CS 516 -3 Computational Geometry & Graph Drawing (Spring 2013)

Last Class...

- Continued with (motivating) example: finding near neighbours (within fixed distance)
- Another (motivating) example from graph drawing: bar-visibility graphs

Reading

MountNotes Chapters 7,8 Chapters 9,10, 6

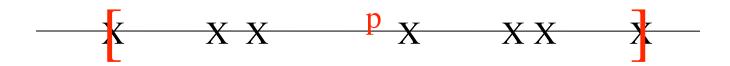
Today...

- Brief review of Asst0
- Convex hulls, halfspace intersections and duality
- Two equivalences concerning convex hulls:
 - Structural equivalence (via duality) with (origincontaining) half-space intersection
 - Algorithmic equivalence (via reducibility argument)
 with sorting

Today...

- Brief review of Asst0
- Convex hulls, halfspace intersections and duality
- Two equivalences concerning convex hulls:
 - Structural equivalence (via duality) with (origincontaining) half-space intersection
 - Algorithmic equivalence (via reducibility argument) with sorting

1(a) min_p max_{q in S} |q-p|



 $1(a) \min_{p} \max_{q \text{ in } S} |q-p|$ (1-center)

1(b) $\min_{p} \Sigma_{q \text{ in } S} |q\text{-pl } (1\text{-median})$

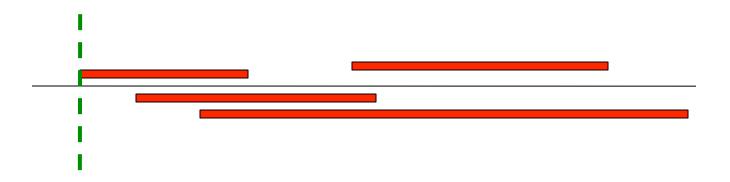
 $1(c) \max_{p} \min_{q \text{ in } S} |q-p|$

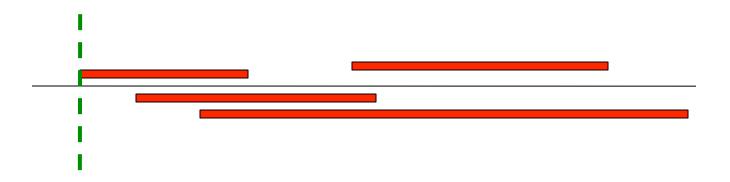
 $1(c) \max_{p} \min_{q \text{ in } S} |q-p|$

