Extensive Form Games

Game Theoretic Analysis

Kevin Leyton-Brown
University of British Columbia
Canada CIFAR AI Chair, Amii

James R. Wright
University of Alberta
Canada CIFAR AI Chair, Amii
Recap: Best Response & Nash Equilibrium

Definition

The set of \(i \)'s best responses to a strategy profile \(s_{-i} \in S_{-i} \) is

\[
BR_i(s_{-i}) = \{ a_i^* \in A_i \mid u_i(a_i^*, s_{-i}) \geq u_i(a_i, s_{-i}) \quad \forall a_i \in A_i \}
\]

Definition

A strategy profile \(s \) is a **Nash equilibrium** iff

\[
\forall i \in N, s'_i \in S_i : u_i(s) \geq u_i(s'_i, s_{-i})
\]

Equivalently,

\[
\forall i \in N, a_i \in A_i : s_i(a_i) > 0 \iff a_i \in BR_i(s_{-i}).
\]

When at least one \(s_i \) is mixed, \(s \) is a **mixed strategy Nash equilibrium**
Recap: Best Response & Nash Equilibrium

Definition

The set of \(i \)'s best responses to a strategy profile \(s_{-i} \in S_{-i} \) is

\[
BR_i(s_{-i}) = \{ s^*_i \in S_i | u_i(s^*_i, s_{-i}) \geq u_i(s_i, s_{-i}) \quad \forall s_i \in S_i \}
\]

Definition

A strategy profile \(s \) is a \textbf{Nash equilibrium} iff

\[
\forall i \in N, s'_i \in S_i : u_i(s) \geq u_i(s'_i, s_{-i})
\]

Equivalently,

\[
\forall i \in N, s_i \in BR_i(s_{-i}).
\]

When at least one \(s_i \) is mixed, \(s \) is a \textbf{mixed strategy Nash equilibrium}
Recap: Rationalizability

A rationalizable strategy is one which is a best response to some belief about the other agents

- that also assumes opponent is playing some rationalizable strategy
- the beliefs need not be consistent with each other

In two-player games, rationalizable strategies are exactly those that survive *iterated removal of strictly dominated strategies*.
Recap: Rationalizability

A rationalizable strategy is one which is a best response to some belief about the other agents

- that also assumes opponent is playing some rationalizable strategy
- the beliefs need not be consistent with each other

In two-player games, rationalizable strategies are exactly those that survive iterated removal of strictly dominated strategies.

Example: Traveller’s Dilemma

- 300 is weakly dominated by 299
- But it is strictly dominated by a mixed strategy over the actions 180–299.
- So 300 does not survive iterated removal of strictly dominated strategies
- In the game with 300 removed, 299 is weakly dominated by 298
- ...but strictly dominated by a mixed strategy over 180–298
Lecture Overview

Extensive Form Games

Nash equilibrium

Subgame Perfect Equilibrium
Extensive Form Games

- Normal form games don’t have any notion of *sequence*: all actions happen **simultaneously**
- The **extensive form** is a game representation that explicitly includes temporal structure (i.e., a game tree)
There are two kinds of extensive form game:

1. **Perfect information:** Every agent **sees all actions** of the other players (including any special “Chance” player)
 - e.g., Chess, Checkers, Backgammon, Pandemic
 - This lecture!
There are two kinds of extensive form game:

1. **Perfect information**: Every agent sees all actions of the other players (including any special “Chance” player)
 - e.g., Chess, Checkers, Backgammon, Pandemic
 - This lecture!

2. **Imperfect information**: Some actions are hidden
 - Players may not know exactly where they are in the tree
 - Different players may have different knowledge (about where they are in the tree)
 - E.g., Poker, Rummy, Scrabble
A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- A is a single set of actions
A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, χ, ρ, σ, u)$, where

- N is a set of n players
- A is a single set of actions
- H is a set of nonterminal choice nodes
Perfect Information Extensive Form Game

Definition

A **finite perfect information game in extensive form** is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- A is a single set of actions
- H is a set of nonterminal choice nodes
- Z is a set of **terminal nodes** (disjoint from H)
Perfect Information Extensive Form Game

Definition

A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- A is a single set of actions
- H is a set of nonterminal choice nodes
- Z is a set of terminal nodes (disjoint from H)
- $\chi : H \to 2^A$ is the action function
A finite perfect information game in extensive form is a tuple \(G = (N, A, H, Z, \chi, \rho, \sigma, u) \), where:

