Harris Corners

SSD function must be large for all shifts Ax for a corner/ 2D structure
This implies that both eigenvalues of H must be large

Note that H is a 2x2 matrix



Recap: Computing Eigenvalues and Eigenvectors

/@

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors



Harris Corner Detection

2.Compute the covariance matrix

3.Compute eigenvectors and
eilgenvalues

4 .Use threshold on eigenvalues to
detect corners

Slide Adopted: loannis (Yannis) Gkioulekas (CMU)



Interpreting Eigenvalues

- ‘horizontal’ edge

Ay >> N

o 8 &8 8 8 8

10

7\'1N7\‘2

100 .

Al'\'O
A2 ~ 0

corner

_ B

A >> A,

‘vertical’ edge J

Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Threshold on Eigenvalues to Detect Corners
(a function of )

Harris & Stephens (1988)
det(C) — ktrace*(C)

Kanade & Tomasi (1994)
min()\l, )\2)

Nobel (1998)
det(C)
trace(C') + ¢

5 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Difference of Gaussian

DoG = centre-surround filter

Non-maximal suppression:
These points are maxima in —»
a 10 pixel radius




Difference of Gaussian

DoG detects blobs at scale that depends on the Gaussian standard deviation(s)

Note: DOG = Laplacian of Gaussian
red =[1 —2 1] % g(x; 5.0)
black = g(x; 5.0) — g(x; 4.0)




Scale Invariant Interest Point Detection

Find local maxima in both position and scale

g Slide Credit: loannis (Yannis) Gkioulekas (CMU)



e . P
| :"..' 0
v @ ’
< el

. fon. - - -

,o. a .‘* ’ e " g L .
’.ofi"-otf.‘oﬂ\l'_o'. 9,‘1.‘0. 33 L AL
¢ - ’..e .‘ ..“' » ] .’. -";‘

QU0Q A O

‘

9 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Characteristic Scale

characteristic scale - the scale that produces peak filter response

2000
1500 - - - - - SR LN G 2 BN e

| 1000} - ---- — ST, U SO WP Te—

characteristic scale

we need to search over characteristic scales
10 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1 sigma=4.2 sigma=6 sigma=9.8 sigma=15.5 sigma=17

001

<001
002 .
003
004
0,05

-0.06 -,

<007 -

-
.
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G — . . p Sy
v 3 > 7 . S T “yaapd L
. b X, .

AP AT

11 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=2.1

19 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=4.2

13 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

14 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Scales

Applying Laplacian Filter at Different

sigma=9.8

15 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=15.5

16 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

sigma=17

" 00

17 Slide Credit: loannis (Yannis) Gkioulekas (CMU)



Applying Laplacian Filter at Different Scales

2.1 4.2 0.0
9.8 15.5 17.0
18




Scale Selection

A DOG (Laplacian) Pyramid is formed with multiple scales per ocatve

Scale
(next

octave) /’9
e

Scale
(first
octave)

Z 2
g 2 Z 2 Z 2 Z 2 Z 2 2
&L L 2L 2L 2L 2L 2 2 2 2 Z

Z Z 2 Z Z Z 2 2 2 2 2
< Z Z <2 2 <2 2 2 2 2 2

Difference of

Gaussian Gaussian (DOG)

19
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Detections are local
maxima in a 3x3x3
scale-space window



Scale Selection

Maximising the DOG function in scale as well as space performs scale selection

[ T. Lindeberg ]

20



Difference of Gaussian blobs in 2020

STEREO: mAA(10°)
CV-SIFT e e m— o

CV-RoOtSIFT i | —
CV-SURF S e |
CV- AKAZE - ,,—_"— "
__—l
CV-ORB s~

L2-Net

DoG-HardNet s s

DoG-AffNet-HardNet &0 E—

IDOG-SOSIN €1 s s s S
Key.Net-Hard N et B e i
K @Y. IN @t~ SO SIN €1 s s s i B
eyprg

ContextDesc mmmmm s

OGP O1AT DS s s s S B

R2D2 (best model) S ST e e |
SuperPoint = |

LE-Nettm

D2-Net (SS) B

-' 2k features
- 8k features

D2-Net (MS) e 1

0.0 0.1 0.2 0.3 0.4 0.5
Mean Average Accuracy (mAA)
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Multi-Scale Harris Corners

For each level of the Gaussian pyramid

compute Harris feature response

For each level of the Gaussian pyramid

1f local maximum and cross-scale

save scale and location of feature(xgy;s)

22



Multi-Scale Harris Corners

23



Summary

Edges are useful image features for many applications, but suffer from the
aperture problem

Canny Edge detector combines edge filtering with linking and hysteresis steps

Corners / Interest Points have 2D structure and are useful for
correspondence

Harris corners are minima of a local SSD function

DoG maxima can be reliably located in scale-space and are useful as interest
oINS

24



THE UNIVERSITY OF BRITISH COLUMBIA

CPSC 425: Computer Vision

Lecture 11: lexture

( unless otherwise stated slides are taken or adopted fromm Bob Woodham, Jim Little and Fred Tung )



