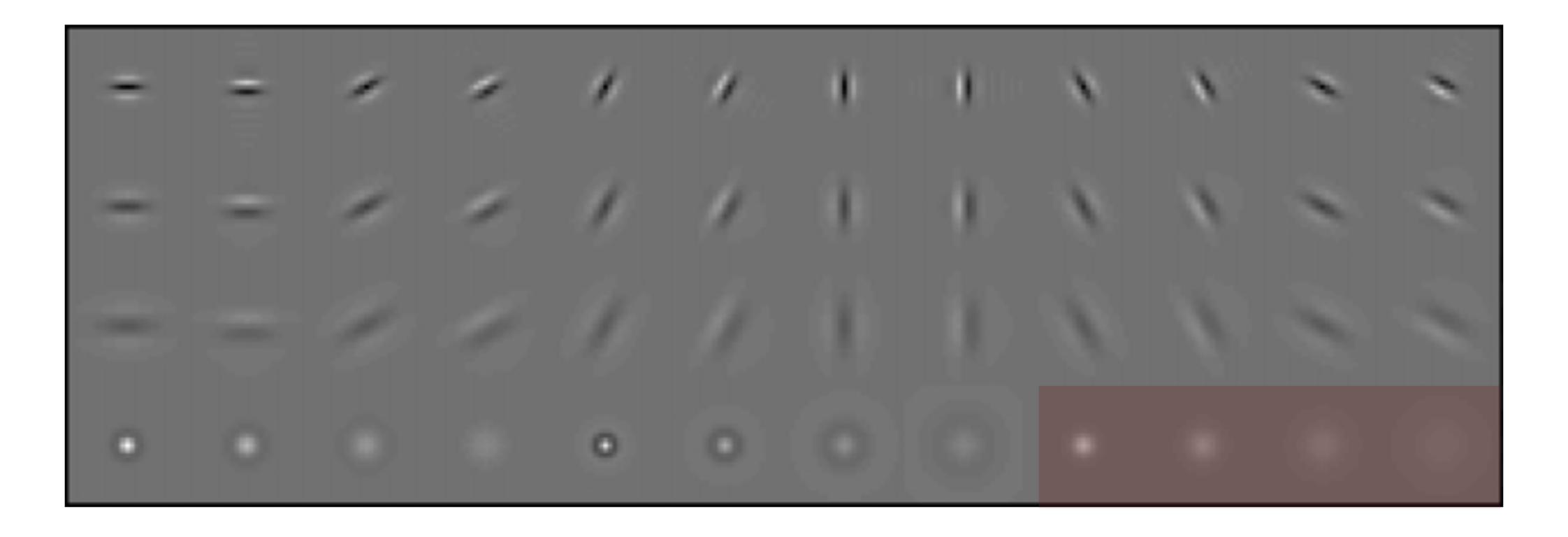
Second derivative of Gaussian at 6 orientations 3 scales

