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Recap: Axioms

• Completeness
o1 ⪰ o2 or o2 ⪰ o1

• Transitivity
(o1 ⪰ o2) ∧ (o2 ⪰ o3) =⇒ o1 ⪰ o3

• Monotonicity
p > q =⇒ [p : good, (1 − p) : bad] ≻ [q : good, (1 − q) : bad]

• Substitutability
o1 ∼ o2 =⇒ Can replace o1 with o2

• Decomposability
Pℓ1(o) = Pℓ2(o)) =⇒ ℓ1 ∼ ℓ2

• Continuity
o1 ≻ o2 ≻ o3 =⇒ ∃p ∈ [0, 1] : o2 ∼ [p : o1, (1 − p) : o3]

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (3)
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Recap: Representation Theorem

Theorem [von Neumann & Morgenstern, 1944]

Suppose that a preference relation ⪰ satisfies the axioms Completeness,
Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity.

Then there exists a function u : O → R such that

1. ∀o1, o2 ∈ O : o1 ⪰ o2 ⇐⇒ u(o1) ≥ u(o2), and
2. ∀[p1 : o1, . . . , pk : ok] ∈ O : u([p1 : o1, . . . , pk : ok]) =

∑k
j=1 pju(oj).

That is, there exists a utility function u that represents ⪰.

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (4)
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Proof sketch

1. Choose o+, o− such that o− ⪯ o ⪯ o+ for all o

– (this turns out to be without loss of generality)

2. Construct u(o) = p such that o ∼ [p : o+, (1 − p) : o−]
3. Substitutability lets us replace everything with these “canonical” lotteries;
Monotonicity lets us assert the ordering between them.

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (6)
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Caveats & Details: Uniqueness

For a given set of preferences, the utility function is not uniquely defined.

Comparisons of expected values are invariant to positive affine transformations:

X ⪰ Y ⇐⇒ E[u(X)] ≥ E[u(Y )]

⇐⇒ cE[u(X)] ≥ cE[u(Y )]
⇐⇒ cE[u(X)]+b ≥ cE[u(Y )]+b

⇐⇒ E[cu(X)+b] ≥ E[cu(Y )+b]

for all b ∈ R and c > 0

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (7)
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Fun Game: Buying Lottery Tickets

Write down the following numbers:

1. How much would you pay to play the lottery

[0.3 : $5, 0.3 : $7, 0.4 : $9]?

2. How much would you pay to play the lottery

[p : $5, q : $7, (1 − p − q) : $9]?

3. How much would you pay to play the lottery

[p : $5, q : $7, (1 − p − q) : $9]

If you knew that the last seven draws had been 5, 5, 7, 5, 9, 9, 5?

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (9)
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Beyond von Neumann & Morgenstern

• The first game was a pretty good match for the utility theory that we just learned.
• Question: If two rational agents have different prices for [0.3 : $5, 0.3 : $7, 0.4 : $9],
what does that suggest about their preferences for money?

• The second game was not such a great match!
• Question: If two rational agents have different prices for

[p : $5, q : $7, (1 − p − q) : $9], can we infer anything about the two agents’
preferences for money?
• If the two agents agree about the price for [p : $5, q : $7, (1 − p − q) : $9] but then
disagree once they hear what the last few draws were?
• von Neumann and Morgenstern’s utility theory assumes known, objective
probabilities.
• There are other representation theorems [e.g., Savage 1954] that state that rational
agents must (a) have probabilistic beliefs, (b) update those beliefs as if by
conditioning, (c) maximize the expected value of some utility function wrt them

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (10)
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Utility Summary

Utility theory proves that agents whose preferences obey certain simple axioms
about preferences over lotteries must act as if they were maximizing the expected
value of a scalar function.

• “Rational” agents are those whose behaviour satisfies the axioms
• If you don’t buy the axioms, then you shouldn’t buy that this theorem is about
rational behavior.
• Conversely, if you don’t buy that rational agents must behave in this way, then
there must be at least one axiom that you disagree with.

This approach extends to “subjective” probabilities:

• Axioms about preferences over uncertain “acts” that do not describe how agents
manipulate probabilities.

