Utility Theory

James Wright

January 16/2014

Outline

(1) Overview
(2) Theorems

Von Neumann-Morgenstern
Axioms
Proof sketch
Fun game
Savage
(3) Summary

Overview

Utility, informally

- A utility function is a real-valued function that indicates how much agents like an outcome.
- In the presence of uncertainty, rational agents act to maximize their expected utility.
- Utility is a foundational concept in game theory.

Overview

Utility, informally

- A utility function is a real-valued function that indicates how much agents like an outcome.
- In the presence of uncertainty, rational agents act to maximize their expected utility.
- Utility is a foundational concept in game theory.
- But it is a nontrivial claim:
(1) Why should we believe that an agent's preferences can be adequately represented by a single number?
(2) Why should agents maximize expectations rather than some other criterion?

Overview

Utility, informally

- A utility function is a real-valued function that indicates how much agents like an outcome.
- In the presence of uncertainty, rational agents act to maximize their expected utility.
- Utility is a foundational concept in game theory.
- But it is a nontrivial claim:
(1) Why should we believe that an agent's preferences can be adequately represented by a single number?
(2) Why should agents maximize expectations rather than some other criterion?
- Von Neumann and Morgenstern's theorem shows why (and when!) these are true.
- It is also a good example of some common elements in game theory (and economics):
- Behaving "as-if"
- Axiomatic characterization

Outline

(1) Overview
(2) Theorems

Von Neumann-Morgenstern
Axioms
Proof sketch
Fun game
Savage
(3) Summary

Formal setting

Definition
Let O be a set of possible outcomes. A lottery is a probability distribution over outcomes. Write $\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right.$] for the lottery that assigns probability p_{1} to outcome o_{1}, etc.

Formal setting

Definition
Let O be a set of possible outcomes. A lottery is a probability distribution over outcomes. Write $\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right.$] for the lottery that assigns probability p_{1} to outcome o_{1}, etc.

Definition
For a specific preference relation \succeq, write:
(1) $o_{1} \succeq o_{2}$ if the agent weakly prefers o_{1} to o_{2};
(2) $o_{1} \succ o_{2}$ if the agent strictly prefers o_{1} to o_{2}; and
(3) $o_{1} \sim o_{2}$ if the agent is indifferent between o_{1} and o_{2}.

Formal setting

Definition
Let O be a set of possible outcomes. A lottery is a probability distribution over outcomes. Write $\left[p_{1}: o_{1}, p_{2}: o_{2}, \ldots, p_{k}: o_{k}\right.$] for the lottery that assigns probability p_{1} to outcome o_{1}, etc.

Definition
For a specific preference relation \succeq, write:
(1) $o_{1} \succeq o_{2}$ if the agent weakly prefers o_{1} to o_{2};
(2) $o_{1} \succ o_{2}$ if the agent strictly prefers o_{1} to o_{2}; and
(3) $o_{1} \sim o_{2}$ if the agent is indifferent between o_{1} and o_{2}.

Definition
A utility function is a function $u: O \rightarrow \mathbb{R}$. A utility function represents a set of preferences if:
(1) $o_{1} \succeq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)$; and
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

Representation theorem

Von Neumann and Morgenstern, 1944

Theorem
Suppose a preference relation \succeq satisfies the axioms Completeness, Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity. Then there exists a function $u: O \rightarrow[0,1]$ such that
(1) $o_{1} \succeq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)$; and
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

That is, there exists a utility function u that represents \succeq.

Outline

(1) Overview
(2) Theorems

Von Neumann-Morgenstern
Axioms
Proof sketch
Fun game
Savage
(3) Summary

Completeness and transitivity

Definition (Completeness)

$$
\forall o_{1}, o_{2}: o_{1} \succ o_{2} \text { or } o_{2} \succ o_{1} \text { or } o_{1} \sim o_{2}
$$

Completeness and transitivity

Definition (Completeness)

$$
\forall o_{1}, o_{2}: o_{1} \succ o_{2} \text { or } o_{2} \succ o_{1} \text { or } o_{1} \sim o_{2}
$$

Definition (Transitivity)

$$
o_{1} \succeq o_{2} \text { and } o_{2} \succeq o_{3} \Longrightarrow o_{1} \succeq o_{3}
$$

Completeness and transitivity

Definition (Completeness)

$$
\forall o_{1}, o_{2}: o_{1} \succ o_{2} \text { or } o_{2} \succ o_{1} \text { or } o_{1} \sim o_{2}
$$

Definition (Transitivity)

$$
o_{1} \succeq o_{2} \text { and } o_{2} \succeq o_{3} \Longrightarrow o_{1} \succeq o_{3}
$$

Money pump justification.