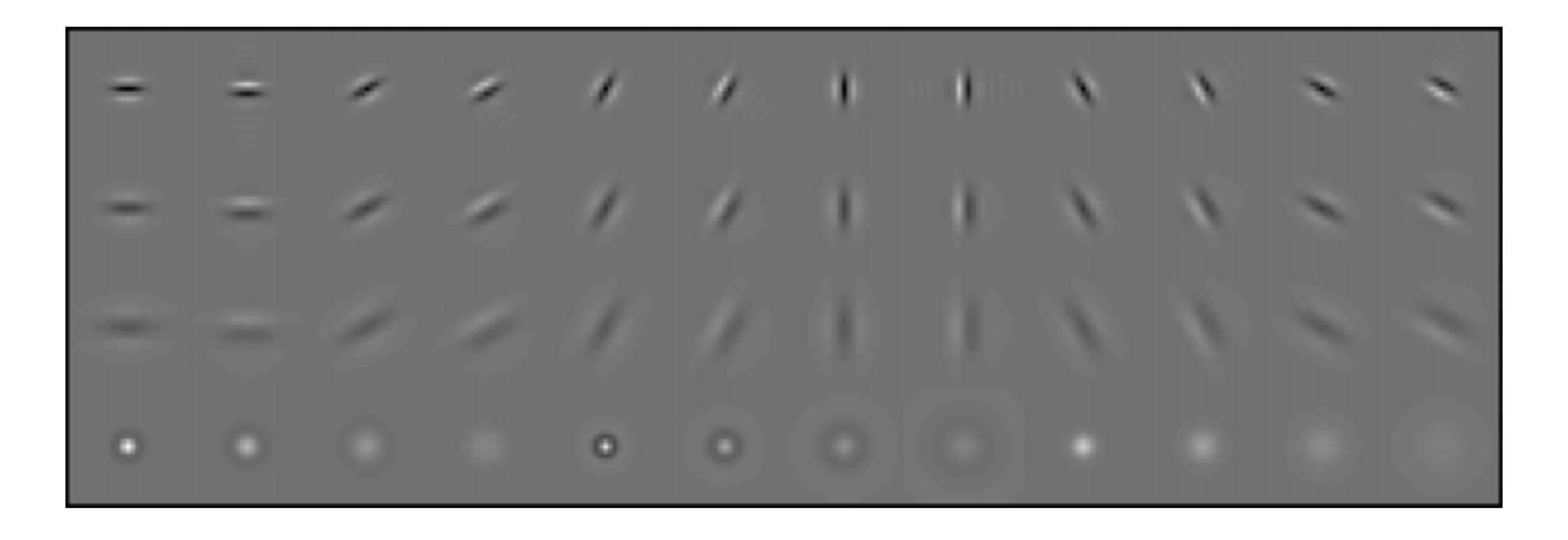


Laplacian of the Gaussian filters at different scales



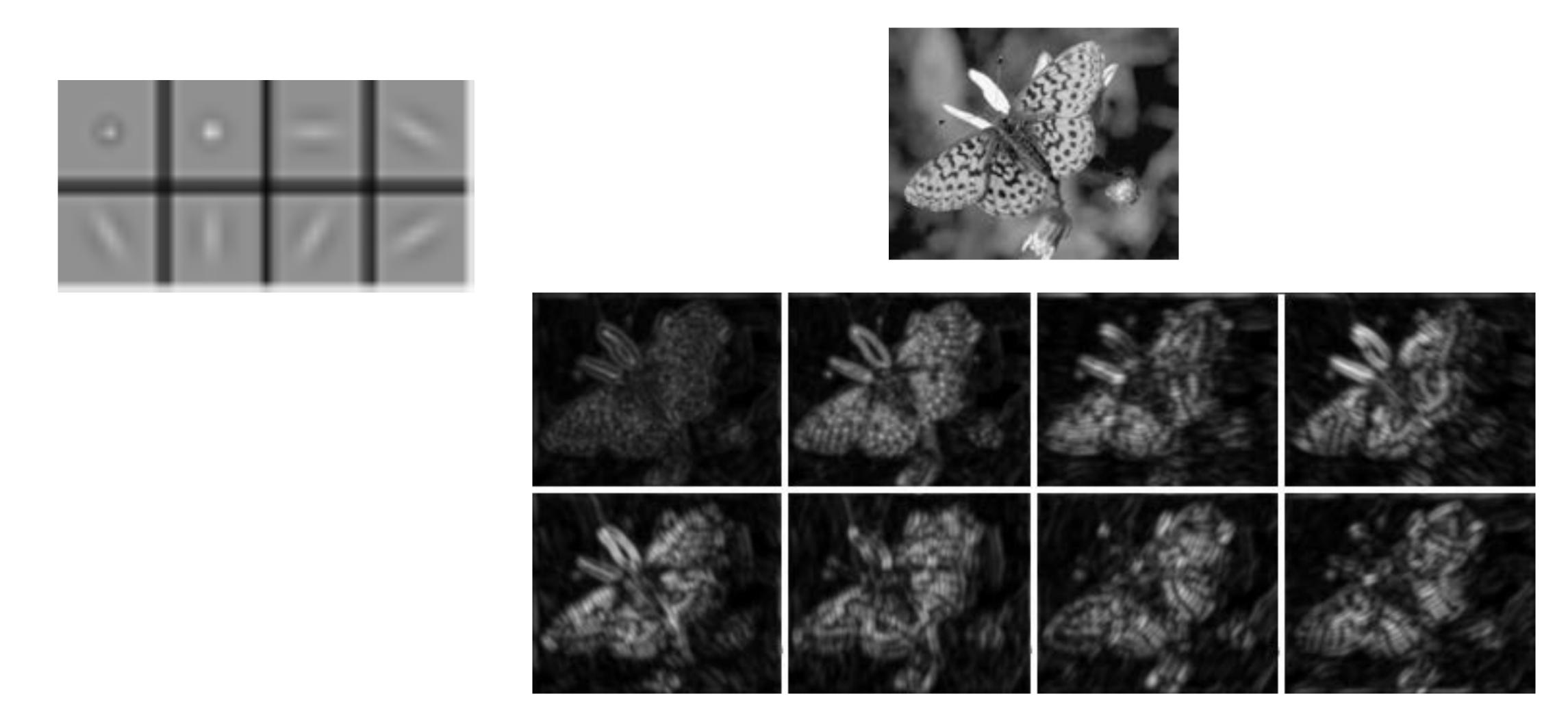
Gaussian filters at different scales





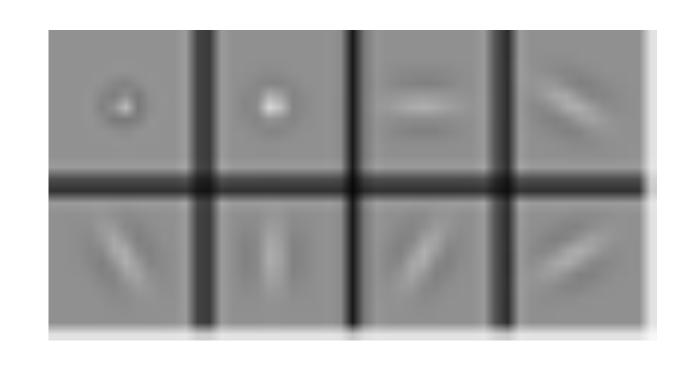
Result: 48-channel "image"

