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1. (5+ 7 + 8 marks)

In Assignment 1, Question 3, you discovered that the minimum-gap problem (finding the closest pair in a given
collection S of n real numbers) is linearly reducible to sorting: given any algorithm that sorts S in f(n) time, we
can construct an algorithm for the minimum-gap problem that runs in O(f(n)) time (assuming f(n) = Ω(n)).

(a) Briefly describe this reduction.

If the set S has been sorted, in f(n) time, then the minimum gap can be found in an additional Θ(n)
time by scanning the elements in S, in increasing order, maintaining the smallest gap between successive
elements. (Here we are using the fact that the closest pair must be successive elements in the sorted order.)
Thus the total cost of solving the minimum-gap problem is O(n+ f(n)).

We subsequently saw that the minimum-gap problem (renamed as the closest-pair problem) has an O(n) ex-
pected time solution (even in higher dimensions).

(b) Briefly describe the role of hashing in this solution.

Hashing was used to reduce the space cost that would be required if the two (or higher) dimensional space
of buckets (into which elements are mapped) were implemented (as initially described) with a direct access
table. The size of the bucket space depends inversely on the smallest separation between distinct elements,
so without hashing we have no upper bound available on the amount of space needed.

Suppose that we simply want to check whether or not the minimum gap in S exceeds some specified value
∆ > 0.

(c) Describe an algorithm that solves this gap-checking problem in O(n)-time in the worst case. (Hint: (i)
there is not enough time to sort S; (ii) there is no loss of generality in assuming that 0 ≤ min(S) ≤
max(S) ≤ 1, (iii) you are free to use a lot of space (assuming you know how to initialize it quickly).)

The idea here is to scale the numbers in S (as well as ∆) so that 0 ≤ min(S) ≤ max(S) ≤ 1. Now it
suffices to divide the interval [0, 1] into buckets of size ∆, and assign the numbers (in any order) to buckets
(by taking the quotient on division by ∆). If number x is assigned to bucket b then it suffices to check
buckets b− 1, b, and b+ 1 to see if there are any (previously bucketed) numbers that are within distance ∆
of x. The bucket space has size proportional to 1/∆, which could be very large. However, using the idea
for implicit initialization of direct access tables, discussed in class and homework, the total cost of table
accesses is O(|S|).
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2. (7 + 8 + 5)

We want to represent a set S (a static dictionary) consisting of n keys as a simple list and perform MEMBER
queries by comparing with each element in turn (stopping with a successful comparison). For each element xi
of S we know its probability pi of being queried. Our objective is to find an ordering of the elements so that the
corresponding list (the optimal list) has the minimum expected cost for successful MEMBER queries (among all
possible lists).

(a) Give an expression for the expected cost for successful MEMBER queries, if the elements appear in the
order x1, x2, . . . , xn.

Since element xi appears in position i on the list, and has probability pi of being accessed, the expected
access cost is

∑n
i=1 i · pi.

(b) Show that the element xi with maximum pi appears in the first position of the optimal list. (Hint: consider
how an interchange of consecutive elements changes the expected cost.)

Suppose that the element xi, with maximum pi appears in position j > 1 of a list, and suppose that element
xk appears in position j − 1. Then, if we interchange the positions of elements xi and xk, the expected
access cost (from part (a)) changes by pk− pi (since the position of xk increases by one, the position of xi
decreases by one, and all other elements stay in their same position. But, by assumption, pk < pi, so the
expected access cost decreases by this interchange. It follows that the original list was not optimal, and
hence any optimal ordering must have xi in the first position.

(c) Suppose that we choose instead to represent S as a binary search tree. Is it the case that the tree T that
minimizes the expected cost for successful MEMBER queries must have the element xi with maximum pi
at its root? Explain your answer.

As we noted in class, the optimal binary search tree does not necessarily have the element xi with maximum
pi at its root. The basic idea is that the element xi with maximum pi may not serve as a good “splitter” of
the entire set of keys. So, for example, if the smallest key x1 has probability 1/n − ε and all the rest have
probability 1/n+ ε/(n− 1), then the expected cost, when ε is small, of the optimal tree with x1 at the root
is about one more than the cost of the perfectly height balanced binary search tree.
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3. (10+10 marks)

The procedure RandomlyPermute takes an array of real numbers as input and returns a random permuta-
tion of the array, where all permutations are equally likely. Consider the following program fragment, where
expensive case and cheap case stand for unspecified fragments with the specified costs.

A[1 : n]← RandomlyPermute(A[1 : n])
max← A[1]
for i← 2 to n do

if A[i] > max
then do

expensive case: some work of cost Θ(i)
max← A[i]

else do
cheap case: some work of cost Θ(1)

(a) What is the (asymptotic) expected cost of executing this fragment? Explain your analysis.