Menu for Today

Topics:

— Jexture Analysis, Synthesis
— Hilter Banks, Data-driven Methods

— Today’s Lecture: Forsyth & Ponce (2nd ed.) 3.1-3.3

Reminders:

— Midterm is right after reading break! February 24th 12:30 pm
— Quiz 3: Wednesday (Feb 12th)
— Assignment 2: due Feb 13th




| earning Goals

Understanding image as a collection of basis elements

A first step towards a “generative modelling” of images

27



Texture

What is texture”?
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Figure Credit: Alexei Efros and Thomas Leung

lexture Is widespread, easy to recognize, but hard to define

Views of large numbers of small objects are often considered textures
— e.0g. grass, foliage, pebbles, hair

Patterned surface markings are considered textures
— e.g. patterns on wood



Definition of Texture

(Functional) Definition:

Texture is detail iIn an image that Is at a scale too small to be resolved Iinto its

constituent elements and at a scale large enough to be apparent in the spatial
distribution of iImage measurements




Uses of Texture

JTexture can be a strong cue to object identity If the object has distinctive
material properties

Texture can be a strong cue to an object’s shape based on the deformation of
the texture from point to point.

— Estimating surface orientation or shape from texture is known as “shape
from texture’



Lecture 11: Re-cap Texture

We will look at two main questions:

1. How do we represent texture”
— [exture analysis

2. How do we generate new examples of a texture?
— [exture synthesis

We begin with texture synthesis to set up Assignment 3



Texture Synthesis

Why might we want to synthesize texture®

1. To fill holes in images (inpainting)

— Art directors might want to remove telephone wires. Restorers might want to
remove scratches or marks.

— We need to find something to put in place of the pixels that were removed
— We synthesize regions of texture that fit in and look convincing

2. To produce large quantities of texture for computer graphics
— Good textures make object models look more realistic



Texture Synthesis

radishes

lots more radishes

Szeliski, Fig. 10.49



Texture Synthesis

e

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling

of the
duplication

of soldiers.

Original photograph

Photo Credit: Associated Pres



Texture Synthesis

Cover of “The Economist,” June 19, 2010

| lhe .
Economist

The damage

beyond
the spill

m =

Photo Credit (right): Reuters/Larry Downing



Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish




Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box



Assignment 3 Preview: Texture Synthesis

Task: Make donkey vanish

Method: Fill-in regions using texture from the white box



Texture Synthesis

Objective: Generate new examples of a texture. We take a “data-driven”
approach

Idea: Use an image of the texture as the source of a probability model
— Draw samples directly from the actual texture

— Can account for more types of structure

— Very simple to implement

— Success depends on choosing a correct “distance”



Texture Synthesis by Non-parametric Sampling

Alexel Efros and Thomas Leung
UC Berkeley

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99. ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung

WOOO granite



Efros and Leung

i £ . .
G ’f v, e ':"‘"‘n.,

white bread brick wall



L ike Copying, But not Just Repetition




Efros and Leung: Synthesizing One Pixel

Infinite sample image

— What is conditional probability distribution of p, given the neighlbournhood
window"?



Efros and Leung: Synthesizing One Pixel

Infinite sample image

— What is conditional probability distribution of p, given the neighlbournhood
window"?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p



Efros and Leung: Synthesizing One Pixel




Efros and Leung: Synthesizing One Pixel
I

po(dark gray) = 0.5

- s -
=

p(light gray) = 0.5




Efros and Leung: Synthesizing One Pixel

———
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Efros and Leung: Synthesizing One Pixel

———

jnsn

p(dark gray) = 0.75

o(light gray) = 0.25

- s -
=




Efros and Leung: Synthesizing One Pixel

Conditional distribution of p

probability , .
given known neighlborhood

0.75

0.25 I

0 20 40 ® oo 190 230 255

pixel value

light gray dark gray



Efros and Leung: Synthesizing One Pixel

———

jnsn

p(dark gray) = 0.75

o(light gray) = 0.25

- s -
=




Efros and Leung: Synthesizing One Pixel

Infinite sample image

— What is conditional probability distribution of p, given the neighlbournhood
window"?

— Directly search the input image for all such neighbourhoods to produce a
histogram for p

— |o synthesize p, pick one match at random



Efros and Leung: Synthesizing One Pixel

Infinite sample image

— Since the sample image is finite, an exact neighbourhood match might not
be present



Efros and Leung: Synthesizing One Pixel

Infinite sample image

— Since the sample image is finite, an exact neighbourhood match might not
be present

— Find the best match using SSD error, weighted by Gaussian to emphasize
local structure, and take all samples within some distance from that match



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (cos)
X=5y=17 0.87 <€— pest match
X=03,y=4 0.75
X=3,y=44 0.72
X =123,y = 54 064— threshold = best match *ﬁz 0.696
X=4,y=095/ 0.60
® ®



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (cos)
X=5y=17 0.87 € Dbest match
X=063,y=4 0.75 - - -
pick one at random and copy target pixel from it

