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Recap
Recap: Best Response & Nash Equilibrium

The set of i's best responses to a strategy profile s_; € S_; is

BRZ‘<S,Z') = {a;" € Az | ui(af, S,i> > ui(ai, S,i) VYa; € Az}

Definition
A strategy profile s is a Nash equilibrium iff

Vi € N, s, € S;:ui(s) > ui(sh, s-)

Equivalently,
Vi e N,a; € A; si(ai) >0 < q; € BRZ(S_Z)

When at least one s; is mixed, s is @ mixed strategy Nash equilibrium
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Recap
Recap: Rationalizability

A rationalizable strategy is one which is a best response to some belief about the
other agents

- that also assumes opponent is playing some rationalizable strategy
- the beliefs need not be consistent with each other

In two-player games, rationalizable strategies are exactly those that survive iterated
removal of strictly dominated strategies.
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Recap: Rationalizability

A rationalizable strategy is one which is a best response to some belief about the
other agents

- that also assumes opponent is playing some rationalizable strategy
- the beliefs need not be consistent with each other

In two-player games, rationalizable strategies are exactly those that survive iterated
removal of strictly dominated strategies.

Example: Traveller's Dilemma

« 300 is weakly dominated by 299

But it is strictly dominated by a mixed strategy over the actions 180-299.
« S0 300 does not survivie iterated removal of strictly dominated strategies
+ In the game with 300 removed, 299 is weakly dominated by 298

..but strictly dominated by a mixed strategy over 180-298
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Extensive Form Games
Extensive Form Games

- Normal form games don’t have any notion of sequence: all actions happen

simultaneously
- The extensive form is a game representation that explicitly includes temporal

structure (i.e.,, a game tree)

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)




Extensive Form Games
Perfect Information

There are two kinds of extensive form game:

1. Perfect information: Every agent sees all actions of the other players (including
any special “Chance” player)
— e.g, Chess, Checkers, Backgammon, Pandemic
— This lecture!




Extensive Form Games
Perfect Information

There are two kinds of extensive form game:

1. Perfect information: Every agent sees all actions of the other players (including
any special “Chance” player)

— e.g, Chess, Checkers, Backgammon, Pandemic
— This lecture!

2. Imperfect information: Some actions are hidden
— Players may not know exactly where they are in the tree

— Different players may have different knowledge (about where they are in the tree)
— E.g, Poker, Rummy, Scrabble




Extensive Form Games

Perfect Information Extensive Form Game

A finite perfect information game in extensive
formisatuple G=(N,A H, Z, x, p,0,u), where

« N is a set of n players
- Ais a single set of actions

(0,0) (2,0) (0,0) (1.1) (0,0) (0.2)
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Extensive Form Games

Perfect Information Extensive Form Game

A finite perfect information game in extensive
formisatuple G=(N,A H, Z, x, p,0,u), where
- N is aset of n players
« Ais asingle set of actions
H is a set of nonterminal choice nodes

. Z is a set of terminal nodes (disjoint from H)
« x : H— 24 s the action function ©
« p: H— N is the player function

«0:HxA— HUZ is the successor function

« u = (ug,...,uy) is a profile of utility functions
u; : Z — R for each player




Extensive Form Games
Fun Game: The Sharing Game

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

- Two siblings must decide how to share two $100 coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
— If rejected, nobody gets any coins

- Play against 2 other people, once per person, different role each time




Extensive Form Games
Fun Game: The Sharing Game

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

- Two siblings must decide how to share two $100 coins
Sibling 1 suggests a division, then sibling 2 accepts or rejects
— If rejected, nobody gets any coins

- Play against 2 other people, once per person, different role each time
Question: Did you have a plan for every possible eventuality?
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Nash equilibrium
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What are the pure strategies in an extensive form game?




Nash equilibrium
Pure Strategies

What are the pure strategies in an extensive form game?

Definition

let G = (N,A,H,Z, x,p,o,u) be a perfect information game in extensive form.
Then the pure strategies for player ¢ consist of the cross product of actions
available to ¢ at each of their choice nodes:

I x).

heH|p(h)=o0

Note that a pure strategy associates an action with every choice node, even those
that will never be reached.
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Pure Strategies Example

Question: What are the pure strategies for player 2?

(2,10) (1,0)
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Nash equilibrium
Pure Strategies Example

Question: What are the pure strategies for player 2?

{(C,E),(C,F),(D,E),(D, F)}

Question: What are the pure strategies for player 1?

{(A’ G)’ (A7 H)’ <B7 G)’ (B7 H)}

(2,10) (1,0)




Nash equilibrium
Pure Strategies Example

Question: What are the pure strategies for player 2?

{(C,E),(C,F),(D,E),(D, F)}

Question: What are the pure strategies for player 1?

{(A,G), (A H),(B,G), (B, H)}

(2,10) (1,0)

Note that there is always an action for the second
node, even when it cannot be reached.




Nash equilibrium
Induced Normal Form

- Any pair of pure strategies uniquely identifies a terminal node, which identifies a
utility for each agent (why?)

(2,10) (1,0)
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Induced Normal Form

- Any pair of pure strategies uniquely identifies a terminal node, which identifies a
utility for each agent (why?)

