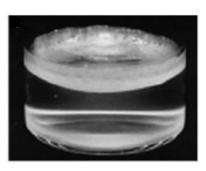

## Evolutionary Game Theory

ISCI 330 Lecture 17







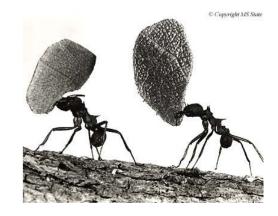



1 ISCI 330 Lecture 17









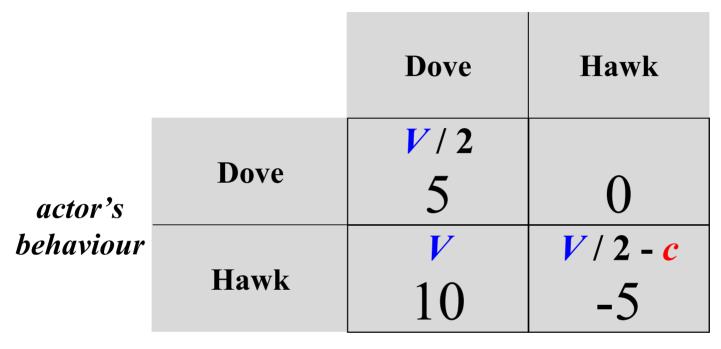





# Outline

- A bit about historical origins of Evolutionary Game Theory
- Main (competing) theories about how cooperation evolves
- iPD and other social dilemma games
- Evolutionary Stable Strategy (ESS)
- N-player PD (and other games)
- Simpson's paradox and the role of assortment




## **Evolution by Natural Selection**

- Lewontin's principles (from Darwin)
  - 1) Phenotypic variation
  - 2) Differential fitness
  - 3) Heritability
- In Evolutionary Game Theory
  - 1) Population of strategies
  - 2) Utility determines number of offspring (fitness)
  - 3) Strategies breed true
- Frequency-dependent selection
  - One of the first examples is Fisher's sex ratio findings
  - Introduces idea of strategic phenotypes



## **Ritualized Fighting**

opponent's behaviour



- *V* = 10; *c* = 10
- The rare strategy has an advantage (i.e. frequency dependent selection)
- Hawk-Dove, Chicken, Snowdrift, Brinkmanship
- If c < V / 2, then game is PD instead

## George Price's Contributions

- Evolutionary Game Theory
  - Concept of an Evolutionary Stable Strategy (ESS)
- Formal description of Natural Selection and Fisher's Fundamental Theorem
- Decomposition of selection at different hierarchical levels using covariance
  - Used to formalize Multilevel
    Selection Theory



What special circumstances or mechanisms thus favor cooperation? Currently, evolutionary biology offers a set of disparate explanations, and a general framework for this breadth of models has not emerged.

