CS 516 -5 Computational Geometry & Graph Drawing (Spring 2013)

Reading

MountNotes Chapters 7,8 Chapters 9,10, 6

Last time...

- more convex hull algorithms (exploiting possible input-size output-size discrepancy)
 - More careful analysis of existing algorithms
 - E.g. unordered divide-and conquer
 - Try to discard non-extreme points quickly
 - Quickhull
 - "wrap" around the extreme points
 - Jarvis O(nh)

Last time (cont.)...

- more convex hull algorithms (exploiting possible input-size output-size discrepancy)
 - Marriage before conquest (K&S) O(n lg h)
 - Find bridge and filter before recursing
 - Chan's algorithm O(n lg h)
 - Clever combination of Jarvis and Graham
 - Successive "guesses" of size of h
- matching lower bounds
 - Decision tree framework

Lower Bounds

- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.
- More refined lower bound is $\Omega(n \log h)$. LB holds even for identifying the CH vertices.

Subhash Suri UC Santa Barbara

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees
 - applies to strong version of CH problem (requires ordered output)
 - does not explain output-size sensitivity (dependence on h)

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees
 - applies to strong version of CH problem (requires ordered output)
 - does not explain output-size sensitivity (dependence on h)
 - formulate decision problems as point-classification problems

Lower bounds using fixed-order algebraic decision trees

Lower bounds using fixed-order algebraic decision trees

- Milnor's theorem
 - bounds the number of connected components of a region defined by common intersection of degree d surfaces
- Ben-Or's theorem
 - applies this to algebraic decision trees

Lower bounds using fixed-order algebraic decision trees

- Applications
 - element distinctness
 - multiset size verification
 - convex hull size verification

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?
 - LP feasibility

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?
 - LP feasibility
- the marriage-before-conquest convex hull algorithm
 - need to find an (upper) bridge between opposite partitions. How do we do this efficiently?

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?
 - LP feasibility
- the marriage-before-conquest convex hull algorithm
 - need to find an (upper) bridge between opposite partitions. How do we do this efficiently?
 - a 2 variable (2-d) linear programming problem

Low-dimensional linear programming

- [2-d] a deterministic linear time algorithm
 - view as bridge-finding; candidate elimination
 - general LP formulation (Megiddo)
 - linear-time algorithms in higher dimensions

Low-dimensional linear programming (cont.)

- an incremental approach
 - in 1-d
 - in 2-d
 - (worst-case) analysis of deterministic implementation
 - (expected-case) analysis of randomized implementation

Low-dimensional linear programming (cont.)

- extensions to higher dimensions
 - Meggido's approach
 - randomized incremental approach

Applications

- 1-center problem...
 - "pinned" subproblems
 - uniqueness of solutions
 - reductions

other LP-type problems

3-d convex hulls

divide and conquer

a "kinetic" approach