Following the analysis of the randomized incremental algorithm for the hiring problem (or the Golin et al.
algorithm for the closest-pair problem, which is a special case of this abstract procedure), we note that the
probability that A[i] leads to an update of max, which is just the probability that A[i] is larger than A[j],
for all j < i, is at most 1/i. Thus the expected cost of executing the ith step of the for loop of the fragment
above is O(i · i/i+ 1 · (1− i/i)), which is Θ(1). It follows that the expected total cost is Θ(n).

Recall the un-dominated points problem from Assignment 3: Input: a set S of n points in the plane, whose
x and y coordinates are specified by two arrays X[1 : n] and Y [1 : n] of real numbers (i.e. the i-th point is
(X[i], Y [i])). Output: The sequence consisting of all of the un-dominated points in the input set, ordered by
x-coordinate. (Recall that point (x, y) is dominated by point (p, q), if x < p and y ≤ q, or x = p and y < q.)

(b) Suppose the points in S are chosen uniformly at random from the unit square [0, 1]2 (i.e. all coordi-
nates are independent random numbers in [0, 1]). Show that the expected number of un-dominated points
in S is O(lg |S|). (Hint: imagine an algorithm that encounters the points in order of decreasing x-
coordinate. Since the y-coordinates are random, what is the probability the the i-th point encountered
is un-dominated?)

If the points are sorted, as suggested in the hint, and accessed in order of decreasing x-coordinate, then
each successive un-dominated point encountered must have a y-coordinate larger than all previously ac-
cessed points. But, because the set of y-coordinates is randomly chosen, it follows that the i-th point
accessed has a probability of at most 1/i of being un-dominated (by the same analysis as in part (a)).
Thus, the expected number of un-dominated points is at most

∑
i 1/i, which is Θ(lnn).
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4. (8 + 7 + 10) marks

We saw in class that the move-to-front heuristic, for adaptive list-structured dictionaries, can be used in data
compression. The basic idea is that we maintain a list L of all of the characters in a given string σ of text,
ordered according to the move-to-front strategy (i.e. as we encounter the next character in σ we move it to
the front of L). We encode each successive character by the (integer) position it occupies in L (before it is
moved). To make this encoding efficient, we need to encode small integers (the position of frequently occurring
characters) with small codes. For this we can do something reminiscent of our scheme for exploiting locality of
search in sorted arrays....

Suppose that a is a positive integer. The following algorithm outputs a binary sequence that we will interpret as
the encoding of a.

� phase 1
r ← 1
while a ≥ 2r do � invariant: a ≥ r

output 1
r ← r + r

output 0
� assertion: r = 2blg ac

� phase 2
low ← r; high← 2r; gap← r
while gap > 1 do � invariant: low ≤ a < high = low + gap

mid← low + gap/2
if a < mid

then do
output 0
high← mid

else do
output 1
low ← mid

gap← gap/2

(a) Prove that he first phase of the algorithm outputs a sequence of exactly blg ac 1’s, followed by a zero.

It is clear from the structure of the pseudocode that the first phase outputs a sequence of 1’s followed by
a 0. To determine the length of the sequence of 1’s, we observe that each time a 1 is output the value of r
doubles. Since r starts with value 1 and ends as soon as 2r > a, it follows that r ends with value 2blg ac

(see the attached assertion), and hence exactly blg ac 1’s are output.

(b) The second phase of the algorithm performs a kind of binary search. How many bits are output in this
phase, expressed as a function of a? Explain your answer.

Again, the answer is blg ac. In this case we observe that each time a bit (either 0 or 1) is output the value
of gap, initially 2blg ac according to the assertion, is decreased by a factor of two. Since the phase ends
when gap has been reduced to 1, it follows that exactly blg ac bits are output.
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(c) Consider any coding scheme that outputs unique binary codes for all of the integers in some range [1 : a].
Argue that at least half of the numbers must have codes of length at least blg ac − 1.

The number of binary strings of length t is exactly 2t. Thus the number of binary strings of length at most
` is

∑ell
t=0 2t = 2`+1 − 1. (Here we are even treating the empty string as a possible code.) Suppose now

that more than half of the numbers in the range [1 : a] have codes of length at most blg ac− 2. Then, since
there are 2blg ac−1 − 1 ≤ a/2− 1 such codes, we have a contradiction, from which it follows that at least
half of the numbers must have codes of length at least blg ac − 1.

(d) [BONUS] Since the first phase of the algorithm outputs a sequence of blg ac 1’s, followed by a zero, we
could view this as the unary encoding of the number blg ac. If we applied the same idea used in this
algorithm to create a more compact encoding of blg ac, what would the total length of the encoding of a
become?

We can apply the idea of the full scheme to produce a smaller encoding of the sequence of 1’s produced in
the first phase. Thus the first-phase code is reduced from blg ac to blg blg acc. The length of the second-
phase code remains unchanged.
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