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Overview
Utility, informally

• A utility function is a real-valued function that indicates how
much agents like an outcome.

• In the presence of uncertainty, rational agents act to maximize
their expected utility.

• Utility is a foundational concept in game theory.

• But it is a nontrivial claim:
..1 Why should we believe that an agent’s preferences can be
adequately represented by a single number?

..2 Why should agents maximize expectations rather than some
other criterion?

• Von Neumann and Morgenstern’s theorem shows why (and
when!) these are true.

• It is also a good example of some common elements in game
theory (and economics):

• Behaving “as-if”
• Axiomatic characterization
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Formal setting

Definition
Let O be a set of possible outcomes. A lottery is a probability
distribution over outcomes. Write [p1 : o1, p2 : o2, . . . , pk : ok ] for
the lottery that assigns probability p1 to outcome o1, etc.

Definition
For a specific preference relation ⪰, write:

..1 o1 ⪰ o2 if the agent weakly prefers o1 to o2;

..2 o1 ≻ o2 if the agent strictly prefers o1 to o2; and

..3 o1 ∼ o2 if the agent is indifferent between o1 and o2.

Definition
A utility function is a function u : O → R. A utility function
represents a set of preferences if:

..1 o1 ⪰ o2 ⇐⇒ u(o1) ≥ u(o2); and

..2 u([p1 : o1, . . . , pk : ok ]) =
∑k

i=1 piu(oi ).
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Representation theorem
Von Neumann and Morgenstern, 1944

Theorem
Suppose a preference relation ⪰ satisfies the axioms Completeness,
Transitivity, Monotonicity, Substitutability, Decomposability, and
Continuity. Then there exists a function u : O → [0, 1] such that

..1 o1 ⪰ o2 ⇐⇒ u(o1) ≥ u(o2); and

..2 u([p1 : o1, . . . , pk : ok ]) =
∑k

i=1 piu(oi ).

That is, there exists a utility function u that represents ⪰.
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Completeness and transitivity

Definition (Completeness)

∀o1, o2 : o1 ≻ o2 or o2 ≻ o1 or o1 ∼ o2.

Definition (Transitivity)

o1 ⪰ o2 and o2 ⪰ o3 =⇒ o1 ⪰ o3.

Money pump justification.
• Suppose that o1 ≻ o2 and o2 ≻ o3 and o3 ≻ o1.
• Starting from o3, you should be willing to pay 1 cent (say) to
switch to o2.

• But from o2 you should be willing to pay 1 cent to switch to
o1.

• But from o1 you should be willing to pay 1 cent to switch
back to o3 . . .
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Monotonicity

Definition (Monotonicity)

If o1 ≻ o2 and p > q, then
[p : o1, (1− p) : o2] ≻ [q : o1, (1− q) : o2].

You should prefer a 90% chance of getting $1000
to a 50% chance of getting $10.

9



Overview Theorems Summary

Monotonicity

Definition (Monotonicity)

If o1 ≻ o2 and p > q, then
[p : o1, (1− p) : o2] ≻ [q : o1, (1− q) : o2].

You should prefer a 90% chance of getting $1000
to a 50% chance of getting $10.

9



Overview Theorems Summary

Substitutability

Definition (Substitutability)

If o1 ∼ o2, then for all sequences o3, . . . , ok and p, p3, . . . , pk with
p +

∑k
i=3 pi = 1,

[p : o1, p3 : o3, . . . , pk : ok ] ∼ [p : o2, p3 : o3, . . . , pk : ok ].

If I like apples and bananas equally, then I should be indifferent
between a 30% chance of getting a banana or a 30% chance of
getting an apple.
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Decomposability

Definition (Decomposability)

Let Pℓ(oi ) denote the probability that lottery ℓ selects outcome oi .
If Pℓ1(oi ) = Pℓ2(oi ) ∀oi ∈ O, then ℓ1 ∼ ℓ2.