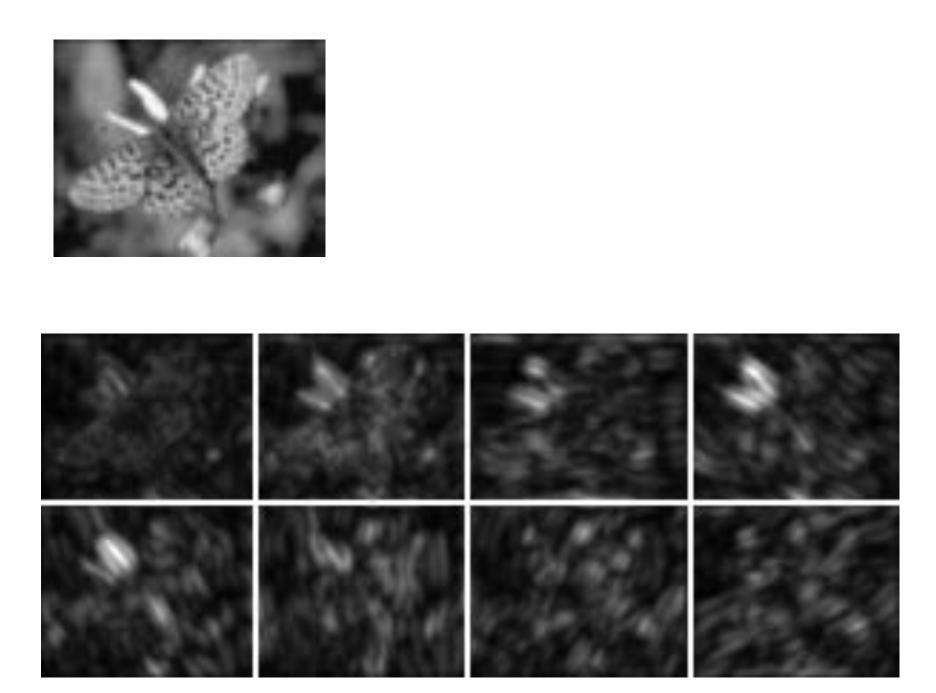
Spots and Bars (Fine Scale)



Forsyth & Ponce (1st ed.) Figures 9.3–9.4

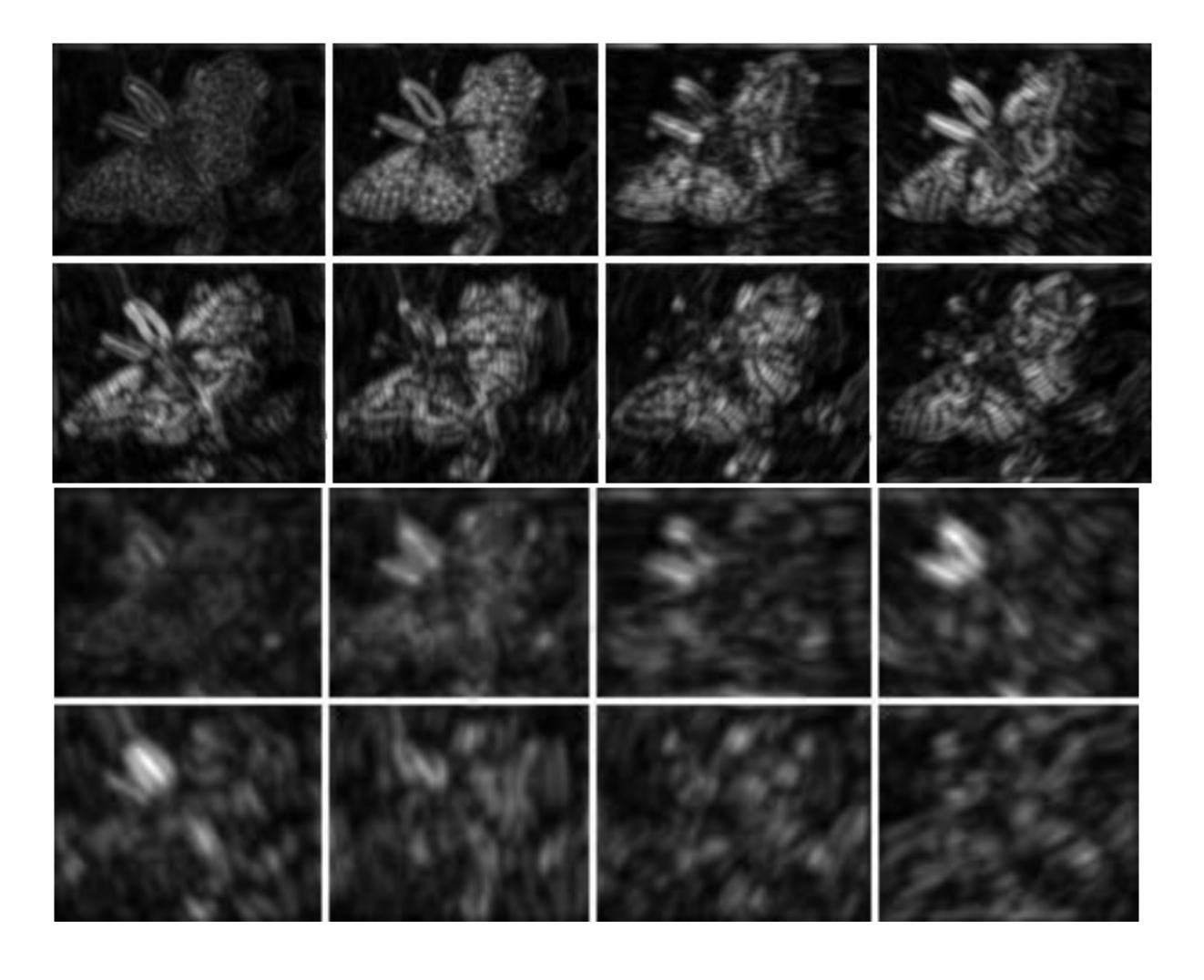
Spots and Bars (Coarse Scale)