X=3,y=44 0.72
X =123,y = 54 oo threshold = best match * 0.8 = 0.696
X = 4, Yy = 57 0.60

® o

® o



Efros and Leung: Synthesizing One Pixel

Infinite sample image

Ranked List Similarity (ssd)
X=5y=17 0.13
X=063,y=4 0.25 - - -
pick one at random and copy target pixel from it

X=3,y=44 0.28
X =123,y = 54 Do threshold = best match * 2.5 = 0.325
X = 4, Yy = 57 0.40

o o

o o



Efros and Leung: Synthesizing Many Pixels

For multiple pixels, "grow" the texture in layers
— In the case of hole-filling, start from the edges of the hole

For an interactive demo, see
https://una-dinosauria.github.io/efros-and-leung-js/
(written by Julieta Martinez, a previous CPSC 425 TA)



https://una-dinosauria.github.io/efros-and-leung-js/

Randomness Parameter

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99. ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

Efros and Leung: More Synthesis Results

Forsyth & Ponce (2nd ed.) Figure 6.12



Efros and Leung: Image Extrapolation

Slide Credit: http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99. ppt



http://graphics.cs.cmu.edu/people/efros/research/NPS/efros-iccv99.ppt

‘Big Data” Meets Inpainting

‘Big Data" enables surprisingly simple non-parametric, matching-lbased
techniques to solve complex problems in computer graphics and vision.

Suppose instead of a single image, you had a massive datalbase of a million
images. What could you do”



‘Big Data” Meets Inpainting

Original Image INnput

Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting

Scene Matches

Figure Credit: Hays and Efros 2007



Effectiveness of "Big Data”

Figure Credit: Hays and Efros 2007



Effectiveness of "Big Data”

10 nearest neighbors from a collection of 20,000 images
Figure Credit: Hays and Efros 2007
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Effectiveness of "Big Data
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‘Big Data” Meets Inpainting

Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting

Algorithm sketch (Hays and Efros 2007):

1. Create a short list of a few hundred “best matching" images based on global
Image statistics

2. Find patches in the short list that match the context surrounding the image
region we want to fill

3. Blend the match into the original image

Purely data-driven, requires no manual labeling of images



‘Big Data” Meets Inpainting

Original Image INnput

Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting
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Figure Credit: Hays and Efros 2007



‘Big Data” Meets Inpainting
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How do we analyze texture?

73



lexture Representation

Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region




lexture Representation

Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: \What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales



lexture Representation

Figure Credit: Leung and Malik, 2001



lexture Representation

First derivative of Gaussian at 6 orientations and 3 scales

Figure Credit: Leung and Malik, 2001



lexture Representation

Second derivative of Gaussian at 6 orientations 3 scales

Figure Credit: Leung and Malik, 2001



lexture Representation

Laplacian of the Gaussian filters at different scales

Figure Credit: Leung and Malik, 2001



lexture Representation

(Gaussian filters at different scales

Figure Credit: Leung and Malik, 2001



lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001



Spots and Bars (Fine Scale)

Forsyth & Ponce (1st ed.) Figures 9.3-9.4



Spots and Bars (Coarse Scale)

Forsyth & Ponce (1st ed.) Figures 9.3 and 9.5




Comparison of Results

Forsyth & Ponce (1st ed.) Figures 9.4-9.5



lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001



lexture Representation

Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: \What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales



lexture Representation

Observation: Textures are made up of generic sub-elements, repeated over a
region with similar statistical properties

Idea: Find the sub-elements with filters, then represent each point in the image
with a summary of the pattern of sub-elements in the local region

Question: \What filters should we use?

Answer: Human vision suggests spots and oriented edge filters at a variety of
different orientations and scales

Question: How do we “summarize”?

Answer: Compute the mean or maximum of each filter response over the region
— Other statistics can also be useful



lexture Representation

Result: 48-channel “image”

Figure Credit: Leung and Malik, 2001



A Short Exercise: Match the texture to the response

Filters

Mean abs responses

Slide Credit: James Hays



A Short Exercise: Match the texture to the response

Filters

Mean abs responses

Slide Credit: James Hays
90



lexture Representation

L,

Chi-square
0.8




Texture representation and recognition

e [exture Is characterized by the repetition of basic elements or textons

e [or stochastic textures, it is the identity of the textons, not their spatial
arrangement, that matters
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003




Texture representation and recognition

-
CEXNY

histogram
i

]

Universal texton dictionary

IEROCE XK

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001;
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Relevant modern Computer Vision example
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https://github.com/CompVis/stable-diffusion

Relevant modern Computer Vision example
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Infinite sample image



https://github.com/CompVis/stable-diffusion

Summary

Texture representation Is haro
— difficult to define, to analyze
— texture synthesis appears more tractable

Objective of texture synthesis is to generate new examples of a texture

— Efros and Leung: Draw samples directly from the texture to generate one
pixel at a time. A “data-driven” approach.

Approaches to texture embed assumptions related to human perception