- Suppose that $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$ and $o_{3} \succ o_{1}$.
- Starting from o_{3}, you should be willing to pay 1 cent (say) to switch to O_{2}.
- But from o_{2} you should be willing to pay 1 cent to switch to o_{1}.
- But from o_{1} you should be willing to pay 1 cent to switch back to $o_{3} \ldots$

Monotonicity

Definition (Monotonicity)
If $o_{1} \succ o_{2}$ and $p>q$, then
[$\left.p: o_{1},(1-p): o_{2}\right] \succ\left[q: o_{1},(1-q): o_{2}\right]$.

Monotonicity

Definition (Monotonicity)
If $o_{1} \succ o_{2}$ and $p>q$, then
$\left[p: o_{1},(1-p): o_{2}\right] \succ\left[q: o_{1},(1-q): o_{2}\right]$.
You should prefer a 90% chance of getting $\$ 1000$ to a 50% chance of getting $\$ 10$.

Substitutability

Definition (Substitutability)
If $o_{1} \sim o_{2}$, then for all sequences o_{3}, \ldots, o_{k} and p, p_{3}, \ldots, p_{k} with $p+\sum_{i=3}^{k} p_{i}=1$,

$$
\left[p: o_{1}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right] \sim\left[p: o_{2}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right]
$$

Substitutability

Definition (Substitutability)
If $o_{1} \sim o_{2}$, then for all sequences o_{3}, \ldots, o_{k} and p, p_{3}, \ldots, p_{k} with $p+\sum_{i=3}^{k} p_{i}=1$,

$$
\left[p: o_{1}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right] \sim\left[p: o_{2}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right] .
$$

If I like apples and bananas equally, then I should be indifferent between a 30% chance of getting a banana or a 30% chance of getting an apple.

Decomposability

Definition (Decomposability)

Let $P_{\ell}\left(o_{i}\right)$ denote the probability that lottery ℓ selects outcome o_{i}. If $P_{\ell_{1}}\left(o_{i}\right)=P_{\ell_{2}}\left(o_{i}\right) \forall o_{i} \in O$, then $\ell_{1} \sim \ell_{2}$.

Decomposability

Definition (Decomposability)

Let $P_{\ell}\left(o_{i}\right)$ denote the probability that lottery ℓ selects outcome o_{i}.
If $P_{\ell_{1}}\left(o_{i}\right)=P_{\ell_{2}}\left(o_{i}\right) \forall o_{i} \in O$, then $\ell_{1} \sim \ell_{2}$.
Example.
Let $\ell_{1}=\left[0.5:\left[0.5: o_{1}, 0.5: o_{2}\right], 0.5: o_{3}\right]$.
Let $\ell_{2}=\left[0.25: o_{1}, 0.25: o_{2}, 0.5: o_{3}\right]$.

Decomposability

Definition (Decomposability)

Let $P_{\ell}\left(o_{i}\right)$ denote the probability that lottery ℓ selects outcome o_{i}.
If $P_{\ell_{1}}\left(o_{i}\right)=P_{\ell_{2}}\left(o_{i}\right) \forall o_{i} \in O$, then $\ell_{1} \sim \ell_{2}$.
Example.
Let $\ell_{1}=\left[0.5:\left[0.5: o_{1}, 0.5: o_{2}\right], 0.5: o_{3}\right]$.
Let $\ell_{2}=\left[0.25: o_{1}, 0.25: o_{2}, 0.5: o_{3}\right]$.
Then $\ell_{1} \sim \ell_{2}$, because:
$P_{\ell_{1}}\left(o_{1}\right)=P_{\ell_{2}}\left(o_{1}\right)=0.25$,
$P_{\ell_{1}}\left(o_{2}\right)=P_{\ell_{2}}\left(o_{2}\right)=0.25$,
$P_{\ell_{1}}\left(o_{3}\right)=P_{\ell_{2}}\left(o_{3}\right)=0.5$.

Continuity

Definition (Continuity)
If $o_{1} \succ o_{2} \succ o_{3}$, then $\exists p \in[0,1]$ such that $o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right]$.