Modeling Strategic Situations: Utility and Foundations (2): Leyton-Brown & Wright (11)
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TCP Backoff Game

Game Theory

Consider this situation as a two-player game:
both use a correct implementation: both get 1 ms delay
one correct, one defective: 4 ms delay for correct, 0 ms for defective
both defective: both get a 3 ms delay.

Should you send your packets using correctly-implemented 
TCP (which has a “backoff” mechanism) or using a defective
implementation (which doesn’t)?

Should you send your packets using correctly-implemented TCP (which has a
“backoff” mechanism) or using a defective implementation (which doesn’t)?

• Consider this situation as a two-player game:
– both use a correct implementation: both get 1 ms delay
– one correct, one defective: 4 ms delay for correct, 0 ms for defective
– both defective: both get a 3 ms delay.

Game Representations: Leyton-Brown & Wright (3)
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TCP Backoff Game

• Consider this situation as a two-player game:
– both use a correct implementation: both get 1 ms delay
– one correct, one defective: 4 ms delay for correct, 0 ms for defective
– both defective: both get a 3 ms delay.

• Go into a breakout room. Play once with each person.
• Questions:
– What action should a player of the game take?
– Would all users behave the same in this scenario?
– What global patterns of behaviour should the system designer expect?
– Under what changes to the delay numbers would behavior be the same?
– What effect would communication have?
– Does it matter if I believe that my opponent is rational?

Game Representations: Leyton-Brown & Wright (3)
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Defining Games

• Finite, n-person game: 〈N, A, u〉:
– N is a finite set of n players, indexed by i

– A = 〈A1, . . . , An〉 is a tuple of action sets for each player i

• a ∈ A is an action profile

– u = 〈u1, . . . , un〉, a utility function for each player, where ui : A 7→ R

• Writing a 2-player game as a matrix:
– row player is player 1, column player is player 2
– rows are actions a ∈ A1, columns are a′ ∈ A2

– cells are outcomes, written as a tuple of utility values for each player

Game Representations: Leyton-Brown & Wright (4)
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Games in Matrix Form

Here’s the TCP Backoff Game written as a matrix (“normal form”).

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.

c©Shoham and Leyton-Brown, 2006

Game Representations: Leyton-Brown & Wright (5)
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More General Form

Prisoner’s dilemma is any game58 3 Competition and Coordination: Normal form games

C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games

c©Shoham and Leyton-Brown, 2006

with c > a > d > b.

Game Representations: Leyton-Brown & Wright (6)
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Games of Pure Competition

Players have exactly opposed interests

• There must be precisely two players (otherwise they can’t have exactly opposed interests)
• For all action profiles a ∈ A, u1(a) + u2(a) = c for some constant c

– Special case: zero sum

• Thus, we only need to store a utility function for one player
– in a sense, it’s a one-player game

Game Representations: Leyton-Brown & Wright (7)
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Matching Pennies

One player wants to match; the other wants to mismatch.

58 3 Introduction to Noncooperative Game Theory: Games in Normal Form

Definition 3.2.3 (Constant-sum game)A two-player normal-form game isconstant-
sumif there exists a constantc such that for each strategy profilea ∈ A1 × A2 it
is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will
always assume thatc = 0, that is, that we have a zero-sum game. If common-
payoff games represent situations of pure coordination, zero-sum games represent
situations of pure competition; one player’s gain must come at the expense of the
other player. This property requires that there be exactly two agents. Indeed, if
you allow more agents, any game can be turned into a zero-sum game by adding
a dummy player whose actions do not impact the payoffs to the other agents, and
whose own payoffs are chosen to make the payoffs in each outcome sum to zero.

A classical example of a zero-sum game is the game ofMatching Pennies. In thisMatching
Pennies game game, each of the two players has a penny and independently chooses to display

either heads or tails. The two players then compare their pennies. If they are the
same then player 1 pockets both, and otherwise player 2 pockets them. The payoff
matrix is shown in Figure 3.6.

