# Utility and Foundations (2) Modeling Human Strategic Behavior

#### **Kevin Leyton-Brown**

University of British Columbia Canada CIFAR AI Chair, Amii

#### James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii



## THE UNIVERSITY OF BRITISH COLUMBIA







| Recap            | Proof sketch | Fun Game! | Utility Summary |
|------------------|--------------|-----------|-----------------|
| Lecture Overview |              |           |                 |

# Recap

Proof sketch

Fun Game!

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (2)

| Recap          | Proof sketch | Fun Game!                                     | Utility Summary |
|----------------|--------------|-----------------------------------------------|-----------------|
| Recap: Axioms  |              |                                               |                 |
| • Completeness |              | $o_1 \succeq o_2 \text{ or } o_2 \succeq o_1$ |                 |

| Recap                            | Proof sketch                                | Fun Game!                                   | Utility Summary |
|----------------------------------|---------------------------------------------|---------------------------------------------|-----------------|
| Recap: Axioms                    |                                             |                                             |                 |
| <ul> <li>Completeness</li> </ul> |                                             |                                             |                 |
|                                  | $o_1 \succeq$                               | $o_2 \text{ or } o_2 \succeq o_1$           |                 |
| <ul> <li>Transitivity</li> </ul> |                                             |                                             |                 |
|                                  | $(o_1 \succeq o_2) \land (o_1 \succeq o_2)$ | $o_2 \succeq o_3) \implies o_1 \succeq o_3$ |                 |
|                                  |                                             |                                             |                 |
|                                  |                                             |                                             |                 |
|                                  |                                             |                                             |                 |
|                                  |                                             |                                             |                 |
|                                  |                                             |                                             |                 |

| Recap                            | Proof sketch                                | Fun Game!                                    | Utility Summary |
|----------------------------------|---------------------------------------------|----------------------------------------------|-----------------|
| Recap: Axioms                    | 5                                           |                                              |                 |
| • Completen                      | ess                                         |                                              |                 |
|                                  | $o_1 \succeq$                               | $o_2 \text{ or } o_2 \succeq o_1$            |                 |
| <ul> <li>Transitivity</li> </ul> |                                             |                                              |                 |
|                                  | $(o_1 \succeq o_2) \land (o_1 \succeq o_2)$ | $(o_2 \succeq o_3) \implies o_1 \succeq o_3$ |                 |
| • Monotonic                      | ity                                         |                                              |                 |
|                                  | $p > q \implies [p:good, (1 + p)]$          | $(-p):bad] \succ [q:good, (1-q)]$            | ():bad]         |
|                                  |                                             |                                              |                 |
|                                  |                                             |                                              |                 |
|                                  |                                             |                                              |                 |
|                                  |                                             |                                              |                 |

| Recap                            | Proof sketch                       | Fun Game!                                   | Utility Summary |
|----------------------------------|------------------------------------|---------------------------------------------|-----------------|
| Recap: Axioms                    | ;                                  |                                             |                 |
| Completen                        | ess                                |                                             |                 |
|                                  | $o_1 \succeq$                      | $o_2 \text{ or } o_2 \succeq o_1$           |                 |
| <ul> <li>Transitivity</li> </ul> |                                    |                                             |                 |
|                                  | $(o_1 \succeq o_2) \land ($        | $o_2 \succeq o_3) \implies o_1 \succeq o_3$ |                 |
| <ul> <li>Monotonici</li> </ul>   | ity                                |                                             |                 |
|                                  | $p > q \implies [p:good, (1 - p)]$ | $[-p):bad] \succ [q:good, (1-q)]$           | q): $bad$ ]     |
| <ul> <li>Substitutat</li> </ul>  | bility                             |                                             |                 |
|                                  | $o_1 \sim o_2 \implies$            | Can replace $o_1$ with $o_2$                |                 |
|                                  |                                    |                                             |                 |
|                                  |                                    |                                             |                 |

