Assignment 4: Sample solutions and comments

1. (a) Consider the following algorithm:
```
Algorithm 1 Incremental Un-Dominated \((S)\)
    while \(|S|>0\) do
        find the point \(p \in S\) with maximum \(x\)-coordinate (breaking a tie by
        choosing the point with maximum \(y\)-coordinate)
        output \(p\)
        remove from \(S\) all points dominated by \(p\)
    end while
```

Each iteration of the while-loop outputs another un-dominated point in S, with successively smaller x-coordinates. The body of the loop has cost $O(|S|)$ since each point of S needs to be considered at most once in each of steps (2) and (4).
(b) Certainly every un-donimated point in S is either an un-dominated point of S_{R} or an un-dominated point of S_{L}. Thus $u_{R}+u_{L} \geq u$. To show $u_{R}+u_{L}=u$ it suffices to note that (i) no point of S_{R} is dominated by a point of S_{L}, and hence all un-dominated points of S_{R} are un-dominated points of S, and (ii) any point of S_{L} that is not dominated by a point of S_{R} is either (a) dominated by a point of S_{L} or (b) un-dominated in S.
(c) Since in the worst case no points are removed in step (iii), we can express this as
$T(n, u)=O(n)+\max _{u_{R} \leq u}\left\{T\left(n / 2, u_{R}\right)+T\left(n / 2, u-u_{R}\right)\right\}$, provided $n \geq 2$. When $n=1, T(n u)=O(1)$.
(d) Actually, this only makes sense when u (and hence n) is at least 2 . Choose c so that $T(n, u) \leq c n+\max _{u_{R}}\left\{T\left(n / 2, u_{R}\right)+T\left(n / 2, u-u_{R}\right)\right\}$. We can prove that $T(n) \leq c n \lg u$, by induction on n. Suppose the
claim holds for $n<n_{0}$. Then

$$
\begin{aligned}
T(n, u) & \leq c n+\max _{u_{R} \leq u}\left\{T\left(n / 2, u_{R}\right)+T\left(n / 2, u-u_{R}\right)\right\} \\
& =c n+\max _{u_{R} \leq u}\left\{c(n / 2) \lg u_{R}+c(n / 2) \lg \left(u-u_{R}\right)\right\} \\
& =c n+\max _{u_{R} \leq u}\left\{c(n / 2) \lg \left(u_{R} \cdot\left(u-u_{R}\right)\right)\right\} \\
& =c n+c(n / 2) \lg \left((u / 2)^{2}\right)(*) \\
& =c n+c n \lg (u / 2) \\
& =c n \lg u
\end{aligned}
$$

