Bayesian Games Game Theoretic Analysis

Kevin Leyton-Brown

University of British Columbia Canada CIFAR AI Chair, Amii

James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii

THE UNIVERSITY OF BRITISH COLUMBIA

amii

Lecture Overview

Representing Bayesian Games

Analyzing Bayesian games

Game Theoretic Analysis: Bayesian Games: Leyton-Brown & Wright (2)

Recall our Previous Fun Game

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Let's reflect again on what happened when we played the game
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?

Recall our Previous Fun Game

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Let's reflect again on what happened when we played the game
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info set

Definition 1: Information Sets

• **Bayesian game**: a set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

Definition (Bayesian Game: Information Sets)

A **Bayesian game** is a tuple (N, G, P, I) where

- N is a set of agents,
- G is a set of games with N agents each such that if $g, g' \in G$ then for each agent $i \in N$ the strategy space in g is identical to the strategy space in g',
- $P \in \Pi(G)$ is a common prior over games, where $\Pi(G)$ is the set of all probability distributions over G, and
- $I = (I_1, ..., I_N)$ is a set of partitions of G, one for each agent.

Definition 1: Example

Game Theoretic Analysis: Bayesian Games: Leyton-Brown & Wright (5)

Definition 2: Epistemic Types

Directly represent uncertainty over utility function using the notion of epistemic type.

Definition

A **Bayesian game** is a tuple (N, A, Θ, p, u) where

- N is a set of agents,
- $A = (A_1, \ldots, A_n)$, where A_i is the set of actions available to player i,
- $\Theta = (\Theta_1, \dots, \Theta_n)$, where Θ_i is the type space of player i,
- $p:\Theta\rightarrow [0,1]$ is the common prior over types,
- $u = (u_1, \ldots, u_n)$, where $u_i : A \times \Theta \to \mathbb{R}$ is the utility function for player *i*.

Definition 2: Example

	MP	PD
I _{1,1}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	p = 0.3	p = 0.1
ſ	Coord	BoS
,	2,2 0,0	2,1 0,0
11,2	0, 0 1, 1	0,0 1,2
	p = 0.2	p = 0.4

a_1	a_2	θ_1	θ_2	u_1	u_2	
U	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0	
U	L	$\theta_{1,1}$	$\theta_{2,2}$	2	2	
U	L	$\theta_{1,2}$	$\theta_{2,1}$	2	2	
U	L	$\theta_{1,2}$	$\theta_{2,2}$	2	1	
U	R	$\theta_{1,1}$	$\theta_{2,1}$	0	2	
U	R	$\theta_{1,1}$	$\theta_{2,2}$	0	3	
U	R	$\theta_{1,2}$	$\theta_{2,1}$	0	0	
U	R	$\theta_{1,2}$	$\theta_{2,2}$	0	0	

a_1	a_2	θ_1	θ_2	u_1	u_2
D	L	$\theta_{1,1}$	$\theta_{2,1}$	0	2
D	L	$\theta_{1,1}$	$\theta_{2,2}$	3	0
D	L	$\theta_{1,2}$	$\theta_{2,1}$	0	0
D	L	$\theta_{1,2}$	$\theta_{2,2}$	0	0
D	R	$\theta_{1,1}$	$\theta_{2,1}$	2	0
D	R	$\theta_{1,1}$	$\theta_{2,2}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,1}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,2}$	1	2

Game Theoretic Analysis: Bayesian Games: Leyton-Brown & Wright (7)

Fun Game 2: Chicken... after dark!

- Write down the numbers 0, 1, 2, 10 on 4 pieces of paper. This is the deck of cards.
- Each player draws 1 card (the size/power of your car).
- Play chicken! If you collide, each player's utility depends on the size of both cars.

Fun Game 2: Chicken... after dark!

- Write down the numbers 0, 1, 2, 10 on 4 pieces of paper. This is the deck of cards.
- Each player draws 1 card (the size/power of your car).
- Play chicken! If you collide, each player's utility depends on the size of both cars.
- This game is a bit like poker. What's missing?

Fun Game 2: Chicken... after dark!

- Write down the numbers 0, 1, 2, 10 on 4 pieces of paper. This is the deck of cards.
- Each player draws 1 card (the size/power of your car).
- Play chicken! If you collide, each player's utility depends on the size of both cars.
- This game is a bit like poker. What's missing? Learning anything about your opponent's private information.

Definition 3: Extensive Form with Chance Moves

- Add an agent, "Nature," who follows a commonly known mixed strategy.
- Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's dilemma
 - however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.