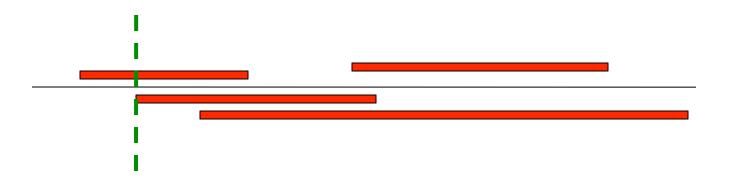
1(d) dynamic dictionary

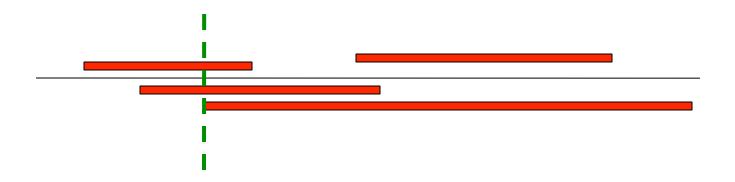


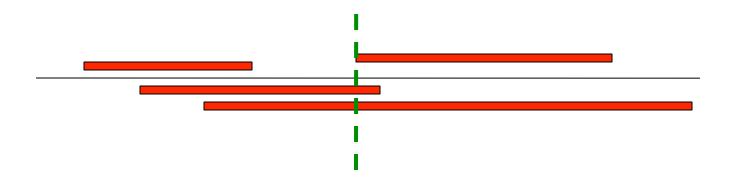
1(e) count number of distinct elements

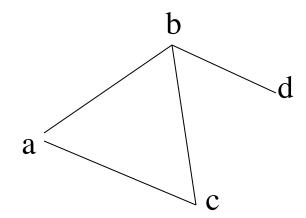


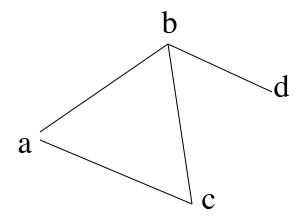






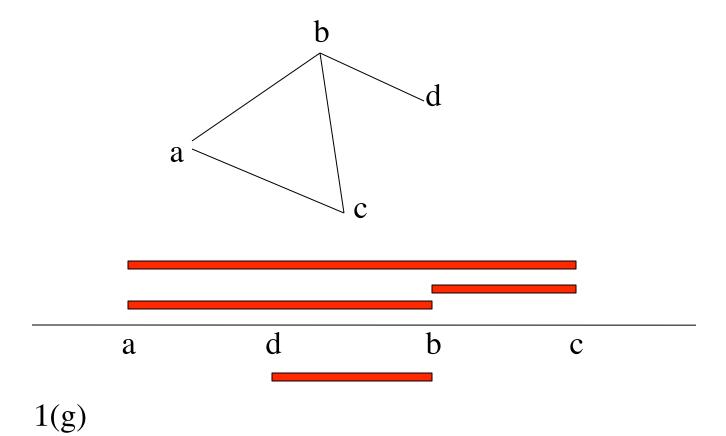


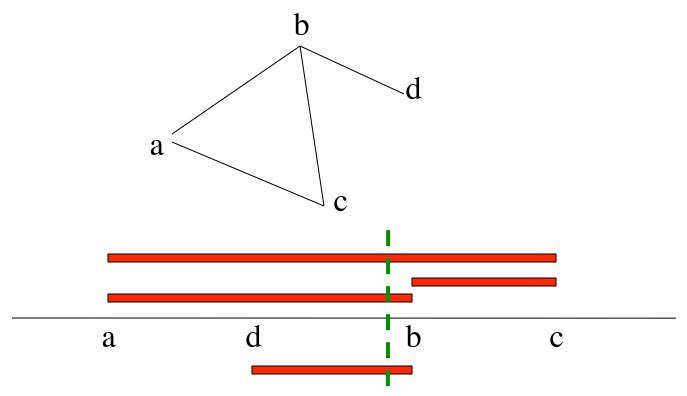




a d b c

1(g)



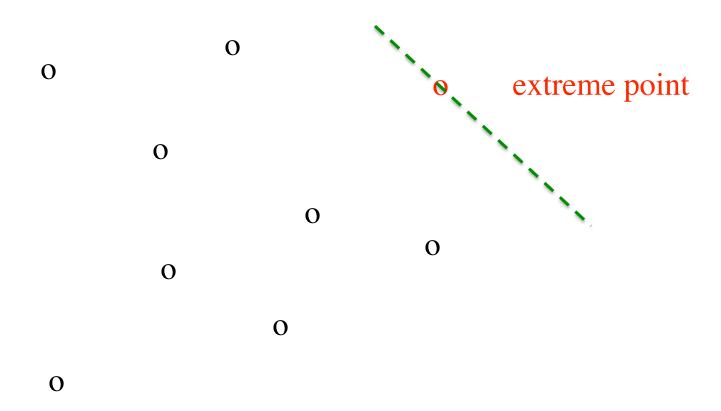


1(g) min cut linear arrangement

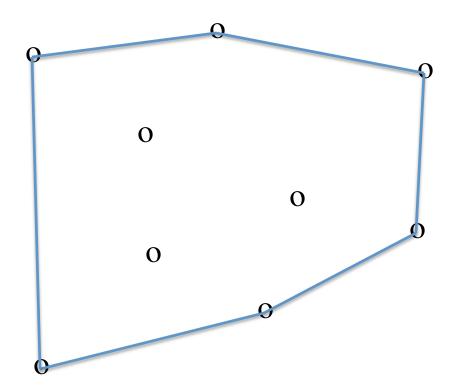
Today...