Heads Tails

Heads 1,−1 −1, 1

Tails −1, 1 1,−1

Figure 3.6: Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rocham-
beau, provides a three-strategy generalization of the matching-pennies game. The
payoff matrix of this zero-sum game is shown in Figure 3.7. In this game, each of
the two players can choose either rock, paper, or scissors. If both players choose
the same action, there is no winner and the utilities are zero. Otherwise, each of the
actions wins over one of the other actions and loses to the other remaining action.

Battle of the Sexes

In general, games can include elements of both coordination and competition. Pris-
oner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, aBattle of the

Sexes game husband and wife wish to go to the movies, and they can select among two movies:
“Lethal Weapon (LW)” and “Wondrous Love (WL).” They much prefer to go to-
gether rather than to separate movies, but while the wife (player 1) prefers LW, the
husband (player 2) prefers WL. The payoff matrix is shown in Figure 3.8. We will
return to this game shortly.
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Rock-Paper-Scissors

Generalized matching pennies.
3.2 Games in normal form 59

Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1

Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

Figure 3.7: Rock, Paper, Scissors game.

Wife

Husband

LW WL

LW 2, 1 0, 0

WL 0, 0 1, 2

Figure 3.8: Battle of the Sexes game.

3.2.4 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet
his set ofstrategiesor his available choices. Certainly one kind of strategy is to
select a single action and play it. We call such a strategy apure strategy, and wepure strategy
will use the notation we have already developed for actions to represent it. We call
a choice of pure strategy for each agent apure-strategy profile.pure-strategy

profile Players could also follow another, less obvious type of strategy: randomizing
over the set of available actions according to some probability distribution. Such
a strategy is called a mixed strategy. Although it may not be immediately obvious
why a player should introduce randomness into his choice of action, in fact in
a multiagent setting the role of mixed strategies is critical. We define a mixed
strategy for a normal-form game as follows.

Definition 3.2.4 (Mixed strategy) Let (N,A, u) be a normal-form game, and for
any setX let Π(X) be the set of all probability distributions overX. Then the set
of mixed strategiesfor playeri is Si = Π(Ai).mixed strategy

Definition 3.2.5 (Mixed-strategy profile) The set ofmixed-strategy profilesis sim-mixed-strategy
profile ply the Cartesian product of the individual mixed-strategy sets,S1 × · · · × Sn.
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Games of Cooperation

Players have exactly the same interests.

• no conflict: all players want the same things
• ∀a ∈ A, ∀i, j, ui(a) = uj(a)

• we often write such games with a single payoff per cell
• why are these even still games?
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Coordination Game

Which side of the road should you drive on?

3.2 Games in normal form 57

Incidentally, the name “Prisoner’s Dilemma” for this famous game-theoretic sit-
uation derives from the original story accompanying the numbers. The players of
the game are two prisoners suspected of a crime rather than two network users. The
prisoners are taken to separate interrogation rooms, and each can either “confess”
to the crime or “deny” it (or, alternatively, “cooperate” or “defect”). If the payoff
are all nonpositive, their absolute values can be interpreted as the length of jail term
each of prisoner gets in each scenario.

Common-payoff games

There are some restricted classes of normal-form games that deserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 (Common-payoff game)A common-payoff gameis a game incommon-payoff
game which for all action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is

the case thatui(a) = uj(a).

Common-payoff games are also calledpure coordination gamesor team games.pure
coordination
game

team games

In such games the agents have no conflicting interests; their sole challenge is to
coordinate on an action that is maximally beneficial to all.

As an example, imagine two drivers driving towards each other in a country
having no traffic rules, and who must independently decide whether to drive on the
left or on the right. If the drivers choose the same side (left or right) they have
some high utility, and otherwise they have a low utility. The game matrix is shown
in Figure 3.5.

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Figure 3.5: Coordination game.

Zero-sum games

At the other end of the spectrum from pure coordination games liezero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine trans-
formations) are more properly calledconstant-sum games.Unlike common-payoffconstant-sum

game games, constant-sum games are meaningful primarily in the context of two-player
(though not necessarily two-strategy) games.
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General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and competition.

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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