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Computing Mixed Nash Equilibria: Battle of the Sexes

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

• It’s hard in general to compute Nash equilibria, but it’s easy when you can guess
the support
• For BoS, let’s look for an equilibrium where all actions are part of the support

Unit: Lecture: Leyton-Brown & Wright (3)
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• Let player 2 play B with p, F with 1 − p.
• If player 1 best-responds with a mixed strategy, player 2 must make her
indifferent between F and B (why?)

u1(B) = u1(F )
2p + 0(1 − p) = 0p + 1(1 − p)

p = 1
3

Unit: Lecture: Leyton-Brown & Wright (3)
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• Likewise, player 1 must randomize to make player 2 indifferent.
– Why is player 1 willing to randomize?

• Let player 1 play B with q, F with 1 − q.

u2(B) = u2(F )
q + 0(1 − q) = 0q + 2(1 − q)

q = 2
3

• Thus the strategies (2
3 , 1

3), (1
3 , 2

3) are a Nash equilibrium.

Unit: Lecture: Leyton-Brown & Wright (3)
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Fun Game!

L R

T 80, 40 40, 80

B 40, 80 80, 40

• In a breakout room, play each game once as each player.

• What does row player do in equilibrium of this game?
– row player randomizes 50–50 all the time
– that’s what it takes to make column player indifferent

• What happens when people play this game?
– with payoff of 320, row player goes up essentially all the time
– with payoff of 44, row player goes down essentially all the time

Unit: Lecture: Leyton-Brown & Wright (5)
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Fun Game!

L R

T 320, 40 40, 80

B 40, 80 80, 40

• In a breakout room, play each game once as each player.

• What does row player do in equilibrium of this game?
– row player randomizes 50–50 all the time
– that’s what it takes to make column player indifferent

• What happens when people play this game?
– with payoff of 320, row player goes up essentially all the time
– with payoff of 44, row player goes down essentially all the time

Unit: Lecture: Leyton-Brown & Wright (5)
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Fun Game!

L R

T 44, 40 40, 80

B 40, 80 80, 40

• In a breakout room, play each game once as each player.

• What does row player do in equilibrium of this game?
– row player randomizes 50–50 all the time
– that’s what it takes to make column player indifferent

• What happens when people play this game?
– with payoff of 320, row player goes up essentially all the time
– with payoff of 44, row player goes down essentially all the time
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Maxmin Strategies

• Player i’s maxmin strategy is a strategy that maximizes i’s worst-case payoff, in
the situation where all the other players (whom we denote −i) happen to play
the strategies which cause the greatest harm to i.

• The maxmin value (or safety level) of the game for player i is that minimum
amount of payoff guaranteed by a maxmin strategy.

Definition (Maxmin)
The maxmin strategy for player i is arg maxsi mins−i ui(si, s−i), and the maxmin
value for player i is maxsi mins−i ui(si, s−i).

• Why would i want to play a maxmin strategy?

– a conservative agent maximizing worst-case payoff
– a paranoid agent who believes everyone is out to get him

Unit: Lecture: Leyton-Brown & Wright (7)
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Minmax Strategies

• Player i’s minmax strategy against player −i in a 2-player game is a strategy that
minimizes −i’s best-case payoff, and the minmax value for i against −i is payoff.
• Why would i want to play a minmax strategy?

– to punish the other agent as much as possible

Definition (Minmax, 2-player)
In a two-player game, theminmax strategy for player i against player −i is arg minsi

maxs−i u−i(si, s−i), and player −i’s minmax value is minsi maxs−i u−i(si, s−i).

Unit: Lecture: Leyton-Brown & Wright (8)
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Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))
In any finite, two-player, zero-sum game, in any Nash equilibrium each player
receives a payoff that is equal to both his maxmin value and his minmax value.

1. Each player’s maxmin value is equal to his minmax value. By convention, the maxmin value for
player 1 is called the value of the game.

2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.
3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium.

Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same
payoff vector (namely, those in which player 1 gets the value of the game).

Unit: Lecture: Leyton-Brown & Wright (9)
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Saddle Point: Matching Pennies

Unit: Lecture: Leyton-Brown & Wright (10)
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Traveler’s Dilemma

Two travelers purchase identical African masks while on a tropical vacation.
Their luggage is lost on the return trip, and the airline asks them to make in-
dependent claims for compensation. In anticipation of excessive claims, the
airline representative announces: “We know that the bags have identical con-
tents, and we will entertain any claim between $180 and $300, but you will
each be reimbursed at an amount that equals the minimum of the two claims
submitted. If the two claims differ, we will also pay a reward R to the person
making the smaller claim and we will deduct a penalty R from the reimburse-
ment to the person making the larger claim.”

Unit: Lecture: Leyton-Brown & Wright (12)
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Traveler’s Dilemma

• Action: choose an integer between 180 and 300
• If both players pick the same number, they both get that amount as payoff
• If players pick a different number:
– the low player gets his number (L) plus some constant R

– the high player gets L − R, R = 5.