| Recap                               | Proof sketch                                 | Fun Game!                                    | Utility Summary |
|-------------------------------------|----------------------------------------------|----------------------------------------------|-----------------|
| Recap: Axioms                       |                                              |                                              |                 |
| <ul> <li>Completeness</li> </ul>    |                                              |                                              |                 |
|                                     | $o_1 \succeq$                                | $o_2 \text{ or } o_2 \succeq o_1$            |                 |
| <ul> <li>Transitivity</li> </ul>    |                                              |                                              |                 |
|                                     | $(o_1 \succeq o_2) \land ($                  | $(o_2 \succeq o_3) \implies o_1 \succeq o_3$ |                 |
| <ul> <li>Monotonicity</li> </ul>    |                                              |                                              |                 |
| p >                                 | $p \Rightarrow q \implies [p:good, (1 + q)]$ | $(-p):bad] \succ [q:good, (1-q)]$            | : bad]          |
| • Substitutability                  |                                              |                                              |                 |
|                                     | $o_1 \sim o_2 \implies$                      | Can replace $o_1$ with $o_2$                 |                 |
| <ul> <li>Decomposability</li> </ul> | У                                            |                                              |                 |
|                                     | $P_{\ell_1}(o) = I$                          | $P_{\ell_2}(o)) \implies \ell_1 \sim \ell_2$ |                 |
|                                     |                                              |                                              |                 |

| Recap                               | Proof sketch                 | Fun Game!                                      | Utility Summary |
|-------------------------------------|------------------------------|------------------------------------------------|-----------------|
| Recap: Axioms                       |                              |                                                |                 |
| Completenes                         | S                            |                                                |                 |
|                                     | $o_1 \geq$                   | $\underline{} o_2 \text{ or } o_2 \succeq o_1$ |                 |
| <ul> <li>Transitivity</li> </ul>    |                              |                                                |                 |
|                                     | $(o_1 \succeq o_2) \land$    | $(o_2 \succeq o_3) \implies o_1 \succeq o_3$   |                 |
| <ul> <li>Monotonicity</li> </ul>    |                              |                                                |                 |
| í.                                  | $p > q \implies [p:good, (1$ | $(-p):bad] \succ [q:good, (1-q)]$              | ): bad]         |
| • Substitutabili                    | ty                           |                                                |                 |
|                                     | $o_1 \sim o_2 \implies$      | Can replace $o_1$ with $o_2$                   |                 |
| <ul> <li>Decomposability</li> </ul> | ility                        |                                                |                 |
|                                     | $P_{\ell_1}(o) = 1$          | $P_{\ell_2}(o)) \implies \ell_1 \sim \ell_2$   |                 |
| <ul> <li>Continuity</li> </ul>      |                              |                                                |                 |

$$o_1 \succ o_2 \succ o_3 \implies \exists p \in [0,1] : o_2 \sim [p:o_1, (1-p):o_3]$$

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (3)

| Recap                 | Proof sketch | Fun Game! | Utility Summary |
|-----------------------|--------------|-----------|-----------------|
| Recap: Representation | Theorem      |           |                 |

### Theorem [von Neumann & Morgenstern, 1944]

Suppose that a preference relation ≻ satisfies the axioms Completeness, Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity.

Then there exists a function  $u: O \to \mathbb{R}$  such that

1. 
$$\forall o_1, o_2 \in O : o_1 \succeq o_2 \iff u(o_1) \ge u(o_2)$$
, and

2. 
$$\forall [p_1:o_1, \ldots, p_k:o_k] \in O: u([p_1:o_1, \ldots, p_k:o_k]) = \sum_{j=1}^k p_j u(o_j).$$

That is, there exists a utility function u that represents  $\succeq$ .

| Recap            | Proof sketch | Fun Game! | Utility Summary |
|------------------|--------------|-----------|-----------------|
| Lecture Overview |              |           |                 |

## Recap

# **Proof sketch**

Fun Game!

