CS 516 -6 Computational Geometry & Graph Drawing (Spring 2013)

Reading

MountNotes Chapters 7,8
Chapters 9,10, 6
Seidel, R., "Small-dimensional linear programming and convex hulls made easy", <u>Discrete and</u>
Computational Geometry 6: 423-434 (1991)

Last time...

- lower bounds for convex hulls (and other problems)
 - Algebraic decision trees...region counting
 - Milnor and Ben-Or theorems
 - Applications: element distinctness, CH...
- Loose ends
 - Half-space intersection---certification
 - K-S convex hull bridge finding

Last time (cont.)...

- Low dimensional linear programming
 - Warmup: sketch of candidate elimination scheme for "marriage-before-conquest" bridge endpoints
 - Sketch of 2-d linear programming by constraint elimination (Megiddo); extensions to higher dimensions

Today...

- More low dimensional linear programming
 - A randomized incremental algorithm
 - Issues in higher dimensions
 - "Backward" analysis of expected cost
- Smallest enclosing sphere (1-centre) problem
 - Welzl's algorithm

Today...

- More low dimensional linear programming
 - A randomized incremental algorithm
 - Issues in higher dimensions
 - "Backward" analysis of expected cost
- Smallest enclosing sphere (1-centre) problem
 - Welzl's algorithm
- Point location in planar maps...