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Recap: Behavioral Game Theory

• Descriptive models, not normative
• QRE: All agents quantally best respond to each other
• CH: Level-0 agents do something (uniform?), level-1 agents best respond to
level-0, level-2 agents best respond to mix of level-0 and level-1, …
• QCH: Level-0 agents do something (uniform?), level-1 agents quantally best
respond to level-0, level-2 agents quantally best respond to mix of level-0 and
level-1, …
• Linear4: One story about the “something” that level-0 do: linear combination of
simple rules.

• Every model has parameters that need to be set:
– QRE, QCH: Precision parameter λ

– CH, QCH: Distribution of levels α0, . . . , αK

– Linear4: Rule weights wunif, . . . , wmaxmax

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (3)
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Nice story—but are these models any good?

Let’s say we pay a bunch of people to play games against each other, and gather
some data. Now we’d like to know how good a job our (e.g., QRE) model does. How
would we do that?

Two issues:

• have to set the model’s parameter (λ) to use it at all;
• must ensure that we do this in a way that generalizes to new play by the same
people.

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (5)
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Generalization

• We don’t want to predict behavior in just a single, known game
• If that’s all we wanted, we wouldn’t need a model at all; we could just treat it like
a multinomial prediction problem

• Instead, we want to choose a model that performs well on the games in our
dataset, and also on new, unseen games

• Question: Why would we care about predicting behavior in new, unseen games?

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (6)
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Supervised Learning Approach (MLE)

One approach:

1. Gather a bunch of gameplay data for multiple games (why multiple games?)
2. Treat each action by a participant as an i.i.d. draw from s predicted by the model
3. Optimize model parameters on the training set

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (7)
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Comparing Models (MLE)

• Randomly partition our data into different sets: D = Dtrain ∪ Dtest

• Choose parameter value(s) that maximize the likelihood of the training data:
θ⃗∗ = arg max

θ⃗
Pr(Dtrain | M, θ⃗)

where Pr(Dtrain | θ⃗) =
∏n

p=1 si(a(p)
i ).

• Score the performance of a model by the likelihood of the test data:
Pr(Dtest | M, θ⃗∗).

• To reduce variance, repeat this process multiple times with different random
partitions and average the results

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (8)
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Log Likelihood is Annoying

• Good news about LL
1. Obvious probabilistic interpretation
2. Proper scoring rule
3. Locality
• Bad news about LL: Everything else
– If I tell you that the test-set accuracy of a model was 0.9998, that is good!
– If I tell you that the test-set log-likelihood of a model is -936, that is... ??

• Log-likelihood depends on entropy of underlying data
– Higher-entropy distributions are harder to predict

• Log-likelihood depends on size of dataset
– Larger datasets will have worse log-likelihoods

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (9)
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Coping Strategies

Question: How can we deal with these issues?

1. Baselines
– Subtract the log-likelihood that would have been achieved by a uniform prediction
– Interpretation: How many times more likely is the data according to the model than according
to the uniform prediction?

– Sort of deals with the entropy issue (can combine high-entropy and low-entropy data)
– Deals a little bit with the dataset size issue

2. “Completeness” evaluation
– [Fudenberg et al., 2021]: “Measuring the Completeness of Economic Models”
– Use a baseline (as above)
– Additionally, use a topline:
• Performance of empirical frequencies
• Performance of uninterpretable, high-capacity ML model (next section)

– Normalize so that baseline performance is 0, topline performance is 1
– Benefit: Completely interpretable, portable between datasets
– Drawback: I’m not sure I buy that simple division is the right normalization for log-likelihood

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (10)
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Significance Testing

• When you are comparing models, you don’t want to just compare average
test-set performance (why?)

• Test performance can depend on the random division of training set and test set

• Repeating division and averaging can get more samples from this distribution

• But we want to have confidence intervals that give us a sense for how much
variance is in this distribution

• How can we compute confidence intervals?
• My favourite approach is to assume a t-distribution:
1. I have an average of several performances
2. What is the 95% confidence interval for the “true” average from this distribution?
3. t-distribution because I usually don’t have enough samples to use Gaussian approximation

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (11)
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10-fold Cross-Validation

I usually use 10 repetitions of 10-fold cross-validation.
I.e., repeat the following 10 times:
1. Partition full dataset into 10 roughly-equal-sized “folds”
– Input to the model is really the game, so make sure all the data for a given game goes into a
single fold

2. For j ∈ {1, . . . , 10}, training set is all folds but jth, test set is j fold
3. Train on training set, test on test set
4. Performance of this repetition is the total test performance over all 10 folds

Benefits:

• Every datapoint gets used as a test point exactly once, regardless of the partition
• So all test log-likelihoods will be on exactly the same scale
• If you just randomly hold out x% of your data each time, the log-likelihoods will
all be on a different scale (due to different-entropy distributions of test data)

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (12)
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Example: Model Comparison
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Two level-0 meta-models:
1. Uniform L0
2. Weighted Linear

Three iterative models:
1. Quantal Cognitive Hierarchy
2. Level-k
3. Cognitive Hierarchy

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (13)
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• Linear4 model for level-0 agents dramatically improved the performance of all
three iterative models.
– Almost erases the difference between the models themselves.

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (13)
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Multiple Observations (Panel Data)

• If you have multiple observations from each participant, you can treat each set of
actions by a participant as an i.i.d. sample from a more complicated distribution.

