The Folk Theorem

ISCI 330

April 3 and April 5, 2007

The Folk Theorem ISCI 330, Slide 1

Infinitely Repeated Games

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i, the average reward of i is $\lim_{k\to\infty} \sum_{i=1}^k r_i/k$.

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i and a discount factor β with $0 \le \beta \le 1$, the future discounted rewards of i is $\sum_{j=1}^{\infty} \beta^j r_j$.

The Folk Theorem ISCI 330, Slide 2

Nash Equilibria

- With an infinite number of equilibria, what can we say about Nash equilibria?
 - we won't be able to construct an induced normal form and then appeal to Nash's theorem to say that an equilibrium exists
 - Nash's theorem only applies to finite games
- Furthermore, with an infinite number of strategies, there could be an infinite number of pure-strategy equilibria!
- It turns out we can characterize a set of payoffs that are achievable under equilibrium, without having to enumerate the equilibria.

The Folk Theorem ISCI 330. Slide 3

Definitions

- Consider any n-player game $G = (N, (A_i), (u_i))$ and any payoff vector $r = (r_1, r_2, \dots, r_n)$.
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i)$.
 - the amount of utility i can get when -i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i > v_i$.

Definition

A payoff profile r is feasible if there exist rational, non-negative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha u_i(a)$, with $\sum_{a \in A} \alpha_a = 1$.

 a payoff profile is feasible if it is a convex, rational combination of the outcomes in G.

The Folk Theorem

Folk Theorem

Theorem (Folk Theorem)

Consider any n-player game G and any payoff vector (r_1, r_2, \ldots, r_n) .

- If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.
- ② If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.

←□ → ←□ → ← □ → ← □ → ← ○

Folk Theorem (Part 1)

Payoff in Nash \rightarrow enforceable

Part 1: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the equilibrium strategy of other players given the current history h. By definition of a minmax strategy, player i will receive a payoff of at least v_i in every stage game if he adopts this strategy, and so i's average reward is also at least v_i . Thus i cannot receive the payoff $r_i < v_i$ in any Nash equilibrium.

The Folk Theorem ISCI 330. Slide 6

Folk Theorem (Part 2)

Feasible and enforceable → Nash

Part 2: Since r is a feasible enforceable payoff profile, we can write it as $r_i = \sum_{a \in A} (\frac{\beta_a}{\gamma}) u_i(a)$, where β_a and γ are non-negative integers. (Recall that α_a were required to be rational. So we can take γ to be their common denominator.) Since the combination was convex, we have $\gamma = \sum_{a \in A} \beta_a$.

We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_a times. Let (a^t) be such a sequence of outcomes. Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t. However, if there was a period t' in which some player $j \neq i$ deviated, then s_i will play $(p_{-j})_i$, where (p_{-j}) is a solution to the minimization problem in the definition of v_i .

The Folk Theorem ISCI 330, Slide 7

Folk Theorem (Part 2)

Feasible and enforceable → Nash

First observe that if everybody plays according to s_i , then, by construction, player i receives average payoff of r_i (look at averages over periods of length γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody plays according to s_i , and player j deviates at some point. Then, forever after, player j will receive his $\min \max$ payoff $v_i \leq r_i$, rendering the deviation unprofitable.

The Folk Theorem ISCI 330. Slide 7