- Brief review of Asst0
- Convex hulls, halfspace intersections and duality
- Two equivalences concerning convex hulls:
 - Structural equivalence (via duality) with (origincontaining) half-space intersection
 - Algorithmic equivalence (via reducibility argument) with sorting

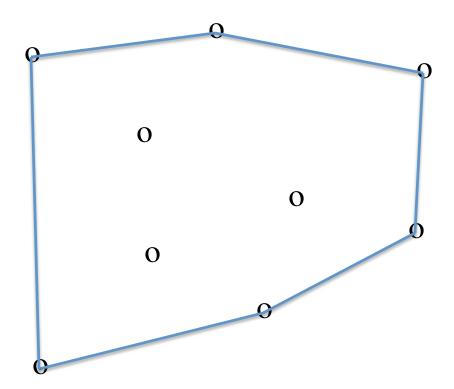
point set S



o extreme points
o o extreme points
o o o



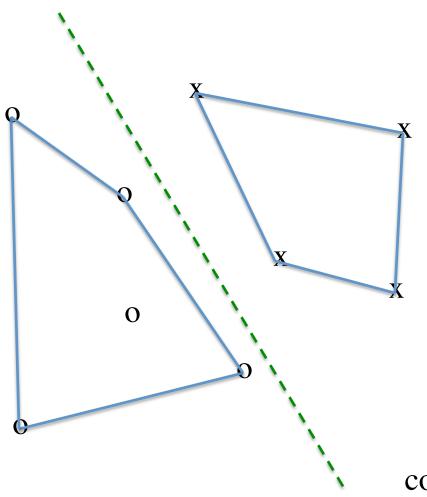
convex-hull =
 polygon whose vertices
 are extreme points