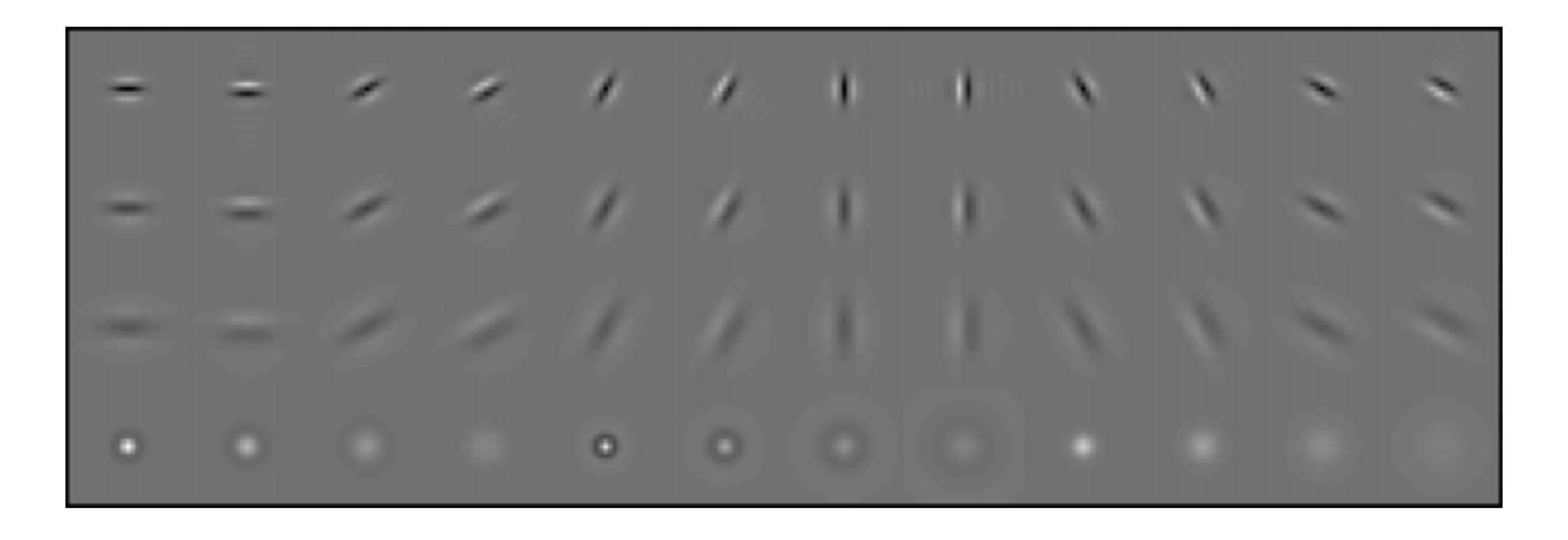


Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5

Comparison of Results



Forsyth & Ponce (1st ed.) Figures 9.4–9.5



Result: 48-channel "image"

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

Observation: Textures are made up of generic sub-elements, repeated over a region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image with a summary of the pattern of sub-elements in the local region

Question: What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of different orientations and scales

Question: How do we "summarize"?