where the step $\left(^{*}\right)$ follows by elementary calculus.
2. (a) Let p_{i} denote the relative access frequency of key x_{i} in some long access sequence. We assume that $p_{i}>\sum_{j=i+1}^{n} p_{j}$, for $i \leq i<n$.
We claim that the (unique) tree T that minimizes the expected access cost for successful searches with this set of keys is just a chain where x_{1} is at the root and, for $1<i \leq n, x_{i}$ is the right child of x_{i-1}. It is easy to confirm that this tree has expected access cost $\sum_{j=1}^{n} j \cdot p_{j}$, since the access path to key p_{j} consists of j nodes.
We prove the optimality of T by induction on n. If $n=1$ there is nothing to prove. Suppose that the hypothesis is true for $n<k$. Let T be any binary search tree for $\left\{x_{1}, \ldots, x_{k}\right\}$ with key x_{r} at the root. Denote by T_{L} and T_{R} the left and right subtrees of T.
Since T_{L} is a binary search tree in the keys $\left\{x_{1}, \ldots, x_{r-1}\right\}$ and T_{R} is a binary search tree in the keys $\left\{x_{r+1}, \ldots, x_{k}\right\}$, it follows from the induction hypothesis that $\operatorname{cost}\left(T_{L}\right)$, the expected search cost within T_{L} is at least $\sum_{j=1}^{r-1} j \cdot p_{j}$. Similarly $\operatorname{cost}\left(T_{R}\right)$, the expected search cost within T_{R} is at least $\sum_{j=r+1}^{k}(j-r) \cdot p_{j}$. Thus, $\operatorname{cost}(T)$, the expected search cost of T is at least $1+\sum_{j=1}^{r-1} j \cdot p_{j}+\sum_{j=r+1}^{k} j \cdot p_{j}$. But $1=p_{1}+\ldots+p_{k} \geq r \sum_{j=r}^{k} p_{j}$, since $p_{j}>\sum_{i=r}^{k} p_{i}$, for $j<r$. Thus, $\operatorname{cost}(T) \geq \sum_{j=1}^{k} j \cdot p_{j}$, with equality just when $r=1$ and T_{R} is the optimal binary search tree on keys $\left\{x_{2}, \ldots, x_{k}\right\}$. Thus, the hypothesis holds when $n=k$.
(b) By the analysis in part (a), it suffices to observe that $\sum_{j=1}^{n} j \cdot p_{j}$ is maximized, subject to the constraint that $p_{i} \geq \sum_{j=i+1}^{n} p_{j}$, for $1 \leq$ $i<n$, when $p_{i}=\sum_{j=i+1}^{n} p_{j}$, for $1 \leq i<n$, which holds just when $p_{i}=2^{-i}$, for $1 \leq i<n$, and $p_{n}=2^{-(n-1)}$. Using the fact that $\sum_{j=1}^{n} j \cdot 2^{-j}=2-2^{-(n-1)}-n 2^{-n}$, it follows that for this choice of p_{i}-values, $\sum_{j=1}^{n} j \cdot p_{j}=2-2^{-(n-1)}$.
(c) The tree T in part (a) is arguably the most unbalanced tree possible on n nodes. However, we can transform it into an almost balanced binary search tree T^{\prime} on the same set of nodes, without increasing the
depth of any node by more than one. One way of doing so is to (i) put node $x_{\lceil\lg n\rceil}$ at the root of T^{\prime}, (ii) make the optimal binary search tree on the keys $\left\{x_{1}, \ldots, x_{\lceil\lg n\rceil-1}\right\}$, the chain described in part (a), the left subtree, and (iii) make any height-balanced binary search tree on the keys $\left\{x_{\lceil\lg n\rceil+1}, \ldots x_{n}\right\}$, the right subtree.
By this construction, it should be clear that the maximum depth of any node in T^{\prime} is at most $1+\lg n$. Furthermore, (i) for $1 \leq i<$ $\lceil\lg n\rceil, \operatorname{depth}_{T^{\prime}}\left(x_{i}\right)=\operatorname{depth}_{T}\left(x_{i}\right)+1$, (ii) $\operatorname{depth}_{T^{\prime}}\left(x_{\lceil\lg n\rceil}\right)=0<$ $\operatorname{depth}_{T}\left(x_{\lceil\lg n\rceil}\right)$, and (iii) for $\lceil\lg n\rceil<i \leq n$, $\operatorname{depth}_{T^{\prime}}\left(x_{i}\right) \leq\lceil\lg n\rceil+1 \leq$ $i=\operatorname{depth}_{T}\left(x_{i}\right)+1$.
So the expected access cost in T^{\prime} is no more than one greater than the expected access cost in T, and the worst-case access cost is at most $1+\lg n$.
3. We are considering the following algorithm that outputs a binary sequence that we will interpret as the encoding of a positive integer a.

