Nash Equilibrium Game Theoretic Analysis

Kevin Leyton-Brown

University of British Columbia Canada CIFAR AI Chair, Amii

James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii

THE UNIVERSITY OF BRITISH COLUMBIA

amii

Lecture Overview

Recap

Solution Concepts: Pareto Optimality

Solution Concepts: Nash Equilibrium

Mixed Strategies

Game Theoretic Analysis: Nash Equilibrium: Leyton-Brown & Wright (2)

Recap: Normal Form Games

In a normal form game:

- Agents simultaneously make a single decision
- They then receive an outcome that depends on the profile of actions

Definition: *n*-player normal form game

A normal form game is a tuple G = (N, A, u), where

- N is a set of n players (indexed by i)
- $A = A_1 \times A_2 \times \cdots \times A_n$ is a set of action profiles
 - $-A_i$ is the action set for player i
- $u = (u_1, \ldots, u_n)$ is a profile of utility functions

 $- u_i : A \to \mathbb{R}$

Recap: Normal Form Games as a Matrix

	Соор.	Defect
Соор.	-1, -1	-5,0
Defect	0, -5	-3, -3

- Two-player normal form games can be written as a matrix with a tuple of utilities in each cell
- By convention, row player is first utility, column player is second utility

Recap

Solution Concepts: Pareto Optimality

Solution Concepts: Nash Equilibrium

Mixed Strategies

Game Theoretic Analysis: Nash Equilibrium: Leyton-Brown & Wright (5)

Recap	Solution Concepts: Pareto Optimality	Solution Concepts: Nash Equilibrium	Mixed Strategies	Summary
Optimal	Decisions in Games			

• In single-agent decision theory, the key notion is the **optimal decision**: The decision that maximizes the agent's expected utility:

 $a^* = \arg\max_{a \in A} \mathbb{E}[u(a)]$

Recap	Solution Concepts: Pareto Optimality	Solution Concepts: Nash Equilibrium	Mixed Strategies	Summary
Optimal	Decisions in Games			

• In single-agent decision theory, the key notion is the **optimal decision**: The decision that maximizes the agent's expected utility:

$$a^* = \arg \max_{a \in A} \mathbb{E}[u(a)]$$

• In a multiagent setting, the notion of an optimal strategy is ill-defined:

$$a_i^* = \arg \max_{a_i \in A_i} \mathbb{E}[u_i(a_i, a_{-i})]$$

Recap	Solution Concepts: Pareto Optimality	Solution Concepts: Nash Equilibrium	Mixed Strategies	Summary
Optimal	Decisions in Games			

• In single-agent decision theory, the key notion is the **optimal decision**: The decision that maximizes the agent's expected utility:

$$a^* = \arg \max_{a \in A} \mathbb{E}[u(a)]$$

• In a multiagent setting, the notion of an optimal strategy is ill-defined:

$$a_i^* = \arg \max_{a_i \in A_i} \mathbb{E}[u_i(a_i, \underline{a_{-i}})]$$

- The best strategy depends on the strategies of the **other agents**
- But the other agents are simultaneously solving the same problem!

- From the viewpoint of an **outside observer**, can some outcomes of a game be considered **better** than others?
 - We have no justification for saying that one agent's interests are more important than another's
 - We cannot even compare the agents' utilitys to each other, because of affine invariance! (we don't know what "units" the payoffs are being expressed in)
- Game theorists identify certain subsets of outcomes that are desirable and/or interesting
- These are called solution concepts

Suppose outcome o is **at least as good** as o' for every agent i

- Further, there is some agent who strictly prefers o to o'
- E.g., o' = "Everyone gets pie", and

o = "Everyone gets pie and also Alice gets cake"

Suppose outcome o is **at least as good** as o' for every agent i

- Further, there is some agent who strictly prefers o to o'
- E.g., o' = "Everyone gets pie", and
 - o = "Everyone gets pie and also Alice gets cake"
- In this situation, o seems defensibly better than o'

Suppose outcome o is **at least as good** as o' for every agent i

- Further, there is some agent who strictly prefers o to o'
- E.g., o' = "Everyone gets pie", and
 - o = "Everyone gets pie and also Alice gets cake"
- In this situation, o seems defensibly better than o'

Definition

o **Pareto dominates** *o'* whenever $o \succeq_i o'$ for **all** $i \in N$, and $o \succ_i o'$ for **some** $i \in N$

Definition

An outcome *o*^{*} is **Pareto optimal** if no other outcome Pareto dominates it.

Suppose outcome o is **at least as good** as o' for every agent i

- Further, there is some agent who strictly prefers o to o'
- E.g., o' = "Everyone gets pie", and
 - o = "Everyone gets pie and also Alice gets cake"
- In this situation, o seems defensibly better than o'

Definition

o **Pareto dominates** o' whenever $o \succeq_i o'$ for **all** $i \in N$, and $o \succ_i o'$ for **some** $i \in N$

Definition

An outcome *o*^{*} is **Pareto optimal** if no other outcome Pareto dominates it.