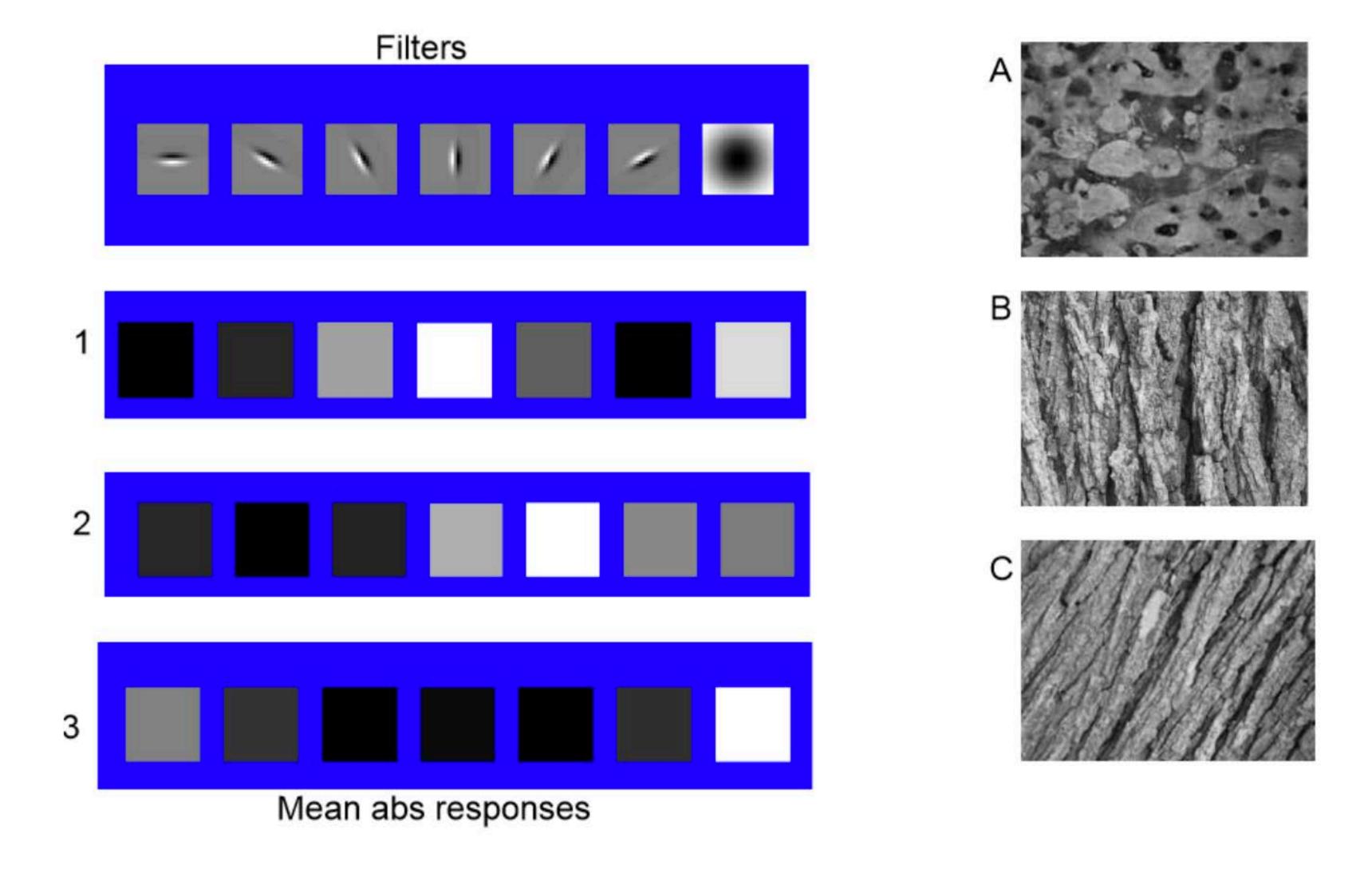
Answer: Compute the mean or maximum of each filter response over the region