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (5)

| Recap        | Proof sketch | Fun Game! | Utility Summary |
|--------------|--------------|-----------|-----------------|
| Proof sketch |              |           |                 |

# 1. Choose $o^+, o^-$ such that $o^- \preceq o \preceq o^+$ for all o

| Recap        | Proof sketch | Fun Game! | Utility Summary |
|--------------|--------------|-----------|-----------------|
| Proof sketch |              |           |                 |

## 1. Choose $o^+, o^-$ such that $o^- \preceq o \preceq o^+$ for all o

- (this turns out to be without loss of generality)

| Recap        | Proof sketch | Fun Game! | Utility Summary |
|--------------|--------------|-----------|-----------------|
| Proof sketch |              |           |                 |

- 1. Choose  $o^+, o^-$  such that  $o^- \preceq o \preceq o^+$  for all o
  - (this turns out to be without loss of generality)
- 2. Construct u(o) = p such that  $o \sim [p : o^+, (1-p) : o^-]$

| Recap        | Proof sketch | Fun Game! | Utility Summary |
|--------------|--------------|-----------|-----------------|
| Proof sketch |              |           |                 |

- 1. Choose  $o^+, o^-$  such that  $o^- \preceq o \preceq o^+$  for all o
  - (this turns out to be without loss of generality)
- 2. Construct u(o) = p such that  $o \sim [p : o^+, (1-p) : o^-]$
- 3. Substitutability lets us replace everything with these "canonical" lotteries; Monotonicity lets us assert the ordering between them.

| Recap         | Proof sketch      | Fun Game! | Utility Summary |
|---------------|-------------------|-----------|-----------------|
| Caveats & Det | tails: Uniqueness |           |                 |
|               |                   |           |                 |

| Recap          | Proof sketch    | Fun Game! | Utility Summary |
|----------------|-----------------|-----------|-----------------|
| Caveats & Deta | ils: Uniqueness |           |                 |

Comparisons of expected values are invariant to **positive affine transformations**:

$$X \succeq Y \iff \mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)]$$

| Recap          | Proof sketch    | Fun Game! | Utility Summary |
|----------------|-----------------|-----------|-----------------|
| Caveats & Deta | ils: Uniqueness |           |                 |

Comparisons of expected values are invariant to **positive affine transformations**:

$$\begin{aligned} X \succeq Y \iff \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)] \\ \iff c \mathbb{E}[u(X)] \geq c \mathbb{E}[u(Y)] \end{aligned}$$

| Recap                  | Proof sketch | Fun Game! | Utility Summary |
|------------------------|--------------|-----------|-----------------|
| Caveats & Details: Uni | queness      |           |                 |

Comparisons of expected values are invariant to **positive affine transformations**:

$$X \succeq Y \iff \mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)]$$
$$\iff c \mathbb{E}[u(X)] \ge c \mathbb{E}[u(Y)]$$
$$\iff c \mathbb{E}[u(X)] + b \ge c \mathbb{E}[u(Y)] + b$$

| Recap                   | Proof sketch | Fun Game! | Utility Summary |
|-------------------------|--------------|-----------|-----------------|
| Caveats & Details: Uniq | lueness      |           |                 |

Comparisons of expected values are invariant to **positive affine transformations**:

$$\begin{split} X \succeq Y \iff \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)] \\ \iff c \mathbb{E}[u(X)] \geq c \mathbb{E}[u(Y)] \\ \iff c \mathbb{E}[u(X)] + b \geq c \mathbb{E}[u(Y)] + b \\ \iff \mathbb{E}[cu(X) + b] \geq \mathbb{E}[cu(Y) + b] \end{split}$$

for all  $b \in \mathbb{R}$  and c > 0

| Recap            | Proof sketch | Fun Game! | Utility Summary |
|------------------|--------------|-----------|-----------------|
| Lecture Overview |              |           |                 |

## Recap

# Proof sketch

Fun Game!