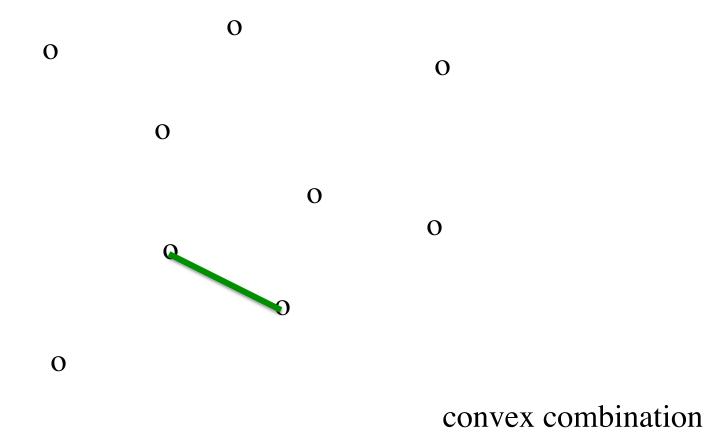
convex-hull: shape approx

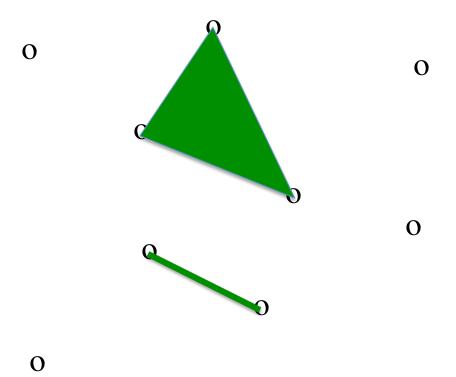
0

convex-hull:
shape approx
linear separability

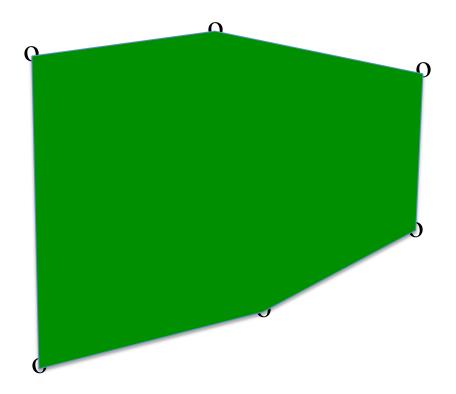


convex-hull:
shape approx
linear separability

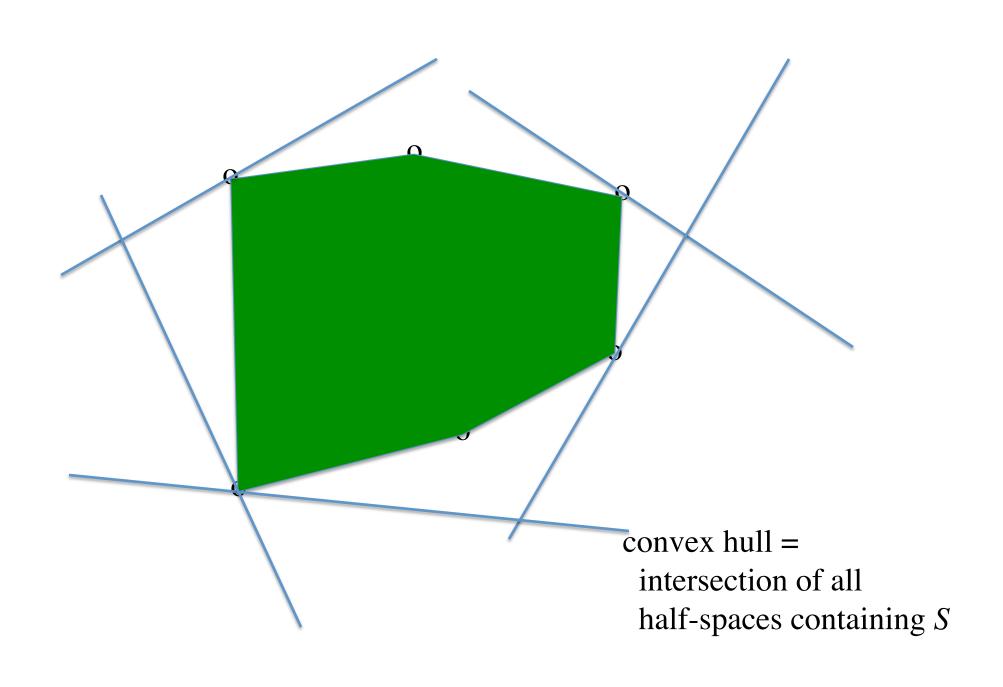




convex combinations



convex hull =
 union of all
 convex combinations



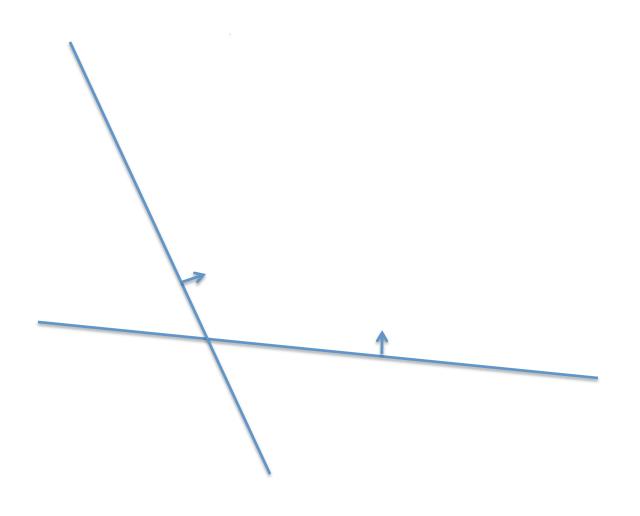
Convex hull CH(S)