Other statistics can also be useful

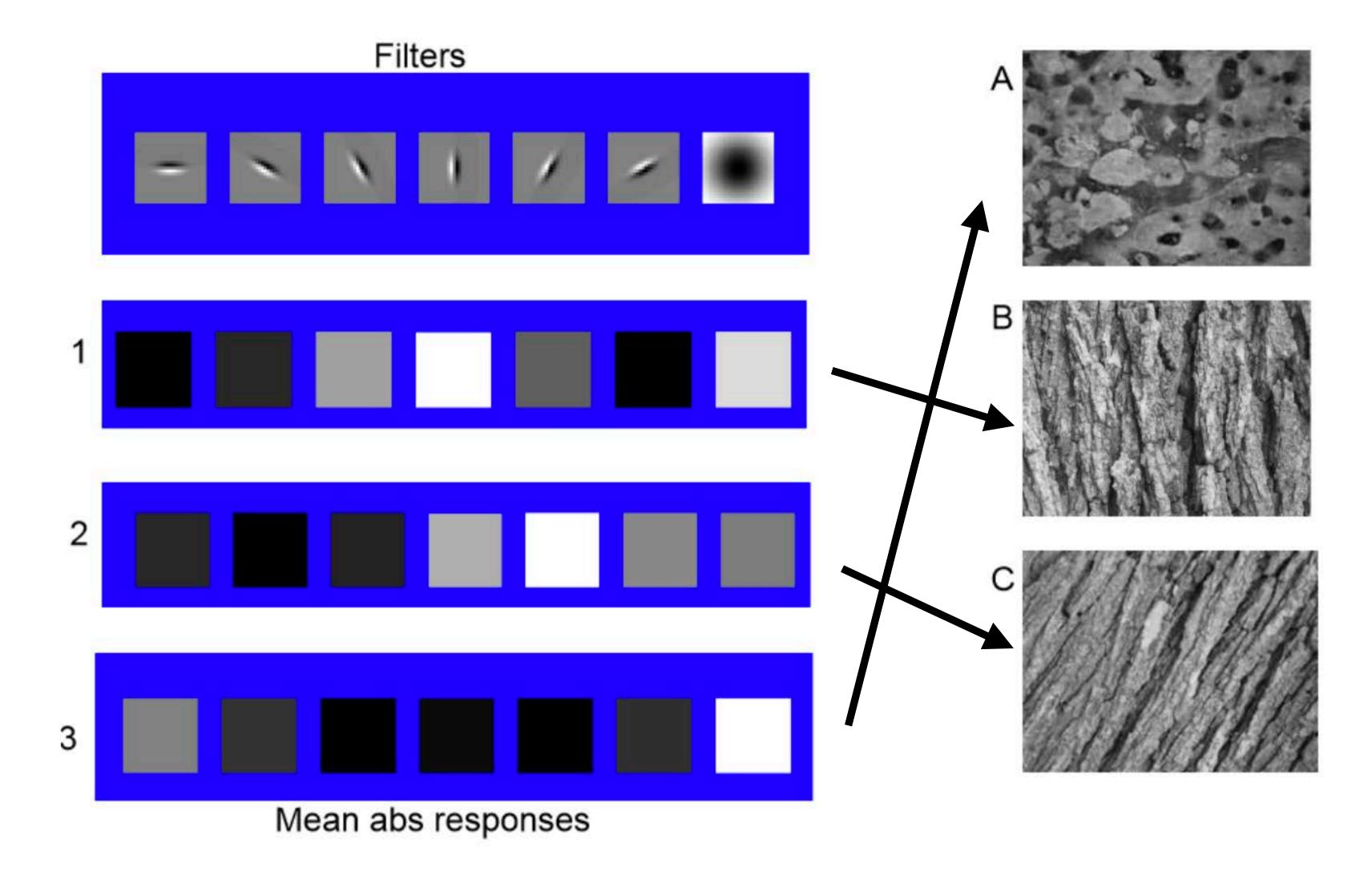


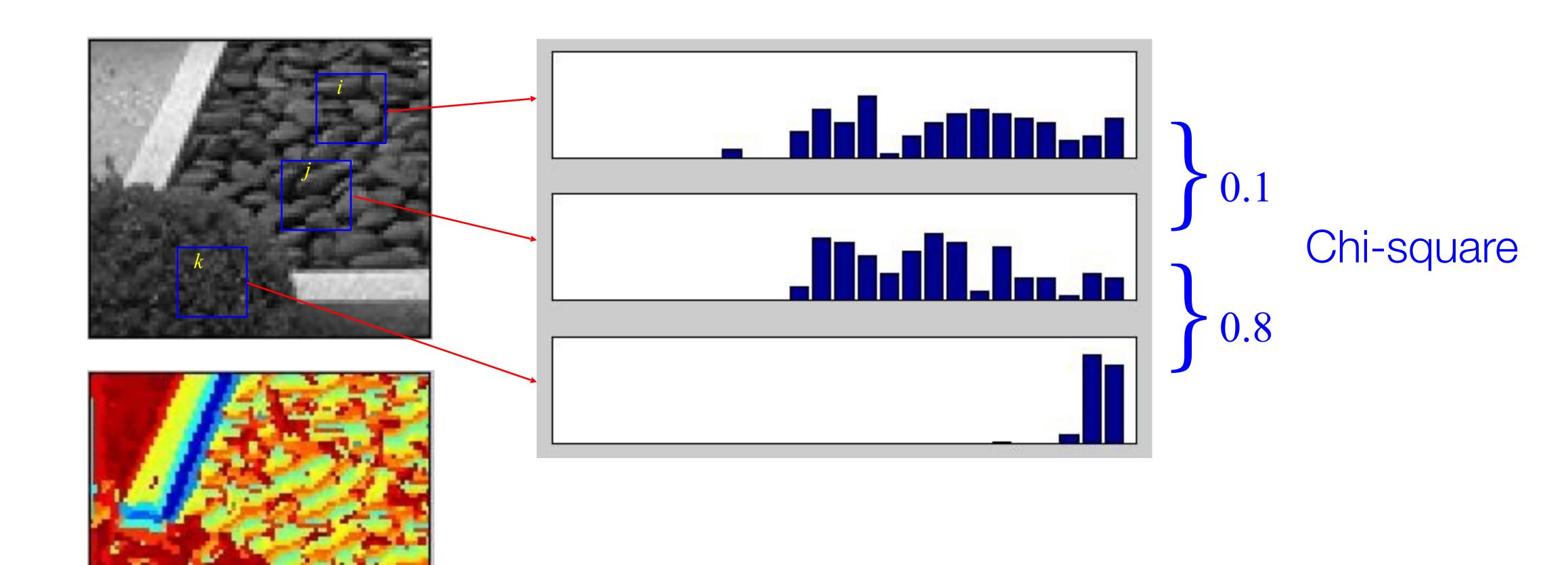
Result: 48-channel "image"

