Utility and Foundations Modeling Human Strategic Behavior

Kevin Leyton-Brown

University of British Columbia Canada CIFAR AI Chair, Amii

James R. Wright

University of Alberta Canada CIFAR AI Chair, Amii

THE UNIVERSITY OF BRITISH COLUMBIA

amii

Student Introductions

Please introduce yourself by saying:

- what country you grew up in
- where you did your undergrad
- your current research interests
- something fun about you (your favourite band, book, flavour of ice cream, or anything else you'd like...)

Lecture Overview

Student Introductions

Informally

Theorem Statement

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (3)

A utility function is a real-valued function that indicates **how much** an agent **prefers** an outcome.

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (4)

A utility function is a real-valued function that indicates **how much** an agent **prefers** an outcome.

Rational agents act to maximize their expected utility.

A utility function is a real-valued function that indicates **how much** an agent **prefers** an outcome.

Rational agents act to maximize their expected utility.

This is a nontrivial claim!

1. Why should we believe that an agent's preferences can be adequately represented by a **single number**?

A utility function is a real-valued function that indicates **how much** an agent **prefers** an outcome.

Rational agents act to maximize their expected utility.

This is a nontrivial claim!

- 1. Why should we believe that an agent's preferences can be adequately represented by a **single number**?
- 2. Why should agents maximize **expected value** rather than some other criterion?

A utility function is a real-valued function that indicates **how much** an agent **prefers** an outcome.

Rational agents act to maximize their expected utility.

This is a nontrivial claim!

- 1. Why should we believe that an agent's preferences can be adequately represented by a **single number**?
- 2. Why should agents maximize **expected value** rather than some other criterion?

Von-Neumann and Morgenstern's Theorem shows when these are true.

Lecture Overview

Student Introductions

Informally

Theorem Statement

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (5)

Formal Setting: Outcomes

Let O be the set of **outcomes**:

 $O=Z\cup\Delta(O)$ (not a typo!)

where:

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (6)

Formal Setting: Outcomes

Let *O* be the set of **outcomes**:

$$O = Z \cup \Delta(O)$$
 (not a typo!)

where:

• Z is some set of "actual outcomes"

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (6)

Formal Setting: Outcomes

Let O be the set of **outcomes**:

$$O=Z\cup\Delta(O)$$
 (not a typo!)

where:

- Z is some set of "actual outcomes"
- $\Delta(X)$ represents the set of **lotteries** over **finite subsets** of *X*:

$$[p_1 \colon x_1, \ldots, p_k \colon x_k]$$

with $x_1, \ldots, x_k \in X$ and $\sum_{j=1}^k p_j = 1$.

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (6)

Formal Setting: Preference Relation

- A preference relation compares the relative desirability of outcomes.
- For a given preference relation \succeq , write:
- 1. $o_1 \succeq o_2$ if the agent **weakly prefers** o_1 to o_2 ,
- 2. $o_1 \succ o_2$ if the agent **strictly prefers** o_1 to o_2 ,
- 3. $o_1 \sim o_2$ if the agent is **indifferent** between o_1 and o_2 .

Formal Setting: Utility Function

A **utility function** is a function $u : O \to \mathbb{R}$.

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (8)

Formal Setting: Utility Function

A **utility function** is a function $u : O \to \mathbb{R}$.

Definition

A utility function $u: O \to \mathbb{R}$ represents a preference relation \succeq iff:

- 1. $\forall o_1, o_2 \in O : o_1 \succeq o_2 \iff u(o_1) \ge u(o_2)$, and
- 2. $\forall [p_1:o_1, \ldots, p_k:o_k] \in O: u([p_1:o_1, \ldots, p_k:o_k]) = \sum_{j=1}^k p_j u(o_j).$

Representation Theorem

Theorem [von Neumann & Morgenstern, 1944]

Suppose that a preference relation ≻ satisfies the axioms Completeness, Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity.

Then there exists a function $u: O \to \mathbb{R}$ such that

1. $\forall o_1, o_2 \in O : o_1 \succeq o_2 \iff u(o_1) \ge u(o_2)$, and

2.
$$\forall [p_1:o_1, \ldots, p_k:o_k] \in O: u([p_1:o_1, \ldots, p_k:o_k]) = \sum_{j=1}^k p_j u(o_j).$$

That is, there exists a utility function u that represents \succeq .