$$
\triangleright \text { phase } 1
$$

```
r\leftarrow1
while }a\geq2r\mathrm{ do }\triangleright\mathrm{ invariant: }a\geq
    output 1
    r\leftarrowr+r
output 0
                    \triangleright assertion: r= 2 \lga\rfloor
                    \square phase 2
low \leftarrowr; high \leftarrow2r; gap }\leftarrow
while gap>1 do }\quad\triangleright\mathrm{ invariant:low }\leqa<high=low + ga
    mid}\leftarrowlow+gap/
    if }a<\mathrm{ mid
        then do
            output 0
            high}\leftarrowmi
        else do
            output 1
            low}\leftarrow\mathrm{ mid
    gap}\leftarrowgap/
```

(a) Suppose that the input a has the $\lfloor\lg a\rfloor+1$-bit binary representation: $b_{\lfloor\lg a\rfloor} b_{\lfloor\lg a\rfloor-1} \ldots b_{0}$. Note that $b_{\lfloor\lg a\rfloor}=1$. It suffices to show that the code produced by the algorithm on input a is exactly described as: a sequence of $\lfloor\lg a\rfloor 1$'s, followed by a 0 , followed by the $\lfloor\lg a\rfloor$ bit sequence $b_{\lfloor\lg a\rfloor-1} \ldots b_{0}$, since either two distinct numbers a and a^{\prime} have $\lfloor\lg a\rfloor \neq\left\lfloor\lg a^{\prime}\right\rfloor$, in which case their codes differ in their initial
sequence of 1's, or their $\lfloor\lg a\rfloor+1$-bit binary representations differ, in which case their codes differ in their last $\lfloor\lg a\rfloor$ bits.
To prove the above characterization of the code of a, it suffices to argue that the last $\lfloor\lg a\rfloor$ bits are $b_{\lfloor\lg a\rfloor-1} \ldots b_{0}$ (by part (a) on the midterm, or the assertion). But this follows from the assertion that after i iterations of the phase 2 while loop, gap $=2^{\lfloor\lg a\rfloor-i}$, low $=$ $\left(1 b_{\lfloor\lg a\rfloor-1} \cdots b_{\lfloor\lg a\rfloor-i}\right)_{2} \cdot g a p$, and $h i g h=\left[\left(1 b_{\lfloor\lg a\rfloor-1} \cdots b_{\lfloor\lg a\rfloor-i}\right)_{2}+\right.$ 1] $g a p$.
(b) The decoding procedure (taking the encoding of a and returning a) should be clear from the characterization in part (a): simply prepend the last $\lfloor\lg a\rfloor$ bits of the code with a 1 (the value $\lfloor\lg a\rfloor$, of course, is given by the length of the initial string of 1 's).
(c) Since the phase 1 of the standard encoding algorithm outputs a sequence of $\lfloor\lg a\rfloor 1$'s, followed by a zero, we could view this as the unary encoding of the number length $=\lfloor\lg a\rfloor$. So we create a more compact encoding of length using the standard encoding and follow this with phase 2.
\triangleright phase 0

```
\(r \leftarrow 1\)
length \(\leftarrow 0\)
while \(a \geq 2 r\) do \(\quad \triangleright\) invariant: \(a \geq r\)
    length \(\leftarrow\) length +1
    \(r \leftarrow r+r\)
                                    \(\triangleright\) assertion: length \(=\lfloor\lg a\rfloor \& r=2^{\lfloor\lg a\rfloor}\)
            \(\triangleright\) phase 1
encode length using the standard encoding
            \(\triangleright\) phase 2
\(l o w \leftarrow r ; \quad h i g h \leftarrow 2 r ; \quad\) gap \(\leftarrow r\)
while \(g a p>1\) do \(\quad \triangleright\) invariant: low \(\leq a<\) high \(=l o w+\) gap
    mid \(\leftarrow\) low + gap \(/ 2\)
    if \(a<\) mid
            then do
                    output 0
                    high \(\leftarrow\) mid
            else do
                    output 1
                    low \(\leftarrow\) mid
    \(g a p \leftarrow g a p / 2\)
```

The resulting encoding of a has length $1+2\lfloor\lg \lfloor\lg a\rfloor\rfloor+\lfloor\lg a\rfloor$.