– Sachs *et al.* 2004, The Evolution of Cooperation. QRB 79:135-160



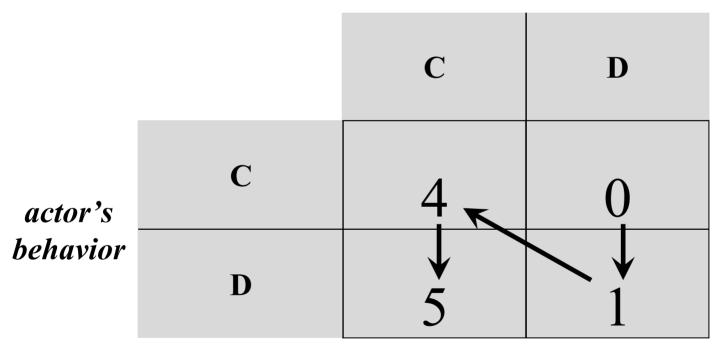
## Main Theories: Evolution of Altruism

Multilevel Selection

 $\Delta Q = \Delta Q_B + \Delta Q_W \quad (Price Equation)$ 

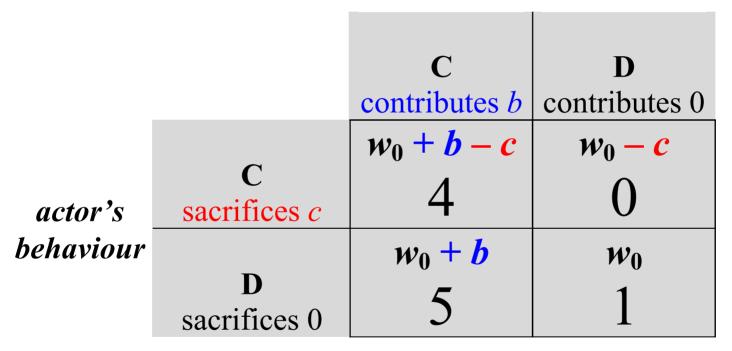
Inclusive Fitness/Kin Selection

 $-w_{incl.} = w_{direct} + w_{indirect}$  $\Delta Q > 0 \text{ if } rb > c \quad \text{(Hamilton's rule)}$ 


Reciprocal Altruism

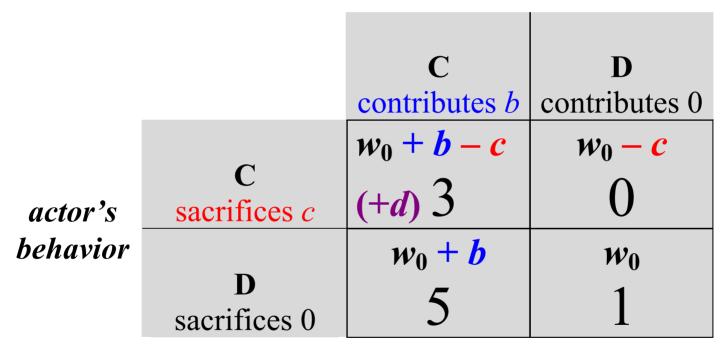
 $\Delta Q > 0$  if altruists are sufficiently compensated for their sacrifices via reciprocity (ESS)




#### Prisoner's Dilemma (PD) Actor's Fitness (Utility)

opponent's behavior




#### Additive Prisoner's Dilemma (PD) Actor's Fitness (Utility)

opponent's behaviour

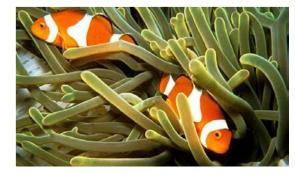


#### **Non-Additive PD** Actor's Fitness (Utility)

opponent's behavior



• w<sub>0</sub> = 1; b = 4; c = 1; d = -1


## Main Theories: Evolution of Altruism

- Multilevel Selection
  - Predominate models are in terms of public good
- Inclusive Fitness/Kin Selection
  - Predominate models is in terms of individual contributions (b and c)
- Reciprocal Altruism
  - Predominate models in terms of iterated PD



### **Evolutionarily Social Dilemma Games**

- What features do Hawk-Dove and the PD have in common?
  - Cs do better in CC pairs than Ds do in DD pairs
  - Ds do better than Cs in mixed pairs
- Given 4 utility levels (1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, 4<sup>th</sup>) how many 2-player, symmetric games are there that capture this idea of "social dilemma"?
- With a partner, find these other games. Can you name them?



### 6 evolutionarily interesting "social dilemmas"

- How do these games compare in terms of
  - Nash equilibria?
  - Pareto optimality?
  - Is it better to be rare or common?
- Consider populations of strategies rather than 2-players
- Relative vs. Absolute fitness

# **Common EGT Assumptions**

- Population of strategies
- Replicator equations often assume
  - infinite populations
  - continuous (or discrete) time
  - complete mixing (random interactions)
  - strategies breed true (no sex)

