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Introduction

• Play the same normal-form game over and over
– each round is called a stage game

• Questions we’ll need to answer:
– what will agents be able to observe about others’ play?
– how much will agents be able to remember about what has happened?
– what is an agent’s utility for the whole game?

• Some of these questions will have different answers for finitely- and
infinitely-repeated games.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (3)
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Finitely Repeated Games

• Everything is straightforward if we repeat a game a finite number of times
• we can write the whole thing as an extensive-form game with imperfect
information
– at each round players don’t know what the others have done; afterwards they do
– overall payoff function is additive: sum of payoffs in stage games

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (4)
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Example 134 6 Richer Representations: Beyond the Normal and Extensive Forms

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

⇒

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 6.1 Twice-played Prisoner’s Dilemma.

(e.g., the computation of Nash equilibria can be provably faster, or pure-strategy Nash
equilibria can be proven to always exist).

In this chapter we will present various different representations that address these
limitations of the normal and extensive forms. In Section 6.1 we will begin by con-
sidering the special case of extensive-form games which areconstructed by repeatedly
playing a normal-form game, and then we will extend our consideration to the case
where the normal form is repeated infinitely. This will lead us to stochastic games in
Section 6.2, which are like repeated games but do not requirethat the same normal-
form game is played in each time step. In Section 6.3 we will consider structure
of a different kind: instead of considering time, we will consider games involving
uncertainty. Specifically, in Bayesian games agents face uncertainty—and hold pri-
vate information—about the game’s payoffs. Section 6.4 describes congestion games,
which model situations in which agents contend for scarce resources. Finally, in Sec-
tion 6.5 we will consider representations that are motivated primarily by compactness
and by their usefulness for permitting efficient computation (e.g., of Nash equilibria).
Such compact representations can extend upon any other existing representation such
as normal form games, extensive-form games or Bayesian games.

6.1 Repeated games

In repeated games, a given game (often thought of in normal form) is played multiple
times by the same set of players. The game being repeated is called thestage game.stage game
For example, Figure 6.1 depicts two players playing the Prisoner’s Dilemma exactly
twice in a row.

This representation of the repeated game, while intuitive,obscures some key factors.
Do agents see what the other agents played earlier? Do they remember what they
knew? And, while the utility of each stage game is specified, what is the utility of the
entire repeated game?

We answer these questions in two steps. We first consider the case in which the game
is repeated a finite and commonly known number of times. Then we consider the case
in which the game is repeated infinitely often, or a finite but unknown number of times.

c©Shoham and Leyton-Brown, 2006
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6.1.1 Finitely repeated games

One way to completely disambiguate the semantics of a finitely repeated game is to
specify it as an imperfect-information game in extensive form. Figure 6.2 describes
the twice-played Prisoner’s Dilemma game in extensive form. Note that it captures
the assumption that at each iteration the players do not knowwhat the other player is
playing, but afterwards they do. Also note that the payoff function of each agent is
additive, that is, it is the sum of payoffs in the two stage games.
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Figure 6.2 Twice-played Prisoner’s Dilemma in extensive form.

The extensive form also makes it clear that the strategy space of the repeated game
is much richer than the strategy space in the stage game. Certainly one strategy in the
repeated game is to adopt the same strategy in each stage game; clearly, this memory-
less strategy, called astationary strategy, is a behavioral strategy in the extensive-formstationary

strategyrepresentation of the game. But in general, the action (or mixture of actions) played
at a stage game can depend on the history of play thus far. Since this fact plays a
particularly important role in infinitely repeated games, we postpone further discussion
of this to the next section. Indeed, in the finite, known repetition case, we encounter
again the phenomenon of backward induction, which we first encountered when we
introduced subgame perfect equilibria. Recall that in the centipede game, discussed in
Section 5.1.3, the unique SPE was to go down and terminate thegame at every node.
Now consider a finitely repeated Prisoner’s Dilemma case. Again, it can be argued, in
the last round it is a dominant strategy to defect, no matter what happened so far. This
is common knowledge, and no choice of action in the precedingrounds will impact the
play in the last round. Thus in the second to last round too it is a dominant strategy to
defect. Similarly, by induction, it can be argued that the only equilibrium in this case
is to always defect. However, as in the case of the centipede game, this argument is
vulnerable to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result is an
infinite tree. So the payoffs cannot be attached to any terminal nodes, nor can they be
defined as the sum of the payoffs in the stage games (which in general will be infinite).

Multi Agent Systems, draft of September 19, 2006

Play repeated prisoner’s dilemma with one or more partners. Repeat the game five
times.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (5)
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(e.g., the computation of Nash equilibria can be provably faster, or pure-strategy Nash
equilibria can be proven to always exist).