Questions

 Can a game have more than one Pareto-optimal outcome?

Suppose outcome o is **at least as good** as o' for every agent i

- Further, there is some agent who strictly prefers o to o'
- E.g., o' = "Everyone gets pie", and
 - o = "Everyone gets pie and also Alice gets cake"
- In this situation, o seems defensibly better than o'

Definition

o **Pareto dominates** o' whenever $o \succeq_i o'$ for **all** $i \in N$, and $o \succ_i o'$ for **some** $i \in N$

Definition

An outcome *o*^{*} is **Pareto optimal** if no other outcome Pareto dominates it.

Questions

- Can a game have more than one Pareto-optimal outcome?
- Does every game have at least one Pareto-optimal outcome?

Recap	Solution Concepts: Pareto Optimality	Solution Concepts: Nash Equilibrium	Mixed Strategies	Summary
Pareto O	ptimality of Examples			

	Соор.	Defect
Соор.	-1, -1	-5, 0
Defect	0, -5	-3, -3

	Соор.	Defect		Left	Right
Соор.	-1, -1	-5, 0	Left	1, 1	-1, -1
Defect	0, -5	-3, -3	Right	-1, -1	1,1

	Ballet	Soccer
Ballet	2, 1	0,0
Soccer	0, 0	1, 2

	Соор.	Defect		Left	Right
Соор.	-1, -1	-5, 0	Left	1, 1	-1, -1
Defect	0, -5	-3, -3	Right	-1, -1	1,1

	Ballet	Soccer		Heads	Tails
Ballet	2, 1	0, 0	Heads	1, -1	-1, 1
Soccer	0, 0	1, 2	Tails	-1, 1	1, -1

Recap

Solution Concepts: Pareto Optimality

Solution Concepts: Nash Equilibrium

Mixed Strategies

Best Response

We can also ask: Which actions are better from an individual agent's viewpoint?

• That depends on what the other agents are doing!

Best Response

We can also ask: Which actions are better from an individual agent's viewpoint?

• That depends on what the other agents are doing!

Notation

$$a_{-i} = (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n)$$

 $a = (a_i, a_{-i})$

Best Response

We can also ask: Which actions are better from an individual agent's viewpoint?

• That depends on what the other agents are doing!

Notation

$$a_{-i} = (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n)$$

 $a = (a_i, a_{-i})$

Definition: Best response

$$BR_i(a_{-i}) = \{a_i^* \in A_i \mid u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i}) \quad \forall a_i \in A_i\}$$

Nash Equilibrium

Best response is not, in itself, a solution concept

- In general, agents won't know what the other agents will do
- But we can use it to define a solution concept called Nash equilibrium
- A Nash equilibrium is a **stable** outcome: one where no agent regrets their action.

Definition

An action profile $a \in A$ is a (pure strategy) Nash equilibrium iff

 $\forall i \in N : a_i \in BR_i(a_{-i})$

Nash Equilibrium

Best response is not, in itself, a solution concept

- In general, agents won't know what the other agents will do
- But we can use it to define a solution concept called Nash equilibrium
- A Nash equilibrium is a **stable** outcome: one where no agent regrets their action.

Definition

An action profile $a \in A$ is a (pure strategy) **Nash equilibrium** iff

 $\forall i \in N : a_i \in BR_i(a_{-i})$

Questions

 Can a game have more than one pure strategy Nash equilibrium?

Nash Equilibrium

Best response is not, in itself, a solution concept

- In general, agents won't know what the other agents will do
- But we can use it to define a solution concept called Nash equilibrium
- A Nash equilibrium is a **stable** outcome: one where no agent regrets their action.

Definition

An action profile $a \in A$ is a (pure strategy) Nash equilibrium iff

 $\forall i \in N : a_i \in BR_i(a_{-i})$

Questions

- Can a game have more than one pure strategy Nash equilibrium?
- 2. Does every game have **at least one** pure strategy Nash equilibrium?

Lecture Overview

Recap

Solution Concepts: Pareto Optimality

Solution Concepts: Nash Equilibrium

Mixed Strategies

Game Theoretic Analysis: Nash Equilibrium: Leyton-Brown & Wright (14)

Mixed Strategies

So far, we have been assuming that agents play a single action deterministically

- But we have seen that that is a pretty bad idea!
- E.g., Matching Pennies, security games

Definition

A **strategy** s_i for agent *i* is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.

Mixed Strategies

So far, we have been assuming that agents play a single action **deterministically**

- But we have seen that that is a pretty bad idea!
- E.g., Matching Pennies, security games

Definition

A **strategy** s_i for agent *i* is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.

- Pure strategy: $s_i(a_i) = 1$ for some a_i Only one action played
- Mixed strategy: $s_i(a_i) < 1$ for all a_i Randomize over multiple actions

Mixed Strategies

So far, we have been assuming that agents play a single action deterministically

- But we have seen that that is a pretty bad idea!
- E.g., Matching Pennies, security games

Definition

A **strategy** s_i for agent *i* is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.

