Extensive Form Games Game Theoretic Analysis

Kevin Leyton-Brown

University of British Columbia Canada CIFAR AI Chair, Amii

James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii

THE UNIVERSITY OF BRITISH COLUMBIA

amii

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Recap: Be	est Response & Nash	Equilibrium		
Definitio	n			
The set c	of <i>i</i> 's best responses t	o a strategy profile	$e s_{-i} \in S_{-i}$ is	
	$BR_i(s_{-i}) = \{a_i^* \in$	$\in A_i \mid u_i(a_i^*, s_{-i}) \ge$	$u_i(a_i, s_{-i}) \forall a_i \in A_i \}$	

Definition

A strategy profile *s* is a **Nash equilibrium** iff

$$\forall i \in N, s'_i \in S_i : u_i(s) \ge u_i(s'_i, s_{-i})$$

Equivalently,

$$\forall i \in N, a_i \in A_i : s_i(a_i) > 0 \iff a_i \in BR_i(s_{-i}).$$

When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Recap: Be	st Response & Nash	Equilibrium		
Definitio	n			
The set o	f i's best responses t	o a strategy profile	$e s_{-i} \in S_{-i}$ is	
	$BR_i(s_{-i}) = \{s_i^*$	$\in S_i \mid u_i(s_i^*, s_{-i}) >$	$u_i(s_i, s_{-i}) \forall s_i \in S_i \}$	

Definition

A strategy profile *s* is a **Nash equilibrium** iff

$$\forall i \in N, s'_i \in S_i : u_i(s) \ge u_i(s'_i, s_{-i})$$

Equivalently,

$$\forall i \in N, s_i \in BR_i(s_{-i}).$$

When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Recap: Ra	tionalizability			
A rational	izablo stratogy is ono	which is a bost ro	spansa ta sama baliaf al	hout the

A rationalizable strategy is one which is a best response to some belief about the other agents

- that also assumes opponent is playing some rationalizable strategy
- the beliefs need not be consistent with each other

In two-player games, rationalizable strategies are exactly those that survive **iterated removal of strictly dominated strategies**.

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Recap: Ra	tionalizability			
A	:			.

A rationalizable strategy is one which is a best response to some belief about the other agents

- that also assumes opponent is playing some rationalizable strategy
- the beliefs need not be consistent with each other

In two-player games, rationalizable strategies are exactly those that survive **iterated removal of strictly dominated strategies**.

Example: Traveller's Dilemma

- 300 is weakly dominated by 299
- But it is **strictly dominated** by a mixed strategy over the actions 180–299.
- So 300 does not survivie iterated removal of strictly dominated strategies
- In the game with 300 removed, 299 is weakly dominated by 298
- ...but **strictly dominated** by a mixed strategy over 180–298

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Lecture Overv	iew			

Extensive Form Games

Nash equilibrium

Subgame Perfect Equilibrium

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (4)

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Extensive Fo	rm Games			

- Normal form games don't have any notion of sequence: all actions happen simultaneously
- The extensive form is a game representation that explicitly includes temporal structure (i.e., a game tree)

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (5)

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Perfect In	formation			

There are two kinds of extensive form game:

- 1. **Perfect information:** Every agent **sees all actions** of the other players (including any special "Chance" player)
 - e.g., Chess, Checkers, Backgammon, Pandemic
 - This lecture!

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Perfect Inf	ormation			

There are two kinds of extensive form game:

- 1. **Perfect information:** Every agent **sees all actions** of the other players (including any special "Chance" player)
 - e.g., Chess, Checkers, Backgammon, Pandemic
 - This lecture!

2. Imperfect information: Some actions are hidden

- Players may not know exactly where they are in the tree
- Different players may have different knowledge (about where they are in the tree)
- E.g., Poker, Rummy, Scrabble

Subgame Perfect Equilibrium

Summary

Perfect Information Extensive Form Game

Definition

A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n **players**
- A is a single set of **actions**

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (7)

Subgame Perfect Equilibrium

Summary

Perfect Information Extensive Form Game

Definition

A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- A is a single set of actions
- *H* is a set of nonterminal **choice nodes**

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (7)

Summary

Perfect Information Extensive Form Game

Definition

- N is a set of n players
- A is a single set of actions
- *H* is a set of nonterminal choice nodes
- Z is a set of **terminal nodes** (disjoint from H)

Summary

Perfect Information Extensive Form Game

Definition

- N is a set of n players
- A is a single set of actions
- *H* is a set of nonterminal choice nodes
- Z is a set of terminal nodes (disjoint from H)
- $\chi: H \to 2^A$ is the **action function**

