CS 516 -4 Computational Geometry & Graph Drawing (Spring 2013)

Last class...

- Brief review of Asst0
- Convex hulls, halfspace intersections and duality
- Two equivalences concerning convex hulls:
 - Structural equivalence (via duality) with (origincontaining) half-space intersection
 - Algorithmic equivalence (via reducibility argument)
 with sorting

Reading

MountNotes Chapters 7,8 Chapters 9,10, 6

Today

- more convex hull algorithms
 - sensitivity to output size h
- "matching lower bounds"

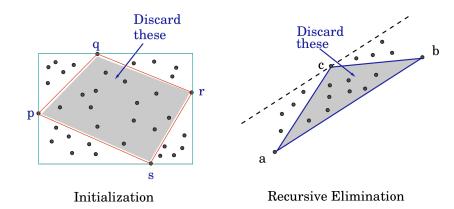
Ideas...

More careful analysis of existing algorithms

Ideas...

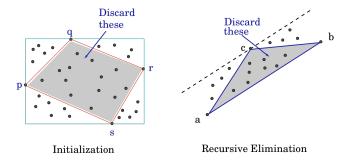
- More careful analysis of existing algorithms
- Try to discard non-extreme points quickly

Quick Hull Algorithm



- 1. Form initial quadrilateral Q, with left, right, top, bottom. Discard points inside Q.
- 2. Recursively, a convex polygon, with some points "outside" each edge.
- 3. For an edge ab, find the farthest outside point c. Discard points inside triangle abc.
- 4. Split remaining points into "outside" points for ac and bc.
- 5. Edge ab on CH when no point outside.

Complexity of QuickHull



- 1. Initial quadrilateral phase takes O(n) time.
- 2. T(n): time to solve the problem for an edge with n points outside.
- 3. Let n_1, n_2 be sizes of subproblems. Then,

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 1 \\ n + T(n_1) + T(n_2) & \text{where } n_1 + n_2 \le n \end{array} \right\}$$

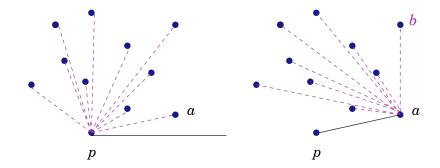
4. Like QuickSort, this has expected running time $O(n \log n)$, but worst-case time $O(n^2)$.

Ideas...

- More careful analysis of existing algorithms
- Try to discard non-extreme points quickly
- "wrap" around the extreme points

Efficient CH Algorithms

Gift Wrapping: [Jarvis '73; Chand-Kapur '70]

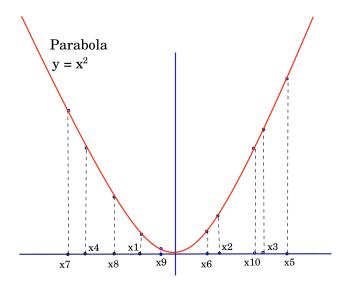


- 1. Start with bottom point p.
- **2.** Angularly sort all points around p.
- 3. Point a with smallest angle is on CH.
- 4. Repeat algorithm at a.
- 5. Complexity O(Nh); $3 \le h = |CH| \le N$. Worst case $O(N^2)$.

What is the complexity of finding 2-d convex hulls, in terms of *n* and *h*?

- Lower bound of $\Omega(n \log n)$
- Jarvis' algorithm is O(nh), beats the lower bound when h is small

Lower Bounds



- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.
- More refined lower bound is $\Omega(n \log h)$. LB holds even for identifying the CH vertices.