- Pure strategy: $s_i(a_i) = 1$ for some a_i Only one action played
- Mixed strategy: $s_i(a_i) < 1$ for all a_i Randomize over multiple actions
- Set of *i*'s strategies: $S_i = \Delta(A_i)$
- Strategy profiles: $S = S_1 \times \cdots \times S_n$

Utility Under Mixed Strategies

The utility of a mixed strategy profile is its **expected utility** (why?)

Game Theoretic Analysis: Nash Equilibrium: Leyton-Brown & Wright (16)

Utility Under Mixed Strategies

The utility of a mixed strategy profile is its expected utility (why?)

- 1. We assume agents are decision theoretically rational
- 2. We assume that agents randomize **independently**

 $\Delta(A_i) \times \cdots \Delta(A_n)$, not $\Delta(A_i \times \cdots \land A_n)$

Utility Under Mixed Strategies

The utility of a mixed strategy profile is its **expected utility** (why?)

- 1. We assume agents are decision theoretically rational
- 2. We assume that agents randomize independently

 $\Delta(A_i) \times \cdots \Delta(A_n)$, not $\Delta(A_i \times \cdots \land A_n)$

Definition

$$u_i(s) = \sum_{a \in A} \Pr(a \mid s) u_i(a)$$
$$= \sum_{a \in A} \left(\prod_{j \in N} s_j(a_j) \right) u_i(a)$$

Game Theoretic Analysis: Nash Equilibrium: Leyton-Brown & Wright (16)

Best Response and Nash Equilibrium

Definition

The set of *i*'s best responses to a strategy profile $s_{-i} \in S_{-i}$ is

$$BR_i(s_{-i}) = \{a_i^* \in A_i \mid u_i(a_i^*, s_{-i}) \ge u_i(a_i, s_{-i}) \quad \forall a_i \in A_i\}$$

Best Response and Nash Equilibrium

Definition

The set of *i*'s best responses to a strategy profile $s_{-i} \in S_{-i}$ is

$$BR_i(s_{-i}) = \{a_i^* \in A_i \mid u_i(a_i^*, s_{-i}) \ge u_i(a_i, s_{-i}) \quad \forall a_i \in A_i\}$$

Definition

A strategy profile s is a Nash equilibrium iff

$$\forall i \in N, s'_i \in S_i : u_i(s) \ge u_i(s'_i, s_{-i})$$

Equivalently,

$$\forall i \in N, a_i \in A_i : s_i(a_i) > 0 \iff a_i \in BR_i(s_{-i}).$$

When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

Nash's Theorem

Theorem [Nash 1951]

Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Nash's Theorem

Theorem [Nash 1951]

Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Proof idea

- 1. Brouwer's fixed-point theorem guarantees that any continuous function from a simpletope to itself has at least one fixed point.
 - A simpletope is a cross product of simplices, so S is a simpletope
- 2. Construct a continuous function $f:S\to S$ whose fixed points are all Nash equilibria

Interpreting Nash Equilibrium

Question: Is it ever rational for an agent to play any strategy other than a Nash equilibrium strategy?

Interpreting Nash Equilibrium

Question: Is it ever rational for an agent to play any strategy other than a Nash equilibrium strategy? *Yes!*

- Even if the agent is perfectly rational, playing a Nash equilibrium strategy is only optimal if they believe that the other agents will play their parts of the same Nash equilibrium
- Even in a zero-sum game, if you think the other agent will play in a particular sub-optimal way, a non-equilibrium strategy might be the best way to exploit them

Interpreting Nash Equilibrium

Question: Is it ever rational for an agent to play any strategy other than a Nash equilibrium strategy? *Yes!*

- Even if the agent is perfectly rational, playing a Nash equilibrium strategy is only optimal if they believe that the other agents will play their parts of the same Nash equilibrium
- Even in a zero-sum game, if you think the other agent will play in a particular sub-optimal way, a non-equilibrium strategy might be the best way to exploit them

Example

Lisa: Poor, predictable Bart. Always takes Rock. Bart: Good ol' Rock! Nothing beats Rock!

Interpreting Mixed Strategy Nash Equilibrium

What does it even mean to say that agents are playing a mixed strategy Nash equilibrium?

- They truly are **sampling a distribution** in their heads, perhaps to confuse their opponents (e.g., zero-sum games)
- The distribution represents the **other agents' uncertaintly** about what the agent will do
- The distribution is the empirical frequency of actions in repeated play
- The distribution is the frequency of a pure strategy in a population of pure strategies
 - i.e., every individual plays a pure strategy, but individuals are sampled

Summary

Game theory studies **solution concepts** rather than simply optimal behavior

- "Optimal behavior" is not unconditionally defined in multiagent settings
- Pareto optimal: No agent can be made better off without making some other agent worse off
- Nash equilibrium: No agent regrets their strategy, given the strategies of the other agents