• The exact distribution depends on which parameters are assumed to be global
vs. agent-specific

• Example: Level-k model, n observations each from m participants

Pr(Dtrain | α⃗) =
m∏

p=1

K∑
k=1

αk

n∏
j=1

πi,k(a(p,j)
i )

• Assumption: Every agent has a stable level, α⃗ give distributions of levels in
population

• Question: What would the likelihood be if we instead assumed that agents did
not have a stable level, and re-sampled from α⃗ every time?

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (14)
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Bayesian Parameter Analysis

• All of the BGT models discussed so far have intuitive meanings
• You might be interested in the values of the parameters for their own sake
• But you probably should not just interpret the MLE-fitted parameters on their
own (why?)

• One alternative: Estimate posterior distribution of the parameters

Pr(θ⃗ | D) = Pr(D | θ⃗) Pr(θ⃗)∫
Θ Pr(D | θ⃗) Pr(θ⃗) dθ⃗

• Requires specification of a prior over the parameters
• Integral is often non-tractable
– But can use Monte Carlo approximation with standard tools (e.g., pymc3)

• Multi-dimensional visualization is hard, but often the marginals are informative

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (15)
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Example: Level Parameter AnalysisLevel-0 Models for Predicting Human Behavior in Games
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Figure 4: Marginal cumulative posterior distributions of levels of reasoning in the All10

dataset, for Poisson-QCH with linear8, linear4, and uniform specifications.

the Bayesian approach of analyzing the posterior distribution of the parameters given the
data. The variation in these plots is over the parameters themselves, rather than over the
data.9 We present the posterior distributions as cumulative marginal distributions; i.e.,
for every parameter, we plot the cumulative density function (CDF)—the probability that
the parameter should be set less than or equal to a given value—averaging over values of
all other parameters. Plotting cumulative density functions allows us to visualize an en-
tire continuous distribution without having to estimate density from discrete samples, thus
sparing us manual decisions such as the width of bins for a histogram. Plotting marginal
distributions allows us to examine intuitive two-dimensional plots about multi-dimensional
distributions. Interaction e↵ects between parameters are thus obscured. We revisit the
issue of possible interaction e↵ects at the end of this subsection.

Figure 4 shows the marginal posterior distribution for the proportions of each level in
the population (up to level 3), for each of the linear4, linear8, and uniform specifications.
The possible proportions are given on the x axis; the probabilities of the proportion having
that value or less (i.e., the cumulative probabilities) are given on the y axis. Note that the

9. That is, we hold the data fixed and report the posterior probability of di↵erent parameter values.

373

• Narrow width of the CDFs indicates that data argue strongly for a specific value
• But different models back out qualitatively different parameter values (why?)

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (16)
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Something Completely Different

• What if we don’t care about peering inside people’s heads?
• Question: Can we just throw a neural network at this? (why or why not?)

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (18)
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Direct Application of a Feedforward Network

You can construct a multilayer feedforward network for normal-form games:

• One input node per payoff
• One output node per action of player being predicted
• Softmax over outputs to get predicted distribution

BUT

• You need to pick a maximum number of actions for each player (and a maximum
number of players!)
• Learning about one game doesn’t tell you anything about a strategically
identically game with permuted action labels
– E.g., need to learn concept of dominance separately for each pair of actions, potentially

• This kind of model can have a very large number of parameters, even for very
small games

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (19)
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Convolutional Neural Nets

These are many of the same problems that CNNs solve for image recognition:

• Want to allow inputs of varying sizes without retraining the model
• Want to allow generalization across a set of symmetries (Images: translation
equivariance; Games: permutation equivariance)

• Want to exploit symmetries to reduce the number of parameters that need to be
learned

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (20)
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GameNet [Hartford et al., 2016, 2018]

Can construct a particular kind of CNN for learning behavior in 2-player NFGs:

1. Inputs: Payoff matrices for each player

Multiple iterations of convolution and pooling:
2. Convolutions: 1 × 1 convolution filters

– Effectively: scale each payoff matrix by a single value
3. Pooling: Max/sum over columns, rows

– Then duplicate out to get to same dimensions

4. Output layer: weighted combination of final pooled vectors
– Dimension will change depending on dimensions of inputs

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (21)
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Example: GameNet Performance

# Hidden units# Hidden units

• Pink line is QCH with uniform level-0

• Blue line is QCH with linear4 level-0
• Just two layers of 50 filters each is
sufficient to significantly outperform
cognitive-based models

• Good: Didn’t need any access to
hand-crafted features, models, etc.

• Bad: Requires > 2500 parameters!

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (22)
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Cognitive Models vs. Opaque Models

Cognitive models (QRE, QCH, etc.):

• Many fewer parameters
• Empirical content is easier to interpret
• Stronger assumptions may lead to more robust generalization

GameNet:

• Best known prediction performance
• Data-driven generalization
– No need to intuit/introspect/hand-craft features

• Many parameters (although fewer than standard neural models)
• “Black box” model
• What are the assumptions/empirical content of the architecture?

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (23)
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Summary

• Parameterized behavioral game theory models can be fitted and compared using
standard supervised learning techniques

• Parameters of cognitively-inspired models can be interesting for their own sake
• Black-box ML models (CNNs) do an even better job of predicting NFG behavior
than BGT models
– Some special domain-specific issues
– Cognitive models and black-box models each have benefits and drawbacks

• Next time: Examples of going beyond the normal form
– Repeated play (BGT)
– Repeated play: No-regret as a behavioral assumption
– Bayesian games

Modeling Strategic Behavior as a Machine Learning Problem: ML for BGT: Leyton-Brown & Wright (24)
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