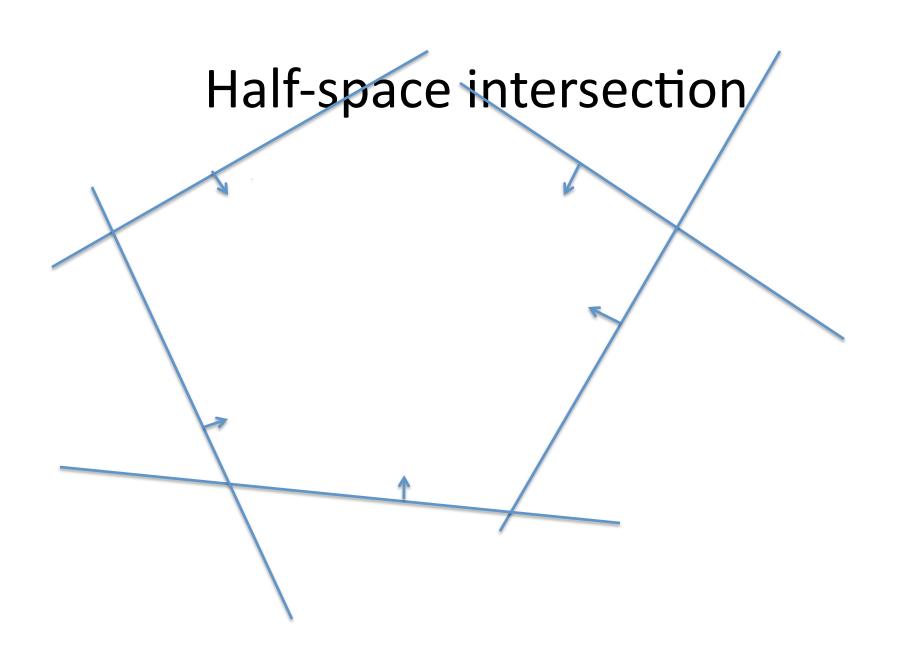
- CH(S) is smallest convex set containing S.
- In R², CH(S) is smallest area (or perimeter) convex polygon containing S.
- In **R**², CH(S) is union of all triangles formed by triples of points in S.

Convex hull CH(S)

- CH(S) is smallest convex set containing S.
- In **R**², CH(S) is smallest area (or perimeter) convex polygon containing S.
- In **R**², CH(S) is union of all triangles formed by triples of points in S.
- None of these descriptions/properties yield efficient algorithms; at best $O(|S|^3)$.