- \(N \) is a set of \(n \) players
- \(A \) is a single set of actions
- \(H \) is a set of nonterminal choice nodes
- \(Z \) is a set of terminal nodes (disjoint from \(H \))
- \(\chi : H \to 2^A \) is the action function
- \(\rho : H \to N \) is the player function
A finite perfect information game in extensive form is a tuple \(G = (N, A, H, Z, \chi, \rho, \sigma, u) \), where

- \(N \) is a set of \(n \) players
- \(A \) is a single set of actions
- \(H \) is a set of nonterminal choice nodes
- \(Z \) is a set of terminal nodes (disjoint from \(H \))
- \(\chi : H \to 2^A \) is the action function
- \(\rho : H \to N \) is the player function
- \(\sigma : H \times A \to H \cup Z \) is the successor function
Perfect Information Extensive Form Game

Definition

A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- A is a single set of actions
- H is a set of nonterminal choice nodes
- Z is a set of terminal nodes (disjoint from H)
- $\chi : H \to 2^A$ is the action function
- $\rho : H \to N$ is the player function
- $\sigma : H \times A \to H \cup Z$ is the successor function
- $u = (u_1, \ldots, u_n)$ is a profile of utility functions $u_i : Z \to \mathbb{R}$ for each player i
Fun Game: The Sharing Game

- Two siblings must decide how to share two $100 coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
 - If rejected, nobody gets any coins
- Play against 2 other people, once per person, different role each time
Fun Game: The Sharing Game

- Two siblings must decide how to share two $100 coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
 - If rejected, nobody gets any coins
- Play against 2 other people, once per person, different role each time
- **Question:** Did you have a plan for every possible eventuality?
Lecture Overview

Extensive Form Games

Nash equilibrium

Subgame Perfect Equilibrium
Pure Strategies

Question
What are the pure strategies in an extensive form game?
Pure Strategies

Question

What are the **pure strategies** in an extensive form game?

Definition

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect information game in extensive form. Then the **pure strategies** for player i consist of the cross product of actions available to i at each of their choice nodes:

$$
\prod_{h \in H | \rho(h) = o} \chi(h).
$$

Note that a pure strategy associates an action with **every** choice node, even those that will **never be reached**.
Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?

Pure Strategies Example

Question: What are the pure strategies for player 2?
Pure Strategies Example

Question: What are the pure strategies for player 2?

\{ (C, E), (C, F), (D, E), (D, F) \}
Pure Strategies Example

Question: What are the pure strategies for **player 2**?

\{ (C, E), (C, F), (D, E), (D, F) \}

Question: What are the pure strategies for **player 1**?
Question: What are the pure strategies for player 2?

\{(C, E), (C, F), (D, E), (D, F)\}

Question: What are the pure strategies for player 1?

\{(A, G), (A, H), (B, G), (B, H)\}
Question: What are the pure strategies for player 2?

\{(C, E), (C, F), (D, E), (D, F)\}

Question: What are the pure strategies for player 1?

\{(A, G), (A, H), (B, G), (B, H)\}

Note that there is always an action for the second node, even when it cannot be reached.
Induced Normal Form

- Any pair of pure strategies uniquely identifies a **terminal node**, which identifies a **utility** for each agent (**why?**)

```
A
 /   \
/     /
/       /
C       D
|       |
(3,8)   (8,3)

B
 /   \
/     /
/       /
E       F
|       |
(5,5)   (5,5)

G
 /   \
/     /
(2,10)   (1,0)

H
```

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (12)
Induced Normal Form

- Any pair of pure strategies uniquely identifies a **terminal node**, which identifies a **utility** for each agent (why?)
- We have now defined a set of agents, pure strategies, and utility functions
- Any perfect-information extensive form game defines a corresponding **induced normal form game**

![Game Tree](image)

<table>
<thead>
<tr>
<th></th>
<th>C, E</th>
<th>C, F</th>
<th>D, E</th>
<th>D, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, G</td>
<td>3,8</td>
<td>3,8</td>
<td>8,3</td>
<td>8,3</td>
</tr>
<tr>
<td>A, H</td>
<td>3,8</td>
<td>3,8</td>
<td>8,3</td>
<td>8,3</td>
</tr>
<tr>
<td>B, G</td>
<td>5,5</td>
<td>2,10</td>
<td>5,5</td>
<td>2,10</td>
</tr>
<tr>
<td>B, H</td>
<td>5,5</td>
<td>1,0</td>
<td>5,5</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Induced Normal Form