Outline

(1) Overview
(2) Theorems

Von Neumann-Morgenstern
Axioms

Proof sketch
Fun game
Savage

(3) Summary

Proof sketch

Construct the utility function
(1) For \succeq satisfying Completeness, Transitivity, Monotonicity, Decomposability and $o_{1} \succ o_{2} \succ o_{3}$, $\exists p$ such that:
(1) $o_{2} \succ\left[q: o_{1},(1-q): o_{3}\right] \quad \forall q<p$, and
(2) $o_{2} \prec\left[q: o_{1},(1-q): o_{3}\right] \quad \forall q>p$.

Proof sketch

Construct the utility function
(1) For \succeq satisfying Completeness, Transitivity, Monotonicity, Decomposability and $o_{1} \succ o_{2} \succ o_{3}$, $\exists p$ such that:
(1) $o_{2} \succ\left[q: o_{1},(1-q): o_{3}\right] \quad \forall q<p$, and
(2) $o_{2} \prec\left[q: o_{1},(1-q): o_{3}\right] \quad \forall q>p$.
(2) For \succeq additionally satisfying Continuity, $\exists p: o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right]$.

Proof sketch

Construct the utility function
(1) For \succeq satisfying Completeness, Transitivity, Monotonicity, Decomposability and $o_{1} \succ o_{2} \succ o_{3}$, $\exists p$ such that:
(1) $o_{2} \succ\left[q: o_{1},(1-q): o_{3}\right] \quad \forall q<p$, and
(2) $o_{2} \prec\left[q: o_{1},(1-q): o_{3}\right] \quad \forall q>p$.
(2) For \succeq additionally satisfying Continuity, $\exists p: o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right]$.
(3) Choose maximal $\bar{\sigma} \in O$ and minimal $\underline{o} \in O$.
(4) Construct $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}$.

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}$:

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}:$

- $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}]$

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}$:

- $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}]$
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$:
(1) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$.

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}$:

- $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}]$
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$:
(1) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$.
(2) Replace o_{i} by ℓ_{i}, giving:

$$
u^{*}=u\left(\left[p_{1}:\left[u\left(o_{1}\right): \bar{o},\left(1-u\left(o_{1}\right)\right): \underline{o}\right], \ldots\right]\right) .
$$

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}:$

- $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}]$
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$:
(1) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$.
(2) Replace o_{i} by ℓ_{i}, giving:
$u^{*}=u\left(\left[p_{1}:\left[u\left(o_{1}\right): \bar{o},\left(1-u\left(o_{1}\right)\right): \underline{o}\right], \ldots\right]\right)$.
(3) Question: What is the probability of getting \bar{o} ?

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}$:

- $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}]$
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$:
(1) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$.
(2) Replace o_{i} by ℓ_{i}, giving:
$u^{*}=u\left(\left[p_{1}:\left[u\left(o_{1}\right): \bar{o},\left(1-u\left(o_{1}\right)\right): \underline{o}\right], \ldots\right]\right)$.
(3) Question: What is the probability of getting \bar{o} ?
(4) Answer: $\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$

Proof sketch

Check the properties
(1) $u\left(o_{1}\right)>u\left(o_{2}\right) \Longrightarrow o_{1} \succ o_{2}:$

- $u(o)=p$ such that $o \sim[p: \bar{o},(1-p): \underline{o}]$
(2) $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$:
(1) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$.
(2) Replace o_{i} by ℓ_{i}, giving:

$$
u^{*}=u\left(\left[p_{1}:\left[u\left(o_{1}\right): \bar{o},\left(1-u\left(o_{1}\right)\right): \underline{o}\right], \ldots\right]\right) .
$$

(3) Question: What is the probability of getting \bar{o} ?
(4) Answer: $\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$
(5) So $u^{*}=u\left(\left[\left(\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)\right): \bar{o},\left(1-\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)\right): \underline{o}\right]\right)$.
(6) By definition of u then, $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

Outline

(1) Overview
(2) Theorems

Von Neumann-Morgenstern
Axioms
Proof sketch
Fun game
Savage
(3) Summary

Fun game

Buying random dollars

Write down the following numbers:

Fun game

Buying random dollars

Write down the following numbers:
(1) How much would you pay for a ticket in the lottery $\left[\frac{1}{3}: \$ 5, \frac{1}{3}: \$ 7, \frac{1}{3}: \$ 9\right]$?