Subgame Perfect Equilibrium

Summary

Perfect Information Extensive Form Game

Definition

- N is a set of n players
- A is a single set of actions
- H is a set of nonterminal choice nodes
- Z is a set of terminal nodes (disjoint from H)
- $\chi: H \to 2^A$ is the action function
- $\rho: H \to N$ is the **player function**

Subgame Perfect Equilibrium

Summary

Perfect Information Extensive Form Game

Definition

- N is a set of n players
- A is a single set of actions
- *H* is a set of nonterminal choice nodes
- Z is a set of terminal nodes (disjoint from H)
- + $\chi: H \rightarrow 2^A$ is the action function
- $\rho: H \to N$ is the player function
- $\sigma: H \times A \rightarrow H \cup Z$ is the **successor function**

Subgame Perfect Equilibrium

Summary

Perfect Information Extensive Form Game

Definition

A finite perfect information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players
- A is a single set of actions
- *H* is a set of nonterminal choice nodes
- Z is a set of terminal nodes (disjoint from H)
- + $\chi: H \rightarrow 2^A$ is the action function
- $\rho: H \to N$ is the player function
- * $\sigma: H \times A \rightarrow H \cup Z$ is the successor function
- $u = (u_1, \dots, u_n)$ is a profile of **utility functions** $u_i : Z \to \mathbb{R}$ for each player *i*

(2.0)

- Two siblings must decide how to share two \$100 coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
 - If rejected, nobody gets any coins
- Play against 2 other people, once per person, different role each time

- Two siblings must decide how to share two \$100 coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
 - If rejected, nobody gets any coins
- Play against 2 other people, once per person, different role each time
- **Question:** Did you have a plan for every possible eventuality?

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Lecture Overv	iew			

Extensive Form Games

Nash equilibrium

Subgame Perfect Equilibrium

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (9)

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strat	egies			
Question				
What are	the pure strategies i	n an extensive for	m game?	

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strat	tegies			
Question				

What are the **pure strategies** in an extensive form game?

Definition

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect information game in extensive form. Then the **pure strategies** for player *i* consist of the cross product of actions available to *i* at each of their choice nodes:

 $\prod_{h\in H|\rho(h)=o}\chi(h).$

Note that a pure strategy associates an action with **every** choice node, even those that will **never be reached**.

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strategi	es Example			

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strategi	es Example			

 $\{(C, E), (C, F), (D, E), (D, F)\}$

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strategi	es Example			

 $\{(C,E),(C,F),(D,E),(D,F)\}$

Question: What are the pure strategies for player 1?

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strate	gies Example			

 $\{(C,E),(C,F),(D,E),(D,F)\}$

Question: What are the pure strategies for player 1?

 $\{(A,G), (A,H), (B,G), (B,H)\}$

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strates	gies Example			

 $\{(C, E), (C, F), (D, E), (D, F)\}$

Question: What are the pure strategies for player 1?

 $\{(A,G), (A,H), (B,G), (B,H)\}$

Note that there is always an action for the second node, even when it cannot be reached.

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Induced N	ormal Form			
 Any pa utility 	ir of pure strategies ι for each agent (why?	uniquely identifies)	s a terminal node , which	identifies a

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Induced N	ormal Form			
 Any pa utility 	ir of pure strategies ι for each agent (why?	uniquely identifies)	a terminal node , which	identifies a
• We ha	ve now defined a set	of agents, pure str	ategies, and utility funct	ions
• Any pe	erfect-information ext	ensive form game	defines a corresponding	g induced

normal form game

	C, E	C, F	D, E	D, F
A, G	3,8	3,8	8,3	8,3
A, H	3,8	3,8	8,3	8,3
B,G	5,5	2,10	5,5	2,10
B, H	5,5	1,0	5,5	1,0

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Induced N	Iormal Form			
 Any pa utility 	air of pure strategies (for each agent (why?	uniquely identifies)	a terminal node , which	identifies a
• We ha	ve now defined a set	of agents, pure str	ategies, and utility funct	ions
• Any pe	erfect-information ext	ensive form game	defines a corresponding	g induced

normal form game

• Question: Which representation is more compact?