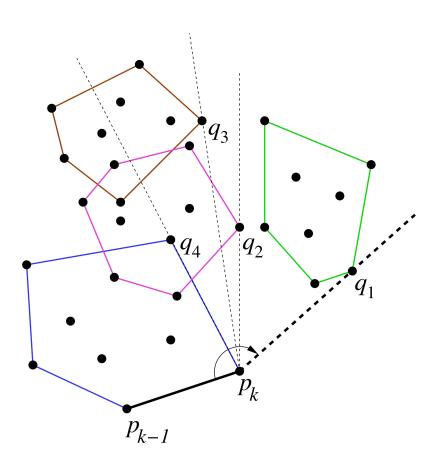
Output-Sensitive CH

- 1. Kirkpatrick-Seidel (1986) describe an $O(n \log h)$ worst-case algorithm. Always optimal—linear when h = O(1) and $O(n \log n)$ when $h = \Omega(n)$.
- 2. T. Chan (1996) achieved the same result with a much simpler algorithm.
- 3. Remarkably, Chan's algorithm combines two slower algorithms (Jarvis and Graham) to get the faster algorithm.
- 4. Key idea of Chan is as follows.
 - (a) Partition the n points into groups of size m; number of groups is $r = \lceil n/m \rceil$.
- (b) Compute hull of each group with Graham's scan.
- (c) Next, run Jarvis on the groups.

Chan's Algorithm

- 1. The algorithm requires knowledge of CH size h.
- 2. Use m as proxy for h. For the moment, assume we know m = h.
- 3. Partition P into r groups of m each.
- 4. Compute $Hull(P_i)$ using Graham scan, i = 1, 2, ..., r.
- 5. $p_0 = (-\infty, 0)$; p_1 bottom point of P.
- **6.** For k = 1 to m do
 - Find $q_i \in P_i$ that maximizes the angle $\angle p_{k-1}p_kq_i$.
 - Let p_{k+1} be the point among q_i that maximizes the angle $\angle p_{k-1}p_kq$.
 - If $p_{k+1} = p_1$ then return $\langle p_1, \dots, p_k \rangle$.
- 7. Return "m was too small, try again."

Illustration

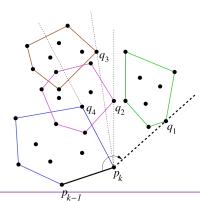


Time Complexity

- Graham Scan: $O(rm \log m) = O(n \log m)$.
- Finding tangent from a point to a convex hull in $O(\log n)$ time.
- Cost of Jarvis on r convex hulls: Each step takes $O(r \log m)$ time; total $O(hr \log m) = ((hn/m) \log m)$ time.
- Thus, total complexity

$$O\left(\left(n + \frac{hn}{m}\right)\log m\right)$$

- If m = h, this gives $O(n \log h)$ bound.
- Problem: We don't know h.



Subhash Suri

Finishing Chan

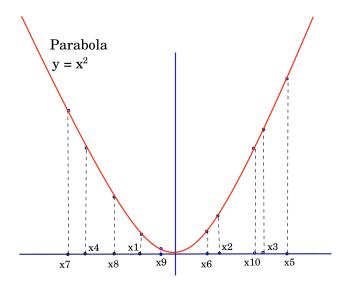
$\mathbf{Hull}(P)$

- for t = 1, 2, ... do
 - 1. Let $m = \min(2^{2^t}, n)$.
 - 2. Run Chan with m, output to L.
 - 3. If $L \neq$ "try again" then return L.
- 1. Iteration t takes time $O(n \log 2^{2^t}) = O(n2^t)$.
- 2. Max value of $t = \log \log h$, since we succeed as soon as $2^{2^t} > h$.
- 3. Running time (ignoring constant factors)

$$\sum_{t=1}^{\lg\lg h} n2^t = n \sum_{t=1}^{\lg\lg h} 2^t \le n2^{1+\lg\lg h} = 2n\lg h$$

4. 2D convex hull computed in $O(n \log h)$ **time.**

Lower Bounds



- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.
- More refined lower bound is $\Omega(n \log h)$. LB holds even for identifying the CH vertices.

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees
 - applies to strong version of CH problem (requires ordered output)
 - does not explain output-size sensitivity (dependence on h)

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees
 - applies to strong version of CH problem (requires ordered output)
 - does not explain output-size sensitivity (dependence on h)
 - formulate decision problems as point-classification problems