Fun game

Buying random dollars

Write down the following numbers:
(1) How much would you pay for a ticket in the lottery [$\left.\frac{1}{3}: \$ 5, \frac{1}{3}: \$ 7, \frac{1}{3}: \$ 9\right]$?
(2) How much would you pay for a ticket in the lottery [$p: \$ 5, q: \$ 7,(1-p-q): \$ 9] ?$

Fun game

Buying random dollars

Write down the following numbers:
(1) How much would you pay for a ticket in the lottery [$\left.\frac{1}{3}: \$ 5, \frac{1}{3}: \$ 7, \frac{1}{3}: \$ 9\right]$?
(2) How much would you pay for a ticket in the lottery [$p: \$ 5, q: \$ 7,(1-p-q): \$ 9] ?$
3 How much would you pay for a ticket in the lottery [$p: \$ 5, q: \$ 7,(1-p-q): \$ 9]$ if you knew the last seven draws had been $5,5,7,5,9,9,5$?

Outline

(1) Overview
(2) Theorems

Von Neumann-Morgenstern
Axioms
Proof sketch
Fun game
Savage
(3) Summary

Beyond von Neumann-Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
- If two people have different prices for step 1 , what does that say about their utility functions for money?

Beyond von Neumann-Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
- If two people have different prices for step 1, what does that say about their utility functions for money?
- The second and third steps, not so much!
- If two people have different prices for step 2, what does that say about their utility functions?

Beyond von Neumann-Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
- If two people have different prices for step 1, what does that say about their utility functions for money?
- The second and third steps, not so much!
- If two people have different prices for step 2, what does that say about their utility functions?
- What if two people have the same prices for step 2 but different prices for step 3?

Representation theorem

Savage 1954

Theorem
Suppose a preference relation satisfies P1-P6; then there exists a utility function U and a probability measure P such that

$$
\mathbf{f} \preceq \mathbf{g} \text { iff } \sum_{i} P\left[B_{i}\right] U\left[f_{i}\right] \leq \sum_{i} P\left[B_{i}\right] U\left[g_{i}\right] .
$$

Representation theorem

Savage 1954

Theorem
Suppose a preference relation satisfies P1-P6; then there exists a utility function U and a probability measure P such that

$$
\mathbf{f} \preceq \mathbf{g} \text { iff } \sum_{i} P\left[B_{i}\right] U\left[f_{i}\right] \leq \sum_{i} P\left[B_{i}\right] U\left[g_{i}\right] .
$$

Savage "postulates"

$\mathrm{P} 1 \succeq$ is a simple order.
P2 For every \mathbf{f}, \mathbf{g}, and B, either $\mathbf{f} \preceq \mathbf{g}$ given B or $\mathbf{g} \preceq \mathbf{f}$ given B.
P3 If $\mathbf{f}(s)=g, \mathbf{f}^{\prime}(s)=g^{\prime}$ for every $s \in B$, then $\mathbf{f} \preceq \mathbf{f}^{\prime}$ given B if and only if $g \preceq g^{\prime}$.
P4 For every $A, B, P[A] \leq P[B]$ or $P[B] \leq P[A]$.
P5 It is false that for every $f, f^{\prime}, f \preceq f^{\prime}$.
P6 (Sure-thing principle)

Summary

- Using very simple axioms about preferences over uncertain outcomes, utility theory proves that rational agents ought to act as if they were maximizing the expected value of a real-valued function.

Summary

- Using very simple axioms about preferences over uncertain outcomes, utility theory proves that rational agents ought to act as if they were maximizing the expected value of a real-valued function.

Summary

- Using very simple axioms about preferences over uncertain outcomes, utility theory proves that rational agents ought to act as if they were maximizing the expected value of a real-valued function.
- Can extend beyond this to "subjective" probabilities, using axioms that do not describe how agents manipulate probabilities.

References

Savage, L. (1954).
The Foundations of Statistics.
Dover Publications.
击 Shoham, Y. and Leyton-Brown, K. (2008).
Multiagent Systems: Algorithmic, Game-theoretic, and Logical Foundations.

Cambridge University Press.

固 Von Neumann, J. and Morgenstern, O. (1944).
Theory of Games and Economic Behavior.
Princeton University Press.