	C, E	C, F	D, E	D, F
A, G	3,8	3,8	8,3	8,3
A, H	3,8	3,8	8,3	8,3
B, G	5,5	2,10	5,5	2,10
B, H	5,5	1,0	5,5	1,0

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Reusing Old D	efinitions			

We can also plug our new definition of pure strategy into our existing definitions for:

- Mixed strategy
- Best response
- Nash equilibrium (both pure strategy and mixed strategy)

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Reusing Old D	efinitions			

We can also plug our new definition of pure strategy into our existing definitions for:

- Mixed strategy
- Best response
- Nash equilibrium (both pure strategy and mixed strategy)

Question

What is the definition of a **mixed strategy** in an extensive form game?

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Pure Strat	egy Nash Equilibria			
Theorem	[Zermelo, 1913]			
Every fini strategy	te perfect-informatio Nash equilibrium.	n game in extensiv	ve form has at least one	pure

Theorem [Zermelo, 1913]

Every finite perfect-information game in extensive form has at least one **pure strategy Nash equilibrium**.

Proof: Solve by **backward induction**

- Starting from the bottom of the tree, no agent needs to randomize, because there is a deterministic best response.
- Replace those nodes with the resulting utility vector
- Repeat until an action is assigned for all choice nodes

(There might be multiple pure strategy Nash equilibria in cases where an agent has multiple best responses at a single choice node.)

Subgame Perfect Equilibrium

Summary

Pure Strategy Nash Equilibria Example

Question: What are the pure-strategy Nash equilibria of this game?

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (15)

Subgame Perfect Equilibrium

Summary

Pure Strategy Nash Equilibria Example

Question: What are the pure-strategy Nash equilibria of this game?

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (15)

Subgame Perfect Equilibrium

Summary

Pure Strategy Nash Equilibria Example

Question: What are the pure-strategy Nash equilibria of this game? **Question:** Do any of them seem **implausible**?

Subgame Perfect Equilibrium

Summary

Pure Strategy Nash Equilibria Example

Question: What are the pure-strategy Nash equilibria of this game? **Question:** Do any of them seem **implausible**?

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Lecture Overv	iew			

Extensive Form Games

Nash equilibrium

Subgame Perfect Equilibrium

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (16)

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Subgame Pe	rfection, informall	У		
Some equilib	ria seem less plau	sible than		

others.

- \$\langle (B, H), (C, E) \rangle: F\$ has payoff 0 for player 2, because player 1 plays H, so player 2's best response is to play E
- But why would player 1 play *H* if they got to that choice node?
- The equilibrium relies on a "threat" from player 1 that is not **credible**.
- Subgame perfect equilibria are Nash equilibria that do not rely on non-credible threats.

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Subgames				
Definition				

The **subgame of** G **rooted at** h is the restriction of G to the descendants of h.

Definition

The **subgames of** G are the subgames of G rooted at h for every choice node $h \in H$.

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Subgames				
Definition				

The **subgame of** G **rooted at** h is the restriction of G to the descendants of h.

Definition

The **subgames of** G are the subgames of G rooted at h for every choice node $h \in H$.

Examples:

Game Theoretic Analysis: Extensive Form Games: Leyton-Brown & Wright (18)

Subgame Perfect Equilibrium

Definition

A strategy profile $s \in S$ is a **subgame perfect equilibrium** of G iff, for every subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'.

	C, E	C, F	D, E	D, F
A, G	3,8	3,8	8,3	8,3
A, H	3,8	3,8	8,3	8,3
B, G	5,5	2,10	5,5	2,10
B, H	5,5	1,0	5,5	1,0

Subgame Perfect Equilibrium

Definition

A strategy profile $s \in S$ is a **subgame perfect equilibrium** of G iff, for every subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'.

	C, E	C, F	D, E	D, F
A, G	3,8	3,8	8,3	8,3
A, H	3,8	3,8	8,3	8,3
B,G	5,5	2,10	5,5	2,10
B, H	5,5	1,0	5,5	1,0

Any equilibrium computed by backward induction will be subgame perfect (Why?)

Recap	Extensive Form Games	Nash equilibrium	Subgame Perfect Equilibrium	Summary
Summary				

- Extensive form games allow us to represent sequential action
 - Perfect information: when we see everything that happens
 - Imperfect information: different agents have different information
- Pure strategies for extensive form games map choice nodes to actions
 - Induced normal form is the normal form game with these pure strategies
 - Notions of mixed strategy, best response, etc. translate directly
- Subgame perfect equilibria are those which do not rely on non-credible threats
 - Can always find a subgame perfect equilibrium using backward induction
 - Furthermore, this equilibrium is guaranteed to be in pure strategies