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (8)

| Recap                            | Proof sketch | Fun Game! | Utility Summary |
|----------------------------------|--------------|-----------|-----------------|
| Fun Game: Buying Lottery Tickets |              |           |                 |
|                                  |              |           |                 |

Write down the following numbers:

1. How much would you pay to play the lottery

[0.3:\$5, 0.3:\$7, 0.4:\$9]?

| Recap         | Proof sketch        | Fun Game! | Utility Summary |
|---------------|---------------------|-----------|-----------------|
| Fun Game: Buy | ing Lottery Tickets |           |                 |
|               |                     |           |                 |

Write down the following numbers:

1. How much would you pay to play the lottery

[0.3:\$5, 0.3:\$7, 0.4:\$9]?

2. How much would you pay to play the lottery

[p:\$5, q:\$7, (1-p-q):\$9]?

| Recap         | Proof sketch         | Fun Game! | Utility Summary |
|---------------|----------------------|-----------|-----------------|
| Fun Game: Buy | ving Lottery Tickets |           |                 |
|               |                      |           |                 |

Write down the following numbers:

1. How much would you pay to play the lottery

[0.3:\$5, 0.3:\$7, 0.4:\$9]?

2. How much would you pay to play the lottery

$$[p:\$5, q:\$7, (1-p-q):\$9]?$$

3. How much would you pay to play the lottery

$$[p:\$5, q:\$7, (1-p-q):\$9]$$

If you knew that the last seven draws had been 5, 5, 7, 5, 9, 9, 5?

| Recap           | Proof sketch       | Fun Game! | Utility Summary |
|-----------------|--------------------|-----------|-----------------|
| Beyond von Neur | nann & Morgenstern |           |                 |

- The first game was a pretty good match for the utility theory that we just learned.
- **Question:** If two rational agents have different prices for [0.3:\$5, 0.3:\$7, 0.4:\$9], what does that suggest about their **preferences for money**?

| Recap       | Proof sketch                 | Fun Game!                | Utility Summary       |
|-------------|------------------------------|--------------------------|-----------------------|
| Beyond von  | Neumann & Morgenstern        |                          |                       |
| • The first | game was a pretty good match | n for the utility theory | that we just learned. |

- **Question:** If two rational agents have different prices for [0.3:\$5, 0.3:\$7, 0.4:\$9], what does that suggest about their **preferences for money**?
- The second game was not such a great match!
- Question: If two rational agents have different prices for [p:\$5, q:\$7, (1-p-q):\$9], can we infer anything about the two agents' preferences for money?

| Recap       | Proof sketch                 | Fun Game!                | Utility Summary         |
|-------------|------------------------------|--------------------------|-------------------------|
| Beyond von  | Neumann & Morgenstern        |                          |                         |
| • The first | game was a pretty good match | n for the utility theory | v that we just learned. |

- **Question:** If two rational agents have different prices for [0.3:\$5, 0.3:\$7, 0.4:\$9], what does that suggest about their **preferences for money**?
- The second game was not such a great match!
- Question: If two rational agents have different prices for [p:\$5, q:\$7, (1-p-q):\$9], can we infer anything about the two agents' preferences for money?
- If the two agents agree about the price for [p:\$5, q:\$7, (1-p-q):\$9] but then disagree once they hear what the last few draws were?

| Recap       | Proof sketch                 | Fun Game!               | Utility Summary         |
|-------------|------------------------------|-------------------------|-------------------------|
| Beyond von  | Neumann & Morgenstern        |                         |                         |
| • The first | game was a pretty good match | n for the utility theor | / that we just learned. |