In this chapter we will present various different representations that address these
limitations of the normal and extensive forms. In Section 6.1 we will begin by con-
sidering the special case of extensive-form games which areconstructed by repeatedly
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where the normal form is repeated infinitely. This will lead us to stochastic games in
Section 6.2, which are like repeated games but do not requirethat the same normal-
form game is played in each time step. In Section 6.3 we will consider structure
of a different kind: instead of considering time, we will consider games involving
uncertainty. Specifically, in Bayesian games agents face uncertainty—and hold pri-
vate information—about the game’s payoffs. Section 6.4 describes congestion games,
which model situations in which agents contend for scarce resources. Finally, in Sec-
tion 6.5 we will consider representations that are motivated primarily by compactness
and by their usefulness for permitting efficient computation (e.g., of Nash equilibria).
Such compact representations can extend upon any other existing representation such
as normal form games, extensive-form games or Bayesian games.

6.1 Repeated games

In repeated games, a given game (often thought of in normal form) is played multiple
times by the same set of players. The game being repeated is called thestage game.stage game
For example, Figure 6.1 depicts two players playing the Prisoner’s Dilemma exactly
twice in a row.

This representation of the repeated game, while intuitive,obscures some key factors.
Do agents see what the other agents played earlier? Do they remember what they
knew? And, while the utility of each stage game is specified, what is the utility of the
entire repeated game?

We answer these questions in two steps. We first consider the case in which the game
is repeated a finite and commonly known number of times. Then we consider the case
in which the game is repeated infinitely often, or a finite but unknown number of times.
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One way to completely disambiguate the semantics of a finitely repeated game is to
specify it as an imperfect-information game in extensive form. Figure 6.2 describes
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The extensive form also makes it clear that the strategy space of the repeated game
is much richer than the strategy space in the stage game. Certainly one strategy in the
repeated game is to adopt the same strategy in each stage game; clearly, this memory-
less strategy, called astationary strategy, is a behavioral strategy in the extensive-formstationary

strategyrepresentation of the game. But in general, the action (or mixture of actions) played
at a stage game can depend on the history of play thus far. Since this fact plays a
particularly important role in infinitely repeated games, we postpone further discussion
of this to the next section. Indeed, in the finite, known repetition case, we encounter
again the phenomenon of backward induction, which we first encountered when we
introduced subgame perfect equilibria. Recall that in the centipede game, discussed in
Section 5.1.3, the unique SPE was to go down and terminate thegame at every node.
Now consider a finitely repeated Prisoner’s Dilemma case. Again, it can be argued, in
the last round it is a dominant strategy to defect, no matter what happened so far. This
is common knowledge, and no choice of action in the precedingrounds will impact the
play in the last round. Thus in the second to last round too it is a dominant strategy to
defect. Similarly, by induction, it can be argued that the only equilibrium in this case
is to always defect. However, as in the case of the centipede game, this argument is
vulnerable to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result is an
infinite tree. So the payoffs cannot be attached to any terminal nodes, nor can they be
defined as the sum of the payoffs in the stage games (which in general will be infinite).

Multi Agent Systems, draft of September 19, 2006

Play repeated prisoner’s dilemma with one or more partners. Repeat the game five
times.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (5)
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(e.g., the computation of Nash equilibria can be provably faster, or pure-strategy Nash
equilibria can be proven to always exist).

In this chapter we will present various different representations that address these
limitations of the normal and extensive forms. In Section 6.1 we will begin by con-
sidering the special case of extensive-form games which areconstructed by repeatedly
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Section 6.2, which are like repeated games but do not requirethat the same normal-
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Do agents see what the other agents played earlier? Do they remember what they
knew? And, while the utility of each stage game is specified, what is the utility of the
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We answer these questions in two steps. We first consider the case in which the game
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The extensive form also makes it clear that the strategy space of the repeated game
is much richer than the strategy space in the stage game. Certainly one strategy in the
repeated game is to adopt the same strategy in each stage game; clearly, this memory-
less strategy, called astationary strategy, is a behavioral strategy in the extensive-formstationary

strategyrepresentation of the game. But in general, the action (or mixture of actions) played
at a stage game can depend on the history of play thus far. Since this fact plays a
particularly important role in infinitely repeated games, we postpone further discussion
of this to the next section. Indeed, in the finite, known repetition case, we encounter
again the phenomenon of backward induction, which we first encountered when we
introduced subgame perfect equilibria. Recall that in the centipede game, discussed in
Section 5.1.3, the unique SPE was to go down and terminate thegame at every node.
Now consider a finitely repeated Prisoner’s Dilemma case. Again, it can be argued, in
the last round it is a dominant strategy to defect, no matter what happened so far. This
is common knowledge, and no choice of action in the precedingrounds will impact the
play in the last round. Thus in the second to last round too it is a dominant strategy to
defect. Similarly, by induction, it can be argued that the only equilibrium in this case
is to always defect. However, as in the case of the centipede game, this argument is
vulnerable to both empirical and theoretical criticisms.

