Game Representations

Kevin Leyton-Brown

University of British Columbia Canada CIFAR AI Chair, Amii

James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii

amii

THE UNIVERSITY OF BRITISH COLUMBIA

Normal-Form	Repeated	Extensive Form	Bayesian Games
Lecture Overview			

Normal-Form

Repeated

Extensive Form

Bayesian Games

Normal-Form	Repeated	Extensive Form	Bayesian Games
Repeated Games			

Play the same game over and over again.

Discuss in your groups what happens:

- ...when you play Prisoner's Dilemma 3 times in a row?
- ...if you play PD infinitely?
- ...if you play PD repeatedly, stopping each time if two coin flips both come up heads?
- ...if you play Battle of the Sexes repeatedly (in any of these conditions)?
- ... if you play Matching Pennies repeatedly (in any of these conditions)?

If you like, **actually play the games** to see what happens.

Then let's discuss together as a class.

Normal-Form	Repeated	Extensive Form	Bayesian Games
Lecture Overview			

Normal-Form

Repeated

Extensive Form

Bayesian Games

Normal-Form	Repeated	Extensive Form	Bayesian Games
Perfect-Informati	on Extensive-Form Gar	nes	

- Game unfolds over time
- Players can see each other's moves
- Can be written as a tree; leaves labelled with payoffs

Normal-Form	Repeated	Extensive Form	Bayesian Games
Fun Games			

Centipede

Ultimatum

- Player 1 proposes how to split \$50 between the two players
- If player 2 accepts, both keep their portion of the split
- If player 2 rejects, both get \$0

Play in a breakout room

Normal-Form	Repeated	Extensive Form	Bayesian Games
Stochastic Games			

- Combines perfect-information extensive form with repeated games
- Multiplayer generalization of a Markov Decision Process (MDP):
 - state: which game is being played
 - actions: set of alternatives for each player in that game
 - reward: payoffs in that game
 - transition function: mapping from all players' actions to the next state

Normal-Form	Repeated	Extensive Form	Bayesian Games
Imperfect-Information E	xtensive-Form Games		

- Generalizes perfect-information extensive-form games by allowing for **imperfect observation** of the previous player's moves
 - Some actions might be observed perfectly
 - Sometimes the second player might not be able to tell anything except that the first player moved
 - Most generally, the second player can observe which of a set of equivalence classes contains the first player's move
- Examples:
 - Battleship
 - Starcraft (without random starting locations or random races)

Normal-Form	Repeated	Extensive Form	Bayesian Games
Stackelberg Games			

A special case of imperfect-information extensive-form games

- One player **commits to a strategy**, which is observed by the second player
 - If the strategy is randomized, the second player can't see random draws
- Motivation: the same game is played repeatedly; the second player can see the first player's actions and hence figure out her strategy
- Example: security games; wildlife poaching games

Normal-Form	Repeated	Extensive Form	Bayesian Games
Lecture Overview			

Normal-Form

Repeated

Extensive Form

Bayesian Games

Game Representations: Leyton-Brown & Wright (21)

Normal-Form	Repeated	Extensive Form	Bayesian Games
Fun Game			

• Choose a phone number none of your breakout room members knows; consider its last four digits to be DEFG

Normal-Form	Repeated	Extensive Form	Bayesian Games
Fun Game			

- Choose a phone number none of your breakout room members knows; consider its last four digits to be DEFG
 - 1. take "DE" as your valuation. Play a first-price auction with three neighbours, where your **utility is your valuation minus the amount you pay**
 - 2. play the auction again, same neighbours, same valuation
 - 3. play again, with "FG" as your valuation

• Can we model this interaction as a normal-form game?

Normal-Form	Repeated	Extensive Form	Bayesian Games
Bayesian Games			

- Uncertainty about payoffs (either one's own or others')
- Interesting when there is **asymmetric information** about this uncertainty
 - otherwise, just play the game where payoffs are expected values of payoffs for each action
- Different from Imperfect Information Extensive Form, which is uncertainty about another agent's *moves*