« We have now defined a set of agents, pure strategies, and utility functions

« Any perfect-information extensive form game defines a corresponding induced
normal form game

C,E C,F D,E D,F
AG| 38 ]38 | 83 ] 83
AH| 38 | 38 | 83 | 83
B,G| 55 | 210 | 55 | 210
B,H| 55 | 10 | 55 | 1,0

(2,10) (1,0)




Nash equilibrium
Induced Normal Form

- Any pair of pure strategies uniquely identifies a terminal node, which identifies a
utility for each agent (why?)

« We have now defined a set of agents, pure strategies, and utility functions

« Any perfect-information extensive form game defines a corresponding induced
normal form game

« Question: Which representation is more compact?

C,E C,F D,E D,F
AG| 38 ]38 | 83 ] 83
AH| 38 | 38 | 83 | 83
B,G| 55 | 210 | 55 | 210
B,H| 55 | 10 | 55 | 1,0

(2,10) (1,0)




Nash equilibrium

Reusing Old Definitions

We can also plug our new definition of pure strategy into our existing definitions for:

« Mixed strategy
- Best response
- Nash equilibrium (both pure strategy and mixed strategy)




Nash equilibrium

Reusing Old Definitions

We can also plug our new definition of pure strategy into our existing definitions for:

« Mixed strategy
- Best response
- Nash equilibrium (both pure strategy and mixed strategy)

What is the definition of a mixed strategy in an extensive form game?




Nash equilibrium

Pure Strategy Nash Equilibria

Theorem [zermelo, 1913]

Every finite perfect-information game in extensive form has at least one pure
strategy Nash equilibrium.




Nash equilibrium

Pure Strategy Nash Equilibria

Theorem [zermelo, 1913]

Every finite perfect-information game in extensive form has at least one pure
strategy Nash equilibrium.

Proof: Solve by backward induction

- Starting from the bottom of the tree, no agent needs to randomize, because
there is a deterministic best response.

+ Replace those nodes with the resulting utility vector
- Repeat until an action is assigned for all choice nodes

(There might be multiple pure strategy Nash equilibria in cases where an agent has
multiple best responses at a single choice node.)




Nash equilibrium
Pure Strategy Nash Equilibria Example

C,E C,F D,E D,F
AG| 38 | 38 | 83 | 83
AH| 38 | 38 | 83 | 83
B,G| 55 | 210 | 55 | 210
B,H| 55| 10 | 55 | 10

(2,10) (1,0)

Question: What are the pure-strategy Nash equilibria of this game?
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Question: What are the pure-strategy Nash equilibria of this game?

Question: Do any of them seem implausible?
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C,E C,F D,E D,F
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Question: What are the pure-strategy Nash equilibria of this game?

Question: Do any of them seem implausible?
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Subgame Perfect Equilibrium

Subgame Perfection, informally

Some equilibria seem less plausible than
others.

« (B,H),(C, E)): F has payoff 0 for
player 2, because player 1 plays H, so
player 2's best response is to play £

- But why would player 1 play H if they
got to that choice node?

« The equilibrium relies on a “threat”
from player 1 that is not credible.

(2,10) (1,0)

« Subgame perfect equilibria are Nash
equilibria that do not rely on
non-credible threats.




Subgame Perfect Equilibrium
Subgames

Definition
The subgame of G rooted at / is the
restriction of G to the descendants of A.

Definition

The subgames of GG are the subgames of
G rooted at h for every choice node
heH.

(2,10) (1,0)




Subgame Perfect Equilibrium

Subgames

Definition

The subgame of G rooted at / is the
restriction of G to the descendants of A.

Definition

The subgames of GG are the subgames of
G rooted at h for every choice node
h e H (2,10) (1,0)

Examples:

(2,10) (1,0)
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Subgame Perfect Equilibrium

A strategy profile s € S is a subgame perfect equilibrium of G iff, for every
subgame G’ of G, the restriction of s to G’ is a Nash equilibrium of G".

C,E C,F D,E D,F
AG| 38 ]38 83 ] 83
AH| 38 | 38 | 83 | 83
B.G| 55 | 210 | 55 | 210
B.H| 55 | 10 | 55 | 10

(2,10) (1,0)




Subgame Perfect Equilibrium

Subgame Perfect Equilibrium

A strategy profile s € S is a subgame perfect equilibrium of G iff, for every
subgame G’ of G, the restriction of s to G’ is a Nash equilibrium of G".

C,E C,F D,E D,F
AG| 38 ]38 83 ] 83
AH| 38 | 38 | 83 | 83
B.G| 55 | 210 | 55 | 210
B.H| 55 | 10 | 55 | 10

(2,10) (1,0)

Any equilibrium computed by backward induction will be subgame perfect (Why?)




Summary
Summary

- Extensive form games allow us to represent sequential action
— Perfect information: when we see everything that happens
— Imperfect information: different agents have different information
- Pure strategies for extensive form games map choice nodes to actions
— Induced normal form is the normal form game with these pure strategies
— Notions of mixed strategy, best response, etc. translate directly
- Subgame perfect equilibria are those which do not rely on non-credible threats

— Can always find a subgame perfect equilibrium using backward induction
— Furthermore, this equilibrium is guaranteed to be in pure strategies
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