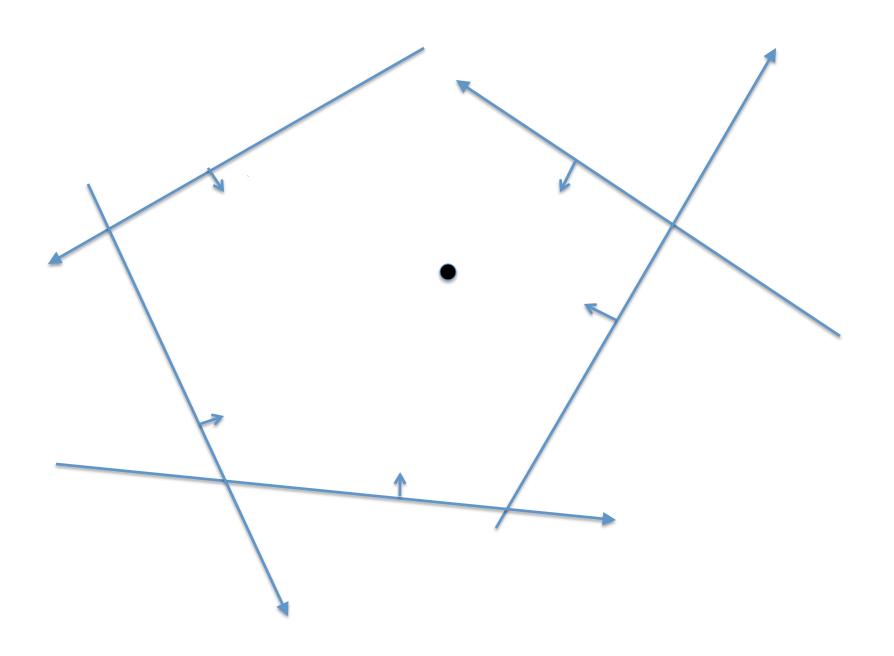
Half-space intersection





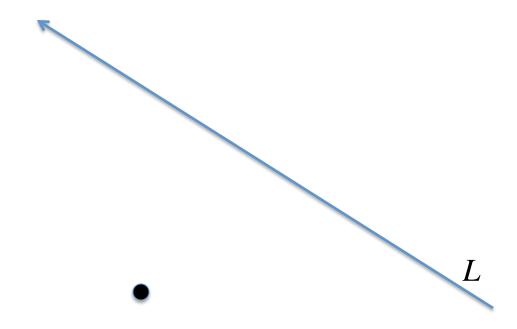
Half-space intersection

- suppose we have a witness to the nonemptiness of the intersection—may as well be the origin
- such half-spaces are defined by oriented lines (directed so that origin lies to the left)

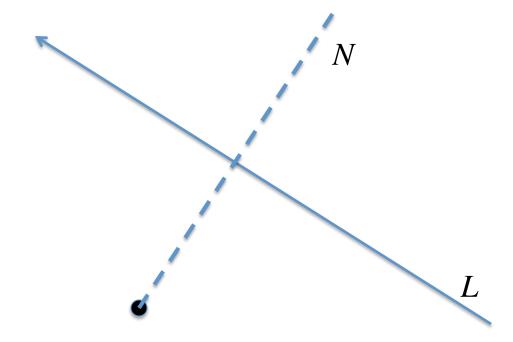


Polarity transform

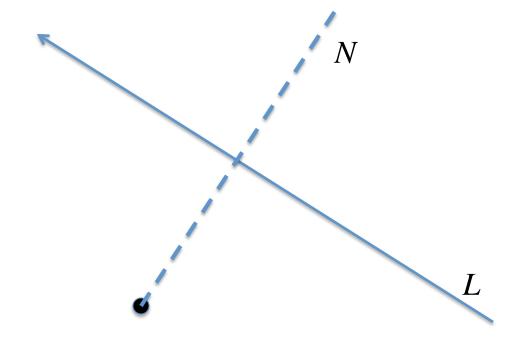
- an arbitrary line L that avoids the origin has the an equation of the form: ax + by -1 = 0
- view as directed line where points to *left* (respectively *right*) make *ax + by -1 negative* (respectively, *positive*)