- **Question:** If two rational agents have different prices for [0.3:\$5, 0.3:\$7, 0.4:\$9], what does that suggest about their **preferences for money**?
- The second game was not such a great match!
- Question: If two rational agents have different prices for [p:\$5, q:\$7, (1-p-q):\$9], can we infer anything about the two agents' preferences for money?
- If the two agents agree about the price for [p:\$5, q:\$7, (1-p-q):\$9] but then disagree once they hear what the last few draws were?
- von Neumann and Morgenstern's utility theory assumes **known, objective** probabilities.
- There are other representation theorems [e.g., Savage 1954] that state that rational agents must (a) have probabilistic beliefs, (b) update those beliefs as if by conditioning, (c) maximize the expected value of some utility function wrt them

| Recap               | Proof sketch          | Fun Game!                  | Utility Summary   |
|---------------------|-----------------------|----------------------------|-------------------|
| Utility Summary     |                       |                            |                   |
| Utility theory prov | es that agents whose  | e preferences obey certain | simple axioms     |
| about preferences   | over lotteries must a | act as if they were maximi | zing the expected |

value of a scalar function.

- "Rational" agents are those whose behaviour satisfies the axioms
- If you don't buy the axioms, then you shouldn't buy that this theorem is about rational behavior.
- Conversely, if you don't buy that rational agents must behave in this way, then there must be at least one axiom that you disagree with.

This approach extends to "subjective" probabilities:

• Axioms about **preferences over uncertain "acts"** that do not describe how agents manipulate probabilities.

# **Game Representations**

#### **Kevin Leyton-Brown**

University of British Columbia Canada CIFAR AI Chair, Amii

#### James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii



amii

### THE UNIVERSITY OF BRITISH COLUMBIA





| Normal-Form      | Repeated | Extensive Form | Bayesian Games |
|------------------|----------|----------------|----------------|
| Lecture Overview |          |                |                |

# Normal-Form

Repeated

Extensive Form

Bayesian Games

Game Representations: Leyton-Brown & Wright (2)

| Normal-Form      | Repeated                                                                       | Extensive Form | Bayesian Games |
|------------------|--------------------------------------------------------------------------------|----------------|----------------|
| TCP Backoff Game |                                                                                |                |                |
|                  |                                                                                |                |                |
|                  |                                                                                |                |                |
| × warning        |                                                                                |                |                |
| 8                | Your Internet Connection Is Not Optimized.<br>Download InternetBOOST 2001 Now! | <u>D</u> K     |                |
|                  |                                                                                |                |                |

Should you send your packets using correctly-implemented TCP (which has a "backoff" mechanism) or using a defective implementation (which doesn't)?

- Consider this situation as a two-player game:
  - both use a correct implementation: both get 1 ms delay
  - one correct, one defective: 4 ms delay for correct, 0 ms for defective
  - **both defective:** both get a 3 ms delay.

| Normal-Form      | Repeated | Extensive Form | Bayesian Games |
|------------------|----------|----------------|----------------|
| TCP Backoff Game |          |                |                |
|                  |          |                |                |

- Consider this situation as a two-player game:
  - both use a correct implementation: both get 1 ms delay
  - one correct, one defective: 4 ms delay for correct, 0 ms for defective
  - **both defective:** both get a 3 ms delay.
- Go into a breakout room. Play once with each person.
- Questions:
  - What **action** should a player of the game take?
  - Would all users behave the same in this scenario?
  - What global **patterns of behaviour** should the system designer expect?
  - Under what changes to the delay numbers would behavior be the same?
  - What effect would communication have?
  - Does it matter if I believe that my opponent is **rational**?

| Normal-Form    | Repeated | Extensive Form | Bayesian Games |
|----------------|----------|----------------|----------------|
| Defining Games |          |                |                |

- Finite, *n*-person game:  $\langle N, A, u \rangle$ :
  - N is a finite set of n **players**, indexed by i
  - $-A = \langle A_1, \dots, A_n \rangle$  is a tuple of **action sets** for each player *i* 
    - $a \in A$  is an **action profile**
  - $u = \langle u_1, \dots, u_n 
    angle$ , a **utility function** for each player, where  $u_i : A \mapsto \mathbb{R}$