A Short **Exercise**: Match the texture to the response



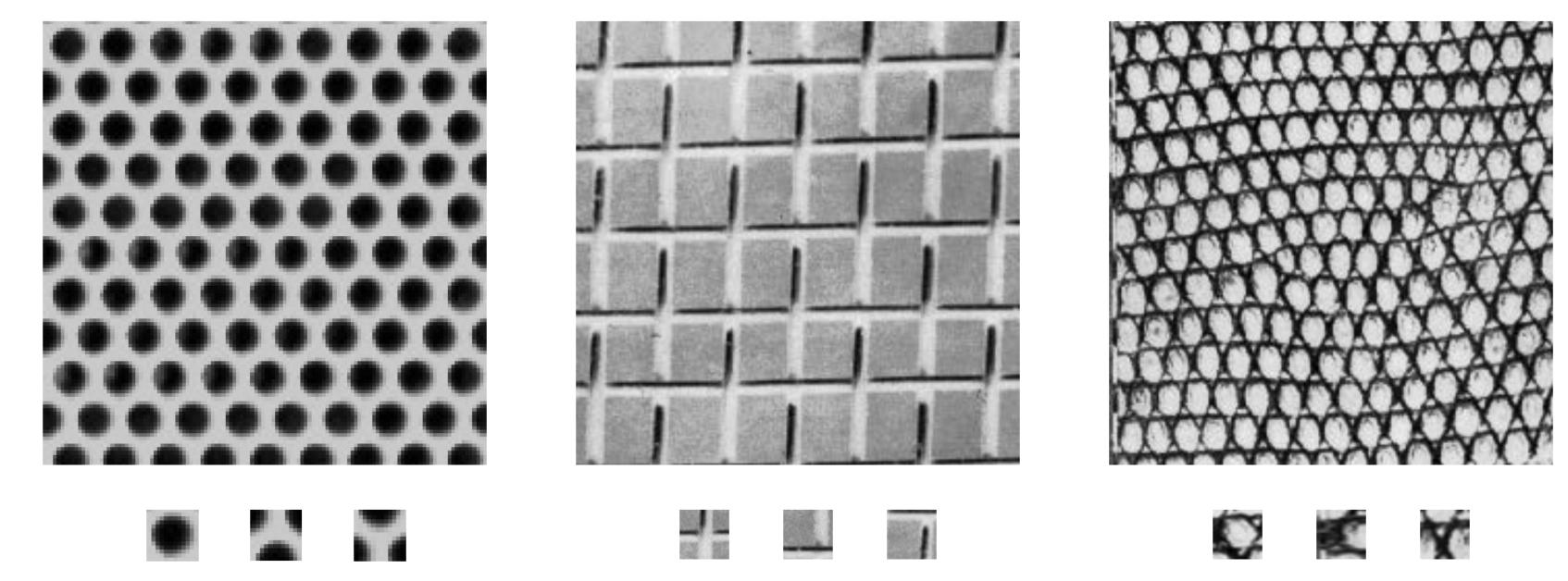
A Short Exercise: Match the texture to the response