Completeness & Transitivity

Definition (Completeness)

A preference relation \succeq satisfies **completeness** iff

$$\forall o_1, o_2 \in O : (o_1 \succ o_2) \lor (o_1 \prec o_2) \lor (o_1 \sim o_2)$$

Definition (Transitivity)

A preference relation ≽ satisfies **transitivity** iff

$$\forall o_1, o_2, o_3 \in O : (o_1 \succeq o_2) \land (o_2 \succeq o_3) \implies o_1 \succeq o_3$$

Informally

Transitivity Justification: Money Pump

• Suppose that transitivity is violated: i.e., $(o_1 \succ o_2)$ and $(o_2 \succ o_3)$ and $(o_3 \succ o_1)$

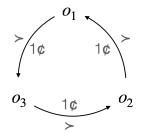
- Suppose that transitivity is violated: i.e., $(o_1 \succ o_2)$ and $(o_2 \succ o_3)$ and $(o_3 \succ o_1)$
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2

- Suppose that transitivity is violated: i.e., $(o_1\succ o_2)$ and $(o_2\succ o_3)$ and $(o_3\succ o_1)$
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2
- But from o_2 , you should be willing to pay 1¢ to switch to o_1

- Suppose that transitivity is violated: i.e., $(o_1\succ o_2)$ and $(o_2\succ o_3)$ and $(o_3\succ o_1)$
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2
- But from o_2 , you should be willing to pay 1¢ to switch to o_1
- But from o_1 , you should be willing to pay 1¢ to switch back to o_3 again...

- Suppose that transitivity is violated: i.e., $(o_1\succ o_2)$ and $(o_2\succ o_3)$ and $(o_3\succ o_1)$
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2
- But from o_2 , you should be willing to pay 1¢ to switch to o_1
- But from o_1 , you should be willing to pay 1¢ to switch back to o_3 again...

- Suppose that transitivity is violated: i.e., $(o_1 \succ o_2)$ and $(o_2 \succ o_3)$ and $(o_3 \succ o_1)$
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2
- But from o_2 , you should be willing to pay 1¢ to switch to o_1
- But from *o*₁, you should be willing to pay 1¢ to switch back to *o*₃ again...
- Agents with cyclic preferences are vulnerable to a money-pump!



Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (11)

Monotonicity

Definition (Monotonicity)

A preference relation \succeq satisfies **monotonicity** iff for all $o_1, o_2 \in O$ and p > q,

$$(o_1 \succ o_2) \implies [p:o_1, (1-p):o_2] \succ [q:o_1, (1-q):o_2]$$

You should prefer a 90% chance of getting \$1000 (or nothing) to a 50% chance of getting \$1000.

Substitutability

Definition (Substitutability)

A preference relation \succeq satisfies **substitutability** iff for all $o_1, \ldots, o_k \in O$ and p, p_3, \ldots, p_k satisfying $p + \sum_{j=3}^k p_j = 1$, if $o_1 \sim o_2$,

$$[p:o_1, p_3:o_3, \ldots, p_k:o_k] \sim [p:o_2, p_3:o_3, \ldots, p_k:o_k].$$

Substitutability

Definition (Substitutability)

A preference relation \succeq satisfies **substitutability** iff for all $o_1, \ldots, o_k \in O$ and p, p_3, \ldots, p_k satisfying $p + \sum_{j=3}^k p_j = 1$, if $o_1 \sim o_2$,

$$[p:o_1, p_3:o_3, \ldots, p_k:o_k] \sim [p:o_2, p_3:o_3, \ldots, p_k:o_k].$$

If I like apples and bananas equally, then I should be indifferent between a 30% chance of getting an apple and a 30% chance of getting a banana.

Decomposability (aka "No Fun in Gambling")

Definition (Decomposability)

A preference relation \succeq satisfies **decomposability** iff for all lotteries ℓ_1, ℓ_2 :

$$(\forall o \in O : P_{\ell_1}(o) = P_{\ell_2}(o)) \implies \ell_1 \sim \ell_2,$$

where $P_{\ell}(o)$ denotes the probability that outcome *o* is selected by lottery ℓ .

Decomposability (aka "No Fun in Gambling")

Definition (Decomposability)

A preference relation \succeq satisfies **decomposability** iff for all lotteries ℓ_1, ℓ_2 :

$$(\forall o \in O : P_{\ell_1}(o) = P_{\ell_2}(o)) \implies \ell_1 \sim \ell_2,$$

where $P_{\ell}(o)$ denotes the probability that outcome o is selected by lottery ℓ .

Example

Let
$$\ell_1 = [0.5:[0.5:o_1, 0.5:o_2], 0.5:o_3]$$
, and $\ell_2 = [0.25:o_1, 0.25:o_2, 0.5:o_3]$

Then $\ell_1 \sim \ell_2$ for any preference relation that satisfies decomposability, because

$$P_{\ell_1}(o_1) = 0.5 \times 0.5 = 0.25 \qquad = P_{\ell_2}(o_1)$$
$$P_{\ell_1}(o_2) = 0.5 \times 0.5 = 0.25 \qquad = P_{\ell_2}(o_2)$$
$$P_{\ell_1}(o_3) = 0.5 \qquad = P_{\ell_2}(o_3)$$

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (14)

Continuity

Definition (Continuity)

A preference relation \succeq satisfies **continuity** iff for all $o_1, o_2, o_3 \in O$,

$$o_1 \succ o_2 \succ o_3 \implies \exists p \in [0,1] : o_2 \sim [p:o_1, (1-p):o_3].$$

Modeling Strategic Situations: Utility and Foundations: Leyton-Brown & Wright (15)