- Any pair of pure strategies uniquely identifies a terminal node, which identifies a utility for each agent. Why?
- We have now defined a set of agents, pure strategies, and utility functions.
- Any perfect-information extensive form game defines a corresponding induced normal form game.
- Question: Which representation is more compact?
We can also plug our new definition of pure strategy into our existing definitions for:

- Mixed strategy
- Best response
- Nash equilibrium (both pure strategy and mixed strategy)
We can also plug our new definition of pure strategy into our existing definitions for:

- Mixed strategy
- Best response
- Nash equilibrium (both pure strategy and mixed strategy)

Question

What is the definition of a mixed strategy in an extensive form game?
Theorem [Zermelo, 1913]

Every finite perfect-information game in extensive form has at least one pure strategy Nash equilibrium.
Pure Strategy Nash Equilibria

Theorem [Zermelo, 1913]
Every finite perfect-information game in extensive form has at least one pure strategy Nash equilibrium.

Proof: Solve by **backward induction**

- Starting from the bottom of the tree, no agent needs to randomize, because there is a deterministic best response.
- Replace those nodes with the resulting utility vector
- Repeat until an action is assigned for all choice nodes

(There might be multiple pure strategy Nash equilibria in cases where an agent has multiple best responses at a single choice node.)
Question: What are the pure-strategy Nash equilibria of this game?

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (15)
Question: What are the pure-strategy Nash equilibria of this game?
Question: What are the pure-strategy Nash equilibria of this game?

Question: Do any of them seem implausible?
Pure Strategy Nash Equilibria Example

Question: What are the pure-strategy Nash equilibria of this game?

Question: Do any of them seem implausible?

![Extensive Form Game Diagram](image)

Table:

<table>
<thead>
<tr>
<th></th>
<th>C, E</th>
<th>C, F</th>
<th>D, E</th>
<th>D, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, G</td>
<td>3,8</td>
<td>3,8</td>
<td>8,3</td>
<td>8,3</td>
</tr>
<tr>
<td>A, H</td>
<td>3,8</td>
<td>3,8</td>
<td>8,3</td>
<td>8,3</td>
</tr>
<tr>
<td>B, G</td>
<td>5,5</td>
<td>2,10</td>
<td>5,5</td>
<td>2,10</td>
</tr>
<tr>
<td>B, H</td>
<td>5,5</td>
<td>1,0</td>
<td>5,5</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Lecture Overview

Extensive Form Games

Nash equilibrium

Subgame Perfect Equilibrium
Subgame Perfection, informally

Some equilibria seem **less plausible** than others.

- \[\{(B, H), (C, E)\}\]: \(F\) has payoff 0 for player 2, because player 1 plays \(H\), so player 2’s best response is to play \(E\).
- But why would player 1 play \(H\) if they got to that choice node?
- The equilibrium relies on a “threat” from player 1 that is not **credible**.
- **Subgame perfect equilibria** are Nash equilibria that do not rely on non-credible threats.
Subgames

Definition
The subgame of \(G \) rooted at \(h \) is the restriction of \(G \) to the descendants of \(h \).

Definition
The subgames of \(G \) are the subgames of \(G \) rooted at \(h \) for every choice node \(h \in H \).

!?Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (18)!
Subgames

Definition

The **subgame of** G **rooted at** h is the restriction of G to the descendants of h.

Examples:

For every choice node $h \in H$, the subgames of G are the subgames of G rooted at h. For example, in Figure 5.3 there are 16 different outcomes, whereas in Figure 5.2 there are only 5; the payoff vector $(2,10)$ occurs only once in Figure 5.2 but four times in Figure 5.3.
Subgame Perfect Equilibrium

Definition

A strategy profile $s \in S$ is a **subgame perfect equilibrium** of G iff, for every subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'.
Subgame Perfect Equilibrium

Definition

A strategy profile \(s \in S \) is a **subgame perfect equilibrium** of \(G \) iff, for every subgame \(G' \) of \(G \), the restriction of \(s \) to \(G' \) is a Nash equilibrium of \(G' \).

Any equilibrium computed by backward induction will be subgame perfect (**Why?**)
Summary

• **Extensive form games** allow us to represent sequential action
 – Perfect information: when we see everything that happens
 – Imperfect information: different agents have different information
• **Pure strategies** for extensive form games map choice nodes to actions
 – Induced normal form is the normal form game with these pure strategies
 – Notions of mixed strategy, best response, etc. translate directly
• **Subgame perfect equilibria** are those which do not rely on non-credible threats
 – Can always find a subgame perfect equilibrium using backward induction
 – Furthermore, this equilibrium is guaranteed to be in pure strategies