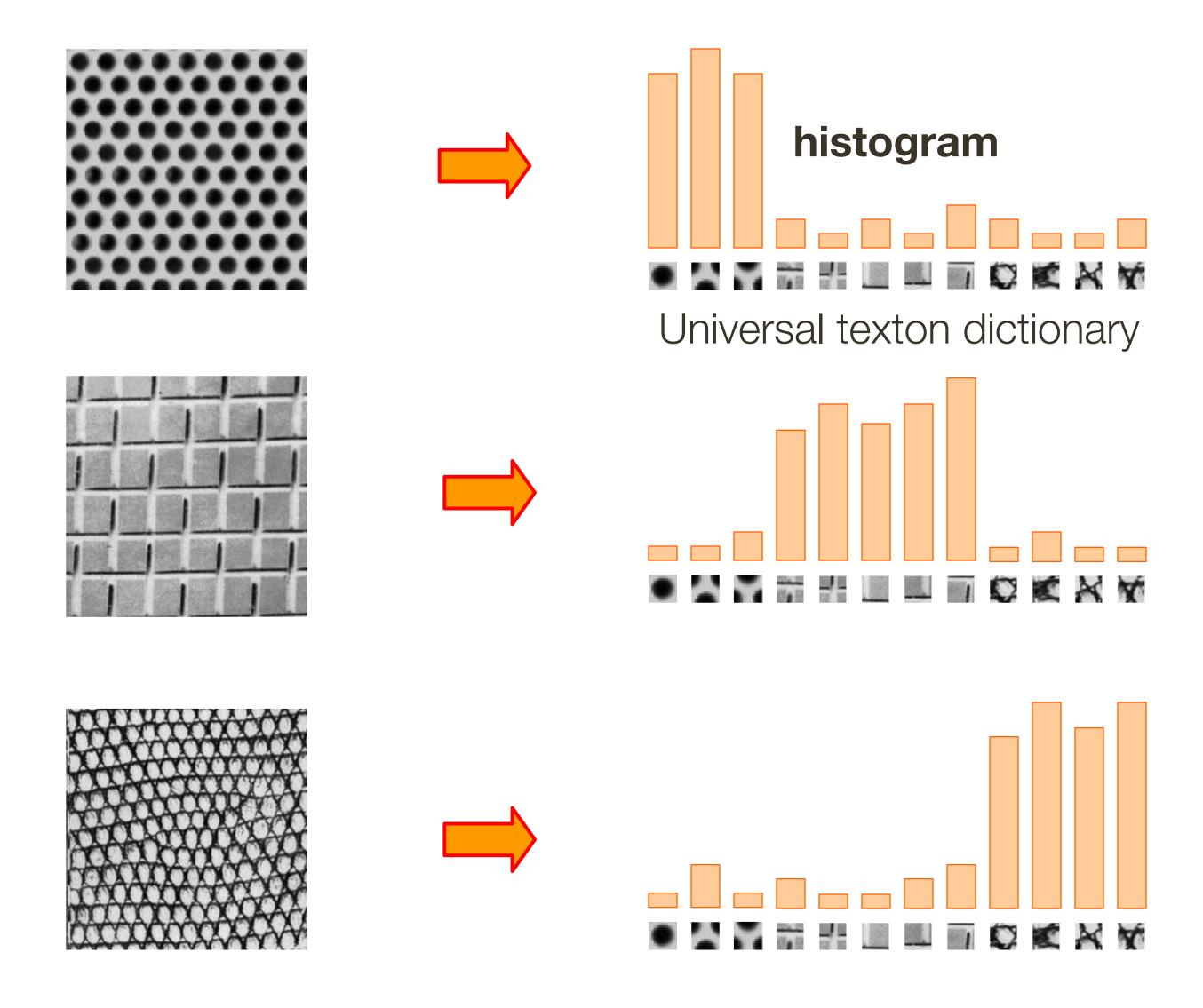
Texture representation and recognition

- Texture is characterized by the repetition of basic elements or textons
- For stochastic textures, it is the **identity of the textons**, not their spatial arrangement, that matters



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Texture representation and recognition

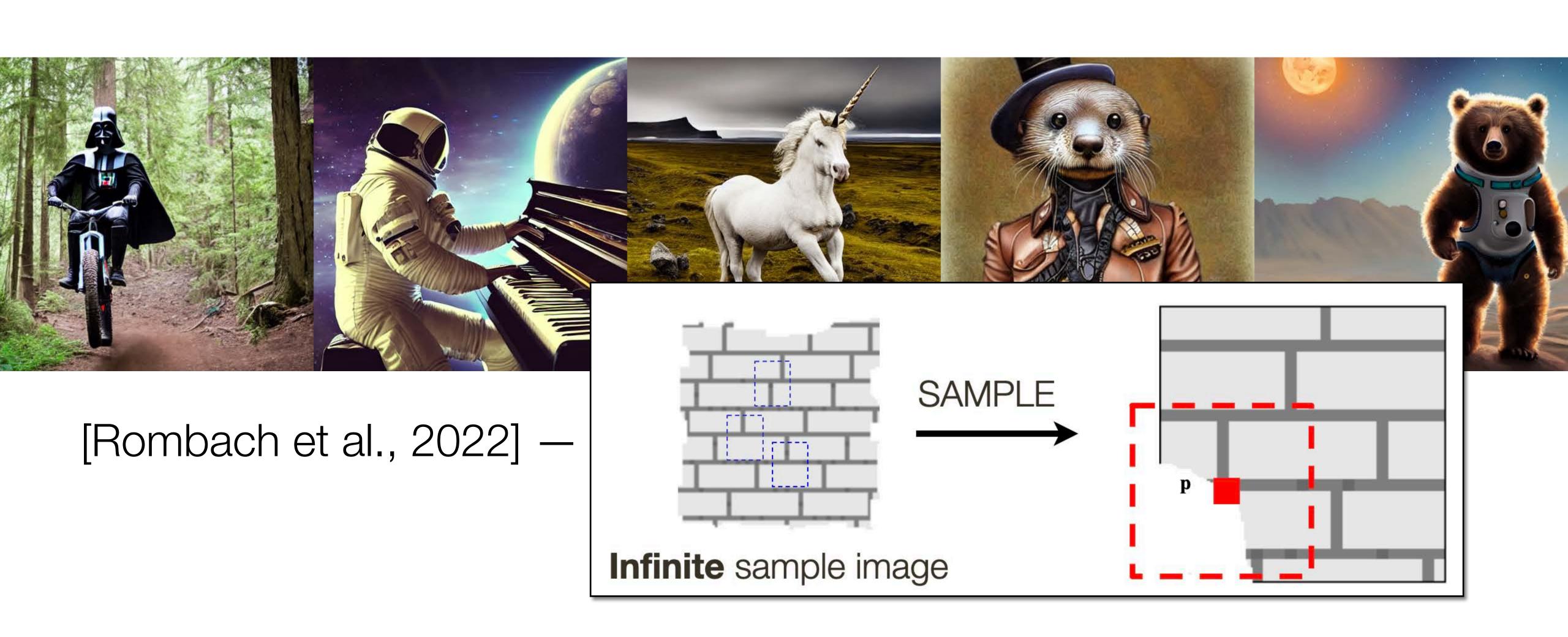


Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Relevant modern Computer Vision example

[Rombach et al., 2022] — https://github.com/CompVis/stable-diffusion

Relevant modern Computer Vision example



Summary

Texture representation is hard

- difficult to define, to analyze
- texture synthesis appears more tractable

Objective of texture synthesis is to generate new examples of a texture

— Efros and Leung: Draw samples directly from the texture to generate one pixel at a time. A "data-driven" approach.

Approaches to texture embed assumptions related to human perception