
Assignment 4: Sample solutions and comments

1. (a) Consider the following algorithm:

Algorithm 1 Incremental Un-Dominated(S)

1: while |S| > 0 do
2: find the point p ∈ S with maximum x-coordinate (breaking a tie by

choosing the point with maximum y-coordinate)
3: output p
4: remove from S all points dominated by p
5: end while

Each iteration of the while-loop outputs another un-dominated point
in S, with successively smaller x-coordinates. The body of the loop
has cost O(|S|) since each point of S needs to be considered at most
once in each of steps (2) and (4).

(b) Certainly every un-donimated point in S is either an un-dominated
point of SR or an un-dominated point of SL. Thus uR + uL ≥ u.
To show uR + uL = u it suffices to note that (i) no point of SR is
dominated by a point of SL, and hence all un-dominated points of SR

are un-dominated points of S, and (ii) any point of SL that is not
dominated by a point of SR is either (a) dominated by a point of SL

or (b) un-dominated in S.

(c) Since in the worst case no points are removed in step (iii), we can
express this as
T (n, u) = O(n) + maxuR≤u{T (n/2, uR) + T (n/2, u − uR)}, provided
n ≥ 2. When n = 1, T (nu) = O(1).

(d) Actually, this only makes sense when u (and hence n) is at least 2.
Choose c so that T (n, u) ≤ cn+maxuR

{T (n/2, uR)+T (n/2, u−uR)}.
We can prove that T (n) ≤ cn lg u, by induction on n. Suppose the

1



claim holds for n < n0. Then

T (n, u) ≤ cn + max
uR≤u

{T (n/2, uR) + T (n/2, u− uR)}

= cn + max
uR≤u

{c(n/2) lg uR + c(n/2) lg(u− uR)}

= cn + max
uR≤u

{c(n/2) lg(uR · (u− uR))}

= cn + c(n/2) lg((u/2)2)(∗)
= cn + cn lg(u/2)

= cn lg u

where the step (*) follows by elementary calculus.

2. (a) Let pi denote the relative access frequency of key xi in some long
access sequence. We assume that pi >

∑n
j=i+1 pj , for i ≤ i < n.

We claim that the (unique) tree T that minimizes the expected access
cost for successful searches with this set of keys is just a chain where
x1 is at the root and, for 1 < i ≤ n, xi is the right child of xi−1. It
is easy to confirm that this tree has expected access cost

∑n
j=1 j · pj ,

since the access path to key pj consists of j nodes.

We prove the optimality of T by induction on n. If n = 1 there is
nothing to prove. Suppose that the hypothesis is true for n < k. Let
T be any binary search tree for {x1, . . . , xk} with key xr at the root.
Denote by TL and TR the left and right subtrees of T .

Since TL is a binary search tree in the keys {x1, . . . , xr−1} and TR

is a binary search tree in the keys {xr+1, . . . , xk}, it follows from the
induction hypothesis that cost(TL), the expected search cost within

TL is at least
∑r−1

j=1 j · pj . Similarly cost(TR), the expected search

cost within TR is at least
∑k

j=r+1(j − r) · pj . Thus, cost(T ), the

expected search cost of T is at least 1 +
∑r−1

j=1 j · pj +
∑k

j=r+1 j · pj .
But 1 = p1+. . .+pk ≥ r

∑k
j=r pj , since pj >

∑k
i=r pi, for j < r. Thus,

cost(T ) ≥
∑k

j=1 j · pj , with equality just when r = 1 and TR is the
optimal binary search tree on keys {x2, . . . , xk}. Thus, the hypothesis
holds when n = k.

(b) By the analysis in part (a), it suffices to observe that
∑n

j=1 j · pj is

maximized, subject to the constraint that pi ≥
∑n

j=i+1 pj , for 1 ≤
i < n, when pi =

∑n
j=i+1 pj , for 1 ≤ i < n, which holds just when

pi = 2−i, for 1 ≤ i < n, and pn = 2−(n−1).

