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Definition 2: Epistemic Types

• Represent uncertainty over utility function using the notion of epistemic type.
Definition
A Bayesian game is a tuple (N, A, Θ, p, u) where

• N is a set of agents,

• A = (A1, . . . , An), where Ai is the set of actions available to player i,

• Θ = (Θ1, . . . , Θn), where Θi is the type space of player i,

• p : Θ → [0, 1] is the common prior over types,

• u = (u1, . . . , un), where ui : A × Θ → R is the utility function for player i.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (3)



Recap: Bayesian Games Mechanism Design Auctions Second-Price Analysis First-Price Analysis Revenue Equivalence

Strategies

• Pure strategy: si : Θi → Ai

– a mapping from every type agent i could have to the action he would play if he had that type.

• Mixed strategy: si : Θi → Π(Ai)
– a mapping from i’s type to a probability distribution over his action choices.

• sj(aj |θj)
– the probability under mixed strategy sj that agent j plays action aj , given that j’s type is θj .

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (4)
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Nash equilibrium

Definition (Bayes-Nash equilibrium)
A Bayes-Nash equilibrium is a mixed strategy profile s that satisfies
∀i si ∈ BRi(s−i).

• we can also construct an induced normal form for Bayesian games
• the numbers in the cells will correspond to ex-ante expected utilities
– however as argued above, as long as the strategy space is unchanged, best responses don’t
change between the ex-ante and ex-interim cases.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (5)
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Bayesian Game Settings

A Bayesian game setting is a Bayesian game with no actions, but instead with a set
of outcomes over which agents have utilities that depend on their types.

Definition (Bayesian game setting)
A Bayesian game setting is a tuple (N, O, Θ, p, u), where

• N is a finite set of n agents;

• O is a set of outcomes;

• Θ = Θ1 × · · · × Θn is a set of possible joint type vectors;

• p is a (common prior) probability distribution on Θ; and

• u = (u1, . . . , un), where ui : O × Θ → R is the utility function for each player i.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (7)
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Mechanisms

Definition (Mechanism)

A mechanism (for a Bayesian game setting (N, O, Θ, p, u)) is a pair (A, M), where

• A = A1 × · · · × An, where Ai is the set of actions available to agent i ∈ N ; and

• M : A → Π(O) maps each action profile to a distribution over outcomes.

Thus, the designer gets to specify

• the action sets for the agents (though these may be constrained by the environment)
• the mapping to outcomes, over which agents have utility
• can’t change outcomes; agents’ preferences or type spaces

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (8)
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Mechanism Design

• The problem is to pick a mechanism that will cause rational agents to behave in a
desired way, specifically maximizing the mechanism designer’s own “utility” or
objective function
– each agent holds private information, in the Bayesian game sense
– often, we’re interested in settings where agents’ action space is identical to their type space,
and an action can be interpreted as a declaration of the agent’s type

• In other words:
– perform an optimization problem, given that the values of (some of) the inputs are unknown
– choose the Bayesian game out of a set of possible Bayesian games that maximizes some
performance measure

• The strength of the solution concept used determines the mechanism’s
robustness to irrational behavior, miscoordination between agents, divergence
among agents’ beliefs, etc.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (9)
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Motivation

• Auctions are mechanisms for allocating resources among self-interested agents
• Very widely used
– government sale of resources; privatization
– stock market
– request for quote
– real estate sales; used goods (e.g., eBay, police auctions)
– advertisements on Google and Facebook
– computational resources, network bandwidth, ...

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (11)
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Auction Types

English Auction

• auctioneer starts the bidding at some “reservation price”
• bidders then shout out ascending prices
• once bidders stop shouting, the high bidder gets the good at that price

First-Price Auction

• bidders write down bids on pieces of paper
• auctioneer awards the good to the bidder with the highest bid
• that bidder pays the amount of her bid

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (12)
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Auction Types II

Second-Price Auction

• bidders write down bids on pieces of paper
• auctioneer awards the good to the bidder with the highest bid
• that bidder pays the amount bid by the second-highest bidder

All-Pay Auction (sealed bid)

• bidders write down bids on pieces of paper
• auctioneer awards the good to the bidder with the highest bid
• everyone pays the amount of their bid regardless of whether or not they win

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (13)
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Representing Sealed-Bid Auctions as Bayesian Games

• Set of agents: bidders
• Actions for each agent i: bid amounts bi

• Types for each agent i: valuations vi

• Common prior over types:
– Independent Private Value model: agents’ types are drawn independently
– Distribution: can be anything; uniform often easiest to analyze

• Risk attitude: how do we translate money into utility? We’ll consider the risk
neutral case, where the relationship between money and utility is linear.
• Allocations and Payments: determined based on the vector of bid amounts b

• Utility function (risk-neutral, IPV case): if agent i is allocated the good, vi − pi; else
0

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (14)
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Second-Price Analysis

Theorem
Bidding one’s value (“truth-telling”) is a dominant strategy in a second-price
auction.