$$L: ax+by-1=0$$

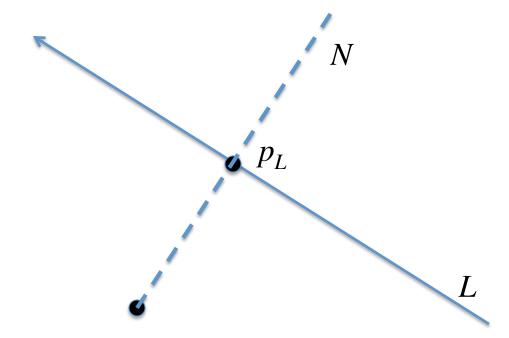


L: ax+by-1=0



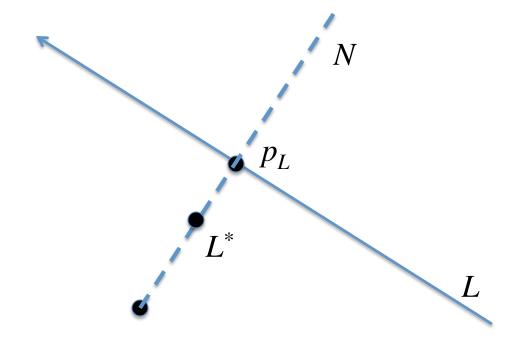
$$L: ax+by-1=0$$

$$N: bx-ay = 0$$



$$L: ax+by-1=0$$

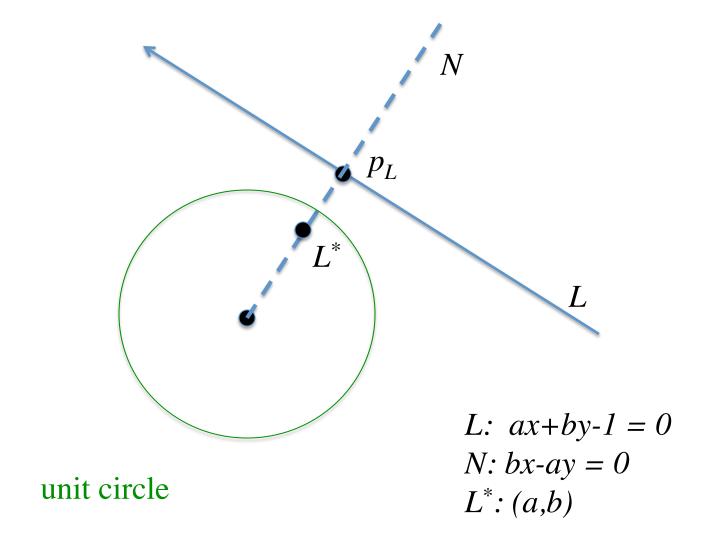
$$N: bx-ay = 0$$



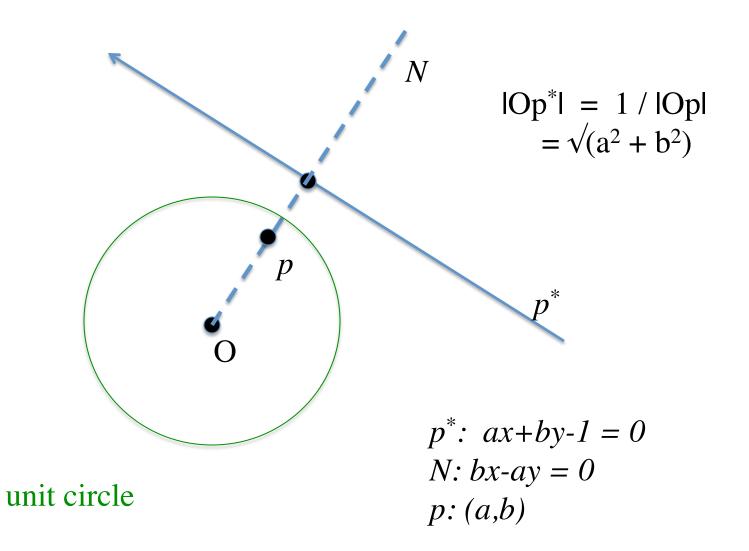
$$L: ax+by-1=0$$

$$N: bx-ay = 0$$

$$L^*$$
: (a,b)







• [self inverse] $(p^*)^* = p$

• [self inverse] $(p^*)^* = p$ (and $(L^*)^* = L$)

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*
- [sidedness reversing] if p lies to the left (right)
 of L, then L* lies to the left (right) of p*

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*
- [sidedness reversing] if p lies to the left (right)
 of L, then L* lies to the left (right) of p*
- the line joining points p_1 and p_2 is the dual of the point formed by the intersection of the lines p_1^* and p_2^*

Equivalent problems

- [half-space intersection] finding all points that lie to the left of the (primal) lines defining the half-spaces
- [convex hull] finding all lines that lie to the right of all of the (dual) points
- in both cases a succinct description is a polygon (polytope); the boundary order is preserved under duality.

Remark

• Mount (lecture 8) presents a different pointline duality transform (based on slope & yintercept):

point p:(a,b) maps to line $p^*: y=ax-b$ (and vice-versa)

this takes points to non-vertical lines

Same properties

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*
- [sidedness reversing] if p lies to the left (right)
 of L, then L* lies to the left (right) of p*
- the line joining points p_1 and p_2 is the dual of the point formed by the intersection of the lines p_1^* and p_2^*