Example.
Let ℓ1 = [0.5 : [0.5 : o1, 0.5 : o2], 0.5 : o3].
Let ℓ2 = [0.25 : o1, 0.25 : o2, 0.5 : o3].

Then ℓ1 ∼ ℓ2, because:
Pℓ1(o1) = Pℓ2(o1) = 0.25,
Pℓ1(o2) = Pℓ2(o2) = 0.25,
Pℓ1(o3) = Pℓ2(o3) = 0.5.
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Continuity

Definition (Continuity)

If o1 ≻ o2 ≻ o3, then ∃p ∈ [0, 1] such that
o2 ∼ [p : o1, (1− p) : o3].
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Proof sketch
Construct the utility function

..1 For ⪰ satisfying Completeness, Transitivity, Monotonicity,
Decomposability and o1 ≻ o2 ≻ o3,
∃p such that:

..1 o2 ≻ [q : o1, (1− q) : o3] ∀q < p, and

..2 o2 ≺ [q : o1, (1− q) : o3] ∀q > p.

..2 For ⪰ additionally satisfying Continuity,
∃p : o2 ∼ [p : o1, (1− p) : o3].

..3 Choose maximal o ∈ O and minimal o ∈ O.

..4 Construct u(o) = p such that o ∼ [p : o, (1− p) : o].
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Proof sketch
Check the properties

..1 u(o1) > u(o2) =⇒ o1 ≻ o2:

• u(o) = p such that o ∼ [p : o, (1− p) : o]

..2 u([p1 : o1, . . . , pk : ok ]) =
∑k

i=1 piu(oi ):

..1 Let u∗ = u([p1 : o1, . . . , pk : ok ]).

..2 Replace oi by ℓi , giving:
u∗ = u([p1 : [u(o1) : o, (1− u(o1)) : o], . . .]).

..3 Question: What is the probability of getting o?

..4 Answer:
∑k

i=1 piu(oi )

..5 So u∗ = u
([(∑k

i=1 piu(oi )
)
: o,

(
1−

∑k
i=1 piu(oi )

)
: o

])
.

..6 By definition of u then,
u([p1 : o1, . . . , pk : ok ]) =

∑k
i=1 piu(oi ).
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Fun game
Buying random dollars

Write down the following numbers:

..1 How much would you pay for a ticket in the lottery
[13 : $5, 13 : $7, 13 : $9]?

..2 How much would you pay for a ticket in the lottery
[p : $5, q : $7, (1− p − q) : $9]?

..3 How much would you pay for a ticket in the lottery
[p : $5, q : $7, (1− p − q) : $9] if you knew the last seven
draws had been 5,5,7,5,9,9,5?
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Beyond von Neumann-Morgenstern

• The first step of the fun game was a good match to the utility
theory we just learned.

• If two people have different prices for step 1, what does that
say about their utility functions for money?

• The second and third steps, not so much!
• If two people have different prices for step 2, what does that

say about their utility functions?
• What if two people have the same prices for step 2 but

different prices for step 3?

19
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Representation theorem
Savage 1954

Theorem
Suppose a preference relation satisfies P1–P6; then there exists a
utility function U and a probability measure P such that

f ⪯ g iff
∑
i

P[Bi ]U[fi ] ≤
∑
i

P[Bi ]U[gi ].
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Savage “postulates”

P1 ⪰ is a simple order.

P2 For every f, g, and B, either f ⪯ g given B or g ⪯ f
given B.

P3 If f(s) = g , f ′(s) = g ′ for every s ∈ B, then f ⪯ f ′

given B if and only if g ⪯ g ′.

P4 For every A,B, P[A] ≤ P[B] or P[B] ≤ P[A].

P5 It is false that for every f , f ′, f ⪯ f ′.

P6 (Sure-thing principle)

21
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Summary

• Using very simple axioms about preferences over uncertain
outcomes, utility theory proves that rational agents ought to
act as if they were maximizing the expected value of a
real-valued function.

• Can extend beyond this to “subjective” probabilities, using
axioms that do not describe how agents manipulate
probabilities.
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