• Play this game in a breakout room, if we have time. Do it once with R = 5, once
with R = 180.

Unit: Lecture: Leyton-Brown & Wright (13)
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Traveler’s Dilemma

• What is the equilibrium?

– (180, 180) is the only equilibrium, for all R ≥ 2.

• What happens?
– with R = 5 most people choose 295–300
– with R = 180 most people choose 180

Unit: Lecture: Leyton-Brown & Wright (14)
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Dominated strategies

• No equilibrium can involve a strictly dominated strategy
– Thus we can remove it, and end up with a strategically equivalent game
– This might allow us to remove another strategy that wasn’t dominated before
– Running this process to termination is called iterated removal of dominated strategies.

Unit: Lecture: Leyton-Brown & Wright (15)
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Iterated Removal of Strictly Dominated Strategies

• This process preserves all Nash equilibria.
– If there are multiple dominated strategies, the order of removal doesn’t matter

• Thus, it can be used as a preprocessing step before computing an equilibrium
– Some games are solvable using this technique
– Example: Traveler’s Dilemma!

Unit: Lecture: Leyton-Brown & Wright (16)
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Rationalizability

• Rather than ask what is irrational, ask what is a best response to some beliefs
about the opponent
– assumes opponent is rational
– assumes opponent knows that you and the others are rational
– ...

• Examples
– is heads rationalizable in matching pennies?

– is cooperate rationalizable in prisoner’s dilemma?

• Will there always exist a rationalizable strategy?
– Yes, equilibrium strategies are always rationalizable.

• Furthermore, in two-player games, rationalizable ⇔ survives iterated removal of
strictly dominated strategies.

Unit: Lecture: Leyton-Brown & Wright (18)
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Lecture Overview

Computing Mixed Nash Equilibria

Fun Game

Maxmin and Minmax

Iterated Removal of Dominated Strategies

Rationalizability

Correlated Equilibrium
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Pithy Quote

If there is intelligent life on other planets, in a majority of them, they would
have discovered correlated equilibrium before Nash equilibrium.

– Roger Myerson

Unit: Lecture: Leyton-Brown & Wright (20)
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Examples

• Consider again Battle of the Sexes.
– Intuitively, the best outcome seems a 50-50 split between (F, F ) and (B, B).
– But there’s no way to achieve this, so either someone loses out (unfair) or both players often
miscoordinate

• Another classic example: traffic game

go wait

go −100, −100 10, 0

B 0, 10 −10, −10

Unit: Lecture: Leyton-Brown & Wright (21)
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Intuition

• What is the natural solution here?

– A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.

• Benefits:
– the negative payoff outcomes are completely avoided
– fairness is achieved
– the sum of social welfare exceeds that of any Nash equilibrium

• We could use the same idea to achieve the fair outcome in battle of the sexes.
• Our example presumed that everyone perfectly observes the random event; not
required.
• More generally, some random variable with a commonly known distribution, and
a private signal to each player about the outcome.
– signal doesn’t determine the outcome or others’ signals; however, correlated

Unit: Lecture: Leyton-Brown & Wright (22)
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Formal definition

Definition (Correlated equilibrium)
Given an n-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ),
where v is a tuple of random variables v = (v1, . . . , vn) with respective domains
D = (D1, . . . , Dn), π is a joint distribution over v, σ = (σ1, . . . , σn) is a vector of
mappings σi : Di 7→ Ai, and for each agent i and every mapping σ′

i : Di 7→ Ai it is
the case that

∑
d∈D

π(d)ui (σ1(d1), . . . , σi(di), . . . , σn(dn))

≥
∑
d∈D

π(d)ui (σ1(d1), . . . , σ′
i(di), . . . , σn(dn)) .

Unit: Lecture: Leyton-Brown & Wright (23)
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Existence

Theorem
For every Nash equilibrium σ∗ there exists a corresponding correlated equilibrium
σ.

• This is easy to show:
– let Di = Ai

– let π(d) =
∏

i∈N σ∗
i (di)

– σi maps each di to the corresponding ai.

• Thus, correlated equilibria always exist

Unit: Lecture: Leyton-Brown & Wright (24)
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Remarks

• Not every correlated equilibrium is equivalent to a Nash equilibrium
– thus, correlated equilibrium is a weaker notion than Nash

• Any convex combination of the payoffs achievable under correlated equilibria is
itself realizable under a correlated equilibrium
– start with the Nash equilibria (each of which is a CE)
– introduce a second randomizing device that selects which CE the agents will play
– regardless of the probabilities, no agent has incentive to deviate
– the probabilities can be adjusted to achieve any convex combination of the equilibrium
payoffs

– the randomizing devices can be combined

Unit: Lecture: Leyton-Brown & Wright (25)
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