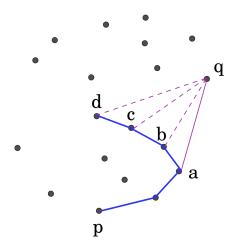
2-d convex hulls and sorting

 let T_{sort}(n) and T_{CH}(n) denote the worst case complexities of the sorting and convex hull problems (for input instances of size n)

2-d convex hulls and sorting

- let $T_{sort}(n)$ and $T_{CH}(n)$ denote the worst case complexities of the sorting and convex hull problems (for input instances of size n)
- we will show:
 - $T_{sort}(n) \le T_{ch}(n) + \Theta(n)$
 - $T_{CH}(n) \le T_{sort}(n) + \Theta(n)$

Graham Scan

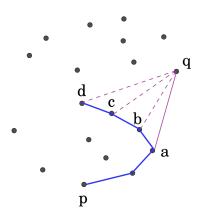


- 1. Sort by Y-order; $p_1, p_2, ..., p_n$.
- 2. Initialize. push $(p_i, stack)$, i = 1, 2.
- 3. for i = 3 to n do

 while \angle next, top, $p_i \neq$ Left-Turn

 pop (stack)push $(p_i, stack)$.
- 4. return stack.
- 5. Invented by R. Graham '73. (Left and Right convex hull chains separately.)

Analysis of Graham Scan

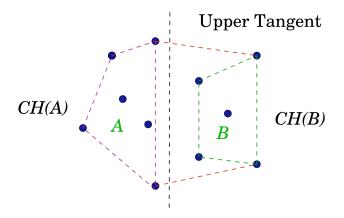


- 1. Invariant: $\langle p_1, \dots, top(stack) \rangle$ is convex. On termination, points in stack are on CH.
- **2. Orientation Test:** $D = \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$

 $\angle p,q,r$ is LEFT if D>0, RIGHT if D<0, and straight if D=0.

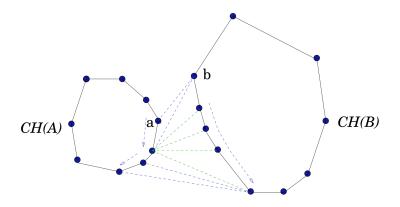
3. After sorting, the scan takes O(n) time: in each step, either a point is deleted, or added to stack.

Divide and Conquer



- Sort points by X-coordinates.
- Let A be the set of n/2 leftmost points, and B the set of n/2 rightmost points.
- Recursively compute CH(A) and CH(B).
- Merge CH(A) and CH(B) to obtain CH(S).

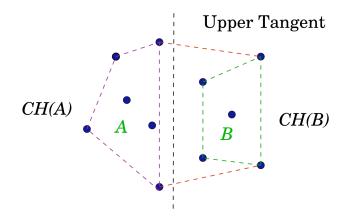
Merging Convex Hulls



Lower Tangent

- a =rightmost point of CH(A).
- b =leftmost point of CH(B).
- while ab not lower tangent of CH(A) and CH(B) do
 - 1. while ab not lower tangent to CH(A) set a = a 1 (move a CW);
 - 2. while ab not lower tangent to CH(B) set b = b + 1 (move b CCW);
- Return ab

Analysis of D&C



- Initial sorting takes $O(N \log N)$ time.
- Recurrence for divide and conquer T(N) = 2T(N/2) + O(N)
- \bullet O(N) for merging (computing tangents).
- Recurrence solves to $T(N) = O(N \log N)$.

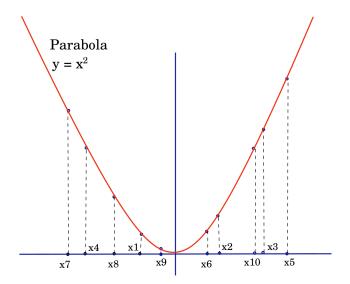
Can hulls be merged more efficiently?

What if hulls are not linearly separated?

Other sorting-inspired algorithms

Can hulls be constructed more efficiently?

Lower Bounds



- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.

Other approaches...

- Convex hull algorithms that avoid sorting:
 - gift-wrapping (Jarvis) O(n h)
 - discard/filter interior points (QuickHull)