Domination

ISCI 330 Lecture 9

February 6, 2007

Lecture Overview

(1) Recap
(2) Fun Game
(3) Domination

Max-Min Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum amount of payoff guaranteed by a maxmin strategy.
- Why would i want to play a maxmin strategy?
- a conservative agent maximizing worst-case payoff
- a paranoid agent who believes everyone is out to get him

Definition

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

Min-Max Strategies

- Player i 's minmax strategy in a 2-player game is a strategy that minimizes the other player $-i$'s best-case payoff.
- The minmax value of the 2-player game for player i is that maximum amount of payoff that $-i$ could achieve under i 's minmax strategy.
- Why would i want to play a minmax strategy?
- to punish the other agent as much as possible

Definition

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

Definition

In a two-player game, the minmax strategy for player i is $\arg \min _{s_{i}}$ $\max _{s_{-i}} u_{-i}\left(s_{1}, s_{2}\right)$, and the minmax value for player i is $\min _{s_{i}}$ $\max _{s_{-i}} u_{-i}\left(s_{1}, s_{2}\right)$.

Minmax Theorem

Theorem (Minmax theorem (von Neumann, 1928))
 In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- The maxmin value for one player is equal to the minmax value for the other player. By convention, the maxmin value for player 1 is called the value of the game.
- For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player 1 gets the value of the game).

How to find maxmin and minmax strategies

Consider maxmin strategies for player i in a 2-player game.

- Notice that i 's maxmin strategy depends only on i 's utilities
- thus changes to $-i$'s utilities do not change i 's maxmin strategy
- Consider the game where player i has the same utilities as before, but player $-i$'s utilities are replaced with the negatives of i 's utilities
- this is now a zero-sum game
- Because of the minmax theorem, we know that any Nash equilibrium strategy in this game is also a maxmin strategy
- Thus, find player i 's equilibrium strategy in the new game and we have i 's maxmin strategy in the original game
- We can use a similar approach for minmax.

Lecture Overview

(1) Recap

(2) Fun Game
(3) Domination

Traveler's Dilemma

Two travelers purchase identical African masks while on a tropical vacation. Their luggage is lost on the return trip, and the airline asks them to make independent claims for compensation. In anticipation of excessive claims, the airline representative announces: "We know that the bags have identical contents, and we will entertain any claim between $\$ 180$ and $\$ 300$, but you will each be reimbursed at an amount that equals the minimum of the two claims submitted. If the two claims differ, we will also pay a reward R to the person making the smaller claim and we will deduct a penalty R from the reimbursement to the person making the larger claim."

Traveler's Dilemma

- Action: choose an integer between 180 and 300
- If both players pick the same number, they both get that amount as payoff
- If players pick a different number:
- the low player gets his number (L) plus some constant R
- the high player gets $L-R$.
- Play this game once with a partner; play with as many different partners as you like.
- $R=5$.

Traveler's Dilemma

- Action: choose an integer between 180 and 300
- If both players pick the same number, they both get that amount as payoff
- If players pick a different number:
- the low player gets his number (L) plus some constant R
- the high player gets $L-R$.
- Play this game once with a partner; play with as many different partners as you like.
- $R=5$.
- $R=180$.

Traveler's Dilemma

- What is the equilibrium?

Traveler's Dilemma

- What is the equilibrium?
- $(180,180)$ is the only equilibrium, for all $R \geq 2$.

Traveler's Dilemma

- What is the equilibrium?
- $(180,180)$ is the only equilibrium, for all $R \geq 2$.
- What happens?

Traveler's Dilemma

- What is the equilibrium?
- $(180,180)$ is the only equilibrium, for all $R \geq 2$.
- What happens?
- with $R=5$ most people choose 295-300
- with $R=180$ most people choose 180

Lecture Overview

(1) Recap

(2) Fun Game

(3) Domination

Domination

- Let s_{i} and s_{i}^{\prime} be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players

Definition

s_{i} strictly dominates s_{i}^{\prime} if $\forall s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Definition

s_{i} weakly dominates s_{i}^{\prime} if $\forall s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ and $\exists s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Definition

s_{i} very weakly dominates s_{i}^{\prime} if $\forall s_{-i} \in S_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
- An equilibrium in strictly dominant strategies must be unique.

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
- An equilibrium in strictly dominant strategies must be unique.
- Consider Prisoner's Dilemma again
- not only is the only equilibrium the only non-Pareto-optimal outcome, but it's also an equilibrium in strictly dominant strategies!