Using the fact that
∑n

j=1 j · 2−j = 2− 2−(n−1)−n2−n, it follows that

for this choice of pi-values,
∑n

j=1 j · pj = 2− 2−(n−1).

(c) The tree T in part (a) is arguably the most unbalanced tree possible
on n nodes. However, we can transform it into an almost balanced
binary search tree T ′ on the same set of nodes, without increasing the

2



depth of any node by more than one. One way of doing so is to (i)
put node xdlgne at the root of T ′, (ii) make the optimal binary search
tree on the keys {x1, . . . , xdlgne−1}, the chain described in part (a),
the left subtree, and (iii) make any height-balanced binary search tree
on the keys {xdlgne+1, . . . xn}, the right subtree.

By this construction, it should be clear that the maximum depth of
any node in T ′ is at most 1 + lg n. Furthermore, (i) for 1 ≤ i <
dlg ne, depthT ′(xi) = depthT (xi) + 1, (ii) depthT ′(xdlgne) = 0 <
depthT (xdlgne), and (iii) for dlg ne < i ≤ n, depthT ′(xi) ≤ dlg ne+1 ≤
i = depthT (xi) + 1.

So the expected access cost in T ′ is no more than one greater than the
expected access cost in T , and the worst-case access cost is at most
1 + lg n.

3. We are considering the following algorithm that outputs a binary sequence
that we will interpret as the encoding of a positive integer a.

� phase 1
r ← 1
while a ≥ 2r do � invariant: a ≥ r

output 1
r ← r + r

output 0
� assertion: r = 2blg ac

� phase 2
low ← r; high← 2r; gap← r
while gap > 1 do � invariant: low ≤ a < high = low + gap

mid← low + gap/2
if a < mid

then do
output 0
high← mid

else do
output 1
low ← mid

gap← gap/2

(a) Suppose that the input a has the blg ac+ 1-bit binary representation:
bblg acbblg ac−1 . . . b0. Note that bblg ac = 1. It suffices to show that
the code produced by the algorithm on input a is exactly described
as: a sequence of blg ac 1’s, followed by a 0, followed by the blg ac-
bit sequence bblg ac−1 . . . b0, since either two distinct numbers a and a′

have blg ac 6= blg a′c, in which case their codes differ in their initial

3



sequence of 1’s, or their blg ac+ 1-bit binary representations differ, in
which case their codes differ in their last blg ac bits.

To prove the above characterization of the code of a, it suffices to
argue that the last blg ac bits are bblg ac−1 . . . b0 (by part (a) on the
midterm, or the assertion). But this follows from the assertion that
after i iterations of the phase 2 while loop, gap = 2blg ac−i, low =
(1bblg ac−1 · · · bblg ac−i)2 · gap, and high = [(1bblg ac−1 · · · bblg ac−i)2 +
1] · gap.

(b) The decoding procedure (taking the encoding of a and returning a)
should be clear from the characterization in part (a): simply prepend
the last blg ac bits of the code with a 1 (the value blg ac, of course, is
given by the length of the initial string of 1’s).

(c) Since the phase 1 of the standard encoding algorithm outputs a se-
quence of blg ac 1’s, followed by a zero, we could view this as the unary
encoding of the number length = blg ac. So we create a more compact
encoding of length using the standard encoding and follow this with
phase 2.

� phase 0
r ← 1
length← 0
while a ≥ 2r do � invariant: a ≥ r

length← length + 1
r ← r + r

� assertion: length = blg ac & r = 2blg ac

� phase 1
encode length using the standard encoding

� phase 2
low ← r; high← 2r; gap← r
while gap > 1 do � invariant: low ≤ a < high = low + gap

mid← low + gap/2
if a < mid

then do
output 0
high← mid

else do
output 1
low ← mid

gap← gap/2

The resulting encoding of a has length 1 + 2blgblg acc+ blg ac.

4