Proof.
Assume that the other bidders bid in some arbitrary way. We must show that i’s
best response is always to bid truthfully. We’ll break the proof into two cases:

1. Bidding honestly, i would win the auction
2. Bidding honestly, i would lose the auction

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (16)
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Second-Price Analysis (2)
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• Bidding honestly, i is the winner

• If i bids higher, he will still win and still pay the same amount

• If i bids lower, he will either still win and still pay the same amount…

or lose and
get utility of zero.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (17)
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Second-Price Analysis (3)
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• Bidding honestly, i is not the winner

• If i bids lower, he will still lose and still pay nothing

• If i bids higher, he will either still lose and still pay nothing…

or win and pay more
than his valuation.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (18)
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First-Price Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn
independently and uniformly at random from [0, 1], (1

2v1, 1
2v2) is a Bayes-Nash

equilibrium strategy profile.

Proof.
Assume that bidder 2 bids 1

2 v2 , and bidder 1 bids s1 . From the fact that v2 was drawn from a uniform distribution, all
values of v2 between 0 and 1 are equally likely. Bidder 1’s ex-interim expected utility is

u1

([
s1,

1
2

v2

] ∣∣∣v1

)
=

∫ 1

0

u1

([
s1,

1
2

v2

] ∣∣∣[v1, v2]
)

dv2.

This integral can be broken up into two smaller integrals, splitting at the point v2 = 2s1 .

u1

([
s1,

1
2

v2

] ∣∣∣v1

)
=

∫ 2s1

0

u1

([
s1,

1
2

v2

] ∣∣∣[v1, v2]
)

dv2 +
∫ 1

2s1

u1

([
s1,

1
2

v2

] ∣∣∣[v1, v2]
)

dv2

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (20)
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First-Price Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn
independently and uniformly at random from [0, 1], (1

2v1, 1
2v2) is a Bayes-Nash

equilibrium strategy profile.

Proof (continued).
We can now substitute in values for u1([s1, 1

2 v2]|[v1, v2]). In the first case, because 2 bids 1
2 v2 , 1 wins when v2 < 2s1 ,

and gains utility v1 − s1 . In the second case 1 loses and gains utility 0. We can ignore the case where the agents have
the same valuation, because this occurs with probability zero.

u1

([
s1,

1
2

v2

] ∣∣∣v1

)
=

∫ 2s1

0

(v1 − s1)dv2 +
∫ 1

2s1

(0)dv2

= (v1 − s1)v2

∣∣∣2s1

0

= [(v1 − s1)(2s1)] − [(v1 − s1)(0)]

= 2v1s1 − 2(s1)2

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (20)
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First-Price Analysis

Theorem

In a first-price auction with two risk-neutral bidders whose valuations are drawn
independently and uniformly at random from [0, 1], (1

2v1, 1
2v2) is a Bayes-Nash

equilibrium strategy profile.

Proof (continued).
Bidder 1’s best response to bidder 2’s strategy is the s1 at which the derivative of his ex interim expected utility is 0:

∂

∂s1

(
u1

([
s1,

1
2

v2

] ∣∣∣v1

))
= 0

∂

∂s1
(2v1s1 − 2(s1)2) = 0

2v1 − 4s1 = 0

s1 =
1
2

v1

Thus when player 2 is bidding half her valuation, player 1’s best strategy is to bid half his valuation. The calculation of
the optimal bid for player 2 is analogous, given the symmetry of the game and the equilibrium.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (20)
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First-Price: More than two bidders

• Very narrow result: two bidders, uniform valuations.

Theorem

In a first-price sealed bid auction with n risk-neutral agents whose valuations are
independently drawn from a uniform distribution on the same bounded interval of
the real numbers, the unique symmetric equilibrium is given by the strategy profile
(n−1

n v1, . . . , n−1
n vn).

• proven using a similar argument, but more involved calculus
• the proof just verifies the equilibrium. How did we know which formula to check?

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (21)
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Revenue Equivalence

• Which auction should an auctioneer choose? To some extent, it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent private valuation for
a single good at auction, drawn from a common cumulative distribution F (v) that
is strictly increasing and atomless on [v, v̄]. Then any auction mechanism in which

• the good will be allocated to the agent with the highest valuation; and
• any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder with valuation v

making the same expected payment.

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (23)
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First and Second-Price Auctions

• The kth order statistic of a distribution: the expected value of the kth-largest of n

draws.
• For n IID draws from [0, vmax], the kth order statistic is

n + 1 − k

n + 1
vmax.

• Thus in a second-price auction, the seller’s expected revenue is
n − 1
n + 1

vmax.

• Symmetric equilibria of first and second-price auctions satisfy the requirements
of the revenue equivalence theorem
– every symmetric game has a symmetric equilibrium
– in a symmetric equilibrium of this auction game, higher bid ⇔ higher valuation

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (24)
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Applying Revenue Equivalence

• Thus, a bidder in a FPA must bid his expected payment conditional on being the
winner of a second-price auction
– this conditioning will be correct if he does win the FPA; otherwise, his bid doesn’t matter anyway
– if vi is the high value, there are then n − 1 other values drawn from the uniform distribution on

[0, vi]
– thus, the expected value of the second-highest bid is the first-order statistic of n − 1 draws
from [0, vi]:

n + 1 − k

n + 1
vmax = (n − 1) + 1 − (1)

(n − 1) + 1
(vi) = n − 1

n
vi

• This provides a basis for our earlier claim about n-bidder first-price auctions.
– However, we’d still have to check that this is an equilibrium
– The revenue equivalence theorem doesn’t say that every revenue-equivalent strategy profile is
an equilibrium!

Game Theoretic Analysis: Mechanism Design & Auctions: Leyton-Brown & Wright (25)
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