Definition 3: Example

Game Theoretic Analysis: Bayesian Games: Leyton-Brown & Wright (10)

Lecture Overview

Representing Bayesian Games

Analyzing Bayesian games

Game Theoretic Analysis: Bayesian Games: Leyton-Brown & Wright (11)

Strategies

- **Pure strategy**: $s_i: \Theta_i \to A_i$
 - a mapping from every type agent *i* could have to the action he would play if he had that type.
- Mixed strategy: $s_i: \Theta_i \to \Pi(A_i)$
 - a mapping from *i*'s type to a probability distribution over his action choices.
- $s_j(a_j|\theta_j)$
 - the probability under mixed strategy s_j that agent j plays action a_j , given that j's type is θ_j .
- Notions like dominance still apply.

Expected Utility

Three meaningful notions of expected utility:

• ex-ante

- the agent knows nothing about anyone's actual type;

• ex-interim

- an agent knows his own type but not the types of the other agents;
- ex-post
 - the agent knows all agents' types.

Ex-interim expected utility

Definition (Ex-interim expected utility)

Agent *i*'s **ex-interim** expected utility in a Bayesian game (N, A, Θ, p, u) , where *i*'s type is θ_i and where the agents' strategies are given by the mixed strategy profile *s*, is defined as

$$EU_i(s|\theta_i) = \sum_{\theta_{-i}\in\Theta_{-i}} p(\theta_{-i}|\theta_i) \sum_{a\in A} \left(\prod_{j\in N} s_j(a_j|\theta_j)\right) u_i(a,\theta_{-i},\theta_i).$$

- *i* must consider every θ_{-i} and every *a* in order to evaluate $u_i(a, \theta_i, \theta_{-i})$.
- *i* must weight this utility value by:
 - the probability that *a* would be realized given all players' mixed strategies and types;
 - the probability that the other players' types would be θ_{-i} given that his own type is θ_i .

Ex-ante expected utility

Definition (*Ex-ante* expected utility)

Agent *i*'s *ex-ante* expected utility in a Bayesian game (N, A, Θ, p, u) , where the agents' strategies are given by the mixed strategy profile *s*, is defined as

$$EU_i(s) = \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s|\theta_i)$$

or equivalently as

$$EU_i(s) = \sum_{\theta \in \Theta} p(\theta) \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a, \theta).$$

Game Theoretic Analysis: Bayesian Games: Leyton-Brown & Wright (15)

Ex-post expected utility

Definition (*Ex-post* **expected utility)**

Agent *i*'s *ex-post* expected utility in a Bayesian game (N, A, Θ, p, u) , where the agents' strategies are given by *s* and the agent' types are given by θ , is defined as

$$EU_i(s,\theta) = \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j | \theta_j) \right) u_i(a,\theta).$$

• The only uncertainty here concerns the other agents' mixed strategies, since *i* knows everyone's type.

Best response

Definition (Best response in a Bayesian game)

The set of agent *i*'s **best responses** to mixed strategy profile s_{-i} are given by

$$BR_i(s_{-i}) = \arg\max_{s'_i \in S_i} EU_i(s'_i, s_{-i}).$$

- it may seem odd that *BR* is calculated based on *i*'s *ex-ante* expected utility.
- However, write $EU_i(s)$ as $\sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s|\theta_i)$ and observe that $EU_i(s'_i, s_{-i}|\theta_i)$ does not depend on strategies that *i* would play if his type were not θ_i .
- Thus, we are in fact performing independent maximization of *i*'s *ex-interim* expected utility conditioned on each type that he could have.

Nash equilibrium

Definition (Bayes-Nash equilibrium)

A **Bayes-Nash equilibrium** is a mixed strategy profile s that satisfies $\forall i \ s_i \in BR_i(s_{-i}).$

- we can also construct an induced normal form for Bayesian games
- the numbers in the cells will correspond to *ex-ante* expected utilities
 - however as argued above, as long as the strategy space is unchanged, best responses don't change between the *ex-ante* and *ex-interim* cases.

ex-post Equilibrium

Definition (ex-post equilibrium)

A *ex-post* equilibrium is a mixed strategy profile s that satisfies $\forall \theta$, $\forall i$, $s_i \in \arg \max_{s'_i \in S_i} EU_i(s'_i, s_{-i}, \theta)$.

- somewhat similar to dominant strategy, but not quite
 - EP: agents do not need to have accurate beliefs about the type distribution
 - DS: agents do not need to have accurate beliefs about others' strategies