6.1.2 Infinitely repeated games

When the infinitely repeated game is transformed into extensive form, the result is an
infinite tree. So the payoffs cannot be attached to any terminal nodes, nor can they be
defined as the sum of the payoffs in the stage games (which in general will be infinite).

Multi Agent Systems, draft of September 19, 2006

Play repeated prisoner’s dilemma with one or more partners. Repeat the game five
times.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (5)
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Notes

• Observe that the strategy space is much richer than it was in the NF setting
• Repeating a Nash strategy in each stage game will be an equilibrium in
behavioral strategies (called a stationary strategy)

• In general strategies adopted can depend on actions played so far
• We can apply backward induction in these games when the normal form game
has a dominant strategy.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (6)
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Infinitely Repeated Games

• Consider an infinitely repeated game in extensive form:
– an infinite tree!

• Thus, payoffs cannot be attached to terminal nodes, nor can they be defined as
the sum of the payoffs in the stage games (which in general will be infinite).

Definition
Given an infinite sequence of payoffs r1, r2, . . . for player i, the average reward of i

is

lim
k→∞

k∑
j=1

rj

k
.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (8)
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Discounted reward

Definition
Given an infinite sequence of payoffs r1, r2, . . . for player i and discount factor β

with 0 < β < 1, i’s future discounted reward is
∞∑

j=1
βjrj .

• Interpreting the discount factor:
1. the agent cares more about her well-being in the near term than in the long term
2. the agent cares about the future just as much as the present, but with probability 1 − β the

game will end in any given round.

• The analysis of the game is the same under both perspectives.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (9)
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Strategy Space

• What is a pure strategy in an infinitely-repeated game?

– a choice of action at every decision point
– here, that means an action at every stage game
– ...which is an infinite number of actions!

• Some famous strategies (repeated PD):
– Tit-for-tat: Start out cooperating. If the opponent defected, defect in the next round. Then go
back to cooperation.

– Trigger: Start out cooperating. If the opponent ever defects, defect forever.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (10)
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Nash Equilibria

• With an infinite number of equilibria, what can we say about Nash equilibria?
– we won’t be able to construct an induced normal form and then appeal to Nash’s theorem to
say that an equilibrium exists

– Nash’s theorem only applies to finite games

• Furthermore, with an infinite number of strategies, there could be an infinite
number of pure-strategy equilibria!

• It turns out we can characterize a set of payoffs that are achievable under
equilibrium, without having to enumerate the equilibria.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (11)
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Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (12)
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Definitions

• Consider any n-player game G = (N, A, u) and any payoff vector r = (r1, r2, . . . , rn).
• Let vi = min

s−i∈S−i

max
si∈Si

ui(s−i, si).

– i’s minmax value: the amount of utility i can get when −i play a minmax strategy against him

Definition
A payoff profile r is enforceable if ri ≥ vi.

Definition
A payoff profile r is feasible if there exist rational, non-negative values αa such
that for all i, we can express ri as

∑
a∈A αaui(a), with ∑

a∈A αa = 1.

• a payoff profile is feasible if it is a convex, rational combination of the outcomes
in G.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (13)
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Folk Theorem

Theorem (Folk Theorem)
Consider any n-player game G and any payoff vector (r1, r2, . . . , rn).

1. If r is the payoff in any Nash equilibrium of the infinitely repeated G with average
rewards, then for each player i, ri is enforceable.

2. If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium
of the infinitely repeated G with average rewards.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (14)
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Folk Theorem (Part 1)

Payoff in Nash → enforceable

Part 1: Suppose r is not enforceable, i.e. ri < vi for some i. Then consider a
deviation of this player i to bi(s−i(h)) for any history h of the repeated game, where
bi is any best-response action in the stage game and s−i(h) is the equilibrium
strategy of other players given the current history h. By definition of a minmax
strategy, player i will receive a payoff of at least vi in every stage game if he adopts
this strategy, and so i’s average reward is also at least vi. Thus i cannot receive the
payoff ri < vi in any Nash equilibrium.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (15)
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Folk Theorem (Part 2)

Feasible and enforceable → Nash

Part 2: Since r is a feasible payoff profile, we can write it as ri =
∑

a∈A

(
βa

γ

)
ui(a),

where βa and γ are non-negative integers.1 Since the combination was convex, we
have γ =

∑
a∈A βa.

We’re going to construct a strategy profile that will cycle through all outcomes a ∈ A

of G with cycles of length γ, each cycle repeating action a exactly βa times. Let (at)
be such a sequence of outcomes. Let’s define a strategy si of player i to be a trigger
version of playing (at): if nobody deviates, then si plays at

i in period t. However, if
there was a period t′ in which some player j ̸= i deviated, then si will play (p−j)i,
where (p−j) is a solution to the minimization problem in the definition of vj .
1Recall that αa were required to be rational. So we can take γ to be their common denominator.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (16)
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Folk Theorem (Part 2)

Feasible and enforceable → Nash

First observe that if everybody plays according to si, then, by construction, player i

receives average payoff of ri (look at averages over periods of length γ). Second, this
strategy profile is a Nash equilibrium. Suppose everybody plays according to si, and
player j deviates at some point. Then, forever after, player j will receive his min max
payoff vj ≤ rj , rendering the deviation unprofitable.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (16)
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Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (17)
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Introduction

• What if we didn’t always repeat back to the same stage game?
• A stochastic game is a generalization of repeated games
– agents repeatedly play games from a set of normal-form games
– the game played at any iteration depends on the previous game played and on the actions
taken by all agents in that game

• A stochastic game is also a generalization of Markov decision processes
– there are multiple players
– one reward function for each agent
– the state transition function and reward functions depend on the action choices of both players

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (18)
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Formal Definition

Definition
A stochastic game is a tuple (Q, N, A, P, R), where

• Q is a finite set of states,

• N is a finite set of n players,

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i,

• P : Q × A × Q → [0, 1] is the transition probability function; P (q, a, q̂) is the
probability of transitioning from state q to state q̂ after joint action a, and

• R = r1, . . . , rn, where ri : Q × A → R is a real-valued payoff function for player i.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (19)
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Remarks

• This assumes strategy space is the same in all games
– otherwise just more notation

• Again we can have average or discounted payoffs.
• Interesting special cases:
– zero-sum stochastic game
– single-controller stochastic game
• transitions (but not payoffs) depend on only one agent

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (20)
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Strategies

• What is a pure strategy?

– pick an action conditional on every possible history
– of course, mixtures over these pure strategies are possible too!

• Some interesting restricted classes of strategies:
– behavioral strategy: si(ht, aij

) returns the probability of playing action aij
for history ht.

• the substantive assumption here is that mixing takes place at each history independently, not once at the
beginning of the game

– Markov strategy: si is a behavioral strategy in which si(ht, aij ) = si(h′
t, aij ) if qt = q′

t, where qt

and q′
t are the final states of ht and h′

t, respectively.
• for a given time t, the distribution over actions only depends on the current state

– stationary strategy: si is a Markov strategy in which si(ht1 , aij ) = si(h′
t2

, aij ) if qt1 = q′
t2
, where

qt1 and q′
t2
are the final states of ht1 and h′

t2
, respectively.

• no dependence even on t

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (21)
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Strategies

• What is a pure strategy?
– pick an action conditional on every possible history
– of course, mixtures over these pure strategies are possible too!

• Some interesting restricted classes of strategies:
– behavioral strategy: si(ht, aij ) returns the probability of playing action aij for history ht.
• the substantive assumption here is that mixing takes place at each history independently, not once at the
beginning of the game

– Markov strategy: si is a behavioral strategy in which si(ht, aij ) = si(h′
t, aij ) if qt = q′

t, where qt

and q′
t are the final states of ht and h′

t, respectively.
• for a given time t, the distribution over actions only depends on the current state

– stationary strategy: si is a Markov strategy in which si(ht1 , aij ) = si(h′
t2

, aij ) if qt1 = q′
t2
, where

qt1 and q′
t2
are the final states of ht1 and h′

t2
, respectively.

• no dependence even on t
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Repeated Games Infinitely Repeated Games Folk Theorem Stochastic Games

Equilibrium (discounted rewards)

• Markov perfect equilibrium:
– a strategy profile consisting of only Markov strategies that is a Nash equilibrium regardless of
the starting state

– analogous to subgame-perfect equilibrium

Theorem
Every n-player, general sum, discounted reward stochastic game has a Markov
perfect equilibrium.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (22)
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Equilibrium (average rewards)

• Irreducible stochastic game:
– every strategy profile gives rise to an irreducible Markov chain over the set of games
• irreducible Markov chain: possible to get from every state to every other state

– during the (infinite) execution of the stochastic game, each stage game is guaranteed to be
played infinitely often—for any strategy profile

– without this condition, limit of the mean payoffs may not be defined

Theorem
Every 2-player, general sum, average reward, irreducible stochastic game has a
Nash equilibrium.

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (23)
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Folk Theorems for Stochastic Games

Theorem
For every 2-player, general sum, irreducible stochastic game, and every feasible
outcome with a payoff vector r that provides to each player at least their minmax
value, there exists a Nash equilibrium with a payoff vector r. This is true for games
with average rewards, as well as games with large enough discount factors (i.e.
with players that are sufficiently patient).

Game Theoretic Analysis: Repeated Games: Leyton-Brown & Wright (24)
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