- Writing a 2-player game as a **matrix**:
  - row player is player 1, column player is player 2
  - rows are actions  $a \in A_1$ , columns are  $a' \in A_2$
  - cells are outcomes, written as a tuple of utility values for each player

| Normal-Form          | Repeated | Extensive Form | Bayesian Games |
|----------------------|----------|----------------|----------------|
| Games in Matrix Form |          |                |                |

Here's the TCP Backoff Game written as a matrix ("normal form").

$$\begin{array}{c|c} C & D \\ \hline \\ C & -1, -1 & -4, 0 \\ \hline \\ D & 0, -4 & -3, -3 \end{array}$$

| Normal-Form       | Repeated | Extensive Form | Bayesian Games |
|-------------------|----------|----------------|----------------|
| More General Form |          |                |                |

# Prisoner's dilemma is any game

 $\begin{array}{c|c} C & D \\ \hline \\ C & a, a & b, c \\ D & c, b & d, d \end{array}$ 

with c > a > d > b.

| Normal-Form           | Repeated | Extensive Form | Bayesian Games |
|-----------------------|----------|----------------|----------------|
| Games of Pure Competi | tion     |                |                |

# Players have **exactly opposed** interests

- There must be precisely two players (otherwise they can't have exactly opposed interests)
- For all action profiles  $a \in A$ ,  $u_1(a) + u_2(a) = c$  for some constant c
  - Special case: zero sum
- Thus, we only need to store a utility function for one player
  - in a sense, it's a one-player game

| Normal-Form      | Repeated | Extensive Form | Bayesian Games |
|------------------|----------|----------------|----------------|
| Matching Pennies |          |                |                |

One player wants to **match**; the other wants to **mismatch**.

HeadsTailsHeads1, -1-1, 1Tails-1, 11, -1

| Normal-Form         | Repeated | Extensive Form | Bayesian Games |
|---------------------|----------|----------------|----------------|
| Rock-Paper-Scissors |          |                |                |

Generalized matching pennies.

|          | Rock  | Paper | Scissors |
|----------|-------|-------|----------|
| Rock     | 0, 0  | -1, 1 | 1, -1    |
| Paper    | 1, -1 | 0, 0  | -1, 1    |
| Scissors | -1, 1 | 1, -1 | 0, 0     |

...Believe it or not, there's an annual international competition for this game!

| Normal-Form          | Repeated | Extensive Form | Bayesian Games |
|----------------------|----------|----------------|----------------|
| Games of Cooperation |          |                |                |

Players have exactly the same interests.

- no conflict: all players want the same things
- $\forall a \in A, \forall i, j, u_i(a) = u_j(a)$
- we often write such games with a single payoff per cell
- why are these even still games?

| Normal-Form       | Repeated | Extensive Form | Bayesian Games |
|-------------------|----------|----------------|----------------|
| Coordination Game |          |                |                |

# Which **side of the road** should you drive on?

|       | Left | Right |
|-------|------|-------|
| Left  | 1, 1 | 0, 0  |
| Right | 0, 0 | 1, 1  |

| Normal-Form                        | Repeated | Extensive Form | Bayesian Games |
|------------------------------------|----------|----------------|----------------|
| General Games: Battle of the Sexes |          |                |                |

The most interesting games combine elements of **cooperation** and **competition**.

 $\begin{array}{c|cc} B & F \\ \hline B & 2,1 & 0,0 \\ F & 0,0 & 1,2 \\ \end{array}$ 

| Normal-Form              | Repeated  | Extensive Form | Bayesian Games |
|--------------------------|-----------|----------------|----------------|
| General Games: Battle of | the Sexes |                |                |

The most interesting games combine elements of **cooperation** and **competition**.

Play